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Abstract—Differences in bankruptcy regulations with varying 

value parameters cause data anomalies when implemented in the 

Altman Z-Score model. Another common problem in bankruptcy 

predictions is imbalanced data; the number of companies that fall 

into the bankruptcy category is much smaller than those that do 

not. Therefore, a novel method was proposed to address data 

imbalance and anomalies in an Altman Z-Score-based bankruptcy 

prediction model. The proposed method employs a two-step 

classification controlled with data binning. Assumption values 

were used to set the proportion of distress and non-distress classes. 

Quartile calculation-based data binning is then used to ordinally 

rank the non-distress category into three classes. Furthermore, a 

two-step classification was performed using the Long-Short Term 

Memory (LSTM) method, followed by a rule-based classification 

method. The LSTM method predicts output in the form of one 

class representing the distress zone and three classes representing 

non-distress zone subcategories. The results are then processed 

using a rule-based classification to summarize the output into a 

two-class classification, where all data not in the distress zone class 

is part of the non-distress zone. The performance evaluation shows 

promising results, with outcomes closely matching the source 

bankruptcy data. These findings strengthen the evidence that the 

Altman Z-Score is a powerful tool for bankruptcy prediction and 

demonstrate that the proposed method can improve the Altman Z-

Score model in handling differences in data value parameters. 
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I. INTRODUCTION 

Bankruptcy prediction is a major topic in the field of finance 
and an interesting and challenging research area in artificial 
intelligence, including machine learning and deep learning. The 
task of bankruptcy prediction is to measure the financial 
condition of a company, with the prediction output identifying 
companies that will go bankrupt within a certain period and 
those that will not. Despite various regulations and bankruptcy 
prediction tools, the Altman Z-Score remains a reliable method 
for measuring and anticipating bankruptcy risk in various 
industrial sectors, such as predicting bankruptcy in the 
automotive sector [1], tourism and hotel sectors [2], the supply 
chain sector [3], or the banking sector [4]. However, differences 
in bankruptcy parameters present challenges in developing 
bankruptcy prediction models [5]. These challenges also apply 
to the implementation of the Altman Z-Score model. Differences 
in bankruptcy regulations and varying value parameters cause 
data anomalies when implemented in the Altman Z-Score 

model. For example, in the public dataset of Taiwanese 
Bankruptcy Prediction – UCI machine learning repository 
collected from the Taiwan Economic Journal for the years 1999 
to 2009, there are 6,819 observations, of which 220 are bankrupt 
companies and 6,599 are non-bankrupt companies. This results 
in a ratio of 3:95% for bankrupt companies (the distress zone) 
and non-bankrupt companies (the non-distress zone), 
respectively. However, when the data were calculated using the 
Altman Z-Score formula, there was a significant difference in 
the amount of data in the two classes. The calculation results 
show that the ratio changes to 51:49. Differences in scoring 
values in bankruptcy parameters cause data anomalies when the 
data are implemented in different bankruptcy prediction tools, 
leading to incorrect predictions. Another common problem in 
bankruptcy predictions is imbalanced data. The number of 
companies that fall into the bankruptcy category is much smaller 
than those that do not. Works by [6-7] and data found in the 
public dataset of Taiwanese Bankruptcy Prediction show that 
only around 3% of the total data falls into the class of bankrupt 
companies. Under these conditions, simply by categorizing all 
inputs into the non-bankrupt company class, the bankruptcy 
prediction algorithm will have an accuracy above 90%. 
Imbalanced data in bankruptcy prediction is a crucial problem 
[8-9]. 

Based on the description above, we propose a novel method 
to improve the Altman Z-Score model for bankruptcy 
prediction. The proposed model addresses data anomalies 
caused by differences in bankruptcy parameter scoring from 
other prediction tools, as well as the data imbalance problems 
commonly found in bankruptcy predictions. Classification 
techniques have become popular for solving bankruptcy 
prediction problems, with non-linear classification models 
demonstrating better accuracy than linear models [10]. 
Additionally, artificial intelligence and machine learning 
algorithms, particularly deep learning algorithms, have rapidly 
advanced in solving prediction and classification problems, 
including bankruptcy prediction as developed by [11-13]. The 
superiority of deep learning algorithms in these areas has 
motivated the development of a non-linear classification-based 
bankruptcy prediction method using Long Short-Term Memory 
(LSTM). 

The proposed model uses value assumptions ranked 
ordinally through data binning techniques. The ranking results 
are used to divide the dataset into four classes based on 
bankruptcy potential. This data is then used as input for an 
LSTM model to learn and classify the potential bankruptcy of 
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companies. The output target of the proposed model is a two-
class classification that categorizes companies into either a non-
distress zone or a distress zone. The four-class classification 
results from the LSTM are subsequently reclassified into two 
classes using rule-based classification techniques. 

This study employs a two-step classification process using 
two classification models, which can be the same or different 
methods, working sequentially to determine the output. The first 
classification model reduces the problem's dimensions by 
producing an output that serves as the input for the second 
classification model. A similar two-step classification approach 
was used by [14], where the first classification detected 
problems, followed by the second classification to assess the 
problem's severity. The two-step classification model has 
demonstrated significant improvements in training and 
performance [15-16]. Details of the proposed model are 
organized as follows: Section II reviews relevant bankruptcy 
prediction research. Section III describes the model and 
methodology used in this study. Section IV discusses the 
experimental results. Finally, Section V presents the conclusions 
drawn from the proposed bankruptcy prediction model. 

II. RELATED WORKS 

Linear analysis for predicting bankruptcy was first 
introduced by Edward I. Altman in 1968 through the Z-Score 
formula, designed to forecast a company's likelihood of going 
bankrupt within two years. Since then, non-linear methods like 
Neural Networks and decision trees have gained traction in 
bankruptcy prediction [17-18]. Originally, the Z-Score relied on 
linear analysis, employing ordinal ranking for small datasets, 
with a focus on explainability and clarity [19]. Another approach 
involves a linear regression method that utilizes the Least 
Absolute Shrinkage and Selection Operator (Lasso) regression 
technique for feature selection, and ridge regression for dataset 
training [7]. In a different scenario, which involved ambient 
temperature and seasonal changes, [20] combined linear and 
non-linear regressions using quasi-Poisson regression analysis. 
This analysis, based on the assumption that variance is a linear 
function of the mean, aims to establish the relationship between 
dependent and independent variables, followed by modeling the 
association using the distributed lag non-linear model (DLNM). 
Comparative studies between generalized linear models (GLMs) 
and generalized additive models (GAMs) demonstrate that non-
linear relationships in statistics and economics significantly 
enhance the discriminatory power in bankruptcy prediction [21]. 

Machine learning approaches, known for their reliability in 
handling large datasets and supporting nonparametric learning 
models, are well-suited for tackling complex non-linear 
problems [5]. Examples of non-linear classification models used 
in bankruptcy prediction include Random Forests [6], Decision 
Trees [7], Gradient Boosting [8], Support Vector Machine [9], 
and Artificial Neural Network and Ada Boost [12]. Deep 
learning, which leverages Artificial Neural Networks within the 
machine learning framework, has demonstrated superior 
performance compared to shallow machine learning models like 
simple Artificial Neural Networks and Decision Trees [22]. 
Despite their lack of explainability, machine learning and deep 
learning models, which operate in a black-box mode and require 

substantial datasets, yield effective results in bankruptcy 
prediction [7, 21, 23]. 

Time series analysis delves into unraveling the essence of a 
phenomenon by scrutinizing a sequence of data points across a 
specified timeframe. Bankruptcy prediction presents a 
multifaceted challenge within the domain of gray systems [24], 
often addressed through time series analysis to construct 
regression models [25]. Regression analysis, in turn, quantifies 
the correlation between a dependent variable and independent 
variables. Crucially, pinpointing relevant independent variables 
is pivotal for nonlinear analysis in bankruptcy prediction [21]. 
The impact of dataset size on prediction accuracy is gauged by 
gradually reducing the volume of training data. This approach 
not only determines the smallest dataset size that yields optimal 
predictions but also offers a potential remedy for imbalanced 
data by selectively discarding majority-class instances. 
Adequate data volume fosters robust data, thereby facilitating 
pattern recognition by LSTM networks. However, existing 
literature fails to provide conclusive evidence regarding the 
minimum data required for developing a bankruptcy prediction 
system using deep learning algorithms. For instance, [6] 
scrutinized bankruptcy data from 6819 Taiwanese enterprises 
spanning 1999 to 2009, while [21] analyzed data from 2635 
companies over the period 2000 to 2014. Furthermore, [26] 
leveraged data from 3728 Belgian Small and Medium 
Enterprises (SMEs) between 2002 and 2012. 

The selection of attributes to represent a company's 
bankruptcy significantly influences the performance of the 
bankruptcy prediction model. Building a simple model with 
minimal features is a crucial aspect of developing such a model, 
focusing on selecting highly relevant attributes as features [7]. 
Additionally, variations in regulations concerning bankruptcy 
determination and differences in economic characteristics across 
company locations, which serve as research subjects, influence 
the choice of attributes for predicting bankruptcy. For instance, 
in previous studies [7, 11, 12], varying numbers of features were 
employed: 110, 64, and 28, respectively. Despite the potential of 
machine learning algorithms to handle a large number of 
features [27], prioritizing the control of selected attributes as 
features remains essential to ensure the cost efficiency of the 
model. 

Imbalanced datasets significantly impact overfitting as the 
model lacks sufficient input samples from minority classes [8]. 
Deep learning-based bankruptcy prediction has employed 
various techniques to address this challenge, including the 
Synthetic Minority Oversampling Technique (SMOTE), 
Stacked Autoencoder algorithm, and softmax classifier, 
resulting in high prediction accuracy even with imbalanced 
datasets [12]. Additionally, SMOTE was utilized by [28], to 
mitigate imbalanced data issues, coupled with LSTM for 
bankruptcy prediction. In a construction industry case, [29] 
enhanced LSTM bankruptcy prediction by incorporating 
construction market and macroeconomic variables alongside 
accounting variables. Furthermore, the study in [11] utilized 
three non-financial variables for bankruptcy prediction in the 
restaurant industry, noting their significant contribution to 
prediction accuracy. Both [11] and [28] underscored the 
importance of non-financial variables in enhancing prediction 
accuracy. Moreover, feature selection techniques play a crucial 
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role in refining bankruptcy prediction models. [30] employed 
Genetic Algorithm (GA) to select features and control the 
number of units in the LSTM layers. Addressing outliers is 
another critical aspect for accurate model development. Outliers 
in the data can notably impair the performance of bankruptcy 
prediction models. Two prevalent approaches to handle outliers 
are omission and winsorization [13]. The research in [21] 
successfully employed winsorization to tackle outliers, while [5] 
opted to eliminate variables with over 1000 outliers. 

Based on a search for research literature related to the 
experiments in this research, it can be concluded that outliers 
and data imbalances are common problems that are the focus of 
most bankruptcy prediction research using classification 
techniques, including bankruptcy classification based on the 
Altman Z-Score model. However, the phenomenon of 
differences in bankruptcy regulations with varying value 
parameters causing data anomalies when implemented in the 
Altman Z-Score model has not received attention and is still an 
open and challenging gap, that needs to be studied further as 
explained in this research. 

III. METHODOLOGY 

The quartile calculation-based data binning technique has 
been proposed to address imbalanced data and data anomaly 
issues in bankruptcy prediction using Altman Z-Score and 
LSTM. This method comprises two primary stages. The initial 
stage involves data preprocessing, which includes financial 
dataset preparation, outlier handling, Altman Z-Score 
calculation, quartile calculation-based data binning, and feature 
selection. The subsequent stage involves the classification 
process, which is divided into a four-class classification using 
LSTM, followed by two-class classification rules to ascertain 
distress zone and non-distress zone outputs. Fig. 1 illustrates the 
flow diagram of the proposed prediction model. 

 
Fig. 1. The proposed bankruptcy prediction model diagram. 

A. Data Preprocessing 

The data preprocessing phase comprises five stages: 
financial dataset preparation, outliers handling, Altman Z-Score 
calculation, quartile calculation-based data binning, and feature 
selection. The dataset was initially sourced from the Taiwanese 
Bankruptcy Prediction – UCI machine learning repository, 
compiled from the Taiwan Economic Journal spanning the years 
1999 to 2009 (Taiwanese Bankruptcy Prediction, 2020). 
Company bankruptcy was determined according to the business 
regulations of the Taiwan Stock Exchange. The sample consists 
of 96 financial ratios and 6,819 observations, with 220 
representing bankrupt companies and 6,599 representing non-
bankrupt companies. While the dataset does not exhibit outlier 
problems, there was imbalanced data within the distress zone 
and the non-distress zone classes, with a ratio of 3:95%. 
However, upon calculating the data using the Altman Z-Score 
formula, a significant difference in the data volume between the 
two classes emerged. The calculations reveal that 3,467 
companies are in the distress zone, while 3,352 companies are 
in the non-distress zone, resulting in a revised ratio of 51:49% 
respectively. 

Assumptions derived from the prevalence of imbalanced 
data, often encountered in bankruptcy prediction problems, 
serve to reconcile disparities between Taiwan Stock Exchange 
regulations and the Altman Z-Score framework in classifying 
companies into distress or non-distress zones. A baseline 
proportion of 5:95% is adopted to establish assumptions for the 
distress and non-distress zones, respectively. Following 
computation via the Altman Z Score formula, the data is 
arranged in ascending order. Subsequently, the bottom 5% of the 
data, representing companies with the smallest values, is 
considered to belong to the distress zone class. 

Let 𝐷𝑁 = {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
𝑁  is a dataset of 𝑁  rows ordered by 

class 𝑌 , where 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝)  represents the 𝑝  attributes 

of 𝐷𝑁  and 𝑌  is the class of 𝐷𝑁  with 𝑌 = 𝐹(𝑋) . Suppose the 
dataset 𝐷𝑁  contains 𝑚  rows of distress classes and 𝑛  rows of 
non-distress classes, then the dataset 𝐷𝑁  can be split into two 
independent sub-datasets, which are: 

𝐷𝑚 = {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
𝑚  

𝐷𝑛 = {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
𝑛  

with splitting ratio:  = 𝑚/𝑁  

where,  

𝑚 + 𝑛 = 𝑁  

𝐷𝑚⋃ 𝐷𝑛 = 𝐷𝑁   (1) 

If it is assumed that 5% of the classes are distress, then the 
sub-datasets are as follows: 

𝐷5% = {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
0.05𝑁 

𝐷0.95 = {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
0.95𝑁  

with the splitting ratio of  = 5%  (2) 
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The splitting results indicate an imbalance in these sub-
datasets, posing a challenge for classification purposes. Out of 
the 6819 data points sorted based on the Altman Z Score 
calculation, assuming a value of 5%, the distress zone class 
comprises 349 companies with the smallest Z values. 
Conversely, the non-distress zone class encompasses the 
remaining 6,470 companies. Rather than resorting to under-
sampling or over-sampling methods to address the data 
imbalance, an alternative approach could involve segmenting 
95% of the non-distress zone data into multiple categories using 
data binning. Data binning transforms continuous data into 
categorical data, with each category mirroring the size of the 
distress zone class. Consequently, the length of each bin would 
be determined by dividing the amount of data in the non-distress 
zone category by the size of the distress zone class. 

Classes based on the length of bins, which are sub-categories 
of the non-distress zone, are supposed to have a balanced 
proportion relative to the size of the distress zone class. 
However, with an imbalanced data proportion of 5% in distress 
zone class and 95% in non-distress zone class, the number of 
subcategories within the non-distress zone becomes less 
controlled. Binning the non-distress zone class size of 6,470 
with a non-distress zone class size of 349 results in 18 
subcategories within the non-distress zone. Having 19 classes, 
comprising 1 distress zone class and 18 classes from the 18 
subcategories of the non-distress zone, will complicate the 
classification process in prediction. The data binning approach 
will be used to address the imbalance in sub-datasets. This 
means that the initial supposition of the non-distress sub-dataset 
will be split into three equal parts restrained by values as 
follows: 

𝑄𝑗 = |
𝑗(𝑛+1)

3
|
𝑗=1

2

    (3) 

Let 𝐷1  represent the 𝐷95%  of the initial supposition of the 
non-distress subcategory, comprising 𝑛 = 6,478  rows. 
Subsequently, the data binning approach will produce the 

subcategories of (𝐷1𝑖)𝑖=1
3 , which are 𝐷11 , 𝐷12 , and 𝐷13 , 

separated by 𝑄1 = 2,508, and 𝑄2 = 4,665 with a size of 2157 
rows for each subcategory. Considering the distress zone 
category as Class A and the three subcategories of the non-
distress zone as Class B, C, and D, Class A comprises 341 rows, 
indexed from 1 to 349. Meanwhile, Classes B, C, and D 
encompass 2,157 rows each, indexed from 350 to 2507, 2508 to 
4664, and 4665 to 6819, respectively. 

At this point, the results still exhibit imbalance issues. Under 
sampling is conducted to ensure that the sizes of classes B, C, 
and D are proportional to class A. Some rows within classes B, 
C, and D are deleted at specific index intervals determined using 
quartile calculation. The interval value for the calculation is 
derived by dividing the highest size by the lowest size among 
the four classes. Thus, the resulting interval value is 2157 
divided by 349, which equals six. Consequently, each class B, 
C, and D comprises 360 rows of data, with index numbers (350, 
356, 362, ..., 2504), (2505, 2511, 2517, ..., 4659), and (4660, 
4666, 4672, ..., 6814), respectively. Finally, the data 
preprocessing stage yields class A, B, C, and D with 349, 360, 
360, and 360 rows, respectively. Class A represents the distress 
zone category, while the non-distress zone category is divided 

into three subcategories: class B, C, and D, representing the non-
distress zone to the strong non-distress zone. This technique 
facilitates the proportional distribution of data across sorted 
values, ensuring representation from the smallest to the largest 
values. Fig. 2 illustrates the flow diagram of the data 
preprocessing stage. 

 

Fig. 2. The data preprocessing diagram. 

The new dataset consists of 29 attributes and 1 predicted 
class of financial ratios. These attributes encompass a range of 
metrics including Operating Profit Rate, Pre-tax Net Interest 
Rate, After-tax Net Interest Rate, Net Value Per Share (B), Net 
Value Per Share (A), Net Value Per Share (C), Revenue Per 
Share (in Yuan), Operating Profit Per Share (in Yuan), Total 
Asset Growth Rate, Total Debt/Total Net Worth, Debt Ratio %, 
Net Worth/Assets, Operating Profit/Paid-in Capital, Net Profit 
Before Tax/Paid-in Capital, Revenue Per Person, Working 
Capital to Total Assets, Current Assets/Total Assets, Current 
Liability to Assets, Inventory/Working Capital, Long-term 
Liability to Current Assets, Retained Earnings to Total Assets, 
Total Assets to GNP Price, Gross Profit to Sales, Working 
Capital, EBIT, Market Value of Equity, Book Value of Total 
Debt, Sales, and Total Assets. 
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Fig. 3. The feature selection diagram. 

Feature selection is a pivotal step, significantly enhancing 
model performance, curbing overfitting, and expediting training 
times. Choosing the most pertinent features is crucial for 
constructing efficient and interpretable models. In the realm of 
deep learning, a valuable approach is selecting features based on 
their weights. The Select Feature by Weight technique was 
employed for feature selection, prioritizing the weights assigned 
to each feature during training to pinpoint and preserve the most 
impactful ones, thereby augmenting model performance. 
Features with higher absolute weights hold greater influence in 
the model. Refer to Fig. 3 for the flow diagram illustrating the 
feature selection process. 

The process began with normalizing the values of features 
within the dataset, followed by assigning weights to the features 
and ranking them. Normalization methods are preprocessing 
techniques used to standardize feature values within a dataset, 
ensuring they are all on the same scale. In this research, Z-
transformation methods were applied. Z-score normalization 
entails transforming variable values to have a mean of 0 and a 
standard deviation of 1. 

Suppose we possess a dataset comprising n subjects. Let X=

〖{x〗_1,x_2,…,x_j,…,x_m} represent the set of normalized 

feature values within the chosen data. The formula for Z-
transformation is as follows: 

𝑍 =
𝑋−𝜇

𝜎
,   (4) 

where: 

Z is the Z-score, 

X is the original data point, 

μ is the mean of the dataset, 

σ is the standard deviation of the dataset 

The feature selection method evaluates the relevance of each 
feature to both the target feature and the prediction model, 
deciding whether to include or exclude it from the prediction 
process. Feature weighting determines the magnitude of 
influence or importance that each feature has in relation to the 
target feature and the prediction model. The resulting 
importance score directs the utilization of the feature's 
magnitude in prediction, influencing its impact on the overall 
model. 

Consider the following linear regression model: it utilizes 
normalized feature values available in the selected dataset. The 
formula for Z-transformation is as follows: 

�̂� = 𝑤0 +  𝑤1 ∙ 𝑥1 + 𝑤2 ∙ 𝑥2 + … + 𝑤𝑛 ∙ 𝑥𝑛      (5) 

where: 

�̂� is the predicted output, 

𝑤0 is the intercept, 

𝑤1 , 𝑤2, … 𝑤𝑛  are the weights corresponding to features 
𝑥1, 𝑥2, … , 𝑥𝑛, respectively. 

The selected features are determined using the formula: 
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = {𝑥𝑖|𝑤𝑖 ≥ 𝑇}, where T is a predetermined 
threshold value. The correlation matrix of key financial 
indicators used in the bankruptcy prediction model is displayed 
in the following heatmap. Fig. 4 shows the heatmap, which 
represents the correlations between features. All the colored 
cells indicate the correlation between two features, with the 
color of the cell denoting the strength of the correlation. A 
correlation value less than zero indicates a negative correlation, 
while a zero value indicates no correlation. 

 
Fig. 4. The heatmap of the correlation matrix of key financial indicators used in the bankruptcy prediction model. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

833 | P a g e  

www.ijacsa.thesai.org 

B. Two-Step Classification 

Deep learning is a powerful and versatile approach for 
making predictions across various domains, including 
bankruptcy prediction. These models are built upon neural 
networks, which consist of layers of interconnected nodes 
(neurons). A typical deep neural network includes an input layer, 
multiple hidden layers, and an output layer. The input layer of 
the neural network receives raw features or data points related 
to the prediction task. Each node in the input layer corresponds 
to a specific feature, and these values are fed into the network. 
Connections between nodes in different layers are associated 
with weights. During training, the model adjusts these weights 
to learn optimal patterns from the input data. Each node in the 
hidden layers performs a weighted sum of its inputs and passes 
the result through an activation function. ReLU is commonly 
used for hidden layers, while Softmax is applied to the output 
layer. 

The flow diagram for bankruptcy prediction begins with 
learning representations. As data passes through the layers, the 
network learns hierarchical representations. Lower layers 
capture simple patterns, while higher layers combine these 
patterns to form more complex and abstract features. This 
hierarchical learning enables the model to automatically extract 
relevant features from the input data without explicit feature 
engineering. Next is the loss function measurement, where the 
output of the network is compared to the actual target values 
using a loss function. The loss quantifies the difference between 
the predicted and actual values. The goal during training is to 
minimize this loss by adjusting the weights of the connections 
through a process called backpropagation. The optimization 
algorithm stage follows, using methods such as stochastic 
gradient descent (SGD) to iteratively update the weights based 
on the calculated gradients of the loss function. This process 
allows the model to converge towards a set of weights that 
minimizes the prediction error on the training data. The next 
stage is data training, where the network is trained on a labeled 
dataset containing both input features and corresponding target 
labels. The model iteratively adjusts its parameters to improve 

its predictive performance. The final stage is testing and 
evaluation. Once trained, the model is evaluated on a separate 
test set to assess its generalization performance. Various metrics, 
depending on the prediction task, are used to measure 
performance, such as accuracy, precision, recall, and F1-score. 
Fig. 5 shows the architecture of the LSTM used for the proposed 
bankruptcy prediction. 

The deep learning architecture begins with initializing the 
weights (𝑊1, 𝑊2) and biases (𝑏1, 𝑏2). Next, an input vector X 
with n features is provided to the input layer, where: 

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]: 

𝑍[1] = 𝑋 ∙ 𝑊[1] + 𝑏[1] 

𝐴1 = 𝑅𝑒𝐿𝑈(𝑍1)   (6) 

where: 

𝑍[1] is the weighted sum of inputs, and 𝐴1 is the output after 
applying the ReLU activation function. 

Next is the definition of the relationship between the hidden 
layer and the output layer. Given 𝐴1 , the hidden layer 
activations: 

𝑍[2] = 𝐴1 ∙ 𝑊 [2] + 𝑏[2] 

𝐴[2] = 𝜎(𝑍[2]),   (7) 

where: 

𝑍[2]  represents the weighted sum of the hidden layer 
activations, and 𝐴2  is the output after applying the softmax 
activation function (𝜎). 

The softmax activation function (σ) is applied element-wise 
to the output of the second layer: 

𝐴𝑖,𝑗
[2]

=
𝑒

𝑧𝑖,𝑗
2

∑ 𝑒
𝑧𝑖,𝑗

2
𝐶
𝑘=1

  ,   (8) 

 

Fig. 5. The architecture of LSTM used for the proposed bankruptcy prediction. 
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where: 

C is the number of classes. Additionally, the loss function is 
applied using categorical cross-entropy as follows: 

𝐽 = −
1

𝑚
∑ ∑ 𝑌𝑖,𝑗

𝐶

𝑗=1

𝑚

𝑖=1
∙ 𝑙𝑜𝑔 (𝐴𝑖,𝑗

[2]
) 

Backpropagation 

𝑑𝑍[2]=𝐴[2] − 𝑌 

𝑑𝑊[2] =
1

𝑚
𝐴[1]𝑇 ∙ 𝑑𝑍[2] 

𝑑𝑏[2] =
1

𝑚
∑ 𝑑𝑍[2]

𝑚

1=1
 

𝑑𝑍[1] = (𝑊[2])𝑇 ∙ 𝑑𝑍[2] ⊙ 𝑅𝑒𝐿𝑈′(𝑍[1]) 

𝑑𝑊[1] =
1

𝑚
𝑋𝑇 ∙ 𝑑𝑍]1] 

𝑑𝑏[1] =
1

𝑚
∑ 𝑑𝑍]1]

𝑚

𝑖=1
 

⊙ denotes element-wise multiplication.      (9) 

 Finally, the parameter update using gradient descent is 
applied to optimize the weights and biases as follows: 

𝑊[2] = 𝑊[2] − 𝛼 ∙ 𝑑𝑊[2] 

𝑏[2] = 𝑏[2] − 𝛼 ∙ 𝑑𝑏[2] 

𝑊[1] = 𝑊[1] − 𝛼 ∙ 𝑑𝑊[1] 

𝑏[1] = 𝑏[1] − 𝛼 ∙ 𝑑𝑏[1]  ,      (10) 

The final classification output comprises two classes: 
distress and non-distress categories. The non-distress category 
undergoes division using data binning techniques, resulting in 
three classes: B, C, and D. Class A represents the distress 
category. Consequently, any incorrect predictions among 
classes B, C, and D are rectified since they fall within the non-
distress category. Following the prediction of the four classes, a 
rule is applied for the final classification. If the prediction 
outcome is class A, the data is classified into the distress zone 
category; otherwise, it is classified into the non-distress zone 
category. The formula for the two-class classification rule, with 
BP denoting bankruptcy prediction, is as follows: 

𝐵𝑃 =  {
𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠 , 𝐶𝑙𝑎𝑠𝑠 𝐴       

𝑁𝑜𝑛 − 𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠, 𝑜𝑡ℎ𝑒𝑟𝑠
  (11) 

IV. RESULTS AND DISCUSSION 

A classification-based bankruptcy prediction model is 
proposed by utilizing the Altman Z Score on different 
bankruptcy regulations, and the data binning method is used to 
overcome the problem of imbalanced data. The extreme data 
imbalance commonly found in bankruptcy prediction datasets is 
assumed to define companies falling into the distress zone 
category. The baseline for companies in the distress zone 
comprises 5% of the data with the smallest Z Score values in the 
dataset, with the remainder falling into the non-distress zone 

category. Of the data in the non-distress zone category, 95% is 
further divided into three sub-categories using the data binning 
method to represent varying levels of non-distress, from non-
distress to strong non-distress. To address the issue of 
disproportionate data among the three non-distress zone sub-
categories and the distress-zone class, under-sampling and 
quartile calculation techniques are employed. Data is deleted at 
specific intervals until the amount of data in each of the three 
non-distress zone sub-categories is proportional to the amount 
of data in the distress-zone class. This method ensures the 
representativeness of Z Score values across classes, maintaining 
the order from smallest to largest within each class. Instead of 
balancing the data by selecting 330 of 6599 non-distress zone 
data randomly as done by [5], binning data into subcategories 
and then cutting to select a portion of the data within each 
subcategory is more precise in representing the data by selecting 
a small portion of a large amount of data. 

Data preprocessing yields four classes: one distress zone 
class (Class A) and three sub-categories of the non-distress zone 
(Classes B, C, and D). Feature selection, employing feature 
weighting techniques, identifies 29 features from 96 financial 
ratios defined by the Taiwan Stock Exchange, along with 
Classes B, C, and D, each comprising 360 data points. The 
dataset is split 70:30 for training and testing in the LSTM 
network, resulting in 1,000 training data points and 429 testing 
data points. Evaluation of the LSTM network's performance is 
conducted using precision and recall metrics. Tables I and II 
present the evaluation results for both training and testing data. 

The accuracy achieved in evaluating training data reached 
86.3%. Incorrect predictions between class A and class B are the 
most frequently found. 43 data points that should be included in 
class A are predicted to be class B. This condition also occurred 
in 21 instances where data intended for class B was predicted as 
class A, 30 instances where data meant for class C are predicted 
to be class B, and 24 instances where data designated for class 
D are predicted to be class C. This is because the data binning 
technique, which converts categorical data into ordinal data, 
makes the distance between successive classes closer. For 
example, the distance between class A and class B is closer than 
between classes C and D. Compared with classes A and D, 
classes B and C are closer to the previous and following classes. 
However, the incorrect prediction in classes B and C turns out 
to be stronger in their previous class. Incorrect predictions from 
class B to class A occur in 21 instances, and there are no 
incorrect predictions to class C. Incorrect predictions from class 
C to class B occur in 30 instances, and 10 instances to class D. 
In terms of recall, the incorrect prediction between classes A and 
B still dominates among the other classes. The recall evaluation 
value shows that 21 data points, which should be included in 
Class A, are predicted by the system as part of class B. Vice 
versa, 43 data points in class B are predicted as class A. This 
shows that the system still has difficulty distinguishing the 
characteristics of classes A and B. There are similar patterns in 
predicting bankruptcy between training data evaluation and test 
data evaluation, with incorrect predictions dominated in classes 
A and B. However, compared with training data evaluation, 
there is an increase in accuracy in test data evaluation. The 
accuracy achieved in evaluating test data reached 89.98%, 
representing an increase of 3.68%. 
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TABLE I.  PRECISION AND RECALL RESULTS FOR THE DATA TRAINING EVALUATION 

 True Class A True Class B True Class C True Class D Class Precision 

Class A 219 43 2 3 82.02% 

Class B 21 179 0 0 89.5% 

Class C 4 30 226 10 83.7% 

Class D 0 0 24 239 90.87% 

Class Recall 89.75% 71.03% 89.68% 94.84%  

TABLE II.  PRECISION AND RECALL RESULTS FOR THE DATA TEST EVALUATION 

 True Class A True Class B True Class C True Class D Class Precision 

Class A 97 8 0 0 92.38% 

Class B 6 100 5 0 90.09% 

Class C 2 0 81 0 97.59% 

Class D 0 0 22 108 83.08% 

Class Recall 92.38% 92.59% 75% 100%  
 

At this point, the classification process was still underway, 
transitioning from a four-class classification to a binary 
classification, consisting of distress and non-distress categories. 
This process serves as the cornerstone of the proposed prediction 
model. The final classification output consists of two categories: 
distress and non-distress. Class A denotes the distress category, 
while classes B, C, and D represent the non-distress category. 
Following the initial four-class classification, additional rules 
were integrated to facilitate the transition to the two-class 
classification, which predicts distress and non-distress 
categories. Misclassifications within classes B, C, and D do not 
constitute errors as these classes are encompassed within the 
non-distress category. The proposed bankruptcy prediction 
model, employing a two-stage classification approach, starting 
with a four-class classification and proceeding to a two-class 
classification, demonstrates a notable enhancement in 
performance. In the four-class classification, the accuracy 
attained for both training and test data evaluation stood at 86.3% 
and 89.98%, respectively. Furthermore, the subsequent two-
class classification stage yields improved accuracy in both 
training and test data evaluation, reaching levels of 92.70% and 
96.27%, respectively. Tables III and IV present the evaluation 
outcomes for training and test data during the two-class 
classification stage. However, in the four-class classification, the 
system encounters challenges in distinguishing between class B, 

class A, and class C, resulting in a recall performance of 71.03%. 
Given that class B and class C fall within the non-distress 
category, post-two-class classification processing strengthens 
the overall recall performance within the non-distress category 
to 93.65%. This trend is mirrored in precision performance 
metrics within the non-distress category, exhibiting an increase 
in values up to 96.59%. 

There are consistent patterns observed in predicting 
bankruptcy across both training data evaluation and test data 
evaluation in both four-class and two-class classifications. 
Notably, there is an uptick in accuracy during test data 
evaluation, reaching 96.27%. This marks a 3.57% increase from 
the accuracy observed during training data evaluation, which 
stood at 92.7%. By first binning the data to determine 1 distress 
zone category and three non-distress zone sub-categories and 
applying four-class classification using an LSTM network 
followed by two-class classification followed by a two-class 
classification to summarize predictions into distress and non-
distress zone classes, prediction accuracy can be increased to 
more than 90% and outperform the accuracy achievements of 
the method proposed by study [5] which is below 90%. Table V 
illustrates the accuracy comparison between four-class and two-
class classifications, while Fig. 6 presents a visual comparison 
of accuracy across these classifications. 

TABLE III.  PRECISION AND RECALL RESULTS FOR THE DATA TRAINING EVALUATION IN THE TWO-CLASS CLASSIFICATION 

 True Distress Zone True Non-Distress Zone Class Precision 

Distress Zone (Class A) 219 48 82.02% 

Non-Distress Zone (Class B, C, D) 25 708 96.59% 

Class Recall 89.75% 93.65%  

TABLE IV.  PRECISION AND RECALL RESULTS FOR THE DATA TEST EVALUATION IN THE TWO-CLASS CLASSIFICATION 

 True Distress Zone True Non-Distress Zone Class Precision 

Distress Zone (Class A) 97 8 92.38% 

Non-Distress Zone (Class B, C, D) 8 316 97.53% 

Class Recall 92.38% 97.53%  
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TABLE V.  ACCURACY FROM FOUR-CLASS CLASSIFICATION TO TWO-CLASS CLASSIFICATION 

 Four-class Classification Two-class Classification 

Training data 86.3% 92.7% 

Test data 89.98% 96.27% 
 

 
Fig. 6. Accuracy from four-class classification to two-class classification. 

Experiments demonstrate that the proposed method yields 
promising results in crafting a bankruptcy prediction model 
capable of addressing regulatory disparities in assessing a 
company's bankruptcy risk, as well as tackling imbalanced data 
issues. In binary classification scenarios, employing data 
binning techniques can mitigate imbalanced data concerns by 
partitioning the predominant data category into multiple classes 
or subcategories via ordinal ranking. Once the data category is 
segmented into multiple classes, incorporating rules to revert the 
workflow to binary classification significantly enhances 
accuracy, precision, and recall performance. Conversely, the 
application of data binning techniques necessitates a ranking 
framework, and the Altman Z Score has been validated as a 
suitable benchmark for ranking data in bankruptcy prediction 
tasks. 

V. CONCLUSION 

The bankruptcy prediction model has demonstrated 
proficiency in addressing challenges related to variations in data 
value parameters and imbalanced data. Experimental findings 
bolster the assertion that the Altman Z-Score serves as a robust 
tool for predicting bankruptcy. Moreover, the proposed method 
enhances the Altman Z-Score model's ability to handle 
variations in data value parameters. Segmenting the non-distress 
zone category into multiple classes through data binning has 
effectively elucidated the distinguishing characteristics of 
companies with high Z scores in the non-distress zone, 
juxtaposed with those in the distress zone. 

The proposed method is proven to be reliable as a bridge 
over different regulations and parameter values with the Altman 
Z-Score model in determining bankruptcy. The differences 
produce bankruptcy data anomalies, namely the characteristics 
of extreme imbalance data in company bankruptcy data which 
disappear when recalculated using the Altman Z-Score model. 
This problem can be bridged using the proposed method so that 
the imbalance data pattern which is an inherent characteristic of 
company bankruptcy data can be maintained with good accuracy 
of bankruptcy prediction results. However, the system 

encounters difficulty in discerning companies within the non-
distress zone with rankings proximate to the distress zone. 
Conversely, while employing an LSTM-based four-class 
classification for bankruptcy prediction yields promising 
outcomes, identifying the precise cause of the model's accuracy 
weakness remains challenging. Current indications suggest that 
enhancing feature selection performance is imperative to enable 
the system to differentiate between distress classes and non-
distress subcategories with minimal value disparities. 
Additionally, further investigation is warranted to determine the 
optimal addition or reduction of financial ratio variables as 
features. 
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