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Abstract—Stock market prediction is a highly attractive and 

popular field within finance, driven by the potential for 

significant profits that come with substantial risks due to data 

non-linearity and complex economic principles. Extracting 

features from trading data is crucial in this domain, and 

numerous strategies have been developed. Among these, deep 

learning has achieved impressive results in financial applications 

because of its robust data processing capabilities. In our study, 

we propose a hybrid deep learning model, the CNN-LSTM, 

which combines the 2D Convolutional Neural Network (CNN) for 

image processing with the Long Short-Term Memory (LSTM) 

network for managing image sequences and classification. We 

transformed the top 15 of 21 technical indicators from financial 

time series into 15x15 images for 21 different day periods. Each 

image is then categorized as Sell, Hold, or Buy based on the 

trading data. Our model demonstrates superior performance in 

stock predictions over other deep learning models. 
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I. INTRODUCTION 

The global financial markets are characterized by their 
dynamic nature, where the profit potential is equally matched 
by the susceptibility to risk. This duality is largely due to the 
complex interplay of economic indicators, investor sentiment, 
and global financial events, making stock market forecasting a 
highly sophisticated area of study. Forecasting these markets 
requires an understanding of both macroeconomic trends and 
the minute fluctuations within trading data [1]. As markets 
evolve, the tools and techniques employed to forecast these 
changes must also develop, incorporating new data and 
adapting to changing conditions. 

Traditional financial models, such as the Efficient Market 
Hypothesis and Fundamental Analysis, have long been used to 
understand and predict market behaviors. However, these 
models often fall short in times of increased market volatility 
and when dealing with large unstructured datasets. In contrast, 
advanced computational techniques, especially those involving 
machine learning and deep learning, have shown remarkable 
success in decoding complex patterns that underlie financial 
markets [2]. These techniques can process vast amounts of data 
in real-time, learning from new information as it becomes 
available, which is a crucial advantage in today's fast-paced 
markets. 

Deep learning, a subset of machine learning, has emerged 
as a transformative force in financial predictions. The deep 
neural networks, with their multiple layers of processing, can 

extract high-level features from raw data, which is pivotal in 
identifying profitable trading opportunities. Specific 
architectures like Convolutional Neural Networks (CNNs) and 
Long Short-Term Memory networks (LSTMs) have been at the 
forefront of this revolution. CNNs are particularly effective in 
dealing with spatial data, whereas LSTMs excel in capturing 
temporal dependencies, addressing two critical dimensions of 
financial data [3]. 

The approach of combining CNNs and LSTMs aims to 
harness the strengths of both architectures to improve the 
accuracy and reliability of financial predictions. This hybrid 
model leverages CNN’s ability to effectively process and 
analyze images derived from structured data, such as graphs 
and charts of market trends, and complements it with LSTM’s 
capability to understand time series data, ensuring that 
temporal sequences in stock prices are accurately predicted. 
The synergistic combination of these technologies is designed 
to handle the multifaceted nature of financial datasets more 
effectively than models employing a single methodology [4]. 

Despite significant advancements in machine learning 
techniques, stock market prediction remains a challenging task 
due to the inherent volatility and complexity of financial 
markets. Traditional models often fail to capture the nuanced 
and multifaceted nature of market data, leading to inaccurate 
predictions. This research aims to address the gap by 
developing a hybrid model that combines CNNs and LSTMs to 
enhance the accuracy and robustness of stock trend predictions. 
How effective is the CNN-LSTM hybrid model in predicting 
stock trends compared to traditional financial models? 

The objectives of this research are to develop a hybrid 
CNN-LSTM model for stock trend prediction and to evaluate 
the performance of the hybrid model against standalone deep 
learning models. 

The significance of this research lies in its potential to 
revolutionize stock market forecasting by leveraging advanced 
deep learning techniques. By combining CNNs and LSTMs, 
the proposed model aims to provide more accurate and reliable 
predictions, which could significantly benefit investors and 
financial analysts. This research contributes to the field of 
financial forecasting by demonstrating the effectiveness of 
hybrid deep learning models and providing insights into their 
practical applications in dynamic market environments. 

The reminder of this paper is organized into several distinct 
sections to facilitate a thorough exploration of our research. 
Section II reviews related works, emphasizing the evolution of 
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predictive models from traditional to modern deep learning 
approaches. Section III delves into the technologies 
underpinning our study, particularly CNNs and LSTMs, 
elucidating their principles and advantages in financial 
applications. Section IV details our methodology, including 
data preprocessing, model development, and algorithmic 
considerations. The empirical evaluation of our model is 
presented in Section V, where we discuss its performance 
against traditional and contemporary benchmarks. We 
conclude in Section VI, summarizing our contributions and 
proposing future research directions for enhancing predictive 
models in finance. 

II. RELATED WORKS 

Stock market prediction has long been a central theme in 
financial research, with various models being developed to 
forecast market trends and price movements. Historically, 
predictive models in finance were largely dominated by linear 
regression and time-series analysis, focusing on historical data 
to predict future prices. Seminal works by Fama [5] introduced 
the Efficient Market Hypothesis, suggesting that stock prices 
reflect all available information and follow a random walk. 
However, the hypothesis has been challenged by subsequent 
studies that recognize patterns and trends in market data, 
suggesting predictability under certain conditions [6]. 

Stock market analysis relied heavily on statistical methods 
and basic machine learning models. Time series forecasting 
techniques such as ARIMA and exponential smoothing were 
commonly used due to their simplicity and effectiveness in 
handling linear trends and seasonality [7]. However, these 
methods often fall short of capturing the complex, non-linear 
patterns typically exhibited in financial markets. 

With the advent of more advanced computational 
resources, machine learning techniques have gained 
prominence. Researchers have explored various algorithms 
from simple decision trees to complex ensemble methods to 
predict stock prices. A significant contribution in this area was 
made by Patel et al. [8], who compared different technical 
indicators with machine learning algorithms and found that 
models like Random Forest and SVM outperformed traditional 
statistical methods. 

Deep learning has introduced a paradigm shift in predictive 
accuracy and data processing capabilities. Among the first to 
apply deep learning to financial forecasting, Dixon et al. [9] 
demonstrated that deep neural networks could significantly 
enhance prediction performance over traditional models. The 
ability of deep learning models to learn complex, non-linear 
relationships in data offers unprecedented advantages in the 
noisy, volatile environment of financial markets. 

Convolutional Neural Networks (CNNs) have been 
primarily utilized in image processing but have found 
applications in financial markets where pattern recognition in 
chart analysis plays a crucial role [10]. On the other hand, 
Long Short-Term Memory networks (LSTMs) are a type of 
recurrent neural network (RNN) ideal for processing sequences 
of data, making them suitable for analyzing time series data 
prevalent in stock market predictions [11]. 

The innovation of combining CNN and LSTM models is 
relatively recent, with researchers beginning to explore the 
synergy between spatial feature extraction and sequential data 
processing. In one notable study, Zhang et al. [12] developed a 
hybrid model that utilizes CNNs to interpret visual patterns 
from stock market charts and LSTMs to analyze the temporal 
patterns in trading data. Their findings suggest that such hybrid 
models can outperform models based on a single architecture, 
particularly in handling the multifaceted nature of financial 
time series data. 

Recognizing the limitations of singular approaches, recent 
research has shifted towards hybrid models that combine the 
strengths of CNNs and LSTMs. These models leverage CNNs 
for robust feature extraction from complex input formats, such 
as images or transformed time series, and LSTMs to interpret 
these features over time, enhancing the predictive accuracy for 
various financial applications [13]. 

One notable study introduced an attention-based hybrid 
CNN-LSTM model that incorporates the XGBoost algorithm 
for feature selection and dimensionality reduction, further 
refining the model's predictions for stock prices [13]. Similarly, 
Shang et al. [14] employed a CNN-LSTM hybrid model to 
enhance signal processing capabilities for damage detection in 
infrastructure, demonstrating the versatility of hybrid models in 
diverse applications beyond the financial market. 

Khalid et al. presents in his study [15] a convolutional deep 
neural network model leveraging a 2D-CNN for image 
processing and classification. The image creation process 
involves transforming top technical indicators from a financial 
time series, each calculated over 21 different-day periods, to 
generate images of specific sizes. These images are then 
labeled as Sell, Hold, or Buy based on the original trading data. 
In comparison to the Long Short-Term Memory Model and the 
one-dimensional Convolutional Neural Network, the proposed 
model demonstrates superior performance. This research 
underscores the efficacy of employing a convolutional deep 
neural network with 2D-CNN for processing and classifying 
financial time series data. The utilization of top technical 
indicators in image creation contributes to enhanced predictive 
capabilities, making the proposed model a promising approach 
for stock price trend prediction. 

III. BACKGROUND 

Deep learning has risen to prominence as a pivotal subset 
of machine learning, renowned for its efficacy across a broad 
spectrum of applications from image recognition to natural 
language processing. This method employs multiple layers of 
neural networks to interpret vast quantities of data, revealing 
intricate patterns those traditional techniques could not 
uncover. Among the most influential architectures within deep 
learning are Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs). 

 Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is a specialized 
type of neural network model designed for processing data that 
has a grid-like topology, such as images. CNNs are particularly 
powerful for tasks involving image recognition, classification, 
and analysis, and have been widely adopted in various 
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applications ranging from medical imaging to autonomous 
vehicle technology. 

A Convolutional Neural Network typically consists of an 
input layer, multiple hidden layers, and an output layer “Fig. 
1”. The hidden layers usually include a series of convolutional 
layers, pooling layers, and fully connected layers at the end: 

 
Fig. 1. CNN architecture. 

1) Convolutional layers: The core building blocks of a 

CNN are its convolutional layers, which apply a number of 

filters to the input. These filters are small matrices used to 

perform convolution operations that process the data and 

create feature maps. This process effectively captures spatial 

hierarchies in data by recognizing patterns such as edges, 

shapes, and textures within the input images [16]. 

Mathematically, it is expressed as given in Eq. (1) for a single 

dimension: 

(𝑓 ∗ 𝑔)(𝑡) =  ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 (1) 

In the context of CNNs, this is typically simplified to a 
discrete convolution as shown in Eq. (2), especially for image 
processing: 

(𝑓 ∗ 𝑔)[𝑛] =  ∑ 𝑓[𝑚] × 𝑔[𝑛 − 𝑚]

𝑀

𝑚= −𝑀

 (2) 

In 2D (for images), it becomes Eq. (3): 

(𝐼 ∗ 𝐾)[𝑖, 𝑗] =  ∑ ∑ 𝐼[𝑚, 𝑛] × 𝐾[𝑖 − 𝑚, 𝑗 − 𝑛]
𝑛𝑚

 (3) 

where: 

 I is the input image or feature map. 

 K is the kernel or filter. 

 m, n index the elements of the kernel. 

 i, j index the resulting matrix. 

2) Activation function: After a convolution operation, an 

activation function such as the ReLU (Rectified Linear Unit) 

as given in Eq. (4) is typically applied to introduce non-linear 

properties to the system. This helps the network learn complex 

patterns during training. 

𝑅𝑒𝐿𝑈(𝑥) =  max (0, 𝑥)    (4) 

3) Pooling layers: These layers reduce the spatial size of 

the convoluted features, helping to decrease the computational 

load, memory usage, and the number of parameters. Max 

pooling, which selects the maximum value from the feature 

region covered by the filter, is a common method used. 

4) Fully connected layers: Towards the end of the 

network, fully connected layers use the features extracted by 

the convolutional and pooling layers to determine the final 

output, such as the classification of the image. Each neuron in 

a fully connected layer has connections to all activations in the 

previous layer. 

5) Output layer: The final layer outputs the prediction of 

the network using a Softmax or Sigmoid activation function, 

depending on the task (e.g., multi-class classification or binary 

classification). 

 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks are a special 
kind of Recurrent Neural Network (RNN) that are capable of 
learning long-term dependencies in data sequences. Introduced 
by Hochreiter and Schmidhuber in 1997, LSTMs were 
designed to overcome the limitations of traditional RNNs, 
particularly problems related to learning long-term 
dependencies and the vanishing gradient problem during 
training [17]. LSTMs are particularly well-suited for 
classifying, processing, and predicting sequences where there 
are lags of unknown duration between important events. This 
capability makes them ideal for applications such as time series 
prediction, natural language processing, and speech 
recognition. 

An LSTM unit “Fig.2” typically consists of a cell state and 
three gates that regulate the flow of information: the input gate 
(6), forget gate (5), and output gate (9). Here's how each 
component works mathematically: 

 
Fig. 2. The structure of LSTM unit. 

1) Forget gate: This gate decides what information is 

discarded from the cell state. 𝜎 denotes the sigmoid function, 

𝑊𝑓  are the weights of the forget gate, ℎ𝑡−1  is the previous 

hidden state, 𝑥𝑡 is the input at step 𝑡, and 𝑏𝑓 is the bias. 

𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (5) 

2) Input gate: The input gate decides which values will 

update the cell state. �̃� (7) represents the candidate values for 

the state update. 

𝑖𝑡 =  𝜎(𝑊𝑖  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (6) 
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�̃�𝑡 =  tanh(𝑊𝐶  . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝐶) (7) 

3) Cell state update: The cell state 𝐶𝑡  (8) is updated by 

forgetting the old state  𝐶𝑡−1  as regulated by  𝑓𝑡  and adding 

new candidate values scaled by  𝑖𝑡. 

𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡  ∗  �̃�𝑡 (8) 

4) Output gate: The output gate controls the output of the 

cell state through the hidden state ℎ𝑡 (10). The actual output 

ℎ𝑡is filtered by the output gate 𝑜𝑡 and then passed through a 

tanh function to scale the values between -1 and 1. 

𝑜𝑡 =  𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)      (9) 

ℎ𝑡 =  𝑜𝑡 ∗ tanh( 𝐶𝑡) (10) 

 CNN-LSTM Hybrid Model 

The most important and useful deep neural models come 
from the combining of the different types of networks together 
into hybrid models. The CNN-LSTM method for the stock 
market forecasting, composed of a series connection of CNN 
and LSTM. CNN-LSTM can extract complex features and can 
store complex irregular trends of stocks market. 

In a CNN-LSTM architecture [18], the TimeDistributed 
layer is used to wrap a convolutional neural network (CNN) so 
that it can process input data that varies over time, such as 
frames in a video or a series of images. This layer allows the 
same CNN model to be applied to each timestep independently 
and efficiently. Essentially, it acts as a bridge between the 
CNN and LSTM layers, managing the temporal aspects of the 
model while preserving spatial feature extraction capabilities of 
the CNN. 

The TimeDistributed layer is a crucial component in neural 
network architectures where it is necessary to apply the same 
layer independently to every timestep of input data. This is 
particularly useful in models that need to maintain temporal 
order in their inputs, such as CNN-LSTM networks used for 
sequence prediction tasks that involve spatial data (like videos 
or time series of images). 

1) CNN-LSTM Model with TimeDistributed: In a typical 

CNN-LSTM setup: 

a) Feature Extraction (CNN part): The TimeDistributed 

wrapper applies the CNN across each timestep. For instance, 

in video processing [19], each frame (image) of the video 

passes through the same convolutional layers. This ensures 

that the spatial features from each frame are extracted in the 

same way. 

b) Temporal Processing (LSTM part): The output from 

the TimeDistributed-CNN part, now a series of feature vectors 

(one for each timestep), is then passed to the LSTM layers. 

The LSTM processes these features over time, capturing 

dynamic temporal behaviors and interactions between the 

timesteps, which are crucial for tasks like video classification 

or predicting sequences of images. 

IV. METHODOLOGY 

We propose a hybrid analytical model that integrates 
Convolutional Neural Networks (CNN) and Long Short-Term 
Memory networks (LSTM) to effectively identify optimal 
buying and selling points in stock prices. This model employs 
fifteen selected technical indicators from a set of twenty, each 
evaluated over various time intervals, to generate 
representative images. The methodology of our proposed 
system encompasses five principal stages: data extraction, 
feature engineering, feature selection, data labeling, and the 
management of class imbalance, culminating in the creation of 
images. The primary objective of our research is to accurately 
determine the most advantageous positions for buy, sell, and 
hold decisions within the time series data of stock prices. 

 Data Extraction 

In our research, the dataset employed comprises several key 
features that encapsulate the dynamics of the stock market. 
Specifically, it includes the following attributes: Date, Open 
Price, Low Price, High Price, Close Price, Adjusted Close 
Price, and the Trading Volume for each respective date. These 
features are extracted from the daily stock prices of Apple Inc., 
sourced from Alpha Vantage, which is known for its 
comprehensive provision of real-time and historical financial 
market data. The dataset spans from January 1, 2004, to 
December 31, 2021, for training purposes, and from January 1, 
2022, to December 31, 2023, for testing, allowing a robust 
assessment of our model’s predictive capabilities within the 
specified periods. 

 Feature Enginnering 

Following the extraction of the dataset, our methodology 
involves calculating 21 technical indicators for each trading 
day, covering varying intervals ranging from 6 to 27 days. 
These indicators predominantly fall into two categories: 
momentum indicators and oscillators. Momentum indicators 
are used to assess the speed at which stock prices change, 
providing insights into the strength or weakness of a trend. 
Oscillators, on the other hand, help determine overbought or 
oversold conditions by measuring the price momentum and its 
deviations. This comprehensive analysis of technical indicators 
enhances our model's ability to accurately predict optimal 
trading points within the stock market. 

1) Moving Average (MA): Shows the average stock price 

over a specific period of time, smoothing out price data. Eq. 

(11) shows its calculation. 

𝑀𝐴 =  
∑ 𝑃𝑖

𝑛
𝑖=1

𝑛
 

(11) 

Where 𝑃𝑖  is the price at each point and n is the number of 
points. 

2) Exponential Moving Average (EMA): Similar to MA 

but gives more weight to recent prices, reacting more 

significantly to recent price changes. Eq. (12) unveils its 

computational heart. 

𝐸𝑀𝐴𝑡 = (𝑉𝑡  × 𝑆𝐹) + (𝐸𝑀𝐴𝑡−1  × (1 − 𝑆𝐹)) (12) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

851 | P a g e  

www.ijacsa.thesai.org 

SF is the Smoothing factor is typically 
2

𝑛+1
 , where n is the 

number of days. 

3) Moving Average Convergence Divergence (MACD) : 

Indicates the relationship between two moving averages of a 

stock's price. Eq. (13) and Eq. (14) show the calculations of 

MACD and Signal Lines: 

𝑀𝐴𝐶𝐷 = 𝐸𝑀𝐴12 − 𝐸𝑀𝐴26 (13) 

And the signal line: 

𝑆𝑖𝑔𝑛𝑎𝑙 = 𝐸𝑀𝐴9(𝑀𝐴𝐶𝐷) (14) 

4) Relative Strength Index (RSI): Measures the speed and 

change of price movements, typically over a 14-day period, to 

identify overbought or oversold conditions. Eq. (15) provides 

the calculation of RSI value: 

𝑅𝑆𝐼 = 100 − 
100

1 + 𝑅𝑆
 (15) 

where RS (Relative Strength) is: 

𝑅𝑆 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑖𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠
 (16) 

5) Bollinger bands: Consists of a middle band being an N-

period simple moving average (SMA) flanked by upper and 

lower bands at two standard deviations away from the SMA to 

measure volatility. The inner workings of the Bollinger Bands 

are detailed in Eq. (17) to Eq. (19): 

𝑀𝑖𝑑𝑑𝑙𝑒 𝐵𝑎𝑛𝑑 = 𝑀𝐴20 (17) 

𝑈𝑝𝑝𝑒𝑟 𝐵𝑎𝑛𝑑 = 𝑀𝐴20 + ( 2 × 𝑆𝑡𝑑20) (18) 

𝐿𝑜𝑤𝑒𝑟 𝐵𝑎𝑛𝑑 = 𝑀𝐴20 − ( 2 × 𝑆𝑡𝑑20) (19) 

6) Stochastic oscillator: Compares a stock's closing price 

to its price range over a certain period, indicating momentum 

and possible trend reversals. Eq. (20) illustrates the specific 

computation employed by the Stochastic Oscillator: 

%𝐾 =
𝐶 − 𝐿14

𝐻14 −  𝐿14

 × 100 (20) 

where, C is the lasted closing price, 𝐿14 is the low of the 14 
previous trading sessions, and 𝐻14 is the highest price traded 
during the same 14-day period. 

7) On-Balance Volume (OBV): Uses volume flow to 

predict changes in stock price. Eq. (21) unveils its 

computational heart: 

𝑂𝐵𝑉𝑡 =  {

𝑂𝐵𝑉𝑡−1 +  𝑉𝑜𝑙𝑡  𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 >  𝐶𝑙𝑜𝑠𝑒𝑡−1  
𝑂𝐵𝑉𝑡−1 −  𝑉𝑜𝑙𝑡  𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 < 𝐶𝑙𝑜𝑠𝑒𝑡−1 

𝑂𝐵𝑉𝑡−1 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 =  𝐶𝑙𝑜𝑠𝑒𝑡−1 

 (21) 

8) Average Directional Index (ADX): Measures the 

strength of a trend, regardless of its direction. Eq. (22) 

illustrates the calculation of ADX: 

𝐴𝐷𝑋 =
𝑆𝑀𝐴𝑜𝐴𝑉(𝐷𝐼+ − 𝐷𝐼−)

𝐷𝐼+ +  𝐷𝐼−
 

(22) 

where SMAoAV is the Smoothed Moving Average of the 
Absolute Value. 

9) Accumulation/Distribution Line (A/D Line): Measures 

the cumulative flow of money into and out of a stock, which 

can indicate potential price movements. Eq. (23) unveils the 

A/D’s inner workings: 

𝐴 𝐷⁄ = 𝑃𝑟𝑒𝑣𝐴 𝐷⁄ + 𝑉𝑜𝑙 ×
𝐶 − 𝐿 − (𝐻 − 𝐶)

𝐻 − 𝐿
 (23) 

where Vol is the Volume, C is the close price, L is the Low 
price, and H is the high price. 

10) Ichimoku cloud: Provides more data points, which 

give a more comprehensive look at resistance and support, as 

well as momentum and trend direction. One of its 

components. Eq. (24) shows how Ichimoku Cloud is 

calculated: 

𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑆𝑝𝑎𝑛 𝐴 =
𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑒 + 𝐵𝑎𝑠𝑒𝐿𝑖𝑛𝑒

2
  (24) 

Conversion Line and Base Line involve calculating 
midpoints of high and low prices over different periods. 

11) Standard deviation: Measures the dispersion of a 

dataset relative to its mean, commonly used to gauge the 

volatility. Eq. (25) details the SD’s calculation: 

𝜎 =  √
1

𝑁
∑(𝑃𝑖 −  𝜇)2

𝑁

𝑖=1

  (25) 

Where 𝑃𝑖  is each individual price and 𝜇 is the mean price. 

12) Volume Weighted Average Price (VWAP): Gives an 

average price a stock has traded at throughout the day, based 

on both volume and price. These VWAP, captured in Eq. (26): 

𝑉𝑊𝐴𝑃 =  
∑(𝑃𝑟𝑖𝑐𝑒 × 𝑉𝑜𝑙𝑢𝑚𝑒)

∑ 𝑉𝑜𝑙𝑢𝑚𝑒
 (26) 

13) Momentum: Indicates the rate of change or speed of 

price movement of a stock. Eq. (27) illustrates its calculation: 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =  𝐶𝑙𝑜𝑠𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡  − 𝐶𝑙𝑜𝑠𝑒𝑛 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑎𝑔𝑜  (27) 

14) Commodity Channel Index (CCI): Determines 

overbought or oversold levels, helping to identify price 

reversals. Eq. (28) shows the calculation of CCI. 

𝐶𝐶𝐼 =
𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒 − 2𝑂𝑃𝑒𝑟𝑖𝑜𝑑 𝑀𝐴 𝑜𝑓 𝑇𝑃

0.015 × 𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
  (28) 

Typical Price (TP) is the average of the high, low, and close 
prices. 

15) Williams %R: Measures the level of the close relative 

to the highest high for the look-back period, similar to the 

Stochastic Oscillator. Eq. (29) details the calculation of 

Williams %R. 

%𝑅 =
𝐻𝑛 −  𝐶

𝐻𝑛 − 𝐿𝑛

 × −100 (29) 
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16) Chaikin Money Flow (CMF): Combines price and 

volume to show where the money is flowing, into or out of a 

stock. Eq. (30) illustrates the specific computation of CMF 

𝐶𝑀𝐹 =

∑ [
((𝐶 − 𝐿) − (𝐻 − 𝐶))

(𝐻 − 𝐿)
 × 𝑉𝑜𝑙𝑢𝑚𝑒]𝑁

1

∑ 𝑉𝑜𝑙𝑢𝑚𝑒𝑁
1

  
(30) 

17) Aroon indicator: Measures whether a stock is 

trending or not and the strength of the trend. For the 

mathematically inclined, the inner workings of the Aroon 

indicator are detailed in Eq. (31) to Eq. (32): 

𝐴𝑟𝑜𝑜𝑛 𝑈𝑝 =
(𝑁 − 𝐷𝑎𝑦𝑠 𝑆𝑖𝑛𝑐𝑒 𝑁𝑑𝑎𝑦 𝐻𝑖𝑔ℎ)

𝑁
 × 100 (31) 

𝐴𝑟𝑜𝑜𝑛𝐷𝑜𝑤𝑛 =
(𝑁 − 𝐷𝑎𝑦𝑠 𝑆𝑖𝑛𝑐𝑒 𝑁𝑑𝑎𝑦 𝑙𝑜𝑤)

𝑁
 × 100 (32) 

18) Keltner channel: Similar to Bollinger Bands, uses 

envelopes set above and below an exponential moving 

average, but the bands are based on the Average True Range 

(ATR). Eq. (33) to Eq. (35) details the mathematical principles 

behind the Keltner Channel. 

𝑀𝑖𝑑𝑑𝑙𝑒 𝐿𝑖𝑛𝑒 =  𝐸𝑀𝐴20 (33) 

𝑈𝑝𝑝𝑒𝑟 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐿𝑖𝑛𝑒 =  𝐸𝑀𝐴20 + (2 × 𝐴𝑇𝑅) (34) 

𝐿𝑜𝑤𝑒𝑟 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐿𝑖𝑛𝑒 =  𝐸𝑀𝐴20 − (2 × 𝐴𝑇𝑅) (35) 

19) Elder’s Force Index (EFI): Elder's Force Index 

combines price movement and volume to measure the strength 

of bulls and bears in the market. It can indicate potential 

reversals and price corrections. Eq. (36) details the EFI’s 

calculation. 

𝐸𝐹𝐼 =  𝑉𝑜𝑙𝑢𝑚𝑒 × (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑙𝑜𝑠𝑒 − 𝑃𝑟𝑒𝑣 𝐶𝑙𝑜𝑠𝑒) (36) 

20) Rate of Change (ROC): The Rate of Change indicator 

measures the percentage change in price between the current 

price and the price a certain number of periods ago. It's used to 

identify the momentum behind price movements. Eq. (37) 

details the ROC's calculation. 

𝑅𝑂𝐶 = (
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑙𝑜𝑠𝑒 − 𝐶𝑙𝑜𝑠𝑒 𝑛 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑎𝑔𝑜

𝐶𝑙𝑜𝑠𝑒 𝑛 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑎𝑔𝑜
) 100 (37) 

21) Average True Range (ATR): The Average True 

Range is a technical analysis indicator that measures market 

volatility by decomposing the entire range of an asset price for 

that period. ATR is not directional and only measures 

volatility, making it useful for assessing risk. Eq. (38) and (39) 

unveil the mathematical principles behind this indicator. 

𝑇𝑟𝑢𝑒𝑅𝑎𝑛𝑔𝑒 = 𝑀𝑎𝑥[|𝐻 − 𝐿|, |𝐻 − 𝑃𝑟𝑒𝐶|, |𝐿 − 𝑃𝑟𝑒𝐶|] (38) 

𝐴𝑇𝑅 = 𝑀𝐴 (𝑇𝑟𝑢𝑒 𝑅𝑎𝑛𝑔𝑒 𝑜𝑣𝑒𝑟 𝑛 𝑝𝑒𝑟𝑖𝑜𝑑) (39) 

 Feature Selection 

In the pursuit of enhancing model performance, a rigorous 
feature selection process was implemented subsequent to the 
computation of various indicators. The selection involved two 

established methodologies: the ANOVA F-value [20][21] 
method (f_classif) and the Chi-Squared test (chi2) [21]. These 
methods were employed to identify features with the highest 
statistical significance in relation to the predictive outcome. An 
intersection of the features identified by both methods was 
conducted to ensure the inclusion of the most robust features. 
Furthermore, the features common to both selection results 
were organized such that indices were sorted, facilitating the 
clustering of similar types of indicators. This arrangement aims 
to maintain spatial coherence when these indicators are 
represented as images, optimizing the model's ability to discern 
patterns relevant to the predictive tasks at hand. 

 Labeling the Target 

To determine the target labels, a computational algorithm is 
utilized. This algorithm analyzes a sliding window of 11 days 
at a time, checking the day that falls in the middle of this 
window. It assigns a "SELL" label if this day has the highest 
price in the window, a "BUY" if it has the lowest, and a 
"HOLD" for all other cases. This method can be used to guide 
trading decisions, suggesting optimal days for buying or selling 
based on historical price movements within each window [10]. 

 Handling Class Imbalance 

Upon labeling our target variables, it was observed that the 
dataset exhibited significant class imbalance. The "Hold" 
category substantially outnumbered the "Buy" and "Sell" 
classes. Addressing class imbalance is a pivotal challenge in 
machine learning, especially in datasets where the frequency of 
instances across different classes is markedly disproportionate. 
Such imbalances can detrimentally affect the performance of 
predictive models by inducing a bias towards the majority 
class. 

To counteract this issue, several methodologies have been 
developed and are widely recognized within the research 
community. These include: 

 Oversampling the minority class: This involves 
artificially augmenting the minority class by replicating 
its instances until the class distribution is more 
balanced. A popular method is the Synthetic Minority 
Over-sampling Technique (SMOTE), which 
synthesizes new examples rather than duplicating 
existing ones [22]. 

 Undersampling the majority class: This method 
reduces the number of samples in the majority class to 
balance the class distribution. Care must be taken to 
ensure that this does not lead to the loss of important 
information. 

 Bagging: Using bagging techniques like Random 
Forest can help by building multiple decision trees on 
various sub-samples of the dataset and then averaging 
the results to improve the model’s robustness and 
balance [23]. 

 Cluster-based Over Sampling: Techniques that involve 
clustering the minority class and then performing 
oversampling within each cluster to maintain intra-
class diversity [24]. 
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For the purposes of this study, cluster-based oversampling 
was selected to address the imbalance within the dataset. This 
choice was predicated on its efficacy in maintaining the 
diversity and representativeness of the minority class, thereby 
enhancing the overall predictive accuracy and reliability of the 
model. 

 Image Generation 

Upon completing the aforementioned procedural steps 
which encompass dataset acquisition, computation of technical 
indicators, feature selection, target labeling, and data 
normalization we proceed to organize the daily tabular data, 
which consists of 225 features, into an image-like format. This 
transformation facilitates the application of convolutional 
neural networks, which are adept at processing image data. 
“Fig. 3” illustrates sample images, each composed of a 15x15 
pixel grid, generated during the image creation phase. 

 
Fig. 3. Sample of images. 

In the context of this research, the image dataset comprises 
a substantial collection of stock price data for Apple Inc. 
Specifically, the dataset includes approximately 3,481 images 
designated for training, 1000 images set for testing purposes. 
This structured division supports a robust framework for 
evaluating the efficacy of the predictive model under study. 

 CNN-LSTM Architecture 

The architecture of the used neural network (see Fig. 4) 
outlines a hybrid Convolutional Neural Network-Long Short-
Term Memory (CNN-LSTM) model, strategically designed to 
process sequential data that integrates spatial hierarchies. This 
hybrid model is particularly effective in scenarios where both 
spatial features and temporal sequences are crucial, such as in 
video processing, time-series analysis, and complex natural 
language tasks. 

In this model, the data flows through multiple layers, each 
designed for specific tasks. Initially, spatial features are 
extracted through time-distributed CNN layers, where each 
CNN operates independently across different time steps but 
shares weights. These layers help to capture spatial 
dependencies within individual time frames of the input data. 
Subsequent dropout layers are incorporated following each 
CNN layer to mitigate overfitting by randomly deactivating 
neurons during training. The outputs are then flattened and 
sequenced through an LSTM layer, which is adept at 
understanding and retaining information across time steps, thus 
capturing the temporal relationships between the extracted 
features. Finally, the sequential data, now encoded with both 
spatial and temporal information, is processed through dense 
layers with another dropout in between to further control 
overfitting. The last dense layer outputs the final predictions of 
the model. 

 
Fig. 4. The architecture of the CNN-LSTM model. 

V. PERFORMANCE AND EVALUATION 

The efficacy of our proposed CNN-LSTM model is 
assessed primarily through computational evaluation metrics 
that ascertain how adeptly the classifier distinguishes among 
the 'Buy', 'Hold', and 'Sell' categories. This assessment involves 
comparing the labels predicted by the model against the actual 
stock prices, thereby evaluating the model's practical utility in 
real-world trading scenarios. The decision to buy, sell, or hold 
stocks is predicated on these predicted labels, which aim to 
reflect the optimal trading actions based on the observed data. 

Our research employs a sophisticated evaluation 
methodology for our proposed CNN-LSTM model, utilizing 
Apple Stock data. The model undergoes rigorous training using 
the complete dataset, supplemented by cross-validation 
techniques to ensure generalizability and robustness. The F1 
score, a harmonic mean of precision and recall, serves as the 
primary metric during the training phase, providing a balanced 
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measure of the model’s accuracy in distinguishing between the 
classes of 'Buy', 'Hold', and 'Sell'. 

For the evaluation of test data, we extend our metrics to 
include a confusion matrix, which offers a detailed 
visualization of the model's performance across the actual and 
predicted classifications. This matrix is crucial for 
understanding the specific types of errors made by the model, 
such as misclassifications between different trading signals. 

Additionally, we utilize the weighted F1 score to account 
for class imbalance by assigning a weight to each class that 
reflects its relative importance or frequency. This metric is 
particularly useful when dealing with skewed class 
distributions, as it ensures that the performance of the model is 
not disproportionately influenced by the majority class. 

Lastly, the Kappa score, or Cohen’s Kappa, is employed to 
measure the degree of agreement between the actual and 
predicted classifications, adjusted for the agreement that could 
occur by chance. This statistical measure provides a more 
nuanced indication of the model's predictive accuracy and 
reliability in operational settings. 

Together, these metrics furnish a comprehensive 
framework for evaluating the predictive capabilities of our 
CNN-LSTM model, ensuring it meets the rigorous standards 
required for effective stock market trading applications. 

On Apple stock data the model gave the following result: 

TABLE I.  CONFUSION MATRIX OF TEST SET (APPLE) 

Actual 
Predicted 

Hold Buy Sell 

Hold 807 18 12 

Buy 32 46 0 

Sell 36 0 49 

TABLE II.  EVALUATION OF TEST SET (APPLE) 

 
Total Accuracy: 0.86 

Hold Buy Sell 

Recall 0.96 0.59 0.58 

Precision 0.92 0.72 0.80 

F1-Score 0.94 0.65 0.68 

Weighed-F1 0.90 

Kappa score 0.62 

The provided tables elucidate the performance metrics of a 
classification model dedicated to forecasting stock trading 
decisions—namely Hold, Buy, and Sell—using Apple stock 
data. The first table, designated as Table I, presents a confusion 
matrix that details the accuracy and misclassifications across 
different trading actions, as predicted by the model. This 
matrix reveals: For the Hold class, the model achieved 
substantial accuracy with 807 true positives, while inaccuracies 
were relatively minor, involving 18 instances predicted as Buy 
and 12 as Sell. In the Buy category, the model successfully 
identified 46 instances but incorrectly categorized 32 as Hold, 
indicating no errors in predicting Buy as Sell. The Sell 

predictions included 49 correct classifications, but 36 were 
erroneously predicted as Hold, with no instances misclassified 
as Buy. 

The second table, Table II, provides a comprehensive 
overview of various evaluation metrics: Total Accuracy stands 
at 86%, showcasing high overall precision in the model’s 
predictions. The Precision and Recall metrics demonstrate: 
Exceptional precision (0.92) and recall (0.96) for Hold 
predictions, indicating the model's efficiency in this category. 
Moderate precision (0.72) and lower recall (0.59) for Buy 
predictions, suggesting difficulties in consistently identifying 
buy transactions. Reasonable precision (0.80) and moderate 
recall (0.58) for Sell predictions, highlighting some challenges 
in capturing all actual Sell transactions. F1-Scores further 
reflect the nuanced performance across categories, with a high 
of 0.94 for Hold, and lower scores of 0.65 for Buy and 0.68 for 
Sell, suggesting areas for improvement in balancing precision 
and recall, particularly for Buy and Sell predictions. The 
Weighted F1 Score at 0.90% and a Kappa Score of 0.62% 
suggest a good overall model performance but also room for 
enhancement, particularly in the precise classification of Buy 
and Sell actions. 

Multi-Layer Perceptron (MLP), Long Short-Term Memory 
(LSTM), and Convolutional Neural Network (CNN) serve as 
established methodologies for forecasting stock market 
movements, and have been selected as baseline models for 
comparison against our proposed model. The outcomes of 
these comparisons are detailed in Table III, where the highest 
Average F1-Score results are highlighted in bold. 

TABLE III.  THE AVERAGE OF F1-SCORE OF TEST DATA (APPLE) ON 

DIFFERENT MODELS 

Model Avg F1-Score 

MLP 0.44 

CNN 0.57 

LSTM 0.45 

CNN-LSTM 0.76 

VI. CONCLUSION 

In this study, we developed and evaluated a hybrid deep 
learning model combining Convolutional Neural Networks 
(CNNs) and Long Short-Term Memory networks (LSTMs) for 
stock market prediction. Our findings demonstrate that this 
hybrid model outperforms traditional financial models and 
other deep learning approaches in terms of accuracy and 
reliability. By effectively processing and analyzing both spatial 
and temporal dimensions of financial data, the CNN-LSTM 
model captures complex market patterns and provides robust 
trading signals. 

The superior performance of the hybrid model underscores 
the potential of integrating advanced machine learning 
techniques in financial market predictions. This research 
contributes to the growing body of evidence that deep learning 
models can significantly enhance the accuracy of financial 
forecasts, offering valuable insights for investors and traders. 
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Implications for future research include the exploration of 
additional hybrid architectures, the incorporation of diverse 
data sources such as macroeconomic indicators and news 
sentiment, and the development of real-time analysis 
capabilities. Additionally, expanding the model's application to 
other financial markets and improving the interpretability of 
deep learning models will further enhance their practical 
utility. 

Overall, our study highlights the transformative potential of 
hybrid deep learning models in financial market analysis, 
paving the way for more sophisticated and reliable predictive 
tools in the finance industry. 
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