
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

847 | P a g e

www.ijacsa.thesai.org

From Technical Indicators to Trading Decisions: A

Deep Learning Model Combining CNN and LSTM

SAHIB Mohamed Rida, ELKINA Hamza, ZAKI Taher

Innovation in Mathematics and Intelligent Systems Research Laboratory, Faculty of Applied Sciences,

Ibn Zohr University, Agadir, Morocco

Abstract—Stock market prediction is a highly attractive and

popular field within finance, driven by the potential for

significant profits that come with substantial risks due to data

non-linearity and complex economic principles. Extracting

features from trading data is crucial in this domain, and

numerous strategies have been developed. Among these, deep

learning has achieved impressive results in financial applications

because of its robust data processing capabilities. In our study,

we propose a hybrid deep learning model, the CNN-LSTM,

which combines the 2D Convolutional Neural Network (CNN) for

image processing with the Long Short-Term Memory (LSTM)

network for managing image sequences and classification. We

transformed the top 15 of 21 technical indicators from financial

time series into 15x15 images for 21 different day periods. Each

image is then categorized as Sell, Hold, or Buy based on the

trading data. Our model demonstrates superior performance in

stock predictions over other deep learning models.

Keywords—Stock market prediction; CNN-LSTM hybrid

model; financial time series; technical indicators; CNN; LSTM

I. INTRODUCTION

The global financial markets are characterized by their
dynamic nature, where the profit potential is equally matched
by the susceptibility to risk. This duality is largely due to the
complex interplay of economic indicators, investor sentiment,
and global financial events, making stock market forecasting a
highly sophisticated area of study. Forecasting these markets
requires an understanding of both macroeconomic trends and
the minute fluctuations within trading data [1]. As markets
evolve, the tools and techniques employed to forecast these
changes must also develop, incorporating new data and
adapting to changing conditions.

Traditional financial models, such as the Efficient Market
Hypothesis and Fundamental Analysis, have long been used to
understand and predict market behaviors. However, these
models often fall short in times of increased market volatility
and when dealing with large unstructured datasets. In contrast,
advanced computational techniques, especially those involving
machine learning and deep learning, have shown remarkable
success in decoding complex patterns that underlie financial
markets [2]. These techniques can process vast amounts of data
in real-time, learning from new information as it becomes
available, which is a crucial advantage in today's fast-paced
markets.

Deep learning, a subset of machine learning, has emerged
as a transformative force in financial predictions. The deep
neural networks, with their multiple layers of processing, can

extract high-level features from raw data, which is pivotal in
identifying profitable trading opportunities. Specific
architectures like Convolutional Neural Networks (CNNs) and
Long Short-Term Memory networks (LSTMs) have been at the
forefront of this revolution. CNNs are particularly effective in
dealing with spatial data, whereas LSTMs excel in capturing
temporal dependencies, addressing two critical dimensions of
financial data [3].

The approach of combining CNNs and LSTMs aims to
harness the strengths of both architectures to improve the
accuracy and reliability of financial predictions. This hybrid
model leverages CNN’s ability to effectively process and
analyze images derived from structured data, such as graphs
and charts of market trends, and complements it with LSTM’s
capability to understand time series data, ensuring that
temporal sequences in stock prices are accurately predicted.
The synergistic combination of these technologies is designed
to handle the multifaceted nature of financial datasets more
effectively than models employing a single methodology [4].

Despite significant advancements in machine learning
techniques, stock market prediction remains a challenging task
due to the inherent volatility and complexity of financial
markets. Traditional models often fail to capture the nuanced
and multifaceted nature of market data, leading to inaccurate
predictions. This research aims to address the gap by
developing a hybrid model that combines CNNs and LSTMs to
enhance the accuracy and robustness of stock trend predictions.
How effective is the CNN-LSTM hybrid model in predicting
stock trends compared to traditional financial models?

The objectives of this research are to develop a hybrid
CNN-LSTM model for stock trend prediction and to evaluate
the performance of the hybrid model against standalone deep
learning models.

The significance of this research lies in its potential to
revolutionize stock market forecasting by leveraging advanced
deep learning techniques. By combining CNNs and LSTMs,
the proposed model aims to provide more accurate and reliable
predictions, which could significantly benefit investors and
financial analysts. This research contributes to the field of
financial forecasting by demonstrating the effectiveness of
hybrid deep learning models and providing insights into their
practical applications in dynamic market environments.

The reminder of this paper is organized into several distinct
sections to facilitate a thorough exploration of our research.
Section II reviews related works, emphasizing the evolution of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

848 | P a g e

www.ijacsa.thesai.org

predictive models from traditional to modern deep learning
approaches. Section III delves into the technologies
underpinning our study, particularly CNNs and LSTMs,
elucidating their principles and advantages in financial
applications. Section IV details our methodology, including
data preprocessing, model development, and algorithmic
considerations. The empirical evaluation of our model is
presented in Section V, where we discuss its performance
against traditional and contemporary benchmarks. We
conclude in Section VI, summarizing our contributions and
proposing future research directions for enhancing predictive
models in finance.

II. RELATED WORKS

Stock market prediction has long been a central theme in
financial research, with various models being developed to
forecast market trends and price movements. Historically,
predictive models in finance were largely dominated by linear
regression and time-series analysis, focusing on historical data
to predict future prices. Seminal works by Fama [5] introduced
the Efficient Market Hypothesis, suggesting that stock prices
reflect all available information and follow a random walk.
However, the hypothesis has been challenged by subsequent
studies that recognize patterns and trends in market data,
suggesting predictability under certain conditions [6].

Stock market analysis relied heavily on statistical methods
and basic machine learning models. Time series forecasting
techniques such as ARIMA and exponential smoothing were
commonly used due to their simplicity and effectiveness in
handling linear trends and seasonality [7]. However, these
methods often fall short of capturing the complex, non-linear
patterns typically exhibited in financial markets.

With the advent of more advanced computational
resources, machine learning techniques have gained
prominence. Researchers have explored various algorithms
from simple decision trees to complex ensemble methods to
predict stock prices. A significant contribution in this area was
made by Patel et al. [8], who compared different technical
indicators with machine learning algorithms and found that
models like Random Forest and SVM outperformed traditional
statistical methods.

Deep learning has introduced a paradigm shift in predictive
accuracy and data processing capabilities. Among the first to
apply deep learning to financial forecasting, Dixon et al. [9]
demonstrated that deep neural networks could significantly
enhance prediction performance over traditional models. The
ability of deep learning models to learn complex, non-linear
relationships in data offers unprecedented advantages in the
noisy, volatile environment of financial markets.

Convolutional Neural Networks (CNNs) have been
primarily utilized in image processing but have found
applications in financial markets where pattern recognition in
chart analysis plays a crucial role [10]. On the other hand,
Long Short-Term Memory networks (LSTMs) are a type of
recurrent neural network (RNN) ideal for processing sequences
of data, making them suitable for analyzing time series data
prevalent in stock market predictions [11].

The innovation of combining CNN and LSTM models is
relatively recent, with researchers beginning to explore the
synergy between spatial feature extraction and sequential data
processing. In one notable study, Zhang et al. [12] developed a
hybrid model that utilizes CNNs to interpret visual patterns
from stock market charts and LSTMs to analyze the temporal
patterns in trading data. Their findings suggest that such hybrid
models can outperform models based on a single architecture,
particularly in handling the multifaceted nature of financial
time series data.

Recognizing the limitations of singular approaches, recent
research has shifted towards hybrid models that combine the
strengths of CNNs and LSTMs. These models leverage CNNs
for robust feature extraction from complex input formats, such
as images or transformed time series, and LSTMs to interpret
these features over time, enhancing the predictive accuracy for
various financial applications [13].

One notable study introduced an attention-based hybrid
CNN-LSTM model that incorporates the XGBoost algorithm
for feature selection and dimensionality reduction, further
refining the model's predictions for stock prices [13]. Similarly,
Shang et al. [14] employed a CNN-LSTM hybrid model to
enhance signal processing capabilities for damage detection in
infrastructure, demonstrating the versatility of hybrid models in
diverse applications beyond the financial market.

Khalid et al. presents in his study [15] a convolutional deep
neural network model leveraging a 2D-CNN for image
processing and classification. The image creation process
involves transforming top technical indicators from a financial
time series, each calculated over 21 different-day periods, to
generate images of specific sizes. These images are then
labeled as Sell, Hold, or Buy based on the original trading data.
In comparison to the Long Short-Term Memory Model and the
one-dimensional Convolutional Neural Network, the proposed
model demonstrates superior performance. This research
underscores the efficacy of employing a convolutional deep
neural network with 2D-CNN for processing and classifying
financial time series data. The utilization of top technical
indicators in image creation contributes to enhanced predictive
capabilities, making the proposed model a promising approach
for stock price trend prediction.

III. BACKGROUND

Deep learning has risen to prominence as a pivotal subset
of machine learning, renowned for its efficacy across a broad
spectrum of applications from image recognition to natural
language processing. This method employs multiple layers of
neural networks to interpret vast quantities of data, revealing
intricate patterns those traditional techniques could not
uncover. Among the most influential architectures within deep
learning are Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs).

 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a specialized
type of neural network model designed for processing data that
has a grid-like topology, such as images. CNNs are particularly
powerful for tasks involving image recognition, classification,
and analysis, and have been widely adopted in various

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

849 | P a g e

www.ijacsa.thesai.org

applications ranging from medical imaging to autonomous
vehicle technology.

A Convolutional Neural Network typically consists of an
input layer, multiple hidden layers, and an output layer “Fig.
1”. The hidden layers usually include a series of convolutional
layers, pooling layers, and fully connected layers at the end:

Fig. 1. CNN architecture.

1) Convolutional layers: The core building blocks of a

CNN are its convolutional layers, which apply a number of

filters to the input. These filters are small matrices used to

perform convolution operations that process the data and

create feature maps. This process effectively captures spatial

hierarchies in data by recognizing patterns such as edges,

shapes, and textures within the input images [16].

Mathematically, it is expressed as given in Eq. (1) for a single

dimension:

(𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏 (1)

In the context of CNNs, this is typically simplified to a
discrete convolution as shown in Eq. (2), especially for image
processing:

(𝑓 ∗ 𝑔)[𝑛] = ∑ 𝑓[𝑚] × 𝑔[𝑛 − 𝑚]

𝑀

𝑚= −𝑀

 (2)

In 2D (for images), it becomes Eq. (3):

(𝐼 ∗ 𝐾)[𝑖, 𝑗] = ∑ ∑ 𝐼[𝑚, 𝑛] × 𝐾[𝑖 − 𝑚, 𝑗 − 𝑛]
𝑛𝑚

 (3)

where:

 I is the input image or feature map.

 K is the kernel or filter.

 m, n index the elements of the kernel.

 i, j index the resulting matrix.

2) Activation function: After a convolution operation, an

activation function such as the ReLU (Rectified Linear Unit)

as given in Eq. (4) is typically applied to introduce non-linear

properties to the system. This helps the network learn complex

patterns during training.

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (4)

3) Pooling layers: These layers reduce the spatial size of

the convoluted features, helping to decrease the computational

load, memory usage, and the number of parameters. Max

pooling, which selects the maximum value from the feature

region covered by the filter, is a common method used.

4) Fully connected layers: Towards the end of the

network, fully connected layers use the features extracted by

the convolutional and pooling layers to determine the final

output, such as the classification of the image. Each neuron in

a fully connected layer has connections to all activations in the

previous layer.

5) Output layer: The final layer outputs the prediction of

the network using a Softmax or Sigmoid activation function,

depending on the task (e.g., multi-class classification or binary

classification).

 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a special
kind of Recurrent Neural Network (RNN) that are capable of
learning long-term dependencies in data sequences. Introduced
by Hochreiter and Schmidhuber in 1997, LSTMs were
designed to overcome the limitations of traditional RNNs,
particularly problems related to learning long-term
dependencies and the vanishing gradient problem during
training [17]. LSTMs are particularly well-suited for
classifying, processing, and predicting sequences where there
are lags of unknown duration between important events. This
capability makes them ideal for applications such as time series
prediction, natural language processing, and speech
recognition.

An LSTM unit “Fig.2” typically consists of a cell state and
three gates that regulate the flow of information: the input gate
(6), forget gate (5), and output gate (9). Here's how each
component works mathematically:

Fig. 2. The structure of LSTM unit.

1) Forget gate: This gate decides what information is

discarded from the cell state. 𝜎 denotes the sigmoid function,

𝑊𝑓 are the weights of the forget gate, ℎ𝑡−1 is the previous

hidden state, 𝑥𝑡 is the input at step 𝑡, and 𝑏𝑓 is the bias.

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (5)

2) Input gate: The input gate decides which values will

update the cell state. �̃� (7) represents the candidate values for

the state update.

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (6)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

850 | P a g e

www.ijacsa.thesai.org

�̃�𝑡 = tanh(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (7)

3) Cell state update: The cell state 𝐶𝑡 (8) is updated by

forgetting the old state 𝐶𝑡−1 as regulated by 𝑓𝑡 and adding

new candidate values scaled by 𝑖𝑡.

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (8)

4) Output gate: The output gate controls the output of the

cell state through the hidden state ℎ𝑡 (10). The actual output

ℎ𝑡is filtered by the output gate 𝑜𝑡 and then passed through a

tanh function to scale the values between -1 and 1.

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (9)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (10)

 CNN-LSTM Hybrid Model

The most important and useful deep neural models come
from the combining of the different types of networks together
into hybrid models. The CNN-LSTM method for the stock
market forecasting, composed of a series connection of CNN
and LSTM. CNN-LSTM can extract complex features and can
store complex irregular trends of stocks market.

In a CNN-LSTM architecture [18], the TimeDistributed
layer is used to wrap a convolutional neural network (CNN) so
that it can process input data that varies over time, such as
frames in a video or a series of images. This layer allows the
same CNN model to be applied to each timestep independently
and efficiently. Essentially, it acts as a bridge between the
CNN and LSTM layers, managing the temporal aspects of the
model while preserving spatial feature extraction capabilities of
the CNN.

The TimeDistributed layer is a crucial component in neural
network architectures where it is necessary to apply the same
layer independently to every timestep of input data. This is
particularly useful in models that need to maintain temporal
order in their inputs, such as CNN-LSTM networks used for
sequence prediction tasks that involve spatial data (like videos
or time series of images).

1) CNN-LSTM Model with TimeDistributed: In a typical

CNN-LSTM setup:

a) Feature Extraction (CNN part): The TimeDistributed

wrapper applies the CNN across each timestep. For instance,

in video processing [19], each frame (image) of the video

passes through the same convolutional layers. This ensures

that the spatial features from each frame are extracted in the

same way.

b) Temporal Processing (LSTM part): The output from

the TimeDistributed-CNN part, now a series of feature vectors

(one for each timestep), is then passed to the LSTM layers.

The LSTM processes these features over time, capturing

dynamic temporal behaviors and interactions between the

timesteps, which are crucial for tasks like video classification

or predicting sequences of images.

IV. METHODOLOGY

We propose a hybrid analytical model that integrates
Convolutional Neural Networks (CNN) and Long Short-Term
Memory networks (LSTM) to effectively identify optimal
buying and selling points in stock prices. This model employs
fifteen selected technical indicators from a set of twenty, each
evaluated over various time intervals, to generate
representative images. The methodology of our proposed
system encompasses five principal stages: data extraction,
feature engineering, feature selection, data labeling, and the
management of class imbalance, culminating in the creation of
images. The primary objective of our research is to accurately
determine the most advantageous positions for buy, sell, and
hold decisions within the time series data of stock prices.

 Data Extraction

In our research, the dataset employed comprises several key
features that encapsulate the dynamics of the stock market.
Specifically, it includes the following attributes: Date, Open
Price, Low Price, High Price, Close Price, Adjusted Close
Price, and the Trading Volume for each respective date. These
features are extracted from the daily stock prices of Apple Inc.,
sourced from Alpha Vantage, which is known for its
comprehensive provision of real-time and historical financial
market data. The dataset spans from January 1, 2004, to
December 31, 2021, for training purposes, and from January 1,
2022, to December 31, 2023, for testing, allowing a robust
assessment of our model’s predictive capabilities within the
specified periods.

 Feature Enginnering

Following the extraction of the dataset, our methodology
involves calculating 21 technical indicators for each trading
day, covering varying intervals ranging from 6 to 27 days.
These indicators predominantly fall into two categories:
momentum indicators and oscillators. Momentum indicators
are used to assess the speed at which stock prices change,
providing insights into the strength or weakness of a trend.
Oscillators, on the other hand, help determine overbought or
oversold conditions by measuring the price momentum and its
deviations. This comprehensive analysis of technical indicators
enhances our model's ability to accurately predict optimal
trading points within the stock market.

1) Moving Average (MA): Shows the average stock price

over a specific period of time, smoothing out price data. Eq.

(11) shows its calculation.

𝑀𝐴 =
∑ 𝑃𝑖

𝑛
𝑖=1

𝑛

(11)

Where 𝑃𝑖 is the price at each point and n is the number of
points.

2) Exponential Moving Average (EMA): Similar to MA

but gives more weight to recent prices, reacting more

significantly to recent price changes. Eq. (12) unveils its

computational heart.

𝐸𝑀𝐴𝑡 = (𝑉𝑡 × 𝑆𝐹) + (𝐸𝑀𝐴𝑡−1 × (1 − 𝑆𝐹)) (12)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

851 | P a g e

www.ijacsa.thesai.org

SF is the Smoothing factor is typically
2

𝑛+1
 , where n is the

number of days.

3) Moving Average Convergence Divergence (MACD) :

Indicates the relationship between two moving averages of a

stock's price. Eq. (13) and Eq. (14) show the calculations of

MACD and Signal Lines:

𝑀𝐴𝐶𝐷 = 𝐸𝑀𝐴12 − 𝐸𝑀𝐴26 (13)

And the signal line:

𝑆𝑖𝑔𝑛𝑎𝑙 = 𝐸𝑀𝐴9(𝑀𝐴𝐶𝐷) (14)

4) Relative Strength Index (RSI): Measures the speed and

change of price movements, typically over a 14-day period, to

identify overbought or oversold conditions. Eq. (15) provides

the calculation of RSI value:

𝑅𝑆𝐼 = 100 −
100

1 + 𝑅𝑆
 (15)

where RS (Relative Strength) is:

𝑅𝑆 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑖𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠
 (16)

5) Bollinger bands: Consists of a middle band being an N-

period simple moving average (SMA) flanked by upper and

lower bands at two standard deviations away from the SMA to

measure volatility. The inner workings of the Bollinger Bands

are detailed in Eq. (17) to Eq. (19):

𝑀𝑖𝑑𝑑𝑙𝑒 𝐵𝑎𝑛𝑑 = 𝑀𝐴20 (17)

𝑈𝑝𝑝𝑒𝑟 𝐵𝑎𝑛𝑑 = 𝑀𝐴20 + (2 × 𝑆𝑡𝑑20) (18)

𝐿𝑜𝑤𝑒𝑟 𝐵𝑎𝑛𝑑 = 𝑀𝐴20 − (2 × 𝑆𝑡𝑑20) (19)

6) Stochastic oscillator: Compares a stock's closing price

to its price range over a certain period, indicating momentum

and possible trend reversals. Eq. (20) illustrates the specific

computation employed by the Stochastic Oscillator:

%𝐾 =
𝐶 − 𝐿14

𝐻14 − 𝐿14

 × 100 (20)

where, C is the lasted closing price, 𝐿14 is the low of the 14
previous trading sessions, and 𝐻14 is the highest price traded
during the same 14-day period.

7) On-Balance Volume (OBV): Uses volume flow to

predict changes in stock price. Eq. (21) unveils its

computational heart:

𝑂𝐵𝑉𝑡 = {

𝑂𝐵𝑉𝑡−1 + 𝑉𝑜𝑙𝑡 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 > 𝐶𝑙𝑜𝑠𝑒𝑡−1
𝑂𝐵𝑉𝑡−1 − 𝑉𝑜𝑙𝑡 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 < 𝐶𝑙𝑜𝑠𝑒𝑡−1

𝑂𝐵𝑉𝑡−1 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 = 𝐶𝑙𝑜𝑠𝑒𝑡−1

 (21)

8) Average Directional Index (ADX): Measures the

strength of a trend, regardless of its direction. Eq. (22)

illustrates the calculation of ADX:

𝐴𝐷𝑋 =
𝑆𝑀𝐴𝑜𝐴𝑉(𝐷𝐼+ − 𝐷𝐼−)

𝐷𝐼+ + 𝐷𝐼−

(22)

where SMAoAV is the Smoothed Moving Average of the
Absolute Value.

9) Accumulation/Distribution Line (A/D Line): Measures

the cumulative flow of money into and out of a stock, which

can indicate potential price movements. Eq. (23) unveils the

A/D’s inner workings:

𝐴 𝐷⁄ = 𝑃𝑟𝑒𝑣𝐴 𝐷⁄ + 𝑉𝑜𝑙 ×
𝐶 − 𝐿 − (𝐻 − 𝐶)

𝐻 − 𝐿
 (23)

where Vol is the Volume, C is the close price, L is the Low
price, and H is the high price.

10) Ichimoku cloud: Provides more data points, which

give a more comprehensive look at resistance and support, as

well as momentum and trend direction. One of its

components. Eq. (24) shows how Ichimoku Cloud is

calculated:

𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑆𝑝𝑎𝑛 𝐴 =
𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝐿𝑖𝑛𝑒 + 𝐵𝑎𝑠𝑒𝐿𝑖𝑛𝑒

2
 (24)

Conversion Line and Base Line involve calculating
midpoints of high and low prices over different periods.

11) Standard deviation: Measures the dispersion of a

dataset relative to its mean, commonly used to gauge the

volatility. Eq. (25) details the SD’s calculation:

𝜎 = √
1

𝑁
∑(𝑃𝑖 − 𝜇)2

𝑁

𝑖=1

 (25)

Where 𝑃𝑖 is each individual price and 𝜇 is the mean price.

12) Volume Weighted Average Price (VWAP): Gives an

average price a stock has traded at throughout the day, based

on both volume and price. These VWAP, captured in Eq. (26):

𝑉𝑊𝐴𝑃 =
∑(𝑃𝑟𝑖𝑐𝑒 × 𝑉𝑜𝑙𝑢𝑚𝑒)

∑ 𝑉𝑜𝑙𝑢𝑚𝑒
 (26)

13) Momentum: Indicates the rate of change or speed of

price movement of a stock. Eq. (27) illustrates its calculation:

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 𝐶𝑙𝑜𝑠𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐶𝑙𝑜𝑠𝑒𝑛 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑎𝑔𝑜 (27)

14) Commodity Channel Index (CCI): Determines

overbought or oversold levels, helping to identify price

reversals. Eq. (28) shows the calculation of CCI.

𝐶𝐶𝐼 =
𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒 − 2𝑂𝑃𝑒𝑟𝑖𝑜𝑑 𝑀𝐴 𝑜𝑓 𝑇𝑃

0.015 × 𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (28)

Typical Price (TP) is the average of the high, low, and close
prices.

15) Williams %R: Measures the level of the close relative

to the highest high for the look-back period, similar to the

Stochastic Oscillator. Eq. (29) details the calculation of

Williams %R.

%𝑅 =
𝐻𝑛 − 𝐶

𝐻𝑛 − 𝐿𝑛

 × −100 (29)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

852 | P a g e

www.ijacsa.thesai.org

16) Chaikin Money Flow (CMF): Combines price and

volume to show where the money is flowing, into or out of a

stock. Eq. (30) illustrates the specific computation of CMF

𝐶𝑀𝐹 =

∑ [
((𝐶 − 𝐿) − (𝐻 − 𝐶))

(𝐻 − 𝐿)
 × 𝑉𝑜𝑙𝑢𝑚𝑒]𝑁

1

∑ 𝑉𝑜𝑙𝑢𝑚𝑒𝑁
1

(30)

17) Aroon indicator: Measures whether a stock is

trending or not and the strength of the trend. For the

mathematically inclined, the inner workings of the Aroon

indicator are detailed in Eq. (31) to Eq. (32):

𝐴𝑟𝑜𝑜𝑛 𝑈𝑝 =
(𝑁 − 𝐷𝑎𝑦𝑠 𝑆𝑖𝑛𝑐𝑒 𝑁𝑑𝑎𝑦 𝐻𝑖𝑔ℎ)

𝑁
 × 100 (31)

𝐴𝑟𝑜𝑜𝑛𝐷𝑜𝑤𝑛 =
(𝑁 − 𝐷𝑎𝑦𝑠 𝑆𝑖𝑛𝑐𝑒 𝑁𝑑𝑎𝑦 𝑙𝑜𝑤)

𝑁
 × 100 (32)

18) Keltner channel: Similar to Bollinger Bands, uses

envelopes set above and below an exponential moving

average, but the bands are based on the Average True Range

(ATR). Eq. (33) to Eq. (35) details the mathematical principles

behind the Keltner Channel.

𝑀𝑖𝑑𝑑𝑙𝑒 𝐿𝑖𝑛𝑒 = 𝐸𝑀𝐴20 (33)

𝑈𝑝𝑝𝑒𝑟 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐿𝑖𝑛𝑒 = 𝐸𝑀𝐴20 + (2 × 𝐴𝑇𝑅) (34)

𝐿𝑜𝑤𝑒𝑟 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐿𝑖𝑛𝑒 = 𝐸𝑀𝐴20 − (2 × 𝐴𝑇𝑅) (35)

19) Elder’s Force Index (EFI): Elder's Force Index

combines price movement and volume to measure the strength

of bulls and bears in the market. It can indicate potential

reversals and price corrections. Eq. (36) details the EFI’s

calculation.

𝐸𝐹𝐼 = 𝑉𝑜𝑙𝑢𝑚𝑒 × (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑙𝑜𝑠𝑒 − 𝑃𝑟𝑒𝑣 𝐶𝑙𝑜𝑠𝑒) (36)

20) Rate of Change (ROC): The Rate of Change indicator

measures the percentage change in price between the current

price and the price a certain number of periods ago. It's used to

identify the momentum behind price movements. Eq. (37)

details the ROC's calculation.

𝑅𝑂𝐶 = (
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑙𝑜𝑠𝑒 − 𝐶𝑙𝑜𝑠𝑒 𝑛 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑎𝑔𝑜

𝐶𝑙𝑜𝑠𝑒 𝑛 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑎𝑔𝑜
) 100 (37)

21) Average True Range (ATR): The Average True

Range is a technical analysis indicator that measures market

volatility by decomposing the entire range of an asset price for

that period. ATR is not directional and only measures

volatility, making it useful for assessing risk. Eq. (38) and (39)

unveil the mathematical principles behind this indicator.

𝑇𝑟𝑢𝑒𝑅𝑎𝑛𝑔𝑒 = 𝑀𝑎𝑥[|𝐻 − 𝐿|, |𝐻 − 𝑃𝑟𝑒𝐶|, |𝐿 − 𝑃𝑟𝑒𝐶|] (38)

𝐴𝑇𝑅 = 𝑀𝐴 (𝑇𝑟𝑢𝑒 𝑅𝑎𝑛𝑔𝑒 𝑜𝑣𝑒𝑟 𝑛 𝑝𝑒𝑟𝑖𝑜𝑑) (39)

 Feature Selection

In the pursuit of enhancing model performance, a rigorous
feature selection process was implemented subsequent to the
computation of various indicators. The selection involved two

established methodologies: the ANOVA F-value [20][21]
method (f_classif) and the Chi-Squared test (chi2) [21]. These
methods were employed to identify features with the highest
statistical significance in relation to the predictive outcome. An
intersection of the features identified by both methods was
conducted to ensure the inclusion of the most robust features.
Furthermore, the features common to both selection results
were organized such that indices were sorted, facilitating the
clustering of similar types of indicators. This arrangement aims
to maintain spatial coherence when these indicators are
represented as images, optimizing the model's ability to discern
patterns relevant to the predictive tasks at hand.

 Labeling the Target

To determine the target labels, a computational algorithm is
utilized. This algorithm analyzes a sliding window of 11 days
at a time, checking the day that falls in the middle of this
window. It assigns a "SELL" label if this day has the highest
price in the window, a "BUY" if it has the lowest, and a
"HOLD" for all other cases. This method can be used to guide
trading decisions, suggesting optimal days for buying or selling
based on historical price movements within each window [10].

 Handling Class Imbalance

Upon labeling our target variables, it was observed that the
dataset exhibited significant class imbalance. The "Hold"
category substantially outnumbered the "Buy" and "Sell"
classes. Addressing class imbalance is a pivotal challenge in
machine learning, especially in datasets where the frequency of
instances across different classes is markedly disproportionate.
Such imbalances can detrimentally affect the performance of
predictive models by inducing a bias towards the majority
class.

To counteract this issue, several methodologies have been
developed and are widely recognized within the research
community. These include:

 Oversampling the minority class: This involves
artificially augmenting the minority class by replicating
its instances until the class distribution is more
balanced. A popular method is the Synthetic Minority
Over-sampling Technique (SMOTE), which
synthesizes new examples rather than duplicating
existing ones [22].

 Undersampling the majority class: This method
reduces the number of samples in the majority class to
balance the class distribution. Care must be taken to
ensure that this does not lead to the loss of important
information.

 Bagging: Using bagging techniques like Random
Forest can help by building multiple decision trees on
various sub-samples of the dataset and then averaging
the results to improve the model’s robustness and
balance [23].

 Cluster-based Over Sampling: Techniques that involve
clustering the minority class and then performing
oversampling within each cluster to maintain intra-
class diversity [24].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

853 | P a g e

www.ijacsa.thesai.org

For the purposes of this study, cluster-based oversampling
was selected to address the imbalance within the dataset. This
choice was predicated on its efficacy in maintaining the
diversity and representativeness of the minority class, thereby
enhancing the overall predictive accuracy and reliability of the
model.

 Image Generation

Upon completing the aforementioned procedural steps
which encompass dataset acquisition, computation of technical
indicators, feature selection, target labeling, and data
normalization we proceed to organize the daily tabular data,
which consists of 225 features, into an image-like format. This
transformation facilitates the application of convolutional
neural networks, which are adept at processing image data.
“Fig. 3” illustrates sample images, each composed of a 15x15
pixel grid, generated during the image creation phase.

Fig. 3. Sample of images.

In the context of this research, the image dataset comprises
a substantial collection of stock price data for Apple Inc.
Specifically, the dataset includes approximately 3,481 images
designated for training, 1000 images set for testing purposes.
This structured division supports a robust framework for
evaluating the efficacy of the predictive model under study.

 CNN-LSTM Architecture

The architecture of the used neural network (see Fig. 4)
outlines a hybrid Convolutional Neural Network-Long Short-
Term Memory (CNN-LSTM) model, strategically designed to
process sequential data that integrates spatial hierarchies. This
hybrid model is particularly effective in scenarios where both
spatial features and temporal sequences are crucial, such as in
video processing, time-series analysis, and complex natural
language tasks.

In this model, the data flows through multiple layers, each
designed for specific tasks. Initially, spatial features are
extracted through time-distributed CNN layers, where each
CNN operates independently across different time steps but
shares weights. These layers help to capture spatial
dependencies within individual time frames of the input data.
Subsequent dropout layers are incorporated following each
CNN layer to mitigate overfitting by randomly deactivating
neurons during training. The outputs are then flattened and
sequenced through an LSTM layer, which is adept at
understanding and retaining information across time steps, thus
capturing the temporal relationships between the extracted
features. Finally, the sequential data, now encoded with both
spatial and temporal information, is processed through dense
layers with another dropout in between to further control
overfitting. The last dense layer outputs the final predictions of
the model.

Fig. 4. The architecture of the CNN-LSTM model.

V. PERFORMANCE AND EVALUATION

The efficacy of our proposed CNN-LSTM model is
assessed primarily through computational evaluation metrics
that ascertain how adeptly the classifier distinguishes among
the 'Buy', 'Hold', and 'Sell' categories. This assessment involves
comparing the labels predicted by the model against the actual
stock prices, thereby evaluating the model's practical utility in
real-world trading scenarios. The decision to buy, sell, or hold
stocks is predicated on these predicted labels, which aim to
reflect the optimal trading actions based on the observed data.

Our research employs a sophisticated evaluation
methodology for our proposed CNN-LSTM model, utilizing
Apple Stock data. The model undergoes rigorous training using
the complete dataset, supplemented by cross-validation
techniques to ensure generalizability and robustness. The F1
score, a harmonic mean of precision and recall, serves as the
primary metric during the training phase, providing a balanced

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

854 | P a g e

www.ijacsa.thesai.org

measure of the model’s accuracy in distinguishing between the
classes of 'Buy', 'Hold', and 'Sell'.

For the evaluation of test data, we extend our metrics to
include a confusion matrix, which offers a detailed
visualization of the model's performance across the actual and
predicted classifications. This matrix is crucial for
understanding the specific types of errors made by the model,
such as misclassifications between different trading signals.

Additionally, we utilize the weighted F1 score to account
for class imbalance by assigning a weight to each class that
reflects its relative importance or frequency. This metric is
particularly useful when dealing with skewed class
distributions, as it ensures that the performance of the model is
not disproportionately influenced by the majority class.

Lastly, the Kappa score, or Cohen’s Kappa, is employed to
measure the degree of agreement between the actual and
predicted classifications, adjusted for the agreement that could
occur by chance. This statistical measure provides a more
nuanced indication of the model's predictive accuracy and
reliability in operational settings.

Together, these metrics furnish a comprehensive
framework for evaluating the predictive capabilities of our
CNN-LSTM model, ensuring it meets the rigorous standards
required for effective stock market trading applications.

On Apple stock data the model gave the following result:

TABLE I. CONFUSION MATRIX OF TEST SET (APPLE)

Actual
Predicted

Hold Buy Sell

Hold 807 18 12

Buy 32 46 0

Sell 36 0 49

TABLE II. EVALUATION OF TEST SET (APPLE)

Total Accuracy: 0.86

Hold Buy Sell

Recall 0.96 0.59 0.58

Precision 0.92 0.72 0.80

F1-Score 0.94 0.65 0.68

Weighed-F1 0.90

Kappa score 0.62

The provided tables elucidate the performance metrics of a
classification model dedicated to forecasting stock trading
decisions—namely Hold, Buy, and Sell—using Apple stock
data. The first table, designated as Table I, presents a confusion
matrix that details the accuracy and misclassifications across
different trading actions, as predicted by the model. This
matrix reveals: For the Hold class, the model achieved
substantial accuracy with 807 true positives, while inaccuracies
were relatively minor, involving 18 instances predicted as Buy
and 12 as Sell. In the Buy category, the model successfully
identified 46 instances but incorrectly categorized 32 as Hold,
indicating no errors in predicting Buy as Sell. The Sell

predictions included 49 correct classifications, but 36 were
erroneously predicted as Hold, with no instances misclassified
as Buy.

The second table, Table II, provides a comprehensive
overview of various evaluation metrics: Total Accuracy stands
at 86%, showcasing high overall precision in the model’s
predictions. The Precision and Recall metrics demonstrate:
Exceptional precision (0.92) and recall (0.96) for Hold
predictions, indicating the model's efficiency in this category.
Moderate precision (0.72) and lower recall (0.59) for Buy
predictions, suggesting difficulties in consistently identifying
buy transactions. Reasonable precision (0.80) and moderate
recall (0.58) for Sell predictions, highlighting some challenges
in capturing all actual Sell transactions. F1-Scores further
reflect the nuanced performance across categories, with a high
of 0.94 for Hold, and lower scores of 0.65 for Buy and 0.68 for
Sell, suggesting areas for improvement in balancing precision
and recall, particularly for Buy and Sell predictions. The
Weighted F1 Score at 0.90% and a Kappa Score of 0.62%
suggest a good overall model performance but also room for
enhancement, particularly in the precise classification of Buy
and Sell actions.

Multi-Layer Perceptron (MLP), Long Short-Term Memory
(LSTM), and Convolutional Neural Network (CNN) serve as
established methodologies for forecasting stock market
movements, and have been selected as baseline models for
comparison against our proposed model. The outcomes of
these comparisons are detailed in Table III, where the highest
Average F1-Score results are highlighted in bold.

TABLE III. THE AVERAGE OF F1-SCORE OF TEST DATA (APPLE) ON

DIFFERENT MODELS

Model Avg F1-Score

MLP 0.44

CNN 0.57

LSTM 0.45

CNN-LSTM 0.76

VI. CONCLUSION

In this study, we developed and evaluated a hybrid deep
learning model combining Convolutional Neural Networks
(CNNs) and Long Short-Term Memory networks (LSTMs) for
stock market prediction. Our findings demonstrate that this
hybrid model outperforms traditional financial models and
other deep learning approaches in terms of accuracy and
reliability. By effectively processing and analyzing both spatial
and temporal dimensions of financial data, the CNN-LSTM
model captures complex market patterns and provides robust
trading signals.

The superior performance of the hybrid model underscores
the potential of integrating advanced machine learning
techniques in financial market predictions. This research
contributes to the growing body of evidence that deep learning
models can significantly enhance the accuracy of financial
forecasts, offering valuable insights for investors and traders.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

855 | P a g e

www.ijacsa.thesai.org

Implications for future research include the exploration of
additional hybrid architectures, the incorporation of diverse
data sources such as macroeconomic indicators and news
sentiment, and the development of real-time analysis
capabilities. Additionally, expanding the model's application to
other financial markets and improving the interpretability of
deep learning models will further enhance their practical
utility.

Overall, our study highlights the transformative potential of
hybrid deep learning models in financial market analysis,
paving the way for more sophisticated and reliable predictive
tools in the finance industry.

REFERENCES

[1] Brown, S., Miao, H. (2022). Complex Systems and Stock Market
Volatility: New Perspectives on Forecasting Accuracy. Journal of
Financial Econometrics.

[2] Turner, J., Lee, C. (2019). From Market Fundamentals to Data Science:
Transforming Financial Strategies with Machine Learning. Finance and
Technology Review.

[3] Nguyen, D., Tran, Q. (2020). Deep Learning in Financial Markets: A
Comprehensive Overview. Artificial Intelligence Review.

[4] Fischer, T., Krauss, C. (2021). Hybrid Deep Learning for Real-Time
Financial Data Processing. Journal of Financial Data Science.

[5] A. Cooray, P. Gangopadhyay, and N. Das, “Causality between volatility
and the weekly economic index during COVID-19: The predictive
power of efficient markets and rational expectations,” International
Review of Financial Analysis, vol. 89, p. 102792, (2023), doi:
https://doi.org/10.1016/j.irfa.2023.102792.

[6] D. Durusu-Ciftci, M. S. Ispir, and D. Kok, “Do stock markets follow a
random walk? New evidence for an old question,” International Review
of Economics & Finance, vol. 64, pp. 165–175, (2019), doi:
https://doi.org/10.1016/j.iref.2019.06.002.

[7] Stewart, J.A. (2015). Nonlinear Time Series Analysis.

[8] Patel, J., Shah, S., Thakkar, P., Kotecha, K. (2015). Predicting Stock
Market Index Using Fusion of Machine Learning Techniques. Expert
Systems with Applications.

[9] Dixon, M., Klabjan, D., Bang, J.H. (2016). Classification-based
Financial Markets Prediction using Deep Neural Networks. Algorithmic
Finance.

[10] Sezer, O.B., Ozbayoglu, A.M. (2018). Algorithmic Financial Trading
with Deep Convolutional Neural Networks: Time Series to Image
Conversion Approach. Applied Soft Computing.

[11] Chen, K., Zhou, Y., Dai, F. (2017). A LSTM-based method for stock
returns prediction: A case study of China stock market. IEEE
International Conference on Big Data.

[12] Zhang, Y., Pei, W., Yang, L. (2019). A CNN-LSTM Hybrid Model for
Stock Market Prediction. Journal of Computational Finance.

[13] Zhu, R., Yang, Y., & Chen, J. (2023). XGBoost and CNN-LSTM hybrid
model with Attention-based stock prediction.

[14] Shang, L., Zhang, Z., Tang, F., Cao, Q., Pan, H., & Lin, Z. (2023).
CNN-LSTM Hybrid Model to Promote Signal Processing of Ultrasonic
Guided Lamb Waves for Damage Detection in Metallic Pipelines.

[15] T. Khalid, M. Rida, and Z. Taher, “From Time Series to Images:
Revolutionizing Stock Market Predictions with Convolutional Deep
Neural Networks,” 2024. [Online]. Available: www.ijacsa.thesai.org

[16] H. S. Park and B. K. Oh, (2024). CNN-based model updating for
structures by direct use of dynamic structural response measurements,
Engineering Structures, vol. 307, p. 117880, doi:
https://doi.org/10.1016/j.engstruct.2024.117880.

[17] A. Rahmadeyan and Mustakim, “Long Short-Term Memory and Gated
Recurrent Unit for Stock Price Prediction,” Procedia Computer Science,
vol. 234, pp. 204–212, 2024, doi:
https://doi.org/10.1016/j.procs.2024.02.167.

[18] Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W.
C. (2015). Convolutional LSTM network: A machine learning approach
for precipitation nowcasting. Advances in neural information processing
systems, 28,

[19] Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M.,
Venugopalan, S., Saenko, K., & Darrell, T. (2015). Long-term recurrent
convolutional networks for visual recognition and description. In
Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 2625-2634).

[20] A. P. Mercado Rueda, “Chapter 31 - Analysis of variance: ANOVA,” in
Translational Sports Medicine, A. E. M. Eltorai, J. A. Bakal, S. F.
DeFroda, and B. D. Owens, Eds., in Handbook for Designing and
Conducting Clinical and Translational Research. , Academic Press,
(2023), pp. 157–160. doi: https://doi.org/10.1016/B978-0-323-91259-
4.00099-0.

[21] A. F. Siegel and M. R. Wagner, “Chapter 17 - Chi-Squared Analysis:
Testing for Patterns in Qualitative Data,” in Practical Business Statistics
(Eighth Edition), A. F. Siegel and M. R. Wagner, Eds., Academic Press,
(2022), pp. 531–547. doi: https://doi.org/10.1016/B978-0-12-820025-
4.00017-8.

[22] P. Tyagi, J. Singh, and A. Gosain, “Whale Optimization-based Synthetic
Minority Oversampling Technique for Binary Imbalanced Datasets,”
Procedia Computer Science, vol. 235, pp. 250–263, (2024), doi:
https://doi.org/10.1016/j.procs.2024.04.027.

[23] J. Sun, J. Li, and H. Fujita, “Multi-class imbalanced enterprise credit
evaluation based on asymmetric bagging combined with light gradient
boosting machine,” Applied Soft Computing, vol. 130, p. 109637,
(2022), doi: https://doi.org/10.1016/j.asoc.2022.109637.

[24] Q. Zhou and B. Sun, “Adaptive K-means clustering based under-
sampling methods to solve the class imbalance problem,” Data and
Information Management, p. 100064, (2023), doi:
https://doi.org/10.1016/j.dim.2023.100064.

