
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

881 | P a g e

www.ijacsa.thesai.org

Defect Prediction of Finite State Machine Models

Based on Transfer Learning

Wei Zhang

Experimental Teaching Center, Shandong University of Finance and Economics, Jinan 250014, China

Abstract—As software systems become increasingly intricate,

predicting cache defects has emerged as a crucial aspect of

maintaining software quality. This article introduces a novel

approach for predicting cache defects, utilizing a transfer

learning (TL) software deterministic finite state machine (DFSM)

model. Finite State Machine (DFSM) model defect prediction

based on transfer learning is an innovative software defect

prediction method. This method combines the advantages of

transfer learning (TL) and deterministic finite state machine

(DFSM). Intended to improve the effectiveness and accuracy of

software cache defect prediction. This innovative method seeks to

enhance the effectiveness of predicting cache issues within

software. By merging the precision of DFSM with TL's

versatility, the proposed technique is transferable to target

projects through training and learning from source projects,

addressing data scarcity challenges in new or evolving projects.

This method utilizes transfer learning (TL) strategy to transfer

knowledge from the source project to the target project through

learning and training, thereby solving the problem of data

scarcity. Experimental findings reveal that as training data

grows, the method's test coverage and fault detection rate

steadily increase. Additionally, it demonstrates impressive

execution efficiency and stability. In comparison to traditional

methods, this approach exhibits substantial benefits in elevating

software quality and reliability, offering a fresh and efficient tool

for ensuring software quality. Thanks to the TL strategy, the

method rapidly adapts to the unique environments and

requirements of new or evolving projects, thereby enhancing

forecasting accuracy and efficiency.

Keywords—Transfer learning; DFSM; software defects; defect

prediction

I. INTRODUCTION

In the intricate ecosystem of software development,
maintaining software quality and stability remains a pivotal
concern. As software systems grow increasingly vast and
complex, the effective prediction and prevention of software
flaws have emerged as a significant hurdle in the realm of
software engineering [1]. Software flaws can detract from the
user experience, potentially causing substantial financial
losses and even posing security risks. Despite ongoing
practices in software development, predicting such flaws still
poses numerous obstacles. Conventional methods for
predicting software flaws often rely heavily on extensive
historical datasets, limiting their adaptability to novel projects
or environments [2]. Furthermore, these approaches frequently
overlook the interconnectedness and disparities among
software projects, potentially compromising the accuracy of
predictions. However, through the lens of transfer learning
(TL), we can harness existing knowledge and expertise,

bridging the gap between projects and enabling more efficient
and precise flaw predictions [3]. TL facilitates the transfer of
insights gained from one task to others within the same
domain, thereby enhancing learning efficiency and forecast
accuracy [4]. In the realm of software flaw prediction, TL
holds tremendous promise. By leveraging existing software
project data, TL can aid in predicting flaws in new projects,
expediting the model's training process and bolstering
predictive accuracy [5].

Under the framework of DFSM, software system can be
regarded as a process of state transition. By analyzing and
modeling the state transition behavior of software system, we
can understand its internal logic and operating mechanism
more deeply [6]. In software defect prediction, with the help
of DFSM model, the state transition paths that may lead to
defects can be identified, thus improving the accuracy of
prediction [7]. The traditional DFSM model often needs a lot
of historical data in the construction process, and its
adaptability to new projects is poor [8]. This article aims to
study the cache defect prediction model and algorithm of
software DFSM model based on TL. By introducing TL
strategy, the existing knowledge and experience can be used to
assist the DFSM model construction of new projects, thus
improving the generalization ability of the model.

The research of this article has important theoretical and
practical significance. By combining TL and DFSM models,
we can understand the behavior pattern of software system
more deeply, and then predict the potential defects more
accurately. The research results can provide valuable reference
information for software developers and help them identify
and prevent software defects more effectively in the actual
development process. The research can also provide new ideas
for the field of software quality management and promote the
sustainable development of the software industry.

The structure of this article is as follows: Firstly, the
current situation of software defect prediction is sorted out in
the literature review in Section II, and the advantages and
disadvantages of existing methods are analyzed. Then, the
basic principle of TL and its application prospect in software
defect prediction are introduced in Section III. Then, the
construction process and experimental design of cache defect
prediction model of software DFSM model based on TL are
emphasized. Finally, the experimental results are deeply
analyzed in Section IV and a conclusion is drawn in Section
V.

The research motivation of this article is to explore a more
efficient and accurate software defect prediction method,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

882 | P a g e

www.ijacsa.thesai.org

especially for predicting cache defects. By combining the
advantages of transfer learning and DFSM models, we hope to
gain a deeper understanding of the behavioral patterns of
software systems. Identify potential defect state transition
paths and provide valuable reference information for software
developers. The potential benefits of this method are mainly
reflected in the following aspects:

1) Through transfer learning strategies, we can utilize

existing knowledge and experience to assist in the

construction of DFSM models for new projects. Thus

improving the generalization ability and prediction accuracy

of the model.

2) By predicting potential defect state transition paths,

developers can detect and fix defects at an early stage, thereby

avoiding the high cost of later repairs.

3) This study not only provides new ideas and methods for

software defect prediction, but also valuable references for

software quality management.

II. LITERATURE REVIEW

Software defect prediction, a pivotal aspect of enhancing
software quality, remains a focal point of research in software
engineering. Numerous scholars have delved into this domain
from diverse perspectives, presenting a range of
methodologies and models.

Conventionally, researchers have heavily relied on
historical datasets and statistical analyses for software defect
prediction. Zhang et al. [9] introduced a model that forecasts
future defect patterns by analyzing past defect records. Gong
et al. [10], employing statistical techniques, assessed software
project quality, revealing notable correlations between factors
like project size, complexity, and the occurrence of software
defects. Addressing the specifics of distributed software
systems, Wang et al. [11] suggested a cloud-based framework
tailored for handling extensive software defect data and
delivering swift prediction services. Li et al. [12] innovated a
method rooted in differential privacy, balancing effective
defect prediction with robust data privacy measures. Wang et
al. [13] advanced a decision tree-based prediction model,
noted for its high predictive accuracy and intuitive
explanations.

In recent times, the utilization of machine learning in
predicting software defects has been on the rise. Chakraborty
et al. [14] employed the Support Vector Machine (SVM) for
software defect prediction, yielding impressive results. Wang
et al. [15] conducted a comparative analysis of various
machine learning techniques in this domain, discovering that
algorithms like Random Forest and Gradient Boosting Tree
performed admirably on certain datasets. Yu et al. [16]
explored the impact of the social network structure within
software projects on defect prediction, revealing a notable
correlation between project member collaborations and the
occurrence of software defects. Florence et al. [17] introduced
a deep learning-based model for software defect prediction,
capable of automatically extracting features from software
codes and predicting defects. Tong et al. [18] suggested a
method rooted in oversampling to balance datasets by
augmenting the number of defective modules. Song et al. [19]

tackled unbalanced data using ensemble learning, enhancing
the recognition of minority classes by amalgamating
predictions from multiple base classifiers.

TL as an emerging machine learning technique, has also
gained traction in software defect prediction. Saifan et al. [20]
proposed a TL-based model that leverages knowledge from
source projects to aid in defect prediction for target projects.
Qu et al. [21] delved deeper into the application of TL in
cross-project software defect prediction, affirming its efficacy.
Bashir et al. [22] presented a TL-driven method that allows for
real-time model updates during software system integrations,
adapting to system changes.

In the realm of DFSM modeling, El-Fakih et al. [23]
introduced a method for modeling software behavior based on
DFSM, precisely capturing the state transition processes
within software systems. Hierons [24] integrated the DFSM
model with machine learning algorithms, offering a hybrid
approach for software defect prediction. This hybrid method
takes into account both the dynamic behavior of the software
system and the predictive prowess of machine learning.

At present, the research on software defect prediction faces
some problems, such as unbalanced data, poor universality of
the model, lack of dynamic adaptability and insufficient
explanation. The data imbalance leads to the limited ability of
the model to identify minority classes, while the lack of
universality of the model makes it perform poorly in new
projects or environments. In addition, the continuous
evolution of software systems challenges the dynamic
adaptability of existing models.

This article aims to build a universal and dynamic software
defect prediction model by introducing TL strategy and
combining DFSM model to solve the problems of data
imbalance and model universality. At the same time, it pays
attention to the selection of algorithms with good explanatory
ability, and improves the dynamic adaptability of the model
through online learning, thus comprehensively optimizing the
accuracy and practicability of software defect prediction.

III. TL-BASED SOFTWARE DFSM MODEL CACHE DEFECT

PREDICTION MODEL

Cache defects are common problems in software
development, which may lead to data inconsistency,
performance degradation, and even system crashes [25]. In
order to more effectively predict such defects, this paper
proposes a cache defect prediction model based on TL
software DFSM model. This model combines the rigor of
DFSM with the flexibility of TL, aiming to achieve rapid
defect prediction for new or changed projects. The deployment
of the data processing platform for the software testing system
is shown in Fig. 1.

A. Foundation of Model Construction

1) DFSM: A DFSM is a mathematical model used to

describe system behavior. In software system, DFSM can be

used to represent the state transition process of software. Each

state represents the specific situation of the software at a

certain moment, and the transition between states reflects the

behavior changes of the software in the process of running.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

883 | P a g e

www.ijacsa.thesai.org

Fig. 1. Deployment of data processing platform of software testing system.

2) TL: TL is a machine learning method, which allows us

to transfer what we have learned in one task to other related

tasks. In software defect prediction, the application of TL is

mainly reflected in two aspects: one is to use the existing

software project data to assist the defect prediction of new

projects; The second is to transfer the model trained in a

software project to other similar projects, to reduce the

training cost of new projects and improve the prediction

accuracy.

B. Construction of DFSM Model based on TL

1) Data preprocessing and feature extraction: Before

building the model, the original data need to be preprocessed

and feature extracted. Firstly, the data related to cache is

extracted from the source code and log files of software

projects. These data include, but are not limited to, the type of

cache operation, timestamp, operation result, etc. Then, these

data are cleaned and standardized to eliminate the influence of

outliers and noise data.

The software distributed parallel computing architecture is
shown in Fig. 2.

Fig. 2. Distributed parallel computing architecture.

Given that the local data processing capacity is
iv , and

considering that the software terminal is capable of processing
data locally within the existing resource limitations, it is
imperative that the resources allocated for data processing do

not surpass its inherent physical resources. In other words,
there exist certain constraints:

   

max

t t

i

i N

v v


 (1)

Suppose that the rate at which software test data is
migrated to the terminal is:

 2

0

log 1
g P

R W
N W

 
  

 
 (2)

The channel unloading rate R is directly proportional to
channel bandwidth W , channel gain g , and transmission
power P , while inversely proportional to noise power spectral

density 0N . If
 

1
t

ija  , it signifies that the software testing

equipment i is connected to the terminal j , enabling
successful data upload to the edge server for processing.

Conversely, if the conditions are not met,
 

0
t

ija  .
Additionally, there are specific constraints related to the
unloading model of the software test equipment.

    0,1
t

ij

j M

a


 (3)

 t
ij j

i N

a h


 (4)

Eq. (3) represents the maximum number of terminals that a
single software testing device can connect to within the same
time slot t , which means one software testing device can only

be paired with one terminal. Eq. (4) signifies that any given

terminal j permits a maximum of
jh software test devices to

be simultaneously connected.

In feature extraction, this article mainly focuses on
features related to cache defects. These features can include
the frequency of cache operations, the proportion of cache
hits, and the mode of cache updates. Through in-depth
analysis of these characteristics, it is possible to more
accurately describe the caching behavior of software systems
and provide strong support for subsequent defect prediction.

2) Model migration strategy: In the constructed model, TL

is mainly realized by the following steps:

a) Source project selection: First, you need to select one

or more source projects similar to the target project. These

source projects should have similar cache management

mechanisms and defect patterns as the target projects. By

selecting similar source projects, we can ensure that the

migrated knowledge and experience are instructive to the

target projects.

b) Model training and migration: Train a cache defect

prediction model based on DFSM on the source project. This

model will learn the caching behavior pattern and defect

characteristics of the source project. Once the model achieves

satisfactory prediction performance on the source project, it

can be migrated to the target project.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

884 | P a g e

www.ijacsa.thesai.org

c) Model adjustment and optimization: During the

migration process, some adjustment and optimization are

needed to adapt to the specific environment and needs of the

target project. For example, fine-tune the parameters of the

model according to the data distribution of the target project,

or add some features related to the target project to improve

the prediction ability of the model.

3) Defect prediction algorithm based on DFSM: After the

model migration is completed, the defect prediction algorithm

based on DFSM is used to predict the defect of the target

project. The algorithm will traverse all the cache operation

sequences of the target project, and judge whether there is

defect risk in each operation sequence according to the state

transition rules of DFSM and the defect characteristics

obtained by TL. If there are risks, the algorithm will issue a

warning and prompt developers to check and repair. In this

section, a model of directly fusing the source syntax tree to the

encoder-decoder framework is proposed. The encoder part

adopts the cyclic neural network (RNN) of bidirectional gated

cyclic unit (GRU), that is, the encoder contains a forward

RNN and a reverse RNN (see Fig. 3).

Fig. 3. Example of bidirectional serialization encoder.

Firstly, the original software defect data is preprocessed,
including data cleaning, noise and outlier removal, and feature
engineering. Define a data preprocessing function P , which
transforms the original data set D into a format suitable for
model training:

  'D P D (5)

Next, build a TL framework, which allows us to transfer
the knowledge learned from other related software projects to
the current project. A TL function T is used in the study,

which combines the knowledge
sK in the source domain with

the knowledge
tK in the target domain:

  ' ,s tK T K K (6)

On the basis of TL, DFSM model is used to represent the
behavior of software. Define a DFSM constructor B , which
generates the DFSM model M according to the knowledge

'K after TL:

  'M B K (7)

Based on DFSM model, a defect prediction algorithm A
is designed. The algorithm predicts defects according to
DFSM model M and current project data 'D . Define a
prediction function F :

  , 'P F M D (8)

where, P represents the prediction result, which is a
vector containing the defect probability.

In order to train and optimize the defect prediction model,
a loss function L is defined. It measures the difference
between the predicted result P and the real label Y :

    
2

1

,
n

i i

i

L P Y P Y


  (9)

where, n is the number of samples in the data set.

In order to improve the dynamic adaptability of the model,
online learning mechanism is introduced. Define an online
learning function O , which updates the model parameters

according to the newly arrived data
newD :

  ' , newM O M D (10)

IV. RESULT ANALYSIS AND DISCUSSION

A. Result Analysis

In order to thoroughly evaluate the effectiveness of the
software cache defect prediction model based on DFSM and
enhanced by transfer learning technology, we designed a
series of experiments and selected various software projects of
different scales and complexities as experimental objects.
Firstly, we collected data related to these software projects,
covering software caching behavior, defect records, and other
related attributes. By refining and organizing these data, we
have constructed a dataset specifically designed for transfer
learning.

In the data preparation stage, we ensured the quality and
consistency of the data to provide a reliable foundation for
model training. Next, we will repeatedly verify according to
the pre-defined experimental blueprint. Specifically, we
adopted a cross validation approach, dividing the dataset into
training, validation, and testing sets. The training set is used to
train software DFSM models based on transfer learning, the
validation set is used to adjust model parameters and optimize
model performance, and the test set is used to evaluate the
final performance of the model. The aim of this experiment is
to conduct a thorough evaluation of the efficacy of a software
cache defect prediction model rooted in DFSM and enhanced
by transfer learning technology. The study encompasses a
variety of software projects, differing in scale and intricacy, as
subjects for examination. Relevant data is gathered, refined,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

885 | P a g e

www.ijacsa.thesai.org

and organized into a dataset tailored for transfer learning.
Through rigorous training and refinement of the model, its
performance is gauged across multiple metrics, including test
coverage, defect identification rate, algorithmic execution
efficiency, and stability. To ensure consistent and dependable
outcomes, the entire experimental procedure is executed on a
server equipped with ample computational resources.

During the experimental phase, the predefined experiment
al blueprint is repeatedly validated. Initially, a prediction
model is devised employing the transfer learning-based
software DFSM model for cache defect prediction. Crucial
data points and assessment criteria are documented
throughout. Subsequently, the model undergoes training and
optimization, culminating in an enhanced defect prediction
model. A detailed breakdown of the experimental findings
follows.

As illustrated in Fig. 4, the increase in training data
gradually improves the test coverage of the software DFSM
model's cache defect prediction method, which relies on TL.
This progress indicates that the method is capable of
efficiently learning and predicting software cache defects. In
comparison to traditional approaches, our method
demonstrates notable superiority in test coverage, thereby
enhancing the overall quality and dependability of software.

According to the data shown in Fig. 5, the TL-based
software DFSM model cache defect prediction method has a
high fault detection rate. This means that this method can
accurately identify the cache fault in software. Compared with
other technologies, this method also has significant advantages
in fault detection rate, which is helpful to improve the overall
performance of the software and user satisfaction.

Fig. 6 shows the execution time of the algorithm. Although
the execution time of the algorithm will increase with the
increase of data volume, on the whole, the software DFSM
model cache defect prediction method based on TL performs
well in execution efficiency. This shows that this method can
not only ensure the prediction accuracy, but also maintain
efficient operation performance.

Fig. 4. Test coverage.

Fig. 5. Fault detection rate.

Fig. 6. Algorithm execution time.

Fig. 7. Stability of algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

886 | P a g e

www.ijacsa.thesai.org

As can be seen from Fig. 7, the TL-based software DFSM
model cache defect prediction method has excellent stability.
Under different experimental conditions, the prediction
performance of this method remains stable, and the fluctuation
of test coverage and fault detection rate is small. This proves
that this method has good robustness and reliability, and is
very suitable for practical software defect prediction scenarios.

Through a series of experiments, it is proved that the TL-
based software DFSM model cache defect prediction method
is excellent in improving test coverage, fault detection rate and
maintaining algorithm execution efficiency and stability,
which provides a new and effective means for software quality
assurance.

B. Discussion

In today's software development field, cache defect
prediction is an important and challenging problem. With the
increasing complexity and scale of software system, how to
effectively predict and identify potential cache defects in order
to repair them in time and improve software quality has
become the focus of researchers and practitioners. The cache
defect prediction model of software DFSM model based on
TL proposed in this article provides a new idea for solving this
problem.

DFSM provides a clear representation of software systems'
dynamic behaviors, including essential operations like cache
hits, misses, and updates, by precisely defining states and the
transitions between them. This lays a strong theoretical
foundation for defect prediction. Additionally, DFSM's
interpretability aids developers in intuitively comprehending
the system's behavioral patterns, simplifying the identification
and resolution of potential issues. TL enables the application
of prior knowledge and expertise from one task to related
ones, crucial in software defect prediction. Since new or
altered projects may lack adequate historical data for training
effective prediction models, TL extracts valuable insights from
existing projects to bolster new project defect prediction. This
approach not only boosts prediction accuracy but also
significantly reduces model training time, enhancing overall
efficiency.

A series of rigorous experiments have validated the
effectiveness of the proposed method. Comprehensive
assessments encompassed test coverage, fault detection rate,
algorithm execution time, and stability. The results indicate
that the TL-based software DFSM model for cache defect
prediction excels in all areas, notably surpassing traditional
methods. Specifically, this approach demonstrates clear
advantages in test coverage and fault detection rate, indicating
a more comprehensive exploration of software functional
space and precise identification of potential cache defects.

Nonetheless, despite its notable achievements, this method
faces certain challenges and limitations. Firstly, constructing a
DFSM model demands specific expertise to ensure accurate
state definitions and transition relationships. Secondly, TL's
effectiveness relies on the similarity between source and target
projects; substantial differences may limit TL's impact.
Therefore, careful selection and similarity assessment of

source and target projects are crucial for ensuring TL's
effectiveness in practical applications.

Future research can explore automated DFSM model
construction to minimize human intervention. Additionally,
investigating advanced TL strategies can enhance knowledge
transfer efficiency and accuracy. Furthermore, integrating
other machine learning techniques, such as deep learning and
reinforcement learning, could further elevate software defect
prediction efficacy. The experimental results show that the
TL-based cache defect prediction software DFSM model
performs well in terms of test coverage and fault detection
rate. This demonstrates the comprehensive exploration ability
of this method in the software functional space, as well as its
accuracy in identifying potential cache defects. Compared
with traditional defect prediction methods, this method has
achieved significant advantages in multiple indicators.

V. CONCLUSION

This article introduces a cache defect prediction method
utilizing the software DFSM model and TL. This approach
targets the challenge of predicting cache defects in fresh or
altered projects by integrating DFSM and TL. Initially, DFSM
is utilized to model the cache behavior of the software system.
Subsequently, TL facilitates the transfer of knowledge and
experience from established projects to newer ones, enabling
quick and precise cache defect predictions for these new
endeavors.

The test results are impressive, demonstrating strong
performance in terms of test coverage, fault detection,
algorithm execution time, and stability. As the volume of
training data expands, test coverage progressively enhances,
affirming the method's efficacy. Additionally, the method's
high fault detection rate indicates its proficiency in accurately
pinpointing cache faults in software, thereby aiding in the
enhancement of software quality and reliability. Moreover, the
algorithm exhibits commendable execution time and stability,
ensuring predictive accuracy while maintaining efficient
operation. Importantly, the prediction performance remains
consistent across various experimental settings.

To sum up, the cache defect prediction method of software
DFSM model based on TL provides a new and effective
means for software quality assurance. Although this method
has achieved significant results in multiple aspects, there is
still room for further improvement and research. The current
DFSM model construction process requires a certain amount
of professional knowledge and experience. Future research
can explore automated DFSM model construction methods to
reduce manual intervention and improve the efficiency and
accuracy of model construction. In order to further improve
the efficiency and accuracy of transfer learning, future
research can explore more advanced transfer learning
strategies. Such as transfer learning based on deep learning or
transfer learning based on graph neural networks.

REFERENCES

[1] K. Foss, I. Couckuyt, and A C. Baruta, “Mossoux. Automated software
defect detection and identification in vehicular embedded systems,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, pp.
6963-6973, 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

887 | P a g e

www.ijacsa.thesai.org

[2] Y. Yao, S. Huang, C. Feng, C. Liu, and C. Xu, “CD3T: Cross-project
dependency defect detection tool,” International Journal of
Performability Engineering, vol. 15, pp. 2329, 2019.

[3] R. Wei, Y. Song, Y. Zhang, “Enhanced faster region convolutional
neural networks for steel surface defect detection,” ISIJ International,
vol. 60, pp. 539-545, 2020.

[4] A. K. Gangwar, S. Kumar, “Concept drift in software defect prediction:
A method for detecting and handling the drift,” ACM Transactions on
Internet Technology, vol. 23, pp. 1-28, 2023.

[5] F. Wu, X. Y. Jing, Y. Sun, L. Huang, F. Cui, and Y. Sun, “Cross-project
and within-project semisupervised software defect prediction: A unified
approach,” IEEE Transactions on Reliability, vol. 67, pp. 581-597, 2019.

[6] N. Zhang, S. Ying, K. Zhu, and D. Zhu, “Software defect prediction
based on stacked sparse denoising autoencoders and enhanced extreme
learning machine,” IET software, vol. 16, pp. 29-47, 2022.

[7] A. O. Balogun, S. Basri, S. Mahamad, S. J. Abdulkadir, L. F. Capretz, A.
A. Imam, and G. Kumar, “Empirical Analysis of rank aggregation-based
multi-filter feature selection methods in software defect prediction,”
Electronics, vol. 10, pp. 179, 2021.

[8] Q. Yubin, C. Xiang, C. Ruijie, X. Ju, and J. Guo, “Active learning using
uncertainty sampling and query-by-committee for software defect
prediction,” International Journal of Performability Engineering, vol. 15,
pp. 2701, 2019.

[9] Z. W. Zhang, X. Y. Jing, F. Wu, “Low-rank representation for semi-
supervised software defect prediction,” IET Software, vol. 12, pp. 527-
535, 2018.

[10] L. Gong, S. Jiang, L. Bo, L. Jiang, and J. Qian, “A novel class-
imbalance learning approach for both within-project and cross-project
defect prediction," IEEE Transactions on Reliability, vol. 69, pp. 40-54,
2020.

[11] H. Wang, W. Zhuang, X. Zhang, “Software defect prediction based on
gated hierarchical LSTMs,” IEEE Transactions on Reliability, vol. 70,
pp. 711-727, 2021.

[12] F. Li, Y. Qu, J. Ji, D. Zhang, and L. Li, “Active learning empirical
research on cross-version software defect prediction datasets,”
International Journal of Performability Engineering, vol. 16, pp. 609,
2020.

[13] D. Wang, H. Yang, H. Zhou, and D. Wang, “Connecting historical
changes for cross-version software defect prediction,” International
Journal of Computer Applications in Technology, vol. 63, pp. 371, 2020.

[14] T. Chakraborty, A. K. Chakraborty, “Hellinger net: A hybrid imbalance
learning model to improve software defect prediction,” IEEE
Transactions on Reliability, vol. 70, pp. 481-494, 2020.

[15] S. Wang, Y. Li, W. Mi, Y. Liu, “Software defect prediction incremental
model using ensemble learning,” International Journal of Performability
Engineering, vol. 16, pp. 1771, 2020.

[16] Q. Yu, S. Jiang, J. Qian, L. Bo, L. Jiang, and G. Zhang, “Process metrics
for software defect prediction in object-oriented programs,” IET
Software, vol. 14, pp. 283-292, 2020.

[17] M. L. Florence, R. Jayanthi, “Improved Bayesian regularisation using
neural networks based on feature selection for software defect
prediction,” International Journal of Computer Applications in
Technology, vol. 60, pp. 225, 2019.

[18] H. Tong, B. Liu, S. Wang, “Kernel spectral embedding transfer
ensemble for heterogeneous defect prediction,” IEEE Transactions on
Software Engineering, vol. 47, pp. 1886-1906, 2021.

[19] Q. Song, Y. Guo, M. Shepperd, “A Comprehensive Investigation of the
Role of Imbalanced Learning for Software Defect Prediction,” IEEE
Transactions on Software Engineering, vol. 45, pp. 1253-1269, 2019.

[20] A. A. Saifan, N. A. Smadi, “Source code-based defect prediction using
deep learning and transfer learning,” Intelligent Data Analysis, vol. 23,
pp. 1243-1269, 2019.

[21] Y. Qu, X. Chen, Y. Zhao, X. Ju, “Impact of hyper parameter
optimization for cross-project software defect prediction,” International
Journal of Performability Engineering, vol. 14, pp. 1291-1299, 2018.

[22] K. Bashir, T. Li, C. W. Yohannese, “An empirical study for enhanced
software defect prediction using a learning-based framework,”
International Journal of Computational Intelligence Systems, vol. 12, pp.
282, 2018.

[23] F. K. El, N. Yevtushenko, A. Saleh, “Incremental and heuristic
approaches for deriving adaptive distinguishing test cases for non-
deterministic finite-state machines,” The Computer Journal, vol. 62, pp.
757-768, 2019.

[24] R. M. Hierons, “Testing from partial finite state machines without
harmonised traces,” IEEE Transactions on Software Engineering, vol. 43,
pp. 1033-1043, 2017.

[25] Y. Shao, B. Liu, S. Wang, G. Li, “A novel software defect prediction
based on atomic class-association rule mining,” Expert Systems with
Applications, vol. 114, pp. 237-254, 2018.

