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Abstract—Cloud Manufacturing (CMfg) utilizes the cloud 

computing paradigm to provide manufacturing services over the 

Internet flexibly and cost-effectively, where users only pay for 

what they use and may access services as needed. The scheduling 

method directly impacts the overall efficiency of CMfg systems. 

Manufacturing industries supply services aligned with customer-

specific needs recorded in CMfg systems. CMfg managers develop 

manufacturing strategies based on real-time demand to establish 

service delivery timing. Many elements influence customer 

satisfaction, including dependability, timeliness, quality, and 

pricing. Therefore, CMfg depends on the use of multi-objective 

and real-time task scheduling. Multi-objective evolutionary 

algorithms have effectively examined many solutions, such as non-

dominant, Pareto-efficient, and Pareto-optimal solutions, using 

both actual and synthetic workflows. This study introduces a new 

Multi-level Scheduling Model (MSM) and evaluates its 

effectiveness by comparing it with other multi-objective 

algorithms, including the weighted genetic algorithm, the non-

dominated genetic sorting Algorithm II, and the starch Pareto 

evolution algorithm. The primary emphasis is on assessing the 

efficacy of algorithms and their suitability in commercial multi-

cloud setups. The MSM's dynamic nature and adaptive features 

are emphasized, indicating its ability to effectively handle the 

complexity and demands of CMfg and resolve the scheduling issue 

within this environment. Experimental results suggest that MSM 

outperforms other algorithms by achieving a 20% improvement 

in makespan. 

Keywords—Cloud manufacturing; multi-level scheduling 

model; task scheduling; multi-objective optimization; resource 

allocation 

I. INTRODUCTION 

Cloud Manufacturing (CMfg) is a new manufacturing 
paradigm characterized by service-oriented, knowledge-based, 
and resource-sharing manufacturing. It can virtualize the 
manufacturing resources into services and realize the control 
and transmission of virtual manufacturing resources by 
extending the cloud, ensuring the networked, integrated, and 
adaptive collaboration of multi-user parties for the entire life 
cycle of the product [1]. With CMfg, physical resources are 
conveniently, efficiently shared, and allocated to produce 
customized products based on consumer demand [2]. Officially 
launched in 2010, CMfg is widely regarded as a promising 
direction for the future of manufacturing. Over the past decade, 
academics and industry have extensively studied and debated 
this issue [3]. The related topics of CMfg include architectural 
design, resource virtualization, service selection, service 
allocation, task scheduling, and service discovery [4]. Despite 
significant research efforts, the desired concept of CMfg has not 
yet been realized. 

As a result of technological advances in virtualization and 
commercialization, cloud computing can schedule tasks 
efficiently on virtual machines [5]. Efficient distribution of 
resources across each task is a crucial aspect of distributed 
computing, and scheduling plays an essential role in this [6]. 
There are currently different scheduling techniques, including 
cloud service, workflow, static, and dynamic scheduling. Task 
scheduling is significantly impacted by challenges such as 
performance, reliability, scalability, load balancing, and 
dynamic resource reallocation across processing nodes [7]. A 
robust scheduling method is essential for coordinating work in 
cloud computing. The CMfg model consists of design, 
manufacturing, and logistics activities. These tasks are 
supported by the respective design, manufacturing, and logistics 
clouds. The suppliers can be individuals or companies, while the 
customers can be end-users or businesses. A central information 
store is a hub connecting operators, customers, and suppliers [8]. 
The sequence of interactions includes the following steps: 
providers and consumers interact; Consumers submit their 
requirements to operators; Operators assign tasks to providers 
based on consumer needs; Providers register their available 
resources; Operators deliver the resulting output to consumers 
[9]. 

In the CMfg operating paradigm, operators act as 
administrators responsible for monitoring and controlling a 
CMfg platform. Their debut enables consumers to receive 
affordable, reliable, and world-class manufacturing services 
whenever they need them, conveniently via the cloud platform 
[10]. In addition, the cloud platform offers tools that allow 
providers to distribute their resources and capabilities 
efficiently. Under the operator-led unified management, 
suppliers provide shared-purpose manufacturing resources to 
the CMfg platform and receive manufacturing tasks from the 
cloud platform. The customer base comprises corporate 
customers and individual buyers [11]. Under this centralized 
management structure, customers submit their requested tasks to 
the CMfg platform and subsequently receive the performance 
results of their orders. CMfg uses manufacturing paradigms to 
develop knowledge that includes rules, concepts, models, 
protocols, and algorithms [12]. This information is critical in all 
service lifecycle phases, including service creation, 
management, and implementation. 

Task scheduling represents a significant problem. The 
efficient organization of work in distributed systems depends to 
a large extent on precise data about the availability of resources. 
Resource providers often deliver this information to a central 
database that planners can access. The exponential growth of 
cloud providers is obvious [13]. Within a commercial multi-
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cloud system, individual providers are primarily motivated to 
optimize their revenues and may put their interests ahead of the 
benefit to consumers and other providers. In a multi-cloud 
enterprise environment where multiple cloud providers are 
involved and have sensitive information about their resources, 
application planners must be careful and not rely on the 
information provided by the providers about the status of their 
resources. There is a constant risk that providers will 
misrepresent private data. 

This paper follows the following structure. CMfg-related 
work is reviewed in Section II focusing on scheduling models 
and optimization techniques. Section III describes our proposed 
method, emphasizing its adaptive features and effectiveness in 
addressing CMfg complexities. Section IV provides detailed 
empirical evaluation results. MSM is compared with existing 
algorithms, and its practical applications are discussed in section 
V. Finally, Section VI concludes the paper. 

II. RELATED WORK 

Scheduling methodologies are one of the most elaborate 
research areas in CMfg, as the distribution of resources in CMfg 
poses a series of challenging and intelligent research problems. 
Several scheduling techniques have been designed for task 
allocation, resource synchronization, and system optimization.  
The methods adopted in these papers include multi-objective 
evolutionary algorithms, Chaos Optimization Algorithm 
(COA), and creative work that integrates Deep Reinforcement 
Learning (DRL) with attention mechanisms. Each research 
corresponds to a different problem, which includes integrated 
planning, production resource planning, end-to-end solutions, 
collaborative task planning, logistics integration, and setup 
time/cost. This section provides a thorough examination and 
comparative assessment of these studies, revealing their 
approaches, objectives, and notable results while emphasizing 
their contribution to addressing complex planning problems in 
CMfg. Table I provides a comparative analysis of the works, 
highlighting the diversity of approaches used and their 
respective contributions to addressing planning challenges in 
CMfg. 

The main goal of the CMfg paradigm is to centralize 
distributed manufacturing capabilities and businesses, thus 
enabling enhanced personalized production. Production orders 
consist of multiple items jointly fulfilled by distributed providers 
at lower costs. The CMfg platform sets meaningful priorities, 
identifies acceptable suppliers and production processes for 
numerous orders, and plans hybrid activities resulting from 
different orders across manufacturing resources. The goal is to 
increase production efficiency by managing the trade-offs 
between orders. Laili, et al. [14] examined the multi-phase 
integrated scheduling of hybrid jobs in a CMfg context. This 
included assigning order priorities, selecting suppliers and 
production processes, and planning production lines. This 
technique considers five main objectives to evaluate the 
interrelationships between diverse resources and manufacturing 
operations. Six exemplary multi-objective evolutionary 
algorithms were used to address the integrated planning 
problem. The experiments conducted under six different 
production conditions indicate that the integrated scheduling 
method outperforms standard sequential decision-making, 

resulting in lower production costs and times. In addition, a 
comprehensive study was carried out to determine the most 
suitable solution to the integrated planning problem in different 
situations by comparing the six methods. 

Hu, et al. [15] studied the scheduling problem for 
manufacturers in a CMfg environment. They analyze five 
factors that impact manufacturer resource planning: task load, 
task reliability, manufacturing efficiency, availability of 
manufacturing resources, and Internet of Things (IoT) 
compatibility. The research creates planning indices and a model 
with an objective function. The objective function is efficiently 
resolved using the COA to arrange production orders across 
several domains. The simulation results validate the 
comprehensiveness and effectiveness of the proposed planning 
index. This study integrates all pertinent factors that impact 
manufacturer planning in the CMfg environment by developing 
a mathematical model. The scheduling problem is simplified 
into an arithmetic problem using a linear programming 
approach. The manufacturer's scheduling algorithm, rooted in 
chaos theory, effectively addresses the issue of inference and 
delivers high-quality service in conditional manufacturing to 
consumers via the CMfg platform. 

DRL is increasingly recognized as a viable approach to 
solving scheduling challenges in CMfg and demonstrates 
impressive performance in dynamic and unpredictable cloud 
environments. Nevertheless, the industry needs improved 
planning algorithms and readily available modeling methods to 
support the actual use of these advances. Wang, et al. [16] 
proposed a unique end-to-end scheduling solution to solve job 
scheduling challenges in CMfg precisely. Their technique 
utilizes the multi-head attention process to uncover connections 
between companies and activities. The model is trained using 
DRL. What is noteworthy is that this concept has a significant 
reduction in response times compared to heuristic algorithms 
and allows planning solutions to be created in a matter of 
seconds. In contrast to previous DRL algorithms, the approach 
has higher planning performance and uses a more easily 
understandable modeling method. Significantly, the proposed 
model only depends on the objective function to ensure 
continuous training, so there is no need for a reward function 
based on steps. Combining multi-head attention with DRL for 
planning problems is a novel approach with promising results. 
The experimental results of a case study on processing vehicle 
structural components in CMfg show that the proposed 
scheduling approach outperforms priority distribution rules, 
heuristic algorithms, and DRL algorithms in both performance 
and efficiency.  

Chen, et al. [17] studied cloud-edge collaboration 
manufacturing task scheduling (CETS) to improve customer 
satisfaction and optimize production balance. CETS aims to 
increase the efficiency of cloud-based manufacturing services, 
especially at individual process levels. It coordinates the 
scheduling of tasks by leveraging current production data at the 
edge and manufacturing service information in the cloud 
environment. The study introduces an attention-based DRL 
algorithm designed for CETS requirements, which are highly 
dynamic and state-intensive. The DRL method is built on the 
mathematical model of CETS as a partially observable Markov 
decision process. It then creates the AV-MPO framework that 
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uses a Gated Transformer-XL (GTrXL) within an On-Policy 
Maximum Posterior Policy Optimization (V-MPO) framework. 
The efficacy, learning progress, generalization, large scale, and 
robustness of AV-MPO are investigated extensively via 
experiments. Moreover, AV-MPO is compared with rule-based 
algorithms and other state-of-the-art DRL methods, such as 
Proximal Policy Optimization (PPO), Soft Actor-Critic (SAC), 
and Dueling Deep Q Network (Dueling DQN). The 
experimental results confirm that AV-MPO successfully 
handles the inherent difficulties of the CETS problem. 
Compared to other algorithms, it shows higher efficiency in 
handling this work. 

The CMfg system has undergone significant changes with 
the advancement of new technologies. Customers can request a 
wide range of services through a customer-centric framework, 
gaining access to distributed production resources. Salmasnia 
and Kiapasha [18] criticize the unreasonable assumption made 
in previous research that all tasks are immediately available 
when planning begins. To ensure the model's accuracy in 
representing reality, two crucial factors are taken into account: 
(1) the time and cost associated with transferring subtasks 
between various services offered by companies located in 
different geographical regions, and (2) the time and cost 
involved in establishing a service capable of performing 
multiple subtasks. A thorough model integrates three essential 
components: the impact of cost on the CMfg system, the 
duration required to fulfill an order, and the level of service 
quality. The results underscore the significance of considering 
the arrival time of tasks and the temporal and financial 
implications of logistics and setup to achieve more accurate 
outcomes. The GAMS program solves small and medium-scale 
problems, while a genetic algorithm is developed to address 
larger issues. Moreover, a sensitivity analysis is performed to 
understand better how variables such as time, cost, and user 
requirements impact the final solution. This comprehensive 

approach facilitates a more profound comprehension of the 
intricate interplay of diverse elements within CMfg systems. 

Zhang, et al. [19] propose a new approach called 
Individualized Requirement-Driven CMfg Multi-Task 
Scheduling (IRCMMS) to address customers' specific needs in 
demand-driven cloud manufacturing. This strategy attempts to 
address the particular needs of individual consumers while 
benefiting the overall system. This technique is primarily 
designed to obtain an approximation to an optimal Pareto 
solution set, thereby providing a wider range of possibilities for 
the CMfg system. The validation process confirmed the 
applicability and effectiveness of the IRCMMS model, which 
involved several simulation instances and experimental data. 
Moreover, these findings emphasize the algorithm's efficacy in 
effectively addressing the challenges posed by the IRCMMS 
model. 

Wang, et al. [20] presented a novel offline scheduling 
method for DRL, which aims to overcome the challenges of 
online trial-and-error methods while maintaining the intrinsic 
advantages of DRL. A sequential Markov approach was 
suggested to represent decision-making processes, where each 
task was defined as an individual agent. Subsequently, a 
Decision Transformer (DT) framework was presented to convert 
the decision problem in online planning into a categorization 
problem in an offline setting. A reference model based on 
attention was developed and trained offline through the DT 
architecture to serve as an agent's guide. The experimental 
results showed that the proposed approach can support online 
DRL algorithms such as Deep Double Q-Network (DDQN), 
Deep Recurrent Q-Network (DRQN), PPO, and the offline 
learning algorithm Behavior Cloning (BC) consistently 
outperformed, both in terms of planning performance and model 
generalization. The results highlight the effectiveness of the 
proposed offline DRL scheduling algorithm in providing 
excellent scheduling performance while avoiding the difficulties 
associated with online trial-and-error methods. 

TABLE I. SCHEDULING APPROACHES IN CMFG 

Reference Objective Methodology Findings 

Laili, et al. [14] Integrated scheduling in CMfg Multi-objective evolutionary algorithms More effective and reduced costs/time 

Hu, et al. [15] 
Manufacturer scheduling factors 

in CMfg 
Chaos Optimization Algorithm  

COA efficiently handled scheduling jobs in 

various conditions 

Wang, et al. [16] 
End-to-end scheduling solution 

in CMfg 

Multi-head attention with deep reinforcement 

learning 

Outperformed various DRL and heuristic 

algorithms 

Chen, et al. [17] 
Cloud-edge collaboration 

manufacturing task scheduling 
AV-MPO, attention-based DRL method 

AV-MPO is efficient in handling CETS and 

outperformed other algorithms 

Salmasnia and 

Kiapasha [18] 

Task transfer and setup time 

consideration in CMfg 

Developed a model considering cost implications, 

job completion time, and service quality 

Consideration of logistics setup time is crucial 

for accurate CMfg solutions 

Zhang, et al. [19] 

Individualized requirement-

driven CMfg multi-task 
scheduling 

Multifactorial evolutionary algorithm 
IRCMMS efficiently addressed individual 

customer requirements 

Wang, et al. [20] Offline DRL scheduling in CMfg 
Offline Markov decision process modeling, 

Decision Transformer framework 

Outperformed online DRL algorithms in 

scheduling performance 
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III. PROPOSED METHOD 

The suggested method is divided into three steps. The cloud 
manager maintains a global queue to handle inbound service 
requests from clients at the first stage, known as matching, 
where each request represents one or more tasks. The cloud 
manager selects the ith task in the global queue and calculates the 
completion time that this task will use in multiple Virtual 
Machines under the control of the Content Security Policy 
(CSP). The entire time includes both scheduling and execution. 
The manager decides the scheduling process of the kth cloud at 
the allocation stage to provision service requests to minimize the 
makespan. Within the cloud, allocation follows a First in First 
out (FIFO) principle. Additional tasks queued while the manager 
is allocating are scheduled in FIFO order. The manager selects 
an alternative VM for the first task that provides the fastest 
completion time. 

When implementing the Continuous Linked Settlement 
(CLS) strategy, the first task is specifically assigned to VM-2, 
given that the CLS strategy does not comply with the FIFO 
order. This stage enables adjustments to tasks depending on the 
scheduling system. Subsequent scheduling is carried out to 
complete the calculations. Crucially, every cloud has the 
potential to carry out several tasks concurrently. The suggested 
method consolidates service needs worldwide, allowing the 
manager to choose each job from the queue progressively. The 
manager evaluates the appropriateness of tasks for all VMs to 
choose the most suitable VM. Afterward, the manager selects 
the cth cloud with the most appropriate virtual machine and the 
necessary state and index. To ascertain the optimal state of the 
VM, the first step involves invoking the procedure, which 
examines the scheduling approach used by the cloud c. This 
entails determining whether the cloud uses Round-Robin (RR) 
or cloud list scheduling. 

When RR scheduling is used, the method determines the 
number of VMs (VMcount) in cloud c. At first, the value of 
VMcount is set to 1. After assigning the task to the main VM and 
updating the VM count, the algorithm proceeds with the RR 
scheduling approach, where the main VM is scheduled first, 
followed by the other VMs. If the number of VMs equals the 
index, the task is given to the VM with that index. Otherwise, 
the task fails. If the CLS technique is selected and neither RR 
scheduling nor CLS in cloud c can handle the task, the algorithm 
will search for the most suitable VM across all available clouds. 
Fig. 1 depicts the multi-cloud architecture. The following steps 

delineate the procedure for scheduling and rescheduling the 
queues and index. The scheduling process involves initializing 
cloud settings and implementing the RR scheduling algorithm. 
It includes identifying VMs, allocating the task to the principal 
VM, updating the VMcount, managing errors, and iterating 
through the process. Rescheduling entails evaluating unlimited 
cloud tasks, exploring different values for the index, and 
adjusting c from 1 to M (the total number of clouds). This 
process calls for scheduling that includes the parameters of (i, 
cloud, and index). 

Table II depicts the cloud control matrix structure. Two 
separate clouds are present in this situation, each consisting of 
two VMs that use different scheduling techniques: RR and cloud 
list. Given the assumption that tasks are received in a sequential 
numeric sequence by the cloud manager when the first task (T0) 
arrives, the manager determines the VM that can complete the 
task quickly. As a result, the matching process is ignored, and 
the cloud control matrix is modified accordingly, indicating that 
CCM (T0, VM2) has an infinite value (∞). Later, the manager 
identifies another VM (VM3) with the quickest completion time 
for task T0. 

Consequently, VM1 is allocated task T1 since it has a shorter 
completion time. Afterward, the RR scheduling algorithm is 
used to schedule T1 on VM1. Subsequently, with the arrival of 
task T3, the manager does an assessment and allocates it to VM4 
after scrutinizing the completion durations of T3 on all accessible 
VMs. The completion timings are as follows: 6 plus 2, 3 plus 2, 
8 plus 3, and 5 plus 0, respectively. Out of these options, the sum 
of 5 and 0 reflects the shortest time needed to complete the task, 
resulting in the assignment of T3 to VM4. 

The study introduces a multi-level scheduling strategy for 
dynamic workflow scheduling, abbreviated as MSM/M2S. The 
suggested technique is a list scheduling heuristic that prioritizes 
activities according to their performance and then organizes 
them in the setup order. Workflow assignments are prioritized 
based on their bottom level, described in graph theory as the 
longest route from each task to the exit task. The ranking is 
decided by each task by the use of the following recursive 
function: 

𝑟𝑎𝑛𝑘 (𝑖) = 

{
𝑙𝑜𝑎𝑑 (𝑖) + max{𝑐𝑜𝑚𝑚 (𝑖, 𝑗) + 𝑟𝑎𝑛𝑘 (𝑗)}          𝑖𝑓 𝑖 ≠ 𝑒𝑥𝑖𝑡

𝑙𝑜𝑎𝑑 (𝑖)                                                                      𝑖𝑓 𝑖 = 𝑒𝑥𝑖𝑡
(1) 

 

Fig. 1. Multi-cloud architecture. 
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TABLE II. CLOUD CONTROL MATRIX STRUCTURE 

Clouds VM T0 T1 T2 T3 T4 

First cloud (RR 

scheduling) 
VM1 8 1 6 5 3 

 VM2 1 4 3 3 6 

Second cloud 

(cloud list 

scheduling) 

VM3 2 9 7 7 4 

 VM4 7 5 4 2 2 

Eq. (1) defines load(i) as the remaining burden of task i, and 
comm(i,j) as the communication output between tasks i and j. 
The reason for using makespan values to prioritize assignments 
is based on the structural hierarchical aim that preserves priority 
linkages in the structured list and substantially influences cost 
since longer activities take more resources. To organize the task 
list, we assume a recursive MSM, where n tasks are scheduled 
one after another using the multi-level scheduling strategy. 

The proposed approach for dynamic workflow scheduling 
consists of a series of steps. These steps include initiating the 
algorithm and assigning tasks to a list, initializing an empty rank 
list, starting with the exit task, determining ranks based on a 
recursive function that takes into account workload and 
communication output, sorting tasks in descending order of 
ranks, conducting an auction among tasks using MSM, 
assigning the winning task to allocated resources, removing 
completed tasks, and concluding the scheduling strategy by 
paying the final cost to the task winner. This technique employs 
a prioritization strategy that considers the performance and 
execution time of tasks. It aims to optimize the usage of 
resources in situations that require dynamic workflow 
scheduling. 

While attaining balance in a game is important, the system's 
usefulness becomes unnecessary if it cannot reach this 
equilibrium within an acceptable timescale. The technique, 
which is based on bargaining, also deals with inherent 
complications in communication. The complexities of the MSM 
system's algorithms and communication methods are carefully 
analyzed, calculated, and explained. A comprehensive guide is 
provided to improve understanding of the suggested method. 
The presented workflow illustrates that the load of each step 
indicates its exceptional use for rank estimation. Fig. 2 and Table 
III depict time and cost as the two essential resources for task 
execution. The cost considerations are clearly outlined since the 
suggested solution focuses on a multi-cloud environment. The 
expense of doing a job on a virtual machine is determined by the 
execution duration and the cost per unit of time, expressed using 
a multiplication function, as shown in Eq. (2). 

𝑐𝑜𝑠𝑡 = ∑ (𝑐𝑡(𝑡𝑖) − 𝑠𝑡(𝑡𝑖)) × 𝑝𝑗
𝑚
𝑖=1   (2) 

In Eq. (2), st represents the beginning time, ct stands for the 
completion time, and pj signifies the price factor. Fig. 2 
illustrates the process, accompanied by two matrices that 
provide specific information on the costs and time required for 
the resources. The placements of the workflow assignments are 

calculated based on the first stages. The given tasks are planned 
by organizing them in decreasing order depending on their 
rankings. This ordered list, indicated as A = (T1; T2; T3; T4), is 
used for scheduling. The first auction begins at time zero, which 
is assumed to be the start time of task T1. 

 

Fig. 2. Task execution process. 

TABLE III. TASK DESCRIPTION 

 Route 1 Route 2 

Task id Cost Time Cost Time 

1 2 4 4 2 

2 6 6 7 4 

3 6 6 7 4 

4 2 2 3 1 

IV. RESULTS 

When evaluating balance failure, the main criterion is the 
cost of disorder, which represents the difference between the 
highest possible job value of a balance in the game and the 
desired output. Researchers are focused on multi-level 
optimization to obtain a collection of better non-dominated 
solutions known as the Pareto set rather than a single perfect 
solution. The theoretical evaluation of the cost associated with 
insurrection is impractical and ignored. Here, some of the 
findings are shown, while the rest of the results are related to 
randomly created processes. 

The proposed model (MSM) is being evaluated in 
comparison to numerous other approaches, including Weighted 
Genetic Algorithm (WGA) [21], Bi-Objective Scheduling 
Algorithm (BOSA) [22], Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II) [23], and Strength Pareto Evolutionary 
Algorithm (SPEA2) [24]. Since MSM deals with multi-
objective requirements, other comparable models were 
considered for comparison purposes. SPEA2 improves SPEA by 
preserving boundary solutions while offering Pareto-optimum 
outcomes. NSGA-II offers enhanced capabilities for handling 
three or more objective functions. This is achieved through 
reference points to ensure variety in Pareto points. The Bi-
objective scheduling technique uses an approximation method 
to determine the best solutions on the Pareto curve. All strategies 
use Pareto functions to resolve problems with multiple 
objectives by assigning weights to objective functions. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 6, 2024 

940 | P a g e  

www.ijacsa.thesai.org 

V. DISCUSSION 

The Pareto set is generated a posteriori, and then an 
arrangement suitable to the client's needs is selected. The task 
count and execution sequences of each arrangement are defined 
by two fitness functions, one for time and one for cost. The 
algorithms utilized include SPEA2, NSGA-II, BOSS, and 
WGA. MSM produces non-dominated arrangements compared 
to Pareto, based on comparative analysis and graphical 
representation. Table IV summarizes the simulation parameters 
for the proposed model. A comparison of MSS and Pareto Front 
arrangements evaluated by multiple evolutionary algorithms is 
illustrated in Fig. 3 and Fig. 4. Accordingly, Fig. 5 and Fig. 6 
present the objective space of randomly generated workflows, 
providing a comprehensive view of the results of various 
algorithms. 

The study's limitations include the complexity associated 
with integrating real-time data and fluctuating demand patterns 
within CMfg systems, which may influence scheduling accuracy 
and responsiveness. Additionally, while MSM shows promise in 
improving scheduling efficiency, its applicability to large-scale 
CMfg operations and the generalizability of findings across 
different industrial contexts require further validation and 
refinement. Future research could focus on developing hybrid 
optimization approaches that integrate machine learning 
techniques to adaptively optimize scheduling strategies in 
response to evolving production environments. Moreover, 
exploring the integration of IoT-enabled sensors for real-time 
data acquisition and predictive analytics could enhance MSM's 
performance in anticipating and mitigating disruptions within 
CMfg workflows. Addressing these limitations and pursuing 
these avenues of research will advance our understanding and 
practical application of scheduling models in contemporary 
manufacturing settings. 

TABLE IV. SIMULATION SETTINGS 

Parameters Value 

Number of tasks 1000 

Energy 200 J 

CPU time 160 ms 

Number of clouds 5 

Number of VMs 20-100 

Number of users 100 

 

Fig. 3. Cost comparison for ten resources and 100 tasks. 

 

Fig. 4. Cost comparison for 20 resources and 1000 tasks. 

 

Fig. 5. Cost comparison for randomly generated workflow with 50 resources 

and 100 tasks. 

 

Fig. 6. Cost comparison for randomly generated workflow with 100 

resources and 1000 tasks. 
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VI. CONCLUSION 

This study examined the critical area of efficient scheduling 
within the expansive landscape of cloud computing and CMfg. 
Global research attention has been captured by the emergence of 
CMfg, which offers on-demand manufacturing services through 
the Internet. With real-world and synthetic workflow 
applications, this research faced numerous challenges associated 
with effective scheduling within CMfg. The multi-objective 
evolutionary algorithms evaluated solutions via non-dominant, 
optimal, efficient, or non-inferior evaluations. The MSS 
algorithm was compared with popular algorithms like SPEA2, 
NSGA-II, BOSS, and WSGA. These algorithms are tested 
against efficiency and applicability in commercial multi-cloud 
environments. This research demonstrated that MSS can be 
dynamic and adaptive, navigating the intricacies and demands 
of manufacturing and scheduling processes. Comparative 
analysis highlighted MSS's distinct advantages and 
effectiveness in optimizing scheduling mechanisms, particularly 
in complex multi-cloud environments. The results of this study 
offer valuable information on how to improve scheduling 
efficiency in cloud-based manufacturing paradigms in the 
future. 
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