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Abstract—Agriculture is essential to the world's desire to 

produce food, generate income, and maintain livelihoods. Citrus 

fruits are produced worldwide and have a significant impact on 

food production, nutrition, and agriculture. During production, 

farmers face difficulties due to diseases that affect plant growth. 

Black spot, canker, and greening are some citrus leaf diseases 

that risk citrus production, resulting in economic losses as well as 

reduced supply stability. Early detection of these diseases 

through recent technologies like deep learning will help farmers 

with better yields and quality. The current methods fall short in 

marking the area affected by the disease with accuracy and more 

performance. This work has a novel method proposed for the 

segmentation and classification of citrus leaf diseases. The 

method consists of three phases. In the first phase, DeepOverlay 

L-UNet is used to segment the affected regions. In the second 

phase, disease detection is carried out using VGG-RefineNet, and 

in the third phase, the affected region is highlighted in the 

original image with a severity level. On the other hand, the 

DeepOverlay L-UNet model proves to be effective in detecting 

affected areas, thereby enabling clear visualization of the spread 

of the disease. The result affirms that the proposed method 

outperforms with a better training IOU of 0.9864 and a 

validation IOU of 0.9334. 

Keywords—Citrus disease detection; highlighting affected 

region; Deep learning; semantic segmentation; DeepOverlay L-
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I. INTRODUCTION 

Agriculture plays a major influence in the world economy 
since it is essential to supporting livelihoods, promoting 
economic expansion, and raising national GDPs [1]. Concerns 
regarding food shortages and rising demand arise as the global 
population is projected to surpass ten billion by 
2060, underscoring the significance of agriculture in 
addressing these issues [2]. However, threats to crop 
production include diseases, pests, and long climate change, 
which have an impact on production yield and quality 
worldwide [3]. 

Citrus is one of the species of plants that are produced 
globally, with output reaching 157.98 million tons. It is an 
essential part of global agriculture and is utilized in various 
sectors, particularly the food and nutrition industries. Examples 
of these plants are lemons and oranges. Diseases that affect 
output and quality pose serious concerns for citrus crops. Citrus 

production is at risk from diseases including blackspot, canker, 
and greening, which can result in financial losses and a less 
stable supply. Monitoring disease conditions through plant 
observation and the direct use of pesticides in agriculture in 
every adverse situation are two alternate approaches to disease 
protection. This approach is known globally and is simple for 
producers to use. This method's drawback is that certain 
producers unknowingly utilize chemical pesticides. The most 
frequent issue with medication usage that occurs unknowingly 
is the incorrect medicine used due to incorrect disease 
detection in plants. The welfare of people affected by 
unknowing drug usage. Citrus black spot, citrus cancer, and 
greening are the most prevalent illnesses in the citrus 
production field. These diseases are quite common in 
commercial citrus production [4]. These are the reasons why 
the disease wants to be detected immediately, and appropriate 
action should be taken. If not, it results in a loss of product 
quality and quantity. 

Citrus greening is a highly destructive citrus disease 
worldwide. These diseases can affect any commercial citrus 
variety. Asian Citrus Pselid (ACP) (Diaphorina citri) is one of 
the diseases responsible for this illness. To stop greening from 
spreading further, trees impacted by the disease must be 
destroyed [5]. Worldwide, many commercial citrus cultivars, 
particularly grapefruit, sweet oranges, and lemons, are afflicted 
with citrus bacterial cancer. Humid-wet areas with extreme 
temperatures, precipitation, and wind are more conducive to 
the spread of this illness. This disease is characterized by early 
fruit and leaf loss, dark blotches on the leaves, and bubble-like 
diseases in different tree sections [6]. On the fruit and leaves of 
citrus trees, the citrus black spot typically takes the form of 
freckle marks. It can also be observed as lesions on the crop's 
branches. It is a condition that is more frequent in warm 
climates, like citrus cancer. Phyllosticta citricarpa is the fungus 
disease that causes Citrus black spot. These must degrade the 
yield and quality [7]. These diseases affect crop quality and 
yields. Sensible practices in agriculture, including spraying and 
new technologies, are being used to avoid plant diseases. Deep 
learning approaches are utilized to segment and categorize 
plant diseases, as evidenced by the literature study. 

In agriculture, statistics on image data are essential for 
disease detection, image segmentation, and crop assessment on 
yields. Statistical data is used in agriculture to assess disease 
levels according to pigment factors such as hue, saturation, and 
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brightness [8]. Furthermore, statistical data on images is 
essential for recognizing how plant diseases affect crop yields, 
particularly in nations like India, where agriculture plays a 
major economic role [9]. For measuring and diagnosing 
diseases, image segmentation methods like genetic algorithms 
use statistical analysis to divide pictures into discrete sections 
[10]. Disease severity and disease grades in crops are estimated 
using statistical indicators such as Region of Interest (ROI) and 
percentage of Occurrence of Infection (POI) [11]. Farming 
operations may be enhanced with the use of this data, resulting 
in higher yields and more environmentally friendly farming 
methods. 

Many methods were recently investigated in studies to 
identify plant diseases. Standard approaches include importing 
leaf images, segmenting the damaged region by pre-processing 
for noise reduction, utilizing algorithms for disease 
identification, and extracting features using methods like LBP 
and HoG [12]. To diagnose diseases based on observable 
symptoms on leaves, recent advances have focused on deep 
learning models, namely CNNs, that perform away with the 
need for manual feature description [2]. According to the 
category of disease and severity of damage, potential 
treatments are then suggested by applying deep learning 
techniques such as DenseNet for disease categorization and 
segmentation [9]. Furthermore, techniques like CAAR-UNet 
models use preprocessing, data preparation, and architectural 
improvements to identify and categorize sick areas in plant leaf 
images [13]. 

Segmentation in identifying diseases helps locate and 
characterize the boundaries of diseased regions that lie within 
images [14] [15]. It distinguishes between healthy and 
diseased areas, which assists in determining the severness and 
position of the diseases on the plant’s leaf. By segmenting 
images, it is easy to identify particular disease signs, such as 
blackspots and canker, based on texture, colour, and shape-
defining features. Segmentation techniques such as semantic 
segmentation and instance segmentation are used to properly 
identify and categorize various diseases in plants, hence 
improving disease detection accuracy. Overall, segmentation is 
a key phase in disease detection, allowing for focused 
examination and categorization of plant diseases. 

Semantic segmentation is important for identifying plant 
diseases. Accurate diseased region segmentation is possible 
with refined deep learning models such as DenseNet and 
Hybrid-DSCNN. These models can identify damage to plant 
leaves at the pixel level, enabling accurate disease 
identification [16]. Semantic segmentation not only helps to 
categorize diseases and determine the stage of disease, but it 
also gives useful information for recommending appropriate 
treatments. Additionally, the use of weakly supervised learning 
approaches improves classifier performance by showing 
disease symptoms and infected regions, allowing for a better 
understanding of plant disease. Overall, semantic segmentation 
is a strong method for properly detecting and managing plant 
diseases. 

Disease classification requires the use of advanced methods 
like Support vector Machines, Convolutional Neural Networks, 
and DenseNet for accurate categorization [17] [18]. These 

methods use image analysis and the extraction of features to 
recognize and categorize different diseases in plants [19]. 
ShuffleNetV2, for example, is used to classify plant leaf 
diseases while maximizing the model's accuracy through 
parameter setups and feature selection. Furthermore, ML and 
DL algorithms are utilized to diagnose diseases, demonstrating 
the importance of these classification methods. By using these 
tools, researchers can improve agricultural disease detection 
and treatment processes. 

This research effort uses deep learning technology to 
recognize and categorize citrus diseases on leaves in their early 
stages. A discussion on segmentation and classification has 
been concluded after a literature review. The segmentation 
phase receives most of the attention. The whole focus is 
concentrated on the diseased region. There is also a need for 
developing and utilizing a broader plant segmentation approach 
that may be applied in both regulated and natural 
circumstances. Using pre-trained deep learning models, some 
authors have analysed the classification of citrus diseases. 
Following the initial step in image processing, which involved 
preprocessing the data set, the authors have used classification 
models to identify disease areas. Till now, disease borders and 
classes have not been accurately highlighted by the 
segmentation and classification models. This work proposed a 
novel DeepOverlay L-UNet approach for highlighting the 
affected region with precise boundaries based on severity and 
improved intersection over union. The disease classifications 
are recognized by VGG-RefineNet. The proposed method, 
DeepOverlay L-UNet, uses semantic segmentation to divide 
the diseased area from the leaf, and the flow is shown in Fig. 1. 

 
Fig. 1. Block diagram. 
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The paper's layout is organized in this way: Section II 
contains the literature survey. Section III discusses the 
description of the dataset. Section IV provides a detailed 
explanation of the entire methodology's working process. 
Section V, outlines the assessment criteria for the proposed 
method and discusses the usefulness of this method in 
performing real-time testing, highlighting, and detecting. 
Finally, the general summary, constraints, and prospects are 
covered in Section VI. 

II. LITERATURE SURVEY 

This section offers an extensive examination of various 
techniques for detecting plant diseases in order to understand 
how they work and recognize any possible limitations. As the 
global population surges, agriculture becomes increasingly 
vital for the energy needs of nations. Yet plant diseases reduce 
crop yields and quality, creating obstacles to agricultural 
progress. Accurate diagnosis of disease is essential to 
successful prevention and control. Disease identification has 
always been a manual procedure carried out by professionals 
that takes time. To overcome these inefficiencies, an automated 
system for identifying plant diseases was developed and 
implemented.  Moreover, recent technological advancements 
have been employed to examine plant diseases and pests within 
the agricultural sector. The core of contemporary research in 
this domain is artificial intelligence, particularly its subset, 
machine learning. Furthermore, deep learning (DL) techniques 
have proven effective in various image processing applications, 
such as detecting, segmenting, recognizing, and categorizing 
diseases. 

With the use of pre-processing and hybrid optimisation 
approaches, [14] creates an optimized framework using 
YOLOv7. YR2S (YOLO-Enhanced Rat Swarm Optimizer) 
incorporates Red Fox Optimization alongside ShuffleNetv2. 
Using ShuffleNet with ERSO for classification, the framework 
creates feature maps for leaf detection, and FCN-RFO is used 
to segment regions that are prone to illness. When applied to a 
tailored dataset, the model performs better than existing 
methods. 

For diagnosing diseases and detecting damage to plant 
leaves, an automated method is suggested. [9] With 100% 
classification accuracy, the first step utilizes DenseNet to 
diagnose illnesses based on leaf pictures. In step two, a 1D 
Convolutional Neural Network (CNN) with 97% accuracy is 
used to identify leaf damages through semantic segmentation 
using deep learning. Depending on the type of disease and the 
extent of damage, the third stage recommends treatment. [20]  
A MULTINET approach was created to address the problem of 
3D plant leaf disease detection and severity predictions by 
integrating multi-agent DRL and EfficientNet. Four processes 
are used in the framework: segmentation, species detection 
with classification by using a block divider model, Enhanced 
Deep Q-Network, EMMARO-based data augmentation, and 
numerous agents utilizing Deep Reinforcement Learning 
(DRL). 

The method for automatically recognizing and identifying 
multi-biotic tomato leaf lesions is presented in study [16] and 
utilizes multiple CNNs. This system utilizes Hybrid-DSCNN 
for semantic segmentation, Mask R-CNN for segmentation, 

and a CNN for classification. The Hybrid-DSCNN two-layer 
Layer-Convolution achieved segmentation and classification 
accuracy of 98.25%, along with a precision of 95.7%. [13] The 
CAAR-UNet, an autoencoder with attention and residual 
connections, utilizes a cascading structure in the computer 
vision method created to precisely detect and diagnose diseases 
in plant leaves early on. Achieving an average pixel precision 
of 95.26%, the deep learning approach achieves 
good precision. 

In study [21], presents the dataset of Wheat Rust Disease at 
NUST (NWRD), which classifies wheat rust disease (WRD) 
into several kinds and categories using multi-leaf pictures from 
wheat fields. The UNet semantic segmentation model paired 
with the adaptive patching with feedback approach, showed 
encouraging outcomes. The research in [22] work explores the 
segmentation of disease using the U-Net architecture. The 
research utilized VGG16, MobileNet-v2, AlexNet, and 
DenseNet201 deep learning methods on a set of 60 images 
containing angular leaf spot and bean rust diseases. This work 
found that segmented pictures had greater classification 
accuracy than the original ones. 

The authors in study [23] suggested technique for precisely 
identifying and classifying agricultural diseases, such as early 
and late blight, to assess disease damage is the Detection 
Transformer for Disease Segmentation (DS-DETR). To 
increase convergence speed, the model utilizes the Plant 
Disease Classification Dataset for unsupervised pre-training. 
To improve model accuracy, the query box is given Gaussian-
like spatial weights using Spatially Modulated Co-Attention 
(SMCA). Evaluating this model on the Tomato Leaf Disease 
Segmentation Dataset resulted in a disease grading accuracy of 
0.9640. 

For integrated fusarium head blight (FHB) severity 
identification, [8] they developed a system that fuses multiple 
models based on deep learning. High-throughput wheat spike 
photos showed 97.6% segmentation accuracy, whereas fine and 
complicated FHB spots showed 99.8% accuracy. The approach 
also improved the classification of wheat FHB grading, moving 
from stages of disease management to the breeding process. 

Utilizing Felzenszwalb's graph-based segmentation 
technique with annotated citrus fruits [24], a model of the deep 
neural network is developed to detect the severity of the 
condition. The prognostic model attains a 99% accuracy rate 
for minor severity levels, 98% accuracy for major severity 
levels, 96% accuracy for good conditions, and 97% accuracy 
for moderate severity levels. There are four severity categories 
for citrus fruit illnesses, and this method is effective and valid 
for identifying them. 

The authors in study [1] aims to differentiate and categorize 
canker, greening, and blackspot diseases in citrus crops by 
utilizing image processing and machine learning algorithms. 
Preparation and segmentation tasks are performed on various 
images from the dataset Citrus Leaves Prepared. A new CNN 
structure is designed to consist of four blocks and brief 
directions. The model can effectively differentiate between 
citrus black spot, bacterial canker, and huanglongbing 
(greening), as they are predominantly categorized by it. 
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The study utilizes segmented images to focus on and feeds 
them into deep neural networks in order to create an ensemble 
stacked deep learning model for automatically detecting 
mango-leaf diseases [25]. Combining the output of the deep 
neural network with an ML model is utilized for detecting leaf 
illness. With an accuracy rate of 98.57%, the model performs 
better than existing models. 

With the purpose of identifying and classifying biotic stress 
in coffee leaves early on, this work presents the extracted 
feature ensemble (EFE) approach. [26]  The method enhances 
classification performance by utilizing custom-designed 
features and convolutional neural networks (CNNs) based on 
transfer learning. The effect of dimensionality on the 
performance of the model is evaluated, and three approaches 
are suggested to analyse extracted feature sets. This 
work indicates that the process of feature concatenation 
improves the accuracy and discriminative power of 
classification models. 

However, existing approaches have limitations such as 
inadequate background conditions, cost complexity, 
misclassifications, and overfitting [27]. The AgriDet system, 
composed of a fusion of Kohonen-based deep learning 
networks and the traditional INC-VGGN, is introduced to 
address this issue. By incorporating a dropout layer, a Kohonen 
learning layer, and a pre-trained INC-VGGN model, the 
system is able to effectively identify and categorize illnesses. 

Research indicates that using attention-based dilated CNN 
logistic regression is an effective approach for identifying 
tomato leaf disease. In study [19] images are preprocessed with 
bilateral filtering and Otsu segmentation; a synthetic image is 
generated using the Conditional Generative Adversarial 
Network model, features are normalized, and a logistic 
regression classifier is used to categorize the images. The 
results of this study show that the accuracy in training, testing, 
and validation for identifying multiclass tomato leaf diseases is 
100%, 100%, and 96.6%, respectively. 

Detecting diseases in sugarcane plants using current 
methods is inaccurate. The study in [28] identify and classify 
sugarcane leaf disease with high accuracy, The deep transfer 
learning model presented in this work is based on quantum-
behaved particle swarm optimization (QBPSO-DTL). 
SqueezeNet, a deep-stacked autoencoder, and optimum region-
expanding segmentation are all used in the modelling process. 

In [29], study is centred on developing a fusion model for 
detecting and classifying diseases in rice plants using Efficient 
Deep Learning techniques (EDLFM-RPD). This method 
utilises preprocessing techniques such as median filtering, K-
means segmentation, a manually created Gray Level Co-
occurrence Matrix (GLCM), deep features from Inception, and 
Swarm Optimization with a Fuzzy Support Vector Machine 
(FSVM) model. Tests demonstrate improved efficiency, with a 
top accuracy of 96.170%. 

TABLE I.  COMPARISON OF VARIOUS SEGMENTATION TECHNIQUES WITH THE DEEPOVERLAY L-UNET 

Application Dataset 
Number of 

images 
Methods Performance Author 

Disease classification A new plant disease dataset 18345 Optimized ShuffleNet v2 Average Accuracy: 99.69% [14] 

Damage detection on leaves 
Plant village dataset (four 

diseases) 
8,875 1D-CNN Average accuracy of 97% [9] 

Segmentation and detection of 

plant disease 

The Tomato Leaf Disease 

Dataset (TLDD) 
1004 Hybrid-DSCNN 

Accuracy: 98.24%, IoU: 92.91%, 

Precision: 92.83%, Recall: 94.36% 
[15] 

Citrus disease detection and 

classification 
citrus dataset 598 Modified CNN Average Accuracy: 95%. [1] 

Segmentation and detection 
The Tomato Leaf Disease 
Dataset (TLDD) 

1680 
Hybrid-DSCNN 
(2Layer-USN) 

IoU: 92.8%, mIoU: 94.24%, 
accuracy: 98.25%. 

[16] 

Earlier disease detection. Mango leaf diseases 2000 
Ensemble Stack neural 

network. 
Accuracy 98.57% [25] 

Precise detection of diseases in 

plant leaves. 

The Plant Village Dataset 
and the Coffee Leaf 

Dataset. 

400 
Cascade Autoencoder 
incorporating Attention 

Residual U-Net 

Pixel accuracy mean: 95.26%, IoU: 

0.7451. 
[13] 

Early disease detection 
NUST Wheat Rust Disease 

Dataset 
100 Octave-UNet IoU of 0.316, F1 score of 0.529. [21] 

Disease Segmentation and 

Classification 
Dry bean leaves 120 U-Net and DenseNet201 

IoU: 0.7725, 

F1-score: 0.9459%. 
[22] 

Plant disease detection and 

categorization. 
coffee leaves 4000 modified VGG16 test accuracy: 97.9%. [30] 

Diagnosing the disease 

Severity. 

Fusarium Head Blight on 

Wheat. 
3875 

Mobilev3 and 

Deeplabv3+ 

MIoU: 83.61, accuracy: 98.54%. 

overall accuracy rate of 86.9%. 
[8] 

Disease severity classification 
Plantdoc and Plant Village 

datasets 
2,598 INC-VGGN 

Training accuracy:  98.9%, and 

validation accuracy: 96.00%. 
[27] 

Detection and severity analysis 

of disease 
Grape dataset 500 

DeepLabV3+ is based on 

ResNet50. 
overall accuracy: 97.75% [11] 

Leaf disease detection. 
Tomato leaf from the Plant 

Village dataset 
18,161 Modified UNet 

Test accuracy: 98.66%, IoU of 

98.5%, dice: 98.73%. (Separate 

leaf and background) 

[31] 

Highlighting the affected 

disease region with a severity 

percentage. 

Citrus plant dataset ±5000 
DeepOverlay L-UNet, 

and VGG-RefineNet 

Train IOU of 0.9864, validation 

IOU of 0.9334, overall 
classification accuracy of 98%. 

Proposed 
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Various methods are proposed for citrus leaf segmentation 
and classification in the literature. Table Ⅰ summarizes the 
efforts made to identify diseases in several plant species using 
these methods. Even though the methods proposed in the 
literature perform well in segmentation and classification, they 
fail in severity-based classification and highlighting the region 
of interest, which plays a major role in early and accurate 
disease detection. The proposed method is chosen since the 
model balances global context encoding and local detail 
refinement for accurate segmentation boundaries, which is the 
major contribution of this work. 

III. DATASET DESCRIPTION 

This study utilizes Citrus Leaves Setup, a citrus dataset 
available for open access. There are four categories in the 
collection: citrus black spot, citrus canker, and greening, which 
are the most common citrus diseases, along with pictures of 
healthy leaves. The dataset from study [32] contains images 
with a resolution of 256x256. The dataset has a smaller number 
of images as well as reduced quality, with an unbalanced 
distribution of data classes across different data. 

This study focuses on enhancing disease detection accuracy 
in plant pathology by improving citrus leaf image quality and 
stability through preprocessing and augmentation techniques. 
The initial stage of preprocessing is essential, as it transforms 
simple images into a format that is easier to analyse. This is 
achieved by making several improvements: increasing contrast 
by 10% to highlight features, boosting brightness by 60% to 
counteract possible underexposure, and tripling sharpness to 
bring out intricate details [25]. These enhancements are 
essential to ensuring that upcoming machine learning models 
can recognize and absorb the fundamental aspects of the data. 

Augmentation techniques artificially expand the dataset by 
approximately five thousand images, leading to a wider and 
more inclusive collection of images for training the model. 
This study involves examining both axes, rotating at angles of 
0 and 90 degrees, and utilizing scaling factors of 0.5 and 1. 
These changes mimic the various positions, inclinations, and 
dimensions that leaves can exhibit in their natural 
surroundings, enabling the models to handle the diversity 
found in real-world situations. Additionally, employing the 
HSV colour scheme for image masking could help separate 
unhealthy areas. [10], [33] Establishing specific thresholds 
enables various masks to effectively separate colour data and 
reveal distinct areas of interest, which are then extracted and 
evaluated for disease identification. 

The last step in preprocessing and augmentation involves 
placing masks on top of the original images. The use of a 
partially transparent layer allows for a direct visual comparison 
between healthy and diseased regions, leading to a better 
understanding of the impact of the disease, and this overlaid 
data is highly effective in segmentation. This overlay serves as 
both a helpful aid for visual examination and a useful tool for 
displaying data in a user-friendly way. Fig. 2, Fig. 3, and Fig. 4 
included in this study show the detailed process of preparing 
citrus leaf images for effective disease identification, 
highlighting the crucial role of thorough preprocessing in 
image analysis for detecting plant diseases. A detailed 
breakdown of the number of images in a given class within this 
dataset, as well as its numbers after augmentation, is presented 
in Table Ⅱ. The data specifically prepared for segmentation is 
displayed in Table Ⅲ. 

 
Fig. 2. Representative images extracted from the dataset. 
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Fig. 3. Representative images from dataset after preprocessing and augmentation for classification. 

 

Fig. 4. Sample input of original image, masked images, and overlayed images for segmentation.

TABLE II.  TRAIN, TEST AND A VALIDATION SET OF ORIGINAL AND AUGMENTED DATASETS FOR CLASSIFICATION

 Training Testing Validation Total sample 

original augmented original augmented original augmented original augmented 

Blackspot 122 852 15 106 15 106 152 1064 

Canker 121 845 15 106 15 106 151 1057 

Greening 171 1192 21 149 21 149 213 1491 

Healthy 46 326 6 40 6 40 58 406 

Total 460 3215 57 401 57 401 574 4018 

TABLE III.  TRAIN SET, TEST SET OF OVERLAYED AND MASKED IMAGES FOR SEGMENTATION 

 Overlayed image Masked image Total sample 

Train set 460 460 920 

Test set 114 114 228 

Total 574 574 1148 
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IV. METHODOLOGY 

In this work, a DeepOverlay L-UNet architecture was used 
in the proposed method. The output of the method was then fed 
into the VGG-RefineNet deep learning architecture to detect 
and categorize plant diseases based on the severity percentage 
of the citrus-diseased plants. Initially, preprocessing involves 
resizing, enhancing, improving contrast, and augmenting 
images to avoid inconsistencies in the dataset. The HSV 
threshold-based colour scheme is used to separate diseased 
areas in image masking to address complex, multiple 
background challenges. This research provides distinct 
information about colour related to specific diseases. 
Following that, place the masks on top of the original image. In 
the first phase, masked images and overlayed images are fed as 
input for semantic segmentation. The semantic segmentation 
method DeepOverlay Leaky Relu-based deep learning is used 
to extract and learn features from diseased areas of the citrus 
leaf region. The affected area of the diseased citrus leaf is 
predicted using a combination of DeepOverlay L-UNet 
characteristics. In the second phase, disease classes are 
identified through classification using VGG-RefineNet. The 
model surpasses current methods in segmentation, detection, 
and classification, showing improved validation and accuracy. 
Finally, in the third phase, the severity of the disease on the 
citrus leaf is assessed by the Highlighting Disease Area with 
the Affected Percentage (HDAP) method, which calculates the 
percentage of the affected area by identifying the disease 
boundary and using the DeepOverlay L-UNet to segment and 
overlay the affected area on the leaf. Researchers calculate the 
total affected percentage on the citrus leaf by measuring both 
the entire leaf area and the area covered by the disease. 

The detection and classification of diseases are crucial in 
the field of agriculture. This detection method using images 
helps make it easier to protect crops from disease compared to 
sensor-based solutions. Proposing an improved application is 
crucial to helping farmers. Citrus farmers have the ability to 
recognize suspicious images of their crops and gather essential 
data, such as the severity percentage of the disease. Here 
researcher emphasizes the use of a neural network approach, 
utilizing DeepOverlay L - UNet and VGG - RefineNet deep 
neural networks to accurately identify the affected region on 
the leaves. This allows for the trustworthy recognition and 
detection of citrus plant diseases. This technique involves three 
separate steps: segmentation, highlighting the disease-affected 
area, and categorizing with a deep neural network. Fig. 10 
provides an overall overview of the proposed work. The 
disease identification method consists of three stages: a 
proposed (DeepOverlay L-UNet) enhanced base network for 
segmentation, an improved (VGG-RefineNet) network for 
classification, and the introduction of the Highlighting Disease 
Area with Affected Percentage (HDAP) method. The following 
paragraphs will outline each of these phases: 

A. DeepOverlay L-UNet for Segmentation 

Once the masked image and overlay images have been 
preprocessed, they are used as input for the training process. 
The DeepOverlay L-UNet is an advanced neural network 
created specifically for image segmentation. The process starts 
with selecting an input image. The network's design is built on 

the U-Net model, featuring both an encoder to capture image 
context and a decoder for accurate localization. Within the 
encoder part, convolutional layers are used along with batch 
normalization and Leaky ReLU activation functions with an 
alpha value of 0.1. This particular activation function is 
selected for its capacity to enable low gradients when the unit 
is not active, thereby addressing the vanishing gradient issue 
often associated with conventional ReLU functions. The 
decoder segment uses transposed convolutions to enlarge the 
feature maps, which are then joined with the encoder feature 
maps that correspond. This stage is essential for the network to 
accurately pinpoint and outline the edges of the objects in the 
image. The output layer contains a convolutional process 
combined with a sigmoid activation function, producing a 
probability map that displays the segmented sections of the 
image. 

Custom metrics like IoU, mean IoU, weighted mean IoU, 
pixel accuracy, mean pixel accuracy, mean boundary F1 score, 
and dice coefficient are utilized to assess the network's 
performance. These measurements offer a thorough evaluation 
of the quality of segmentation. The training procedure includes 
building the model with an Adam optimizer and a binary cross-
entropy loss function. The model is trained for 150 epochs with 
a batch size of 2, showing a thorough optimization process to 
enhance segmentation skills. 

Finally, the network includes a visualization component 
where the predicted segmentation masks can be overlaid on the 
original images. This visual inspection is essential for verifying 
the model’s predictions and ensuring the segmentation’s 
accuracy. In essence, the DeepOverlay L-UNet with its Leaky 
ReLU-enhanced encoder and comprehensive metrics, offers a 
robust solution for image segmentation tasks, ensuring detailed 
and accurate delineation of image features. The model 
architecture is explained below: 

The DeepOverlay L-UNet architecture is designed for 
semantic segmentation tasks, where the goal is to categorize 
every pixel in an image into various classes, such as separating 
foreground from background. 

1) Encoder: The model's encoder part includes 

convolutional layers and pooling layers. It transforms the 

input image into a compact, meaningful representation known 

as the latent space. Convolutional layers derive hierarchical 

features from the input data, while pooling layers decrease the 

spatial dimensions of the feature maps. The model includes 

two encoder blocks, each composed of a convolutional layer, 

batch normalization, and max pooling. 

 The first encoder block takes an input tensor with the 
shape (128 x 128 x 3) and uses 32 filters, producing 
output tensors x1 and p1. 

 The second encoder block takes the output tensor p1 
from the first block as its input and uses 64 filters, 
resulting in output tensors x2 and p2. The number of 
filters increases with each subsequent encoder block to 
capture more complex features. 

a) Convolutional layer: The fundamental component of 

CNNs is the convolutional layer. It applies kernels (filters) to 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

1030 | P a g e  

www.ijacsa.thesai.org 

the input data and extracts local features. This layer uses filters 

to capture specific characteristics from the input data by 

moving the filter across the input and conducting element-

wise multiplications. Convolutional layers learn spatial 

hierarchies of features, capturing patterns like edges, textures, 

and shapes. 

b) Batch normalization: Batch normalization (BN) 

stabilizes training by normalizing the activations of each layer, 

addressing issues like vanishing or exploding gradients. BN 

normalizes the mean and variance of activations within a 

mini-batch. It introduces learnable parameters (gamma and 

beta) to scale and shift the normalized values. It improves 

convergence speed, generalization, and robustness. 

c) Activation function: An activation function, such as 

ReLU, brings non-linear elements to the model, enabling it to 

learn complex patterns. 

d) Max pooling: Pooling layers decrease spatial 

dimensions while maintaining essential features. Max pooling 

selects the maximum value within a region (e.g., 2x2) of the 

feature map. Pooling layers downsample the feature maps, 

reducing the computation and preventing overfitting. It 

summarizes features, enhancing the model's robustness to 

changes in position. 

2) Leaky ReLU activation: Leaky ReLU activation is 

applied to both x1 and x2. Negative values in x1 and x2 are 

scaled by the alpha value (usually set to a small positive 

number). Positive values remain unchanged. Leaky ReLU is 

applied after each encoder block to allow a small gradient 

when the input is negative, preventing vanishing gradients and 

helping in learning complex features. 

3) Bottleneck block: A bottleneck block with 128 filters 

follows the encoder blocks, capturing high-level features and 

compressing them into a compact representation. 

4) Decoder: The decoder reconstructs the original input 

from the latent representation using transposed convolutional 

layers to increase spatial dimensions. The decoder’s output 

aims to match the original input (e.g., a reconstructed image). 

Two decoder blocks are specified, each consisting of a 

transposed convolutional layer for the upsample, concatenated 

with the relevant encoder output, and an additional 

convolutional layer. 

 The first decoder block takes an input tensor b 
(bottleneck output), concatenated with the 
corresponding encoder output x2 and uses 64 filters. 

 The second decoder block takes the output from the 
first decoder block as its input, resulting in output 
tensors x1 and 32 filters. Each decoder block includes a 
transposed convolutional layer, concatenation, and 
another convolutional layer. The decoder blocks 
progressively refine the features and recover spatial 
information lost during downsampling in the encoder. 

a) Transposed convolutional layer (Deconvolution): 

Transposed convolutional layers (also known as 

deconvolutional layers) perform upsampling. It increases 

spatial dimensions, allowing the network to generate higher-

resolution outputs. Transposed convolutions apply filters in 

reverse; they project a smaller feature map onto a larger one. 

These are commonly used in image generation tasks (e.g., 

GANs) and semantic segmentation. 

b) Concatenation with skip connection: The decoder 

block concatenates the upsampled feature maps with the 

corresponding feature maps from the encoder (skip 

connection). Utilize skip connections (also known as residual 

connections) for transmitting information between layers. This 

aids in spreading intricate details. By integrating both low-

level and high-level characteristics, the model is able to 

improve the localization of objects and boundaries. In U-Net 

architectures, the encoder's feature maps are combined with 

the decoder's feature maps to enhance segmentation outcomes. 

An additional convolutional layer: The combined feature 
maps undergo further enhancement with an additional 
convolutional layer. 

5) Output layer: The final output, showing the likelihood 

of each pixel being part of the foreground, is generated by a 

1x1 convolutional layer with a sigmoid activation function, 

with an output shape of 128 x 128 x 1. 

6) Model training and evaluation: The model is built 

using binary cross-entropy loss and Adam optimizers with 

multiple evaluation metrics. During training, the model learns 

to minimize the loss function by adjusting its weights. The 

evaluation metrics (IoU, accuracy, etc.) assess the model’s 

performance on validation data. 

Prediction and Visualization: Predictions are made on 
training and validation data. Overlay images are created by 
combining the original image and the predicted mask. The 
overlay helps visualize the segmentation results, which helps 
highlight the affected area. The segmented output of different 
citrus diseases is shown in Fig. 5, and the architecture diagram 
of DeepOverlay L-UNet is shown in Fig. 6. 

In this method leaky Relu is introduced to gain more 
features in the citrus image and overlay the segmented output 
to original image, this will visualize affected area. These 
differentiates the proposed method from the U-Net. By using 
the DeepOverlay L-UNet Severity region exactly extracted 
compared to other methods. 

Algorithm: Disease Region Detection using DeepOverlay L-
UNet 

Input: Training overlayed images (X_train), corresponding ground 
truth masks (Y_train), and validation images (X_val). 

Output: Predicted masks for leaf disease regions. 

Step 1: Load the training images and ground truth masks. 

Step 2: Define the L-UNet model architecture: 

    Input layer to accept images of shape (128, 128, 3). 

    Encoder blocks to capture features at different scales. After 
each convolutional block within the encoder, apply 
LeakyReLU activation. 

 Bottleneck block with convolutions but no pooling. Apply 
LeakyReLU activation after the bottleneck to maintain 
gradient flow. 

 Decoder blocks to upsample and restore the original image 
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dimensions. After each convolutional block within the 
decoder, apply LeakyReLU activation. 

   Output layer utilizes the sigmoid activation function for 
prediction of the segmentation mask. 

Step 3: Compile the model with Adam optimizer, binary_crossentropy 
loss, and custom metrics (e.g., IoU, F1-score). 

Step 4: Train the model on the training data with a validation split for 
monitoring performance. 

Step 5: Predict masks on the validation set (X_val) using the trained 
model. 

Step 6: Apply a threshold to convert the model's predictions to binary 
masks. 

Step 7: Overlay the predicted masks on the original validation images 
to visualize the results. 

Step 8: Calculate the affected area (number of pixels) based on the 
overlay mask. 

Step 9: Repeat steps 5 - 8 for a random validation sample. 

Step 10: Display the original image, masked ground truth, predicted 
mask, and overlay. 

End Algorithm 

B. VGG - RefineNet Network for Classification 

Following preprocessing, the dataset images are given as 
input to the training stage. The base model starts by using 
transfer learning to understand the characteristics. Transfer 
learning begins by utilizing a pre-existing base model. The 
training of these models was done using extensive datasets, 
such as ImageNet, and have acquired the ability to identify 
basic characteristics such as edges, textures, and shapes. The 
convolutional layers of the basic model function as feature 
extractors. They acquire the ability to identify basic 
characteristics in images. Utilizing a pre-trained base model 
allows you to leverage its acquired features without starting the 
training process from the beginning. The model's custom layer 
merges the feature extraction abilities of the base model with 
custom layers that understand specific patterns related to the 
task. The VGG RefineNet model was modified by 
incorporating custom layers (flatten, dense, batch 
normalization, dropout) to suit researcher dataset. With the 
VGG-RefineNet model, the characteristics of citrus plant 
diseases are being learned more precisely. The final 
classification probabilities are provided by the output layer. 

The disease samples are subsequently processed by the 
VGG – RefineNet following modification of the current model. 
This recently created neural network is utilized for classifying 
the citrus diseases. The newly created neural network consists 
of the input layer, convolution layer, pooling layer, flatten 
layer, dense layer, batch normalization layer, dropout layer, 
and output layer. In this neural network, a deeper 
understanding is gained on the disease detection process to 
capture all essential features related to each disease category. 
Better precision is achieved in learning the texture, shape, size, 
colour, and other characteristics which avoids 
misclassification. The roles of the various layers are outlined 
below: Every layer in the neural network carries out a 
distinctive role. 

1) The base layer (VGG16): The VGG16 base model is 

made up of 13 convolutional layers which are responsible for 

extracting features from the input image. Filters are applied in 

each convolutional layer to learn specific patterns in the local 

area. VGG-16 employs compact convolutional filters (3x3 in 

size). A ReLU activation function follows every convolutional 

layer. Proceeded by five layers of max pooling. Max pooling 

decreases spatial dimensions by downsampling the feature 

maps. It aids in preserving critical characteristics while 

decreasing the amount of computation needed. In 

implementation, VGG-16 utilizes max pooling with a stride-2 

and a window size of 2x2. 

a) Layers that are being frozen: Freezing the last four 

layers stops their weights from being modified in the training 

process. This is crucial for transfer learning, as it enables the 

model to keep the knowledge gained from ImageNet while 

adjusting the top layers for your particular task. 

2) Flatten Layer: The Flatten layer converts the results 

from the convolutional layers into a single-dimensional array. 

Following the extraction of features by the base model, the 

flattened representation is used as input for the following fully 

connected layers (dense layers). When the convolutional 

layers output shape is (batch_size, h 

3) eight, width, channels), the shape of the flattened 

output becomes (batch_size, height x width x channels). 

4) Dense layers: After the flattened representation, 

researchers added two dense layers: The initial dense layer 

consisted of 1024 units and used ReLU activation. It grasps 

features at a high level. The following layer, with n_classes 

units (4 in this case), is the second dense layer and has 

softmax activation. It generates probabilities for different 

classes. 

First dense layer: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝐿𝑈 (𝐼𝑛𝑝𝑢𝑡 ∙ 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 + 𝐵𝑖𝑎𝑠)

Second dense layer (output layer):  

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐼𝑛𝑝𝑢𝑡 ∙ 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 + 𝐵𝑖𝑎𝑠) 

5) Batch normalization layer: Batch normalization 

normalizes the outputs of the preceding layer, reducing 

internal covariate shifts during training. It scales and shifts the 

normalized activations using learned parameters to stabilizes 

training, improve convergence, and accelerate learning. 

𝑂𝑢𝑡𝑝𝑢𝑡 
Input − μ 

𝜎
. 𝛾 +  𝛽  

𝜇 −  mean

𝜎 −  standard deviation.

𝛾 − scaling factor.

𝛽 −  shift factor.

6) Dropout layer: Dropout prevents overfitting by 

randomly turning off neurons while training. During each 

training iteration, a fraction of neurons (specified by the 

dropout rate 0.5) is randomly dropped out. The mask 

randomly sets some values to zero. 
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𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑛𝑝𝑢𝑡 ∙ 𝑀𝑎𝑠𝑘   

The general structure involves extracting features from the 
primary model and incorporating specialized layers designed 
for the plant disease categorization assignment. 

C. Highlighting Disease Area with Affected Percentage 

(HDAP) 

HDAP is the process that carried out throughout the work 
because it needs to get the original leaf area and predicted 

mask area it means disease disease-affected area to highlight 
the affected area with the severity percentage. It is helpful to 
avoid the cause of disease affected by the minimal usage of 
pesticides, fertilizers, and climate change. In this work 
researcher used DeepOverlay L-UNet and VGG-RefineNet to 
extract the details of the disease region, disease class to 
highlight the disease region, class on the original image to 
visualize for the farmer. 

 

Fig. 5. Segmented output of different citrus diseases. 

 

Fig. 6. Architecture diagram of DeepOverlay L-UNet.
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The Highlighting Disease Area with Affected Percentage 
(HDAP) is a methodical process used to identify and quantify 
disease-affected areas in images, such as leaves in citrus plant 
disease detection. Before highlighting the disease area in citrus 
leaves researcher identified the area of the entire leaf by using 
contour function and it acquire coordinates of the leaf 
boundary pixels, then draw contour iterates over the list of 
contour points and draws lines between these points on the 
original image till it formed a loop. The region enclosed by the 
contour, which gives the area of the polygon defined by the 
contour points is used to get the area of the disease part in leaf. 
Using the trained segmentation model (Deepoverlay L-UNet) 
to predict the disease mask then Overlay the predicted mask on 
the original image. After overlaying the mask, identify and 
highlighting the contours of the disease-affected regions using 
contour function. Calculating the pixel area of the overlay 
image to get the area of the diseased part in citrus leaf. The 
HDAP is process computed the ratio of the area that is affected 
to the total area of the leaf, expressed as a percentage. This 
HDAP method provides important information about the 
existence and severity of disease within a leaf. These are 
explained in below steps: 

1) Original image and contour extraction: 

 Begin with an original image, such as a citrus leaf. 

 Convert the original RGB image to grayscale. 
Grayscale simplifies edge detection, which is essential 
for contour extraction. 

 Apply thresholding using Otsu’s method to create a 
binary image. This step separates the foreground (citrus 
leaf regions) from the background. Pixels above the 
threshold become white, while others remain black. 

 Detect contours within the binary image using 
cv2.findContours(). These contours represent the 
boundaries of the disease-affected areas. 

 Draw these contours on the original image to visualize 
the leaf areas. The cv2.drawContours() function 
overlays the contours, providing a clear outline of the 
affected regions. 

2) Leaf area calculation: 

 Use cv2.contourArea() to calculate the area of each 
contour. This function applies Green’s theorem to 
compute the area enclosed by the contour points. 

 Sum up the areas of all detected contours to determine 
the total leaf area affected by the disease (in pixels). 

3) Predicted mask, overlay and classify: 

 Employ a trained segmentation model to predict the 
disease mask (segmentation mask) for the given image. 

 Threshold the predicted mask to obtain a binary image. 

 Overlay the predicted mask on the original image using 
a contrasting color (e.g., red) to highlight the affected 
regions. 

4) Diseased area calculation: 

 Calculate the pixel area of the overlay image by count 
number of non-zero pixels (white pixels) in the binary 
mask using NumPy functions. This provides the pixel 
area of the affected regions. 

5) HDAP calculation: 

 Calculating the HDAP by expressing the affected area 
as a percentage of the total leaf area. 

 The HDAP ratio helps quantify the disease’s extent, 
aiding in diagnosis, treatment planning, and monitoring. 

The HDAP process is versatile and applicable beyond leaf 
disease detection, serving as a valuable tool in various fields 
requiring detailed image analysis and segmentation. Whether 
in agriculture imaging, HDAP provides insights into the 
presence and severity of disease, facilitating informed 
decisions and interventions. 

D. Evaluation Metrics 

1) Precision: It calculates the proportion of accurately 

predicted positive observations out of all predicted 

positives. A low false positive rate is associated with high 

precision. 

Pecision =  
True Positives

Predicted Positives + 𝜖
  

2) Recall: It is also referred to as sensitivity and calculates 

the ratio of accurately predicted positive observations to all 

true positives. A low false negative rate is associated with high 

recall. 

Recall =  
True Positives

Possible Positives+ 𝜖
  

3) F1 score: It is determined by averaging precision and 

recall, calculated using the harmonic mean. Balancing 

precision and recall are helpful when needed. 

F1 Score =  2 × 
Precision × Recall

Precision + Recall + 𝜖
 

4) Specificity: Measures the percentage of correct 

predictions for negative outcomes compared to the total 

number of actual negative outcomes. It represents the 

frequency of accurate negatives. 

𝑆pecificity =  
True Negative

Possible Negative +𝜖
   (8) 

5) Accuracy: It is a popular metric for assessing a model's 

performance on a specific dataset, it is determined by the ratio 

of accurately classified samples to the overall sample size. 

Accuracy =  
Number of Correct Predictions

Total Number of Predictions
 

6) Intersection over union (IoU): IoU is a commonly used 

measurement in segmentation challenges for evaluating the 

overlap between predicted and actual segmentation. It 

measures the proportion of the overlapping region compared 

to the total area. 
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IoU =  
Intersection

Union + 𝜖
  

7) Mean IoU: The average IoU score across all samples. It 

provides an overall performance measure for segmentation 

tasks. 

𝑀𝑒𝑎𝑛 𝐼𝑜𝑈 =  
1

N
∑

 Intersectioni

Unioni + 𝜖

N
I =1   

8) Weighted mean IoU: Similar to average Intersection 

over Union, this metric assigns more weights to classes with 

larger pixel counts. This is useful when class imbalance is 

present. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑀𝑒𝑎𝑛 𝐼𝑜𝑈 =  
∑ IoUi

N
i=1  × Weightsi

∑ Weightsi
N
i=1

 

9) Pixel accuracy: Calculates the proportion of pixels 

classified correctly. It is an easy method to evaluate the overall 

accuracy of a segmentation model. 

Pixel Accuracy =  
Correct Pixels

Total Pixels
  

10) Dice coefficient: Like IoU, calculates the intersection 

between two samples. The total number of pixels in both 

images divided by two is equal to the area of overlap. The 

Dice Coefficient incorporates a smoothing parameter to avoid 

dividing by zero. It evaluates the intersection of two samples 

and is especially beneficial for tasks involving binary 

segmentation. 

Dice Coefficient =  
2 × Intersection + smooth

Sum of True + Sum of Pred + smooth
 

Intersection is the overlap between the actual labels and the 
predicted labels. Sum of True is the overall count of true labels. 
Pred sum is the overall count of predicted labels. A tiny 
constant, smooth, is added to avoid division by zero and to 
enhance the metric for improved stability and performance. 

 

Fig. 7. Citrus Canker leaf sample on HDAP process. 

 
Fig. 8. Citrus Blackspot leaf sample on HDAP process. 
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Fig. 9. Sample on highlighting the disease affected area with affected. 

 
Fig. 10. Percentage. Overall Process of Citrus Disease Segmentation, Classification and HDAP. 
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TABLE IV.  CITRUS DISEASE PREDICTED, SEGMENT OVERLAYED, CLASSIFIED AND HIGHLIGHTED THE DISEASE AFFECTED AREA WITH PERCENTAGE.

Input Image 
Disease area Predicted by the proposed 

model 

Overlay predicted into the 

input image 

Proposed Classification  and HDAP   ( by 

pixels) 

 
   

 
 

  

 
 

  

 
   

    
 

V. RESULTS AND DISCUSSION 

The research consists of three sections. The initial phase 
involved extracting disease from masked images of the 
afflicted, which were segmented using DeepOverlay L - UNet. 
This deep learning approach helped in identifying the disease. 
In the latter section, the segmented layered images were 
categorized using the VGG – RefineNet Deep learning 

technique. In the third section, the disease area that was 
extracted was shown independently and the affected area of the 
disease was measured compared to the total leaf area using the 
HDAP method. After that, the segmentation and classification 
performance metrics were acquired and assessed. Fig. 10 
illustrates the complete process of segmenting, classifying, and 
performing HDAP on citrus diseases in the study. 
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DeepOverlay L–UNet was utilized to segment the disease 
affected areas in the segmentation section. In this model 
proposal, the data consists of pre-processed data from the 
original images, masked images, and overlayed masks on 
original images. Following this step, the data is divided into 
sets for training and testing purposes. Next, the DeepOverlay 
L-UNet is put together and acquires a deeper understanding 
through the use of training data. 

After finishing the training, the original images are 
displayed by overlaying the real values, predictions, and 
projections on top of them. Ultimately, the trained model's 
performance was assessed. The following are the listed steps 
for the proposed method of the DeepOverlay L-UNet 
architecture.1) Uploaded the pre-processed data, 2) generated 
plots showing the images alongside the mask and overlay 
images, 3) divided data into training and validation sets, 4) 
Compiled and trained the model, then displayed the original 
image, ground truth, predicted image, and overlay of predicted 

on original image, 5) Assessed the model using precision, 
recall, accuracy, IoU, Dice-Coefficient, and other metrics. 

By utilizing Overlayed masked images as inputs and 
applying Leaky ReLU activation after each encoder block, this 
model gains finer details to improve performance in IoU, Pixel 
Accuracy, and Dice-Coefficient metrics. 80% of the dataset is 
allocated for training, while 20% is reserved for testing and 
segmented using DeepOverlay L-UNet. To explore the 
effectiveness of the DeepOverlay L-UNet architecture, the 
model's performance was assessed with 25, 50, 75, 100, 125 
and 150 epochs to determine its impact on enhancing 
performance. Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15 and 
Table Ⅴ display the precision, recall, specificity, f1 score, 
accuracy, loss, IoU, Mean IoU, Pixel Accuracy, and Dice-
coefficient graphs, values obtained from the experimental 
results. Examples of predicted diseased images using the 
proposed model can be seen in images Table Ⅳ. 

 
Fig. 11. Graphs showing the accuracy and loss during 150 epochs of training and validation. 

 
Fig. 12. Graph showing the precision and recall during 150 epochs of training and validation. 
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Fig. 13. Graph showing the specificity and f1_Score during 150 epochs of training and validation. 

 
Fig. 14. Graph showing the IoU and Mean IoU during 150 epochs of training and validation. 

 
Fig. 15. Graph showing the pixel accuracy and dice coefficient during 150 epochs of training and validation.
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TABLE V.  EVALUATION METRICS OBTAINED ON DEEPOVERLAY L-UNET

Training Model Evaluation Metrics 

Epochs Accu Val- Accu IOU Val-IOU Pixel Accu Val Pixel Accu Dice Val-Dice Loss Val- loss 

25 0.9869 0.9873 0.8347 0.8361 0.9869 0.9873 0.9190 0.9288 0.0500 0.0484 

50 0.9927 0.9894 0.9066 0.8861 0.9927 0.9894 0.9579 0.9537 0.0296 0.0374 

75 0.9958 0.9913 0.9427 0.9113 0.9958 0.9913 0.9749 0.9647 0.0197 0.0319 

100 0.9968 0.9915 0.9552 0.9165 0.9968 0.9915 0.9810 0.9667 0.0160 0.0315 

125 0.9990 0.9921 0.9801 0.9234 0.9990 0.9921 0.9918 0.9703 0.0096 0.0321 

150 0.9993 0.9931 0.9847 0.9334 0.9993 0.9931 0.9936 0.9744 0.0079 0.0282 
 

During the classification phase, the segmented overlaid 
image is categorized into a particular disease class. In our 
modern society, technology plays a crucial role in our daily 
lives. In this research, pre-trained models were selected based 
on their top classification accuracy. Moreover, these models 
were chosen to examine the impact of varying depths and 
parameter counts on the accuracy of classifying segmented 
images. Once these images have been pre-processed, they are 
then transferred to the training phase. After the images are pre-
processed, they are then fed as an input to the training phase. 
Utilizing a pre-existing base model in VGG-RefineNet allows 
for leveraging the advantages of learned features without the 
need to start training from the beginning. The custom layers in 
the VGG-RefineNet model, such as flatten, dense, batch 
normalization, and dropout, enhance the base model's feature 
extraction abilities to learn specific patterns for tasks like 
disease classification. Fig. 16 provides detailed values for 
recall, precision and F1-score. It is evident that the proposed 
classification method gives better precision for black spot and 
greening, while the recall is better for canker and healthy. 
Additionally, the F1-score improves across all diseases. 
Furthermore, Fig. 17 illustrates the confusion matrix for the 
proposed CNN model. It is observed that there are four 
misclassifications on black spot and five misclassifications in 
greening, while there is no misclassification on canker and 
healthy. 

The percentage of severity on the citrus leaf is determined 
by highlighting and measuring the disease affected area. This 
HDAP method starts with the original leaf image, applies 
Otsu's method to separate the leaf region from the background, 

then obtains the contour and overlays it onto the leaf region. 
Determine the leaf region's area by measuring the contour's 
area. Next, utilize the segmentation model to forecast the 
disease mask and superimpose it onto the initial image with a 
different colour. Subsequently, identify the contour, sketch the 
outline for the affected part, and determine the area of the 
affected part by analysing the overlaid area, which includes the 
count of non-zero pixels representing the diseased portion. 
Following that, determine the percentage of citrus disease 
affected by comparing the disease area to the total area of 
citrus leaves. In conclusion, the output image displayed the 
classified result and the percentage of citrus disease affected, as 
seen in Table Ⅳ. Next, the citrus leaf image samples processed 
using the HDAP algorithm are displayed in Fig. 7 and Fig. 8, 
while the entire process is illustrated in Fig. 9. 

By utilizing the segmentation model as proposed, the 
training model achieved a success rate with an IOU of 0.9847, 
mean IOU of 0.9846, weighted mean IOU of 0.9874, pixel 
accuracy of 0.9993, mean pixel accuracy of 0.9993, dice 
coefficient of 0.9936, mean boundary f1 score of 0.9557, 
precision of 0.9974, recall of 0.9975, f1 score of 0.9974, 
specificity of 0.9996, loss of 0.0079, and accuracy of 0.9993. 
The Validation model achieved success with the following 
metrics: intersection over union (IOU) of 0.9334, mean IOU of 
0.9334, weighted mean IOU of 0.9517, pixel accuracy of 
0.993, mean pixel accuracy of 0.9931, dice coefficient of 
0.9744, mean boundary F1 score of 0.9504, precision of 
0.9778, recall of 0.9769, F1 score of 0.9773, specificity of 
0.9959, loss of 0.0282, and accuracy of 0.9931. 

 

Fig. 16. Recall, precision, F1-Score and accuracy. 
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Fig. 17. Confusion matrix of the proposed VGG-RefineNet.

VI. CONCLUSION 

This research introduces a new deep learning model using 
convolution, leaky relu, and transfer learning to detect, 
segment, highlight, and classify citrus canker, blackspot, and 
citrus greening diseases found on citrus leaves, a topic not 
covered in existing literature. The method being suggested 
involves four different stages. Initially, the unhealthy region is 
determined using HSV preprocessing, and the mask is applied 
to the original image. Following this, standard image 
preprocessing techniques are performed to improve contrast, 
brightness, scale, and rotation. In the next phase, DeepOverlay 
L-UNet is used to extract additional features from the citrus 
image by enabling slight gradients in the negative inputs with 
the introduction of Leaky Relu on the perimeter of each 
convolution block in the encoder block. This aids in acquiring 
complex features for a more precise and accurate segmentation 
of disease areas. During the third phase, feature extraction and 
classification are carried out using transfer learning techniques. 
The proposed VGG-RefineNet design shortens training time by 
leveraging a pre-trained base model to extract features without 
starting training from scratch. During stage four, the HDAP 
method calculates the affected disease area by obtaining the 
leaf area through contour functions and determining the area of 
the affected region by counting the number of pixels in the 
overlay image that is not zero. Next, once these values are 
identified, the next step is to calculate the ratio of the impacted 
area to the entire leaf area, representing it as a percentage. The 
limitation of the proposed work is after the segmentation 
process the larger area of the region of interest is considered 
for classification purpose, further it can be extended for the 
smaller regions. 

Based on the IOU measures, the proposed method 
outperforms the existing segmentation algorithm to extract the 
affected regions. Further, the classification model achieved a 
maximum success rate for blackspot, citrus canker, citrus 

greening, and healthy class in the citrus leaves dataset, with a 
98% success rate for overall citrus plant disease. 
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