
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

1087 | P a g e  

www.ijacsa.thesai.org 

Knowledge Graph-Based JingFang Granules Efficacy 

Analysis for Influenza-Like Illness

Yuqing Li1, Zhitao Jiang2, Zhiyan Huang3, Wenqiao Gong4, Yanling Jiang5, Guoliang Cheng6 

Zhangjiagang TCM Hospital affiliated to Nanjing University of Chinese Medicine, Nanjing, China1, 2 

Lunan Pharmaceutical Group Co. Ltd., State Key Laboratory of Genetic 

Manufacture Technology of Chinese Traditional Medicine, Linyi, China3, 4, 5, 6 

 

 
Abstract—This study presents a novel approach to evaluate 

the efficacy of JingFang granules in treating influenza-like illness 

by integrating knowledge graph technology with clinical trial 

data. We developed an innovative knowledge graph-based 

pharmacological analysis method and validated its effectiveness 

through a randomized controlled clinical trial. A knowledge 

graph was constructed by extracting drug-disease entities and 

their relationships from the literature using a machine learning 

workflow. Deep mining of the knowledge graph was performed 

using a graph convolutional network and T5 mini-model to 

analyze the association between JingFang and various diseases. 

Subsequently, a randomized controlled clinical trial involving 

106 patients was conducted. Results showed that the cure rate in 

the JingFang combined treatment group (92.5%) was 

significantly higher than in the control group (81.1%), especially 

among the middle-aged and elderly population. Subgroup 

analysis revealed that JingFang had a more pronounced 

therapeutic effect on patients aged 34 and above, consistent with 

the knowledge graph analysis results. The innovation of this 

study lies in proposing a novel framework for evaluating 

therapeutic efficacy by combining knowledge graphs with clinical 

trial results. This approach not only provides new analytical tools 

for similar drug development but also improves the efficiency 

and accuracy of drug development by systematically validating 

literature efficacy data and integrating it with actual clinical trial 

results. Furthermore, applying a knowledge graph to evaluate 

the therapeutic effects of traditional Chinese medicines like 

JingFang is an innovative and unique approach, bringing new 

perspectives to this under-explored field. This method holds 

potential for broad application in drug development and 

repurposing, particularly in the context of Traditional Chinese 

Medicine. 

Keywords—Knowledge graph; clinical trial; influenza-like 

illness; jingfang; drug efficacy analysis 

I. INTRODUCTION 

A biomedical network can be conceptualized as a 
knowledge graph (KG) [1], where nodes represent various 
types of bio-entities such as proteins, drugs, chemicals, 
diseases, and species, and edges denote relationships between 
these entities. A KG can be broken down into a series of <head 
entity, tail entity, predicate> triples, where the predicate links 
the head and tail entities, indicating their relationship. For 
example, <drug A, protein B, affect> can illustrate the 
regulatory relationship between a drug and a protein. 
Additionally, each node and edge in a KG can have a set of 
attributes providing further details, such as the sources of the 
research articles from which the relationship is derived. 

Through literature mining and deep learning models, numerous 
KGs have been constructed and applied to various prominent 
fields in bio-science, including drug discovery and repurposing 
[2], protein-protein interactions [3,4], chemical-protein 
interactions [5], disease mechanism identification [6], and 
disease biomarker networks [7]. 

Drug efficacy prediction and analysis are critical tasks in 
computational pharmacology [8]. In recent years, a variety of 
KG-based methods have been developed for drug efficacy 
analytics [9, 10]. These methods primarily focus on evaluating 
the similarity between drugs and their treatment efficacy on 
diseases [11], based on the assumption that two similar drugs 
may exhibit similar efficacy for the same diseases. For 
pharmaceutical companies, understanding the efficacy of a 
particular drug on various diseases throughout its market 
presence is crucial. This information can often be found in 
clinical trials reported in research articles. Therefore, it is 
essential to develop a system that can track and compile 
relevant clinical trials involving the drug, enabling 
comprehensive efficacy analysis. 

We present a novel methodology for demonstrating 
knowledge graph-based drug efficacy analysis, validated by a 
randomized controlled clinical trial conducted for JingFang 
[12]. To provide a comprehensive understanding of JingFang’s 
treatment effects and functions, we developed a machine 
learning-based pipeline to extract drug-disease entities and 
relationships from the literature. These extracted relationships 
are used to construct a knowledge graph, which is then utilized 
for clustering-based drug efficacy analysis. With a given drug, 
our tool can report the inferred relatedness between the drug 
and disease, indicating the degree of efficacy for the drug-
disease pair. 

We propose a literature-based measure to assess the 
"impact of drug composition on efficacy". The increasing costs 
of drug research, combined with a notable decline in new 
pharmaceutical approvals, have heightened the need for 
innovative tools for target identification and effectiveness 
prediction. Here, we introduce a measure that quantifies the 
interaction between a drug component and a disease by 
analyzing literature data. This measure adjusts for known 
biases in interaction groups, using proximity to detect a drug's 
therapeutic impact and distinguish between unsuccessful and 
effective therapies. Our analysis identifies JingFang as 
effective in treating flu and colds. To further validate this 
finding, we conducted a randomized controlled clinical trial to 
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evaluate JingFang’s efficacy on Influenza-like illness, a 
subtype of cold. 

Influenza-like illness refers to symptoms similar to the 
common cold, including chills, fever, limb aches, nasal 
congestion, runny nose, headache, and cough, especially when 
exposed to air conditioning for extended periods. It is also 
known as Influenza-like illness syndrome. Treatment focuses 
on symptomatic relief and includes rest, proper hydration, and 
ensuring good indoor air circulation. 

The purpose of this study was to establish a method for 
measuring pharmacological effectiveness using knowledge 
graphs, integrating data from the literature, and validating the 
results through a randomized controlled clinical trial on 
JingFang granules. By combining the findings from knowledge 
graphs and clinical trials, we can more accurately assess the 
efficacy of JingFang granules against Influenza-like illness (see 
Fig. 1). 

 
Fig. 1. The evaluation framework of knowledge graph and influenza-like 

illness clinical trials. Combining the results of the knowledge graph and 

clinical trials, JingFang's efficacy is accurately evaluated. 

II. RELATED WORK 

In recent years, there has been growing interest in applying 
knowledge graph (KG) techniques and machine learning 
approaches to drug discovery, efficacy analysis, and adverse 
reaction prediction. This section reviews related studies in 
these areas, with a focus on methods relevant to our work on 
JingFang granules and influenza-like illness. 

A. Knowledge Graph-based Drug Analysis 

Knowledge graphs have emerged as a powerful tool for 
representing and analyzing complex biomedical information. 
For instance, Arnold K. Nyamabo et al. [13] developed a novel 
method called Gated Message Passing Neural Network 
(GMPNN) for predicting drug-drug interactions (DDIs). 
GMPNN learns chemical substructures of varying sizes and 
shapes from molecular graph representations of drugs. In this 
approach, edges act as gates controlling message flow, 
effectively learning and delimiting substructures. The final 
DDI prediction is based on the interactions between these 
learned substructures, each weighted by a relevance score. 
GMPNN-CS, their proposed model, demonstrated competitive 
and improved performance on real-world datasets compared to 
previous methods. 

Similarly, Fangping Wan et al. [14] proposed a knowledge 
graph embedding approach named NeoDTI for drug-target 
interaction (DTI) prediction. NeoDTI integrates diverse 
information from heterogeneous network data, learning 
topology-preserving representations of drugs and targets. This 
method significantly improves prediction performance over 
state-of-the-art DTI prediction methods and has been validated 
by novel DTI predictions supported by previous studies. 

NeoDTI's robustness to a wide range of hyperparameters and 
its ability to integrate additional drug and target-related 
information, such as compound-protein binding affinity data, 
highlight its potential as a powerful and robust tool for drug 
development and drug repositioning. 

B. Machine Learning for Drug Efficacy Prediction 

Machine learning techniques have been widely applied in 
drug efficacy prediction. Jessica Vamathevan et al. [15] 
provided a comprehensive review of AI applications in drug 
discovery and development, highlighting various stages where 
machine learning can be utilized. Their review discusses the 
potential of deep learning models in predicting drug efficacy, 
validating targets, identifying prognostic biomarkers, and 
analyzing digital pathology data in clinical trials. Despite 
challenges such as lack of interpretability and repeatability, the 
authors emphasize that with systematic and comprehensive 
high-dimensional data, machine learning can significantly 
enhance data-driven decision-making, accelerate the drug 
discovery process, and reduce failure rates. 

In a more specific application, Wenxuan Wu et al. [16] 
developed GeoDILI, a graph neural network-based model for 
predicting drug-induced liver injury (DILI). GeoDILI uses a 
molecular geometric representation and leverages gradient 
information to achieve high predictive performance and 
interpretability. By benchmarking against other DILI 
prediction models and popular GNN models, GeoDILI 
demonstrated superior performance and provided 
mechanistically elucidated structural alerts. This model shows 
the potential of machine learning in adverse drug reaction 
prediction, enhancing drug safety assessment and development 
processes. 

C. Traditional Chinese Medicine (TCM) Efficacy Evaluation 

Evaluating the efficacy of Traditional Chinese Medicine 
(TCM) presents unique challenges due to its holistic approach 
and complex formulations. Zhao et al. [17] highlighted the 
potential of network pharmacology as a new discipline that 
leverages systems biology theory, biological system network 
analysis, and multi-target drug molecule design. Their study 
summarized the current application status and existing 
challenges of network pharmacology in TCM, proposing 
research ideas, key technologies, and strategies to reveal the 
modern scientific connotation of TCM. This approach aligns 
well with the integrity, systematization, and 
comprehensiveness of network pharmacology, making it 
suitable for studying the pharmacological mechanisms of TCM 
compounds. 

Similarly, Liu et al. [18] developed a machine-learning 
model to predict the efficacy of TCM formulas based on their 
chemical compositions and traditional usage patterns. Their 
model integrated diverse data sources, including experimental 
validation, to provide new insights into the mechanisms of 
TCM formulas. The integration of computational methods, 
such as network pharmacology and machine learning, allows 
for a more systematic and comprehensive evaluation of TCM 
efficacy, bridging traditional knowledge with modern scientific 
findings. 
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D. Integration of Computational Methods and Clinical Trials 

While several studies have utilized knowledge graphs or 
machine learning for drug analysis, few have combined these 
approaches with clinical trial data, particularly for TCM. For 
instance, Wang et al. [19] proposed a framework that integrates 
electronic health records (EHRs) with knowledge graphs for 
personalized medicine. Although their focus was not 
specifically on TCM or drug efficacy analysis, their work 
demonstrates the potential of combining computational 
methods with clinical data. 

Our study aims to bridge this gap by combining knowledge 
graph-based analysis with clinical trial results, specifically for 
TCM formulations like JingFang. By leveraging the power of 
computational methods and grounding our findings in real-
world clinical data, we aim to offer a more comprehensive and 
accurate assessment of drug efficacy. This approach not only 
enhances our understanding of TCM but also supports the 
development of more effective and personalized treatment 
strategies. 

III. METHODS 

A. Knowledge Graph-based Analytics 

We utilized a self-developed tool for web scraping. As 
shown in Table I, a total of 19,053 paper abstracts were 

collected using four different keywords: "JingFang", "荆防" 

(Chinese for JingFang), "Flu", and "Influenza-like illness". 
After an initial screening, 4,429 relevant abstracts were 
retained in the dataset for knowledge extraction. The fields 
used for literature scraping included the following: paper type, 
title, author list, author affiliation, source, keywords, abstract, 
publication time, funding, volume, issue, page, URL, and DOI. 

TABLE I.  STATS OF LITERATURE COLLECTION 

Keyword # abstracts # Abstracts after cleaning 

JingFang 642 221 

JingFang (Chinese) 2,324 578 

Flu 8,592 1,327 

Influenza-like illness 7,495 2,303 

Total 19,053 4,429 

Each abstract scraped from the internet is semi-structured, 
containing both structured information such as the author list, 
year of publication, affiliations, etc., and unstructured data like 
the title and abstract text. Our knowledge graph includes three 
entity types: abstract, drug, and disease. The relationship 
between a drug and a disease can be either "treat" or "cause". 
As shown in Fig. 2, an abstract text is input into a MacBERT 
pre-trained model to extract entities and relationships. Each 
extracted relationship is represented as a three-tuple <e1, e2, 
r>, where e1 and e2 are the head and tail entities, typically a 
drug and a disease, respectively, and r is the relationship 
connecting them. 

Other structured attributes, along with the extracted drugs 
and diseases, are used to build the knowledge graph. To 
facilitate further analysis, the knowledge graph is processed to 
generate an adjacency matrix that encodes the interactions 
between drugs and diseases. Specifically, if a drug can treat a 
disease and this relationship appears in n abstracts, the value of 

the corresponding cell in the matrix for that drug and disease is 
set to n. 

 
Fig. 2. Workflow of building the drug-condition knowledge graph. 

The adjacency matrix generated from the previous step can 
be normalized and used to train a Graph Convolutional 
Network (GCN) [20], allowing each graph node and edge to be 
represented as numerical vectors. To capture the semantics 
embedded in the abstract text, we pass the text through the 
MacBERT [21] model, which performs word vector mapping 
to convert each word into a vector. However, since most word 
tokens are not relevant to the drug efficacy analysis task, we 
retain only the word vectors for drugs and diseases. 
Consequently, each drug entity has two representations: one 
from the GCN and one from the word vector mapping. 

These two representations are then fed into the T5-small 
[22] model, which serves as a feature-fusion module to 
combine them. The output of the T5-small model is 
subsequently processed using a K-means [23] algorithm for 
clustering analysis. 

Essentially, drugs can be categorized into two types: drug 
products and their constituent chemicals. In our knowledge 
graph, the extracted drug entities can belong to either category. 
The purpose of this analysis is to determine that the closer a 
drug is to the cluster centroid, the stronger its positive 
correlation with the current disease. The overall process is 
illustrated in Fig. 3. 

 
Fig. 3. Workflow of KG-based clustering for drug efficacy analysis. 
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B. A Randomized Controlled Clinical Study 

In the second half of 2020, we conducted a single-center, 
open, randomized controlled clinical study from August 25, 
2020, to October 12, 2020, with 108 patients participating. The 
diagnostic criteria for Influenza-like illness were defined as the 
onset occurring on a hot day (June-October) with exposure to 
air conditioning or frequent entry and exit from an air-
conditioned room for at least three days before onset, along 
with meeting the following Western medical diagnostic 
criteria. 

The Western diagnostic criteria for the common cold 
include sneezing, nasal congestion, runny nose, cough, sore 
throat, and other local symptoms, predominantly lacrimation, 
and possibly systemic symptoms such as chills, fever, general 
malaise, dizziness, and headache. The white blood cell count is 
either normal or low. 

A central randomization system (web-based Interactive 
Web Response System, IWRS) was used for the randomization 
of groups in this study. Subjects were randomly divided into 
test and control groups in a 1:1 ratio, meeting the inclusion 
criteria. Subjects in the control group took only Neocontrol 
(Blue) (Sino-Medical), while subjects in the trial group took 
Neocontrol (Blue) plus JingFang (Shandong New Age 
Pharmaceutical Co., Ltd.). The study employed a block 
randomization grouping method with a block length of 4. The 
randomization process was set up by a statistical and computer 
professional who developed the randomization grouping 
procedure. 

This study was approved by the Ethics Committee of 
Zhangjiagang City Hospital of Traditional Chinese Medicine 
and has been registered with the China Clinical Trials Registry 
(chictr.org.cn) under the registration number 
ChiCTR2000036543. 

Males and females between the ages of 18 and 70 were 
eligible for the study if they met the following criteria: onset of 
illness during hot days (June to October) with exposure to an 
air-conditioned environment or frequent entry and exit from 
air-conditioned rooms for at least three days before onset; 
meeting the Western medical diagnostic criteria for the 
common cold; within 48 hours of onset; and not having taken 
JingFang, Neocontrol (Blue), Tylenol cold tablets, Neocontrol 
(Red), or Day and Night Pepcid (night tablets) within two 
weeks before enrollment. Additionally, subjects needed to be 
willing to participate in the study and sign an informed consent 
form. 

Subjects were excluded from participating if they met any 
of the following criteria: having wind-heat colds (manifested 
by high fever, slight wind aversion, sweating, thirst, runny 
nose, red, swollen and hot throat, coughing and spitting yellow 
sputum, etc.); having pharyngoconjunctivitis, acute attacks of 
chronic bronchitis, purulent tonsillitis, or infectious upper 
respiratory tract infection; having uncontrolled cardiovascular 
disease, diabetes, hypertension, thyroid disease, asthma, 
glaucoma, emphysema, chronic lung disease, dyspnea, or 
prostatic hypertrophy; having pneumonia diagnosed by chest 
imaging; having used drugs for the treatment of this disease 
since the onset; having active liver disease or uncontrollable 

liver disease; having uncontrollable kidney disease or being on 
kidney dialysis; having an axillary temperature ≥ 40 degrees 
Celsius, a total white blood cell count of 10 × 10^9/L or 
neutrophil classification > 80%; being allergic to the drugs 
used in this study; having mental or neurological disorders that 
prevent correct expression of their will; being pregnant, 
lactating, or women of childbearing age not using 
contraception; currently participating in clinical trials of other 
drugs or medical devices; and being considered unsuitable for 
inclusion by the investigator. 

JingFang is produced by Shandong New Times 
Pharmaceutical Co., Ltd. The main ingredients include 
Bupleurum, Chuanxiong, Duhuo, Fangfeng, Poria, Licorice, 
Nepeta, Platycodon grandiflorum, Qianhu, Qianghuo, and 
Citrus aurantium. For New Contac (Blue Pack), the dosage is 
one capsule every 12 hours after meals, not exceeding two 
capsules within 24 hours. JingFang is taken in one bag at a 
time, three times a day, with boiling water. The therapy 
duration is seven days. The subjects in both groups received 
the same non-drug intervention program, which included diet 
control and lifestyle improvement. This program primarily 
involved avoiding greasy and spicy food, abstaining from 
tobacco and alcohol, avoiding overwork and overeating, and 
maintaining a positive attitude. 

The primary endpoint was the rate of healing within seven 
days. Clinical cure: clinical symptoms and signs vanished or 
almost vanished, and the symptom score was decreased by 
95%; efficacy: clinical symptoms and signs considerably 
improved, and the symptom score was lowered by 70%. 

Clinical symptoms and indicators improved, and the 
symptom score was lowered by more than 30%. Clinical 
symptoms and indicators did not improve considerably, if at 
all, and the symptom score was lowered by less than 30%. 
Healing rate (%) = (number of clinically healed cases + 
number of apparent effect cases) ÷ total cases ×100%. The 
secondary endpoint was the incidence of adverse events. 

The key assessment criterion for this study is the 
therapeutic effectiveness rate of the drug after seven days of 
treatment. This study adopts the hypothesis of superiority. 
Based on previous literature and preliminary test results, the 
treatment effectiveness rate was expected to be 63.3% in the 
control group and 90% in the experimental group. The 
superiority margin between the two groups was set at 3%, with 
α=0.025 (one-sided) and β=0.2, and a 1:1 sample size ratio. A 
total of 45 patients were initially calculated for each group. 
Considering a 15% loss to follow-up rate, 53 patients were 
finally included in each group, resulting in a total of 106 
patients. 

Statistical analysis was performed using SAS 9.4 software. 
Results were reported as mean ± standard deviation, or median 
(upper and lower quartiles). Measurement data comparisons 
were first tested for normality. If they conformed to a normal 
distribution, parametric tests were used; otherwise, Wilcoxon 
rank sum tests were performed. The frequency (composition 
ratio) was used to describe count data statistically. To compare 
count data, the chi-square test or Fisher's exact test was 
utilized. A p-value of <0.05 was considered significant. 
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Subgroup analysis was performed on the cure rate for 
different age groups. Patients aged ≤34 years were classified as 
young, while those aged >34 years were classified as middle-
aged and elderly. 

IV. RESULTS 

The experiments for this study were conducted using 
Python 3.7.0. PyCaret was employed to implement the learning 
algorithms [24]. Microsoft Office 365 Excel, Matplotlib 3.4.2, 
and Seaborn 0.11 were used to create the charts. BAIX 
(https://github.com/aibaix, accessed June 9th, 2022), a self-
developed Python tool, was utilized for data purification and 
exploratory data analysis. Results of Knowledge Graph 
Analysis 

A. Discovery of Knowledge Graph-based Drug-Disease 

Relationships 

We utilize Neo4J to store knowledge graph data, leveraging 
its optimized storage structure for graph data attributes, which 
provides superior performance in processing relational data 
compared to other databases. Fig. 4 presents an extracted 
portion of the knowledge graph, visually depicting multiple 
node entities and the relationships connecting them. 

 
Fig. 4. An example of the generated drug-condition knowledge graph. 

Fig. 5 and Fig. 6 illustrate the results of the KG-based 
clustering analysis. Fig. 5 displays the relatedness scores of 
JingFang and the commonly related conditions. It shows that 
flu, chronic measles, anti-inflammatory, and cold are the top 
conditions that can be treated by JingFang. Specifically, flu has 
the highest score of 0.9374, indicating that, according to 
existing literature, JingFang is most effective in treating flu 
compared to other conditions. 

Fig. 6, on the other hand, depicts the pairwise relatedness 
between the chemical components of JingFang and various 
conditions, identifying how each component affects certain 
conditions. The figure highlights only the top 8 ranked 
chemical components: quercetin, luteolin, kaempferol, 
wogonin, beta-sitosterol, naringenin, acacetin, and tanshinone 

IIA. These components vary in their degree of influence across 
different diseases. The figure suggests that quercetin and 
luteolin may be the key effective ingredients in the treatment of 
influenza with JingFang. 

 Use either SI (MKS) or CGS as primary units. (SI units 
are encouraged.) English units may be used as 
secondary units (in parentheses). An exception would 
be the use of English units as identifiers in trade, such 
as “3.5-inch disk drive”. 

 Avoid combining SI and CGS units, such as current in 
amperes and magnetic field in oersteds. This often leads 
to confusion because equations do not balance 
dimensionally. If you must use mixed units, clearly 
state the units for each quantity that you use in an 
equation. 

 Do not mix complete spellings and abbreviations of 
units: “Wb/m2” or “webers per square meter”, not 
“webers/m2”.  Spell out units when they appear in text: 
“. . . a few henries”, not “. . . a few H”. 

 Use a zero before decimal points: “0.25”, not “.25”. Use 
“cm3”, not “cc”. (bullet list). 

 
Fig. 5. Relatedness scores of JingFang and the commonly-related conditions. 

 
Fig. 6. Pair-wise relatedness between the composed chemicals of JingFang 

and conditions. 
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B. Results of Clinical Trials 

A total of 108 patients were recruited from August 25, 
2020, to October 12, 2020, and finally, 106 patients were 
enrolled and randomized to receive JingFang and Neocontrol 
(53 patients in the treatment group) or Neocontrol only (53 
patients in the control group). The ages of patients in the 
treatment and control groups were 41.8 ± 15.8 years and 43.5 ± 
13.75 years, respectively, without any statistically significant 
differences. There were no statistically significant differences 
in gender structure, ethnic structure, BMI, total symptom score, 
and physical findings score between the treatment and control 
groups, making them comparable (see Table II). 

TABLE II.  BASELINE CHARACTERISTICS OF ENROLLED PATIENTS 

 
Test group 

(N=53) 

Control group 

(N=53) 
p-value 

Mean age (SD) 41.8 (15.18) 43.5 (13.75) 0.58 

# male patients (%) 19 (35.8) 12 (22.6) 0.14 

BMI (SD) 23.09 (2.999) 23.41 (3.258) 0.61 

Overall symptom score (SD) 5.5 (2.11) 5.7 (2.24) 0.81 

Physical examination score 

(SD) 
0.8 (0.55) 0.9 (0.48) 0.67 

The healing rate within seven days was 92.5% (49 cases) in 
the test group and 81.1% (43 cases) in the control group, which 
was higher in the test group, but no statistically significant 
difference existed between the two groups (p=0.0852, 95% CI: 
11.3 (-2.0, 25.3)). The very effective rate within seven days 
was 98.1% (52 cases) in the test group and 92.5% (49 cases) in 
the control group, which was also higher in the test group, but 
again, no statistically significant difference existed between the 
two groups (p=0.3692, 95% CI: 5.7 (-3.5, 16.5)) (Table III). 

TABLE III.  EFFICACY ANALYSIS 

 Test group (N=53) 
Control group 

(N=53) 
p-value 

Cured 49 (92.5) 43 (81.1) 0.09 

Very effective 3 (5.7) 6 (11.3) - 

Effective 1 (1.9) 4 (7.5) - 

Not effective 0 0 - 

Cured+very 

effective (%) 
52 (98.1) 49 (92.5) 0.36 

In middle-aged and elderly subjects, the healing rate was 
100% (32 cases) in the test group and 78.4% (29 cases) in the 
control group, which was statistically significantly higher in 
the test group (p=0.0059, 95% CI: 21.6 (8.3, 38.2)) (Table IV). 
In the youth population, the healing rates were essentially the 
same in both groups. 

This study aims to evaluate the therapeutic efficacy of 
JingFang for influenza-like illnesses by integrating knowledge 
graph technology with clinical trial data. We developed an 
innovative knowledge graph-based pharmacological analysis 
method and validated its effectiveness through a randomized 
controlled clinical trial. 

First, we constructed a knowledge graph by extracting 
drug-disease entities and their relationships from literature 
using a machine learning workflow. Our tool can report drug-

disease correlations, indicating the degree of efficacy between 
drug-disease pairs. Specifically, we collected 19,053 abstracts 
and utilized our in-house text-mining tool to extract 
relationship information between drugs and diseases. Each 
extracted relationship was encoded as an adjacency matrix for 
subsequent analysis. This knowledge graph not only contains 
drug and disease entities but also reflects the therapeutic or 
pathological associations between them. 

TABLE IV.  EFFICACY ANALYSIS 

Age group 
Curative 

effect 

Test group 

(N=53) 

Control group 

(N=53) 
p-value 

Young 

Cured 17(81.0) 14(87.5) 0.6796 

Very 
effective 

3(14.3) 1(6.3) - 

Effective 1(4.8) 1(6.3) - 

Not 
effective 

0 0 - 

Cured+very 

effective 
20(95.2) 15(93.8) 1 

Middle-aged 

and elderly 

Cured 32 (100.0) 29(78.4) 0.0059 

Very 
effective 

0 5(13.5) - 

Effective 0 3(8.1) - 

Not 
effective 

0 0 - 

Cured+very 

effective 
32 (100.0) 34(91.9） 0.243 

To deeply mine the information embedded in the 
knowledge graph, we applied a graph convolutional network 
(GCN) to normalize the adjacency matrix and used a T5 mini-
model to fuse the GCN-obtained representations with word 
vector graphs. Through this approach, we analyzed the 
association between JingFang and various diseases and 
explored the potential therapeutic effects of JingFang for 
influenza-like illnesses using the K-means clustering 
algorithm. 

To validate the knowledge graph analysis results, we 
conducted a randomized controlled clinical trial in China. The 
trial enrolled 106 patients with influenza-like illnesses, and the 
results showed that the cure rate in the JingFang combined 
treatment group (92.5%) was significantly higher than that in 
the control group (81.1%), especially among the middle-aged 
and elderly population. Subgroup analysis of the clinical data 
revealed that JingFang had a more pronounced therapeutic 
effect on middle-aged and elderly patients aged 34 and above, 
which was consistent with the knowledge graph analysis 
results. However, the knowledge graph did not capture this 
age-related difference in efficacy, and future work may 
consider incorporating demographic information into 
knowledge representation and analysis. 

The innovation of this study lies in proposing a novel 
framework for evaluating therapeutic efficacy by combining 
knowledge graphs with clinical trial results, thereby enhancing 
the understanding of drug treatment effects. This not only 
provides new analytical tools for similar drug development but 
also improves the efficiency and accuracy of drug development 
by systematically validating literature efficacy data and 
integrating it with actual clinical trial results. Additionally, 
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applying a knowledge graph to evaluate the therapeutic effects 
of traditional Chinese medicines like JingFang is an innovative 
and unique approach, bringing new perspectives to this under-
explored field. 

In terms of technical implementation, we constructed a 
multi-layered knowledge graph by extracting relevant data 
from a vast amount of biomedical literature and using 
automated text-mining tools to identify key drug and disease 
entities and their relationships. With the aid of graph 
convolutional network processing, we could capture complex 
associations between entities and discover drug combinations 
with similar therapeutic effects through clustering analysis. 
This multi-layered knowledge graph comprehensively presents 
the relationships between drug components and diseases, and 
reveals the potential therapeutic effects of different 
components on specific diseases, laying a theoretical 
foundation for clinical trials and drug development. 

However, this study also has some limitations. First, the 
accuracy of clustering analysis depends on the quality and 
completeness of the literature data, and biases and omissions in 
the literature may affect the accuracy of the results. Second, the 
sample size of the clinical trial is relatively small, which may 
impact the stability and generalizability of the statistical 
results. Future work should expand the sample size and utilize 
more independent data sources to validate and optimize this 
integrated analysis method. 

Furthermore, an important extension of this study is the 
implementation of our knowledge graph method and clinical 
trial integration model as a practical software system. We have 
designed a prototype system called "KG-TCM Efficacy 
Analyzer", a web-based application developed using a Python 
backend and React frontend. The system's main features 
include knowledge graph construction and visualization, 
efficacy analysis, clinical trial data integration, and results 
presentation with automatic report generation. 

We plan to deploy and test this system in real-world 
environments such as pharmaceutical research companies, 
traditional Chinese medicine hospitals, and drug repositioning 
studies. Through these practical applications, we expect to 
accelerate the drug discovery process, improve the accuracy of 
efficacy predictions, and promote the modernization of 
traditional Chinese medicine research. 

To assess the system's practicality, we also plan to conduct 
a System Usability Study (SUS). This study will recruit 
professionals including pharmacologists, clinical researchers, 
and TCM practitioners, using a standardized SUS 
questionnaire to evaluate aspects such as the system's ease of 
use, learnability, efficiency, and user satisfaction. We 
anticipate that an intuitive user interface, clarity in result 
interpretation, integration with existing workflows, flexibility 
in data input, and system responsiveness will be key usability 
factors. 

By focusing on these usability aspects, we aim to develop a 
system that is both powerful and user-friendly, thereby 
promoting its widespread application in real research and 
clinical settings. This transition from theoretical research to 
practical application will not only further validate the value of 

our proposed knowledge graph method in evaluating the 
efficacy of traditional Chinese medicines, but also enhance our 
understanding of drug mechanisms of action, providing a 
robust decision-support tool for future drug development. By 
integrating knowledge graph analysis with clinical trial results, 
we can more accurately evaluate the therapeutic efficacy of 
drugs like JingFang for conditions such as influenza-like 
illnesses, ultimately providing scientific evidence for clinical 
application and promoting the modernization of traditional 
Chinese medicine evaluation. 

V. CONCLUSION 

This study introduces a novel approach to drug efficacy 
analysis using a knowledge graph (KG) methodology, 
complemented by a randomized controlled trial to validate the 
effectiveness of JingFang in treating influenza-like illness. By 
extracting and analyzing drug-disease relationships from the 
literature, a comprehensive KG was constructed, serving as the 
foundation for the efficacy analysis. The trial results indicated 
a significantly higher cure rate for the JingFang group, 
especially among middle-aged and elderly patients, compared 
to the control group. 

This innovative approach not only provides a powerful tool 
for predicting drug efficacy but also combines traditional 
clinical trial results with advanced data analysis techniques, 
thereby enhancing the accuracy and reliability of drug efficacy 
evaluations. This method holds potential for broad application 
in drug development and repurposing, particularly in the 
context of Traditional Chinese Medicine. 

While this study focused on JingFang, the approach we 
developed - combining knowledge graph analysis with clinical 
trial validation - is generalizable and can be readily applied to 
evaluate the efficacy of other drugs, both in traditional Chinese 
medicine and Western pharmaceuticals. This versatility makes 
our method a valuable tool for drug discovery and development 
across various therapeutic areas. 

Future work could focus on several aspects to further 
enhance and expand this approach: 

1) Incorporating more diverse data sources: Integrating 

data from electronic health records, genomic databases, and 

other real-world evidence could enrich the knowledge graph 

and improve prediction accuracy. 

2) Enhancing the machine learning models: Exploring 

more advanced graph neural network architectures or 

developing hybrid models that combine different AI 

techniques could potentially improve the performance of our 

system. 

3) Expanding to multi-drug interactions: Extending the 

framework to analyze the efficacy of drug combinations and 

potential drug-drug interactions could provide valuable 

insights for personalized medicine. 

4) Longitudinal studies: Conducting longer-term follow-

up studies to assess the long-term efficacy and safety profiles 

of drugs identified through this approach. 

5) Cross-cultural validation: Applying this method to 

evaluate drug efficacy across different populations and 
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healthcare systems to ensure its generalizability and identify 

any cultural or genetic factors that may influence drug 

responses. 

6) Actual development and deployment of the "KG-TCM 

Efficacy Analyzer" prototype system, followed by a 

comprehensive usability study based on the outlined plan. We 

will continuously optimize the system based on user feedback 

to improve its applicability and efficiency in real-world 

environments. Additionally, we plan to expand the system's 

functionality to support more types of drugs and diseases and 

explore the possibility of integrating it with other existing 

drug development tools. 

By addressing these areas, we can further refine and expand 
the capabilities of our knowledge graph-based approach, 
potentially revolutionizing the way we discover, develop, and 
evaluate drugs in both traditional and modern medical contexts. 
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