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Abstract—This article examines the Dantzig-Wolfe 

decomposition method for solving large-scale optimization 

problems. The standard simplex algorithm solves these problems, 

making the Dantzig-Wolfe method a valuable tool. The article 

describes in detail a new modification of the Dantzig-Wolfe 

decomposition method. This modification aims to improve the 

efficiency of the coordination task, a key component that defines 

subtasks. By significantly reducing the number of rows in the 

coordination problem, the proposed method achieves faster 

computation and reduced memory requirements compared to the 

original approach. Although the Dantzig-Wolfe method has 

encountered problems due to the complexity of implementing 

algorithms for hierarchical systems, this modification opens up 

new potential. 
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I. INTRODUCTION 

Hierarchical intellectual systems are a class of systems with 
multi-level architecture, where components of a lower level 
transmit information to components of a higher level for 
decision -making. Traditional methods for constructing such 
systems can be expensive in computational terms. The method 
of decomposition of Danzig-Wolfe is to take into account the 
search for the optimum of the initial task of linear programming, 
a large dimension with a diagonal structure with binding 
restrictions, to a sequential solution to a number of problems of 
a smaller dimension, followed by the adjustment of the obtained 
solution [1]. 

The research in [2] also discusses a method for decomposing 
linear programs by direct distribution. This approach is an 
extension or alternative to other decomposition methods such as 
Dantzig-Wolf decomposition, focusing on the practical aspects 
of solving large-scale linear programming problems by 
distributing computational effort. 

Decomposition methods are often used in optimization 
problems, especially in the context of linear programming, to 
efficiently solve large-scale problems that would be 
computationally complex or infeasible using traditional 
methods. Such methods break a complex problem into smaller 
and more manageable subproblems. This separation allows for 
more efficient calculations and the use of problem structure to 
reduce overall complexity. 

Solving linear programming problems is relevant. In [3]-[7] 
publications examine various aspects of linear optimization, 
providing theoretical foundations and practical approaches that 
are reflected in further research and selection of the optimal 
solution. 

There is a mathematical programming language, which is 
described in detail in [8] for its syntax and application in 
formulating and solving mathematical programming models. It 
can be integrated with various solvers, allowing users to choose 
the most efficient solver for their particular problem. Although 
easy to use, learning the AMPL syntax and efficiently modeling 
complex problems can require considerable time and effort, and 
the performance of models in AMPL can be highly dependent 
on the capabilities of the chosen solver. 

Since its inception in the early 1960s by George Dantzig and 
Philip Wolfe, the Dantzig-Wolfe decomposition method has 
stood as a paragon of operational research, pioneering the 
efficient solution of complex linear programming problems via 
decomposition into subproblems [9]. 

Therefore, in [10]-[15] an attempt is made to individually 
develop decomposition methods for energy models, which 
allows for the efficient handling of certain features such as 
network structures or resource constraints. 

Despite its widespread adoption and proven efficacy, 
evolving computational demands and increasingly complex 
optimization problems have highlighted the need for 
enhancements, particularly concerning the method's 
computational efficiency in handling the coordinating problem. 
Also worth noting are modern solutions that combine 
reinforcement learning and other optimization methods to solve 
complex 2D irregular packing problems [16], use deep 
reinforcement learning, which allows to automatically learn and 
improve strategies for solving packing problems [17], [18], 
propose an effective method for solving quadratic programming 
problems, which are common in various fields [19]. Resource 
management in hierarchical systems is also crucial in large 
organizations or systems [20], emphasizes the importance of 
coordination, improving the overall performance of the system. 

Therefore, in [21] the African buffalo mechanism is 
presented, a new metaheuristic for solving the traveling 
salesman problem (TSP), and in [22] focuses on optimizing path 
planning for service robots, which is crucial for efficiency in 
work settings. A hybrid approach [23] combines different 
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clustering methods to exploit their strengths, potentially 
improving clustering accuracy. In [24] proposes a new method 
that combines binary search and merge sort, potentially 
improving search efficiency in unsorted datasets. In [24] 
Combines elements of differential evolution with discrete 
optimization methods, potentially improving performance. [25] 
presents the Dingo optimization algorithm, a novel 
metaheuristic approach. It is specifically designed to optimize 
power system stabilizers, which are critical to maintaining 
system stability. [26] identifies key gaps in the functionality of 
learning management systems (LMS), providing valuable 
insights for improving these systems. In [27] focuses on 
optimizing the placement and operation of distributed 
generation plants to minimize losses in electrical systems. Due 
to the large amount of data, detailed and high-quality data may 
be required for accurate modeling, which may not always be 
available. In [28] provides a linear programming approach to a 
classical combinatorial optimization problem, offering exact 
solutions. This approach may face scalability issues as the 
problem size increases. The efficient solution to the problems in 
[29]–[33] combines column generation with the branch and 
bound method, making it effective for large-scale integer 
programming problems. 

By solving subproblems independently, such methods 
enable parallel processing, which can significantly reduce 
computation time for large-scale problems [34]-[35]. Although 
the subproblems are solved independently, the method also 
provides mechanisms to coordinate their solutions, providing a 
globally optimal solution to the original problem [36]-[39]. In 
general, decomposition methods are used because they offer a 
systematic and efficient way to solve large-scale optimization 
problems while providing efficient and accurate solutions. 

This article introduces a significant modification aimed at 
addressing these challenges, emphasizing the method's pivotal 
role in operational research and its potential evolution to meet 
modern computational needs. Through an in-depth analysis, we 
explore the genesis of this modification, its theoretical 
foundation, practical applications, and the promising horizon it 
opens for future research and application in various domains. 

Devised as a solution to the computational challenges posed 
by large-scale linear programming problems, the Dantzig-Wolfe 
decomposition method represents a critical milestone in the field 
of optimization. By partitioning a complex problem into a 
master problem and various subproblems, this method 
significantly streamlines the computational process, enabling 
independent management and resolution of problem 
components. This inherent flexibility and efficiency facilitated 
early successes in a range of applications, from logistics to 
network design, setting the stage for further innovations. 
However, as the complexity and scale of optimization problems 
have expanded, the method's limitations, particularly in the 
efficiency of coordinating solutions among subproblems, have 
become increasingly apparent. This realization has spurred the 
development of the proposed modification, which seeks to 
enhance the method's computational efficiency through 
algorithmic innovation and the integration of modern 
computational technologies [40]. 

The imperative for the Dantzig-Wolfe decomposition 
method, and by extension its proposed modification, lies in the 
unmet need for efficient solutions to large-scale optimization 
problems that exceed the capabilities of traditional linear 
programming techniques. These conventional methods often 
falter in the face of the immense scale and complexity 
characteristic of contemporary optimization challenges, 
rendering them computationally infeasible. The decomposition 
approach, therefore, emerges not only as a solution to these 
challenges but as a necessary evolution in the toolkit of 
operational research, enabling the practical resolution of 
problems previously considered beyond reach. 

Spanning a diverse array of sectors, the Dantzig-Wolfe 
decomposition method's practical applications underscore its 
versatility and effectiveness in addressing complex optimization 
problems. From enhancing efficiency in transportation and 
logistics to optimizing network designs and streamlining supply 
chain management, the method's capacity to break down 
multifaceted problems into manageable subcomponents has 
been invaluable. The proposed modification promises to further 
amplify this capacity, offering enhanced computational 
efficiency that could broaden the method's applicability to even 
more complex and large-scale problems, thereby extending its 
utility in real-world scenarios. 

The potential of the modified Dantzig-Wolfe method 
extends far into the future, promising exciting advancements in 
the field of operational research. With the integration of 
emerging technologies such as parallel computing, artificial 
intelligence, and advanced heuristics, the modification opens 
new avenues for optimizing the efficiency and applicability of 
the decomposition method. These advancements hold the 
promise of transforming the landscape of optimization problem-
solving, offering more agile, efficient, and scalable solutions to 
the complex challenges that define the modern era. 

II. METHODOLOGY 

The Dantzig-Wulf method was an important tool for solving 
large structured models of optimization problems that could not 
be solved using the standard simplex algorithm. This article 
illustrates the algorithm of the modified Dantzig-Wulf 
decomposition method with an efficient, in terms of speed and 
stability of the computational process, a coordinating task 
developed by the author for solving problems of a linear 
programming problem with a block-diagonal structure with 
binding constraints. 

Recently, due to the fact that the implementation of complex 
algorithms for the study of hierarchical systems, which place 
great demands on the method, not only from the point of view 
of the pure speed of the computational process and, from the 
point of view of the availability of large amounts of memory 
and, to the speed of the computational process for the formation 
of recommendations management of complex hierarchical 
systems under conditions of uncertainty, which led to the fact 
that the Danzig-Wolfe method became less popular. 

In the original Danzig-Wulf decomposition method, the 
coordinating problem contains the number of rows equal to the 
sum of the number of equations in the linking constraint - 𝑚0 
and the number of block constraints - q. In the developed 
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modification of the decomposition method, the coordinating 
task contains with contain   ( 𝑚0 +1) rows. Since it is the 
coordinating task that affects the solution of subtasks by 
changing the values of the coefficients of the objective function, 
then reducing the dimension of the coordinating task leads to an 
increase in the computational efficiency of the decomposition 
method in (𝑚0 + 𝑞)/(𝑚0 + 1), times compared to the original 
decomposition method. The experience of practical application 
of the decomposition method for solving problems of high 
dimension was insignificant and, in many cases, unsuccessful. 
The performed computational experiments for problems with 
matrix order from 90 to 700 showed that, in terms of the number 
of iterations to obtain the optimal plan, the proposed 
modification of the Danzig-Wulf decomposition method has the 
same convergence as the simplex method, but the requirements 
for computer memory are reduced, and the computational 
efficiency is increased in (𝑚0 + 𝑞)/(𝑚0 + 1) times. 

III. RESULTS AND DISCUSSION  

Proposed modification below of decomposition method is a 
further its development [1]-[8], [11], [12], [16] aimed at improve 
the efficiency of the method to solve problems linear 
programming in the block diagonal structure with binding 
constraints of the following form. 

  𝑧 = 𝐶1𝑥1+. . . +𝐶𝑘𝑥𝑘+. . . +𝐶𝑛𝑥𝑛  min                            (1) 

        𝐴1𝑥1 + . . . + 𝐴𝑘𝑥𝑘   +   . . . +𝐴𝑁𝑥𝑁 = 𝑏0                        (2) 

𝐷1𝑥1                                                        ≥ 𝑏1,           

                     … 

                               𝐷𝑘𝑥𝑘                                                 ≥ 𝑏𝑘,        (3) 

… 

                                  𝐷𝑁𝑥𝑁                          ≥ 𝑏𝑁 , 

𝑥𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑘. . . , 𝑁 

Taking as its first support program - an artificial basis to 
replace the task (1) - (3) of the extended task, associated with the 
minimization of a linear form. 

𝑧 = 𝐶1𝑥1 + 𝐶2𝑥2 +⋯+ 𝐶𝑞𝑥𝑞 + 

+𝑊(𝜉1 + 𝜉2+. . . +𝜉𝑞 + 𝜉0)                         (4) 

variable problem, subject to conditions 

𝐴1𝑥1 + 𝐴2𝑥2+. . . +𝐴𝑞𝑥𝑞                         + 𝐸0𝜉0 = 𝑏0             (5) 

𝐷1𝑥1                                    + 𝐸1𝜉1                            = 𝑏1, 
𝐷2𝑥2                            +𝐸2𝜉2                 = 𝑏2, 

    

                                   
                𝐷𝑞𝑥𝑞               +𝐸𝑞𝜉𝑞 = 𝑏𝑞 ,         (6)                                                                                        

          

 𝑥1 ≥ 0, 𝑥2 ≥ 0, . . . , 𝑥𝑞 ≥ 0, 

 𝜉1 ≥ 0, 𝜉2 ≥ 0, . . . , 𝜉𝑞 ≥ 0, 𝜉0 ≥ 0. 

Here    𝐶𝑖 = (𝐶𝑖1,…, 𝐶𝑖𝑚𝑖)  - line vector; 

𝑏𝑖 = (𝑏𝑖1, …, 𝑏𝑖𝑚𝑖)- vector - columns of the right sides of 

restrictions; 

𝜉𝑖 = (𝜉𝑖1, …, 𝜉𝑖𝑚𝑖) - vector - columns of artificial variable; 

𝐴𝑘 = [𝑎𝑖𝑗]  𝑚0,𝑛0
,   𝐷𝑘 = [𝑎𝑖𝑗

𝑘 ]
  𝑚𝑘,𝑛𝑘

 - blocks of the matrix 

conditions; 

𝐸𝑖 - single block matrix; 

W - coefficients of artificial variables of the problem. 

We will now present a modified version of decomposition 
method of Dantzig - Wolfe. Denoted by Ω - many plans, given 
the conditions (5) and (6), by 𝛺1  - a lot of plans, given the 
conditions (5), 𝛺2- a lot of plans, given the conditions (6). 

It's obvious that 𝛺 = 𝛺1⋂𝛺2. 

We introduce the following notation for the extended tasks: 

(𝑥𝑖|𝜉𝑖)
′ = 𝑦𝑖 , (𝐴𝑖|0) = �̄�𝑖 , (𝐷𝑖𝐸𝑖) = 

= �̄�𝑖 , (𝐶𝑖𝑊. . .𝑊⏟    
𝑚𝑖

) = �̄�𝑖 .           (7) 

Then the problem (4) - (6) can be written as: find a vector  
minimizing the objective function: 

         𝑧 = �̄�1𝑦1 + �̄�2𝑦2+. . . +�̄�𝑞𝑦𝑞 +𝑊𝜉0,          (8) 

with constraints: 

�̄�1𝑦1 + �̄�2𝑦2+. . . +𝐴𝑞𝑦𝑞                                                      .          (9) 

       �̄�1𝑦1                  

                                     

                                �̄�𝑘𝑦𝑘                                         (10) 

                                             

                      �̄�𝑞𝑦𝑞                        

                                             

 

We introduce the following notation: 

                      �̄� = (�̄�1… �̄�𝑞), �̄� = (�̄�1|�̄�2|… |�̄�𝑞), 𝑏0 = 

                     = (𝑏1. . . 𝑏𝑞)
′,                      (11) 

1D
      … 

�̅�   =                         kD
          (12) 

                                          … 

                                                        qD
 

Then the problem (7) - (8) formed another way: find a vector 
y, minimizing: 

𝑍 = 𝑊𝜉0 + �̄� 𝑌,           (13) 

with constraints: 

𝐸0𝜉0 + �̄� ⋅ 𝑦 = 𝑏0,              (14) 

�̄�𝑦 = 𝑏, 𝑦 ≥ 0.                                 (15) 

 

,kb
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Many  𝛺2 , given the restrictions (14) can be, as well as a 
convex polyhedron, and unlimited convex polyhedron. 

1) Consider first the case when Ω2 - bounded set (convex 

polyhedron). Then any element  y ∈ Ω2can be represented by 

as a   convex     combination   of    the   vertices   of  

the  

polyhedron 𝛺2. 

    𝑦 = ∑ 𝑎𝑖𝑦
𝑗𝑁

𝑗=1 , ∑ 𝑎𝑖 = 1
𝑁
𝑗=1 , 𝑎𝑖 ≥ 0, 𝑗 = 1, . . . , 𝑁           (16) 

Therefore, the problem (13) - (15) can be interpreted as 
follows: it is necessary to select all of the pixels 𝑦 ∈ 𝛺2such that 
satisfy equations (14) and minimize the function (11). 

Substituting (16) into (13) yields the following so-called 
"coordination" problem: minimize: 

𝑍 = 𝑊𝜉0 + ∑ 𝑓𝑗𝑎𝑗
𝑁
𝑗=1          (17) 

with constraints 

𝐸0𝜉0 + ∑ 𝑝𝑗𝑎𝑗
𝑁
𝑗=1 = 𝑏0,         (18) 

 ∑ 𝑎𝑗
𝑁
𝑗=1 = 1, 𝑎𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑁        (19) 

were, 

𝑓𝑗 = �̄�𝑦
𝑗 = (�̄�1𝑦1

𝑗
+⋯+ �̄�𝑞𝑦𝑞

𝑗
), 

𝑃𝑗 = �̄�𝑦
𝑗 = (�̄�1|. . . |�̄�𝑞)(𝑦1

𝑗
. . . 𝑦𝑞

𝑗
)′. 

Constraint matrix (18), (19) has just  lines, 
but much larger than the original object (13) - (15) the number 
of variables. However, this problem can be solved by having to 
start only one extreme point of the polyhedron  𝛺2 and use, as 
will be shown below the "Column generation method" [3]. 

Such starting at the point in this case is one of the vertices of 
the polyhedron defined by constraints (15) in the extended 
problem, namely: 

𝑦1 = (0|𝜉𝑖|. . .|0|𝜉𝑞)
′ = (0|𝑏1|. . . |0|𝑏𝑞)

′.               (20) 

To this point we have: 

𝑓1 = �̄�𝑦
1 = 𝑊(∑ 𝑏1𝑖+. . . +

𝑚𝑖
𝑖=1 ∑ 𝑏𝑞𝑖

𝑚𝑞
𝑖=1

),

𝑃1 = �̄�𝑦
1 = (0. . .0).⏟  

𝑚0

}        (21) 

Therefore, it corresponds to the initial reference plan of the 
coordinating problem 𝜉0 = 𝑏0, 𝑎1 = 1 , the basic matrix B of 
dimension (𝑚0 + 1)  and the vector of coefficients of the 
objective function: 

               𝑓𝐵 = (𝑊. . .𝑊⏟    
𝑚0

𝑓1).         (22) 

Suppose that as a result of the previous iteration received 

support program 𝛬𝑆 = (𝑎𝑖𝑗 , . . . , 𝑎𝑖𝑚0+1)
′, coordinating tasks and 

the corresponding basis matrix 𝐵 = (𝑃𝑖1,. . . , 𝑃𝑖𝑚0+1). 

At the same time, we obtain the vector of dual variables: 

𝛱 = 𝑓𝑏 ⋅ 𝐵
−1 = (П|П0),         (23) 

where in the vector  П = (П1. . .П𝑚0) corresponds to the 
constraints (18), and П0- the restriction (19). 

In order to determine the possibility of improving the 
reporting of the support program coordination tasks needed for 
each no basic conditions vector matrix (18), (19) to calculate the 
characteristic difference (evaluation): 

𝛥о = П |
𝑃𝑗
1
| − 𝑓𝑗 = П0 + (П ⋅ �̄� − �̄�)𝑦

𝑗 .         (24) 

If 𝑚𝑎𝑥 𝛥𝑗 = 𝛥𝑠 ≤ 0, the solution is optimal and the optimal 

expansion plan of the problem (13) - (15) is calculated as 
follows: 

         𝑦 = 𝑎𝑖1𝑦
𝑖1+. . . +𝑎𝑖𝑚0+11𝑦

𝑖1𝑚0+1         (25) 

If max
𝑗
∆𝑗 = ∆𝑠> 0 , then this solution is not optimal 

coordination problems and need to go to the support program of 
the problem with a smaller value of the linear form (6). 

Finding max
𝑗
∆𝑗  equivalenting solving subtasks of the form: 

minimize: 

  𝑍𝑖 = (𝐶̅ − 𝜋�̅�) ∙ 𝑦,                                (26) 

when restrictions: 

     �̅�𝑦 = 𝑏, 𝑦 ≥ 0.                                            (27) 

The separability of the objective function (26) and limits the 
independence of (15) it follows that the problem (26), (27) splits 
into q mutually independent sub-tasks to the following:  

minimize: 

                    𝑍𝑖 = 𝐶�̅�
𝑖𝑦𝑖                                               (28) 

with constraints: 

       𝐷𝑖𝑦𝑖 = 𝑏𝑖 , 𝑦𝑖 ≥ 0.                                           (29) 

       𝐶̅̅ ̅̅ ̅̅ ̅
𝜋
𝑖 = (𝐶�̅� − 𝜋�̅�𝑖),   𝑖 = 1, … , 𝑞.                        (30) 

To solve subtasks q (28), (29) we use the simplex method in 
combination with the method of artificial bases. Due to the 
limited set of 𝛺2 the new support program is received by solving 
the subtasks: 

      𝑦𝑠 = (𝑦1
𝑠 𝑦2

𝑠  … 𝑦𝑞
𝑠 )                                          (31) 

is one of the vertices of the polyhedron 𝛺2. 

If this plan: 

              𝑍𝑠 − 𝜋0 =∑𝑍𝑖
𝑠

𝑞

𝑖=1

− 𝜋0 = 

      = ∑ (𝐶�̅�
𝑞
𝑖=1 − 𝜋�̅�𝑖)𝑦𝑖

𝑠−𝜋0 = 0                   (32) 

That support plan Λ𝑖  coordinating tasks is optimal. If 

                           𝑍𝑠 − 𝜋0 < 0                      (33) 

It is possible to further decrease the objective function, and 
then the base matrix B must be turned vector: 

Njyi ,...,,

)1( 0 m
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   𝑃̅̅ ̅̅𝑠 = |
�̅�              𝑦𝑠

1
| =

   |
𝐴1̅̅ ̅𝑦1

𝑠 + … +𝐴𝑞̅̅̅̅ 𝑦𝑞
𝑠

1
|,                                  (34) 

and vector 𝑓𝐵 − element  𝑓𝑠 = 𝐶̅𝑦
𝑠. 

Thus, necessary at each iteration column is generated by 
solving q local sub (25), (26). 

Since the known degradation  Λ𝑖 = (𝑑𝑖1…𝑑𝑖𝑚0+1)
′  and  

Λ𝑠 = (𝑑𝑖𝑠 …𝑑𝑖𝑚0+𝑠)
′  , (𝑏0 1)⁄ ′

 and  �̅�𝑠  on the basis vectors 

under consideration B, then for the vector output from the basis 
of need as usual to find relations 

               
𝑑𝑖𝑘

  𝑑𝑖𝑘𝑠
  for all 𝑑𝑖𝑘𝑠 > 0         (35) 

and to withdraw from the basis vector �̅�𝑖𝑟,, appropriate, the 
least of these relations. 

If all 𝑑𝑖𝑘𝑠 > 0, the coordinating problem has no solution, and 

the objective function in the original problem (13) - (15) is 
unlimited. 

Thus obtained a new base matrix B corresponds to the new 
support plan for coordinating tasks, which again is tested for 
optimality. 

2) Consider now the case when 𝛺2   - unlimited a 

multifaceted set and 𝑦𝑗 , 𝑗 =, … ,𝑁1 −   set of its vertices and 

𝑅𝑗, 𝑗 =, … , 𝑁2 −set of direction vectors of the unbounded edges, 

which are known [5] It is defined as a non-zero solution of the 

matrix of the homogeneous equation: 

                         �̅� ∙ 𝑦 = 0.                                    (36) 

Then any y∈ element can be represented as 

𝑦 = ∑ 𝑑𝑗𝑦
𝑗𝑁1

𝑗=1 + ∑ β𝑗𝑅𝑗
𝑁2
𝑗=1  ,

∑ 𝑑𝑗
𝑁1
𝑗=1 = 1,

𝑑𝑗 ≥ 0, 𝑗 = 1,… , 𝑁1, β𝑗 ≥ 0, 𝑗 = 1,… , 𝑁2

}                 (37) 

Substituting (33) into (10) and (11) yields "coordinating 
task" of the form:  

Minimize: 

𝑍 = 𝑊𝜉0 +∑ 𝑓𝑗𝑑𝑗
𝑁1
𝑗=1 + ∑ 𝑓𝑁1+𝑗β𝑗 ,

𝑁2
𝑗=1                   (38) 

with constraints: 

𝐸0𝜉0 + ∑ 𝑃𝑗𝑑𝑗
𝑁1
𝑗=1 +∑ 𝑃𝑁1+𝑗β𝑗 = b0,

𝑁2
𝑗=1

∑ 𝑑𝑗
𝑁1
𝑗=1 = 1,

𝑑𝑗 ≥ 0, 𝑗 = 1,… , 𝑁1, β𝑗 ≥ 0, 𝑗 = 1,… , 𝑁2

}         (39) 

           

 𝑓𝑁1+𝑗 = 𝐶
̅𝑅𝑗, 𝑃𝑁1+𝑗 = �̅�𝑅𝑗 , 𝑗 = 1, … , 𝑁2                  (40) 

From the preceding, this case differs in that the coordinating 
task (34) for checking on the optimality of one of the reference 
plans (39) it is possible that at least one of the subs (25) and (26) 
can turn unlimited solution. 

Suppose that the k-th subtask 

min 𝑍𝑘 = 𝐶�̅�
𝑘𝑦𝑘1 +⋯+ 𝐶�̅�,𝑛𝑘+𝑚𝑘

𝑘    𝑦𝑘,𝑛𝑘+𝑚𝑘,       (41) 

�̅�𝑘𝑦𝑘 = 𝑏𝑘 ,   𝑦𝑘 ≥ 0, 
 on one of the iterations received the support plan: 

            𝑦𝑘 = (𝑦𝑘1…𝑦𝑘𝑚𝑘   0… 0⏟  
𝑛𝑘

)

′

              (42) 

which is connected with a system of linearly independent 

vectors �̅�1
𝑘, �̅�2

𝑘, … , �̅�𝑚𝑘
𝑘 , form a basis. Suppose, for some vector 

�̅�𝑗,, included in the matrix of conditions �̅�𝑘 and not belonging to 

a number of basic, all the coefficients 
(𝑦𝑘)1𝑗, (𝑦𝑘)2𝑗 , … , (𝑦𝑘)𝑚𝑘𝑗 expansion him on the basis vectors 

were non-positive, and evaluation: 

     ∆𝑗= 𝐶�̅�1
𝑘 (𝑦𝑘)1𝑗 +⋯+ 𝐶�̅�𝑚𝑘

𝑘  (𝑦𝑘)𝑚𝑘𝑗 − 𝐶�̅�𝑗
𝑘 > 0            (43) 

This means that in the k-th subtask is not an optimal plan and 
the objective function 𝑍𝑘is unlimited. 

Then directive vector of unlimited ribs, along which there is 
an unlimited decrease in the objective function (23) is 
determined by solving the equation (36), which is written as 
follows: 

∑ ∑ �̅�𝑗
𝑖 ∙ 0

𝑛𝑖
𝑗=1 + [�̅�1

𝑘(𝑦𝑘)1𝑗 +⋯+ �̅�𝑚
𝑘(𝑦𝑘)𝑚𝑘𝑗 +

𝑘−1
𝑖=1

∑ �̅�𝑖
𝑘 ∙ 0 − �̅�𝑗

𝑘 + ∑ �̅�𝑖
𝑘 ∙ 0

𝑛𝑘
𝑖=𝑗+1

𝑗−1
𝑖=𝑚𝑘+1

] + ∑ ∑ �̅�𝑗
𝑖𝑛𝑖

𝑗=1
𝑞
𝑖=𝑘+1 ∙ 0 =

0                   (44) 

After discarding zero terms in this vector equation of we 
obtain a new equation that determines the nonzero vector 
elements 𝑅𝑠: 

            �̅�1
𝑘(𝑦𝑘)1𝑗 +⋯+ �̅�𝑚𝑘𝑗 − �̅�𝑖

𝑘=0.         (45) 

This shows that (𝑛1 +𝑚1 +⋯+ 𝑛𝑞 +𝑚𝑞) is dimensional 

vector: 

𝑅𝑘
𝑠 = ( 0…0⏟  

∑ (𝑛𝑖+𝑚𝑗)
𝑘−1
𝑖=1

− (𝑦𝑘)1𝑗 −⋯−

(𝑦𝑘)𝑚𝑘𝑗  0…  0 1 0…  0  ⏟          
𝑛𝑘

0…0⏟  
∑ (𝑛𝑖+𝑚𝑗)
𝑞
𝑖=𝑘+1

)          (46) 

is the direction vector of unlimited ribs of convex 

polyhedron   2
. In this case, the support program coordination 

problem (38), (39) the condition (33), hence the reference plan 
is not optimal and to improve it, it is necessary in the basic 
matrix of the coordinating tasks include vector: 

                     𝑃�̅� = |

𝐴     𝑅𝑆
  
0
 

|                                  (47) 

Instead of one of the old vectors being found by the usual 

simplex method for the rule, and in vector - 𝑓𝐵 element𝑓𝑠 = 𝐶̅ ∙
𝑅𝑆. After a finite number of iterations is obtained an optimal 
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solution coordinating task, or make sure the target function is 
unbounded on an admissible set of plans. 

Obviously, the solution may be unlimited in not one, but 
several subtasks. Given the fact that this case is not in the 
literature reviewed, we explain it in detail. 

Without loss of generality, assume that an unlimited decision 
turned out not only to the first, but also, for example, in the l-th 
subtask 𝑙 ≠ к,  к≤ 𝑞,   𝑙 ≤ 𝑞 . Then, for some of the support 
program and the corresponding basis by the decomposition of 

one of the no basic vectors 𝑃𝑡
𝑙
got rating ∆𝑡

𝑙> 0, all coefficients 
(𝑦𝑙)1𝑡 …(𝑦𝑙)𝑚𝑙𝑡 its decomposition are non-negative. Therefore, 

in addition to unlimited ribs with direction vector 𝑅𝑆
𝐾  defined by 

(46), there is another unrestricted edge with direction vector: 

𝑅𝑆
𝑙 = ( 0…0⏟  

∑ (𝑛𝑖+𝑚𝑖)
𝑙−1
𝑖=1

− (𝑦𝑙)1𝑡 −⋯−

(𝑦𝑙)𝑚𝑙𝑡
0…01 0…0

𝑡⏟        
𝑛𝑙

0…0⏟  
∑ (𝑛𝑖+𝑚𝑖)
𝑞
𝑖=𝑙+1

            (48) 

In this case, the formation of a new vector introduced into 
the basis of the coordinating task, as follows from the theory of 
linear programming, to reduce the number of iterations should 
choose the direction vector, which corresponds to the greater 

value Δ evaluation. If, for example ∆𝑗
𝐾> ∆𝑡

𝐾, then 

                   𝑃�̅� = |

𝐴    𝑅𝑆
𝐾 

 
0
 

|                                              (49) 

Proceeding in accordance with this rule, after a finite number 
of iterations we obtain the optimal solution coordinating tasks, 
or define that the objective function is unbounded on an 
admissible set of plans. 

This version of the method of decomposition of Danzig - 
Wolfe is different from normally recommended for linear 
programming problems such as (1) - (3) the fact that in the last 
set Ω2 plans presented in the form of a direct product of the sets 
Ω21... Ω2q, given restrictions: 

                   𝐷𝑖𝑦𝑖 = 𝑏𝑖 , 𝑖 = 1,… . , 𝑞.                                 (50) 

Then, if, for example, all Ω2i, I = 1,…,q - convex polyhedral, 
any element y € Ω2  can be represented as a convex combination 

of extreme points 𝑦𝑖
𝑗
 ,  i=1, …, q, j=1, …, N1 , polyhedral Ω21... 

Ω2q:  

                             𝑦 = ∑ ∑ 𝛼𝑖𝑗𝑦𝑖
𝑗
 ,

𝑁𝑖
𝑖=1

𝑞
𝑖=1   

                                   ∑ 𝛼𝑖𝑗 = 1 ,
𝑁𝑖
𝑖=1          (51) 

                                 𝛼𝑖𝑗 ≥ 0, 𝑖 = 1,… , 𝑞, 𝑗 = 1,… , 𝑁𝑖 

Substituting (51) into (14), (15), we obtain the following 
coordinating task minimize: 

                            𝑍 = 𝑊𝜉0 +∑ ∑ 𝑓𝑖𝑗𝛼𝑖𝑗  ,
𝑁𝑖
𝑖=1

𝑞
𝑖=1              (52) 

with constraints 

                         𝐸0𝜉0 + ∑ ∑ 𝑃𝑖𝑗𝛼𝑖𝑗 = 𝑏0 ,
𝑁𝑖
𝑖=1

𝑞
𝑖=1                 (53) 

                   

                       ∑ 𝛼𝑖𝑗 = 1 ,
𝑁𝑖
𝑗=1

              𝛼𝑖𝑗 ≥ 0, 𝑖 = 1, … , 𝑞,

                𝑗 = 1, … , 𝑁𝑖 , 𝜉0 ≥ 0

}                       (54) 

where, 

                            𝑓𝑖𝑗 = С𝑖𝑦𝑖
𝑗
,     𝑃𝑖𝑗 = 𝐴𝑖𝑦𝑖

𝑗
,                    (55) 

In this coordination problem constraints (53) and (54) do not 
contain (𝑚0 + 1), and (𝑚0 + 𝑞)  lines.  

Failures in the application of the Dantzig-Wolfe 
decomposition method may occur not due to the shortcomings 
and incorrectness of the method, but due to some features that 
really affect its convergence. 

The latter include the following: 

1) The decomposition method is not directly applicable 

when the right parts of the binding constraints (14) are equal to 

zero. In this case, the right side of the coordinating problem will 

contain only one nonzero component corresponding to 

constraint (19). As a consequence, in the resulting support plan 

Λ, only the    (𝑚0 + 1)-th component will be equal to one, and 

all the rest will be zero. 

As a result, the process of improving the basic plan of the 
coordinating task loses all meaning. But this phenomenon can 
be easily avoided, for example, by expressing some variables xij 
using block constraints (15) in terms of equal parts bi and other 
variables of the i-th block, and then excluding these variables 
together with the corresponding equations from the i-th block 
and from connecting equations. Then, in these blocks, you 
should add the conditions for the non-negativity of the excluded 
variables. 

The second way is even easier. It consists in the fact that very 
small positive values are assigned to the right parts of the 
binding constraints (14), i.e. 𝑏0 = ℇ, ℇ > 0 .  The performed 
computational experiments have shown that for tasks whose 
optimal plans according to (31) are represented as a linear 
combination of vertices and unlimited edges, the number of 
iterations providing the optimal plan, at 𝜀 = 10−4: 10−3  has 
decreased by more than 2-3 times compared to the first method. 

This is explained by the fact that the representation of the set 
of admissible plans according to (33), generally speaking, is 
ambiguous [5]. Therefore, in the second way of expressing the 
vector, the optimal solution (25) was obtained in the form of a 
linear combination of vectors, some of which contained non-
zero components from artificial variables, and the coefficients 
𝛼𝑖 corresponding to these vectors were equal to zero. 

2) In those cases when the range of admissible values of 

the problem variables, given by block constraints (14), is an 

unlimited polyhedral set, at some iterations of the search for the 

optimal plan, the problem of choosing from among several one 

unlimited edge to form a new vector introduced into the number 
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of basis vectors may arise. How to do this is shown above, but 

the wrong choice of an unbounded edge leads to a loop. 

IV. CONCLUSION 

The magnitude of the coordinating problem leads to an 
increase in the coefficient of the function, to a decrease in its 
size, to an increase in the computational efficiency of the 
decomposition method in (𝑚0 + 𝑞)/(𝑚0 + 1), compared to the 
original decomposition method. 

Consequently, the amount of computer memory required for 
solving the problem in this case increases. Furthermore, as it 
coordinates the task affects the decision of subtasks by changing 
the objective function values of the coefficients, the reduction of 
its dimensions leads to an increase in computational efficiency 
decomposition method in (𝑚0 + 𝑞)/(𝑚0 + 1) times, compared 
with the original decomposition method. 

The advantage of this variant of the method is especially 
great, in comparison with the recommended one, when the 
number q of blocks is large, and each of the sets Ω2i, i=1,…,q, 
corresponding to these blocks, can be specified by a small 
number 𝑚𝐾 of restrictions. It is these cases that are most often 
encountered in practice when modeling real processes. 

In particular, when all 𝑚𝐾 = 1, 𝑘 = 1,… , 𝑞  (classical 
transport problem), the usually recommended version of the 
decomposition method has no advantages over the simplex 
method, while the considered version of the decomposition 
method retains all its advantages. 

The experience of practical application of the decomposition 
method for solving high-dimensional problems was 
insignificant and, in many cases, unsuccessful. The use of the 
above modification of this method for solving problems of the 
type (1) - (3) of large dimension refutes these statements as 
erroneous. 

The performed computational experiments for tasks with a 
matrix order from 90 to 700 showed that, in terms of the number 
of iterations to obtain the optimal plan, the proposed 
modification of the Danzig-Wulf decomposition method has the 
same convergence as the simplex method, but the requirements 
for computer memory are reduced, and the computational 
efficiency is increased by (𝑚0 + 𝑞)/(𝑚0 + 1)  times 
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