
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1180 | P a g e

www.ijacsa.thesai.org

Reliability in Cloud Computing Applications with

Chaotic Particle Swarm Optimization Algorithm

Wenli WANG*, Yanlin BAI

School of Artificial Intelligence, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450000, China

Abstract—In recent years, IT managers of large enterprises

and stakeholders have turned to cloud computing due to the

benefits of reduced maintenance costs and security concerns, as

well as access to high-performance hardware and software

resources. The two main challenges that need to be considered in

terms of importance are ensuring that everyone has access to

services and finding efficient allocation options. First, especially

with software services, it is very difficult to predict every service

that may be needed. The second challenge is to select the best

independent service among different providers with features

related to application reliability. This paper presents a framework

that uses the particle swarm optimization technique to optimize

reliability parameters in distributed systems applications. The

proposed strategy seeks a program with the best service and a high

degree of competence. Although this method does not provide an

exact solution, the particle swarm optimization algorithm reaches

a result close to the best solution and reduces the time required to

adjust the parameters of distributed systems applications. The

results of the work have been compared with the genetic algorithm

and it has been shown that the PSO algorithm has a shorter

response time than both the genetic algorithm and the PSO. Also,

the PSO algorithm shows strong stability and ensures that the

solution obtained from the proposed approach will be close to the

optimal solution.

Keywords—Reliability; cloud computing; chaotic particle swarm

optimization algorithm; distributed systems

I. INTRODUCTION

The augmentation of available services leads to a
corresponding increase in the proliferation of services that
possess comparable functionalities across several servers [1].
These comparable services are situated in distinct geographical
locations and exhibit varying degrees of reliability based on
different characteristics [2]. Due to this rationale, service
composition employs suitable methodologies to choose an
atomic service from a pool of identical services hosted on
distinct servers, with the aim of attaining the utmost level of
dependability based on specific requirements and priorities [3].
The user has been obtained. Because end user requirements and
accessible services are always changing, service composition
architecture in the cloud environment must be flexible and
capable of running independently [4]. Hence, the selection of
appropriate and efficient elementary services for integration into
complex composite services constitutes a significant concern
within this domain [5]. The service composition challenge in
cloud computing refers to the determination of appropriate
simple atomic services that, when combined, satisfy the
functional and reliability requirements of complex services, as
dictated by the end user's needs [6]. The complexity of service
composition in cloud computing is attributed to the multitude of

influential factors and the extensive range of basic services
offered by numerous providers in the cloud pool. As a result, this
problem is classified as NP-hard [7].

The issue of software reliability in distributed systems is a
significant concern for both software providers and consumers
that rely on such software [8]. Numerous models have
undergone scrutiny and assessment with regards to their
trustworthiness within the context of large-scale commercial
projects [9]. Notably, these models have been subject to
meticulous examination in the domains of e-government, e-
commerce, multimedia services, and other relevant scenarios
[10]. However, the presence of dependability issues persists in
software and systems [11]. Cloud environments have a dynamic
nature characterized by both sporadic and deliberate
modifications. The aforementioned modifications provide cloud
computing with a range of issues within the context of
distributed systems [12]. Several issues associated with
applications in cloud computing have been identified [13]. a)
The dynamic contracting of cloud service providers: an analysis
of pricing policies employed by various service providers. The
determination of costs for services is contingent upon the
interplay between supply and demand factors. Hence, it is
imperative to establish a method that facilitates the updating of
the specification table pertaining to the range of resources that
are now accessible. b) Resolving Insufficient Cloud Resources:
The intermediary's decision on the ideal cloud service is
contingent upon the presence of comprehensive and up-to-date
information regarding the available services [14]. The
occurrence of several alterations in service features has the
potential to result in the inadvertent deletion or loss of certain
data [15].

A significant portion of the research conducted on cloud
services often results in suboptimal outcomes, necessitating the
completion of the service within a limited timeframe [16].
Hence, it is imperative to put forth certain methodologies aimed
at resolving the issue of partial optimization and enhancing the
rate of convergence of the algorithm [17]. The chaotic
evolutionary algorithm is founded upon the principles of
optimization and the utilization of chaos operators, thereby
synergistically integrating their respective benefits [18]. The
randomness technique incorporates the concepts of
unpredictability, initial sensitivity, and chaos operator to
establish a mapping between the chaotic variable and a domain
of linear optimization variables [19]. By employing this
approach, the issue of stagnant search is mitigated and the
absence of an optimization mechanism is addressed.
Consequently, it enhances the algorithm's diversity and overall
optimization [20].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1181 | P a g e

www.ijacsa.thesai.org

In choosing the particle swarm optimization (PSO) method
based on chaos theory for the current research, there are several
reasons that indicate the importance and necessity of using this
method in checking the reliability of cloud computing programs.
First, PSO is an optimization algorithm based on collective
intelligence, which is known for its simple structure and high
efficiency in solving complex optimization problems. By
imitating the social behavior of birds or fish, this algorithm
quickly converges towards optimization and has the ability to
search more widely in the search space. The use of chaos theory
in PSO is very effective to prevent the algorithm from falling
into local optima and improve its convergence rate. By adding
controlled uncertainty to the search process, chaos theory
increases the variety of responses and helps the algorithm
achieve more optimal results.

In this study, we aim to examine the dependability of cloud
computing applications by utilizing the particle swarm
optimization algorithm grounded in chaos theory. This approach
is anticipated to offer a thorough exploration of the problem-
solving domain and enhance the accuracy of predicting the
reliability of cloud services. In order to fulfill the requirements
of academic discourse, it is necessary to revise the user's text to
conform to the standards of formal the proposed method will be
implemented using the MATLAB software environment, with
the aim of achieving an optimal solution in terms of both
convergence and stability. In summary, the writers of this
research have made the following contributions:

 The application of chaos theory in predicting the
reliability of cloud computing applications allows for a
more extensive exploration of the problem area.

 Identifying a cloud service that offers near-optimal
performance while considering the reliability of the
service.

The subsequent sections of the article are structured in the
following manner. The second half of the document provides a
comprehensive review of prior research and scholarly
contributions. Section III presents the formulation of the
problem. In Section IV, the proposed method is expounded
upon. Section V of the paper presents an evaluation and
simulation of the proposed solution. Subsequently, Section VI
provides the conclusion and outlines potential avenues for future
research.

II. RELATED WORKS

A proposed strategy has emerged in response to the
increasing significance of networks in the amalgamation of
cloud services, which takes into account the distinct reliability
of applications and network services [21]. In order to achieve
this objective, the actual network delay between the desired
services and their users is represented using a low time
complexity model, enabling the selection of the service with the
lowest delay time. The introduction of a reliability equation by
researchers enables the calculation of application dependability,
delay, and transmission rate. In the final stage of the
methodology, the selection algorithm was devised to implement
the proposed models using the genetic algorithm. The outcomes
of this algorithm were then compared to those of Dijkstra's
algorithm and random selection. The findings of this intriguing

study can be enhanced through the utilization of real-world
datasets.

The authors of this study have presented an enhanced genetic
algorithm [22] for the service provider system, taking into
account self-adaptation. In this algorithm, the traditional
competitive selection method for choosing individuals for
intersection and mutation operators has been replaced with a
clonal selection algorithm [23]. A well-established methodology
has been employed. The primary article lacks a comprehensive
discussion of the researchers' efforts in self-adaptation, as it fails
to include specific details about the suggested algorithm and the
experimental outcomes.

The utilization of game theory by researchers has led to the
development of a service combination algorithm that is founded
on service level agreement [24]. This study encompasses four
distinct components inside the agreement, namely: the primary
details of the agreement, information pertaining to service
providers and users, specifications about the type and
dimensions of the service, and a comprehensive set of
obligations for applications. The process of establishing an
agreement involves the consideration of service composition as
a dynamic multi-player game, referred to as the proposal game.
In this game, the sellers and consumers of the service act as
players with the objective of attaining their respective aims.
Within the context of this competitive framework, it is
imperative for every consumer to declare a price for each desired
service, taking into account the relevant parameters and the
suggested price set by other consumers. Subsequently, sellers
have the autonomy to select their service based on the level of
quality requested, which is duly influenced by the suggested
price. Contained inside the mutually agreed upon and formally
executed agreement. The method's reliability is constrained by
its narrow scope, since it lacks comparative analysis with
alternative approaches and fails to incorporate real-world data
sets for comparison.

The authors have introduced a variant of the chaotic
optimization algorithm that operates in parallel, with the aim of
addressing the issue of application services [25]. The length of
the sequence was dynamically altered by the researchers, taking
into consideration the evolutionary position of the answer. The
researchers also employed the roulette wheel selection process
as a preliminary step, followed by the application of the chaos
operator, in order to mitigate the presence of randomly generated
unsuitable solutions and avoid their detrimental effects. Given
that a primary objective of this study is to minimize the duration
of execution, the parallelization of the suggested algorithm is
also taken into account. In order to accomplish this objective, a
comprehensive connection architecture is selected based on its
superior searchability and message transmission interface [26].
A novel migration technique, known as reactive path migration,
has been recently devised and implemented to mitigate the
communication overhead associated with fully connected
topologies. In comparison to the genetic algorithm, chaos
genetic algorithm, and chaos optimization, the method given in
this study has demonstrated superior outcomes in terms of both
the best fit achieved and the execution time required.

In [27] present a novel paradigm for adaptive service
selection in the context of mobile cloud computing. This

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1182 | P a g e

www.ijacsa.thesai.org

framework facilitates the prompt extraction of consumer
preferences upon receipt of a request. Subsequently, utilizing the
Euclidean distance metric, the customer priority services that
exhibit the shortest distances are identified and subsequently
recommended to the service adapter. Ultimately, the service
adapter determines the optimal service from the available
options for the consumer based on the compatibility of the
underlying device and the efficacy of the service alternative. The
service adapter module incorporates a fuzzy known map model
to facilitate the achievement of context matching service based
on input information. One limitation of this approach is that the
offered framework is applicable solely for the purpose of
selecting a singular service. Furthermore, it is worth noting that
this particular strategy has not been subjected to comparative
analysis with alternative methodologies.

On a pay-as-you-go basis, cloud computing provides
worldwide access to utility-based information technology
services, with many uses in the commercial, academic, and
consumer spheres. But data centers that host cloud applications
use a lot of energy, which means they cost a lot to run and pollute
the environment with their carbon emissions. Powerful servers
that use a lot of energy and related peripherals are necessary for
these centers to manage the daily influx of requests from various
users. In order to lower energy consumption in data centers,
resource efficiency is key. Focusing on energy reduction and
load prediction, this research adopts a novel hybrid approach for
dynamic resource allocation in the cloud. Specifically, they have
migrated virtual machines using an ant colony optimization
technique and utilized neural fuzzy networks for load prediction
[39].

When it comes to cloud computing, the problem of work
scheduling directly affects the quality of services provided.
Allocating tasks to available resources according to demand is
known as task scheduling. Finding the optimal allocation plan to
get more done in less time is the objective of this NP-hard
problem. The job scheduling problem has been addressed by
several approaches. To fix this, the authors of [40] suggest an
IPSO algorithm, which stands for enhanced particle swarm
optimization. The original Particle Swarm Optimization (PSO)
technique for cloud work scheduling is optimized using a multi-
adaptive learning strategy to reduce execution time. The
proposed MALPSO method establishes two particle types—
normal particles and local best particles—during the first
population stage. The population's variety is decreasing and the
likelihood of reaching the local optimum is increasing at this
stage. Distance, load balance, stability, and efficiency are the
four metrics used to evaluate alternative algorithms in this study.
In addition, the CEC 2017 benchmark is used to assess the
suggested method. We can solve the problem faster and achieve
the best answer for most of the criteria using the provided
strategy compared to what is currently known.

Our proposed work has significant differences from the
works in the "Related Works" section. Unlike previous methods
that mainly used genetic algorithms, game theory, and classical
optimization algorithms, we use the combination of particle
swarm optimization (PSO) algorithm with chaos theory. This
combination not only has the ability to improve convergence and
stability, but also effectively solves the local optimization
problem. While previous methods such as genetic algorithms

and game theory compare and select the best services based on
complex models and with real data, our method uses a collective
approach that brings a significant improvement in performance
and prediction accuracy.

In addition, our proposed approach using chaos theory and
dynamic population size adjustment has been able to overcome
the problems in classical PSO, such as being stuck in local
optima and slow convergence. While some existing methods
have only focused on optimizing the execution time of the
algorithm or improving the quality of the services provided, our
approach is a more comprehensive model by focusing on the
stability and reliability of cloud services and it provides more
efficiency that can be more widely used in real scenarios.

III. PROBLEM FORMULATION

The issue pertaining to reliability-aware cloud services in
applications involves identifying a collection of potential cloud
services that possess varying performance attributes. These
services must fulfill two criteria: firstly, they must adhere to the
limitations established by the user, and secondly, they must
satisfy an objective function. To optimize refers to the process
of maximizing efficiency or effectiveness in a given context. In
this section, the aforementioned issue is explicitly articulated.
One instance of the issue pertaining to the integration of cloud
services while considering service reliability can be officially
articulated as follows:

A service composition request is represented as a workflow
modeled using a directed acyclic graph G= (V, E).

 𝑉 = {𝑇1, 𝑇2, . . . , 𝑇𝑛}, where n denotes the workflow's job
count.

 E: The group of edges indicating the order in which tasks
are being completed.

 The process for every Ti (1 ≤ 𝑖 ≤ 𝑛) job includes a set
of nomination services called 𝐶𝑆𝑖 =

{𝐶𝑆𝑖
1, 𝐶𝑆𝑖

2, . . . , 𝐶𝑆𝑖
𝑚𝑖} , where 𝐶𝑆𝑖

𝑗
(1 ≤ 𝑗 ≤ 𝑚𝑖)a cloud

nomination service is.

 Mi: the entire number of potential workers that are
willing to take up Ti jobs.

 Every potential service A property of cloud services'
service dependability is represented by Ql (1 ≤ 𝑙 ≤ 𝐾),
one of the various sets of service reliability information

𝑄𝑜𝑆𝑖
𝑗
= {𝑄1, 𝑄2, . . . , 𝑄𝐾}that 𝐶𝑆𝑖

𝑗
has.

 The service reliability warehouse houses service
reliability data pertaining to cloud services.

 K: the quantity of cloud service-related service reliability
features included in the service reliability model.

Given the aforementioned context, the primary aim of the
reliability-aware service composition problem is to identify a
cloud composite service that is near-optimal [28]. This objective
is achieved by ensuring that the selected service exhibits a high
level of reliability.

∀𝑗 = 1. . . 𝐾 {
∏ 𝑆𝑖.𝑄𝑗>𝐶𝑗𝑖𝑓𝑄𝑗𝑖𝑠𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒𝑛
𝑖=1

∑ 𝑆𝑖.𝑄𝑗<𝐶𝑗𝑖𝑓𝑄𝑗𝑖𝑠𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒
𝑛
𝑖=1 (1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1183 | P a g e

www.ijacsa.thesai.org

A. Service Reliability Model

The dataset utilized in the suggested methodology for
determining service dependability parameter values in
applications is sourced from Al-Masri and colleagues. The
provided dataset serves as a fundamental resource for academics
in the field of service. The dataset comprises a collection of 2507
cloud services together with their corresponding measurements
of service dependability in various applications. The authors of
the study have utilized their proposed service broker framework
to measure the values of service dependability parameters [29].
The QWS dataset comprises individual records that encompass
the values of ten distinct parameters associated with each cloud
service. The initial eight elements inside each record pertain to
service dependability metrics that were assessed over a duration
of six days using the cloud service broker framework. The
service reliability numbers within the dataset represent the mean
measurements obtained during the specified time interval.
Table I presents a concise overview of the eight service
dependability metrics, including a straightforward description
for each.

Upon meticulous examination of the reliability parameters
presented in Table I, it becomes evident that the response, best
practice, and documentation parameters exhibit a consistent

value across multiple service calls during execution.
Consequently, in light of this observation, these two parameters
are disregarded, and the values of the remaining six service
reliability parameters are utilized.

B. Service Reliability Parameter Values are Normalized

Various service dependability characteristics associated with
a cloud service are assessed using distinct units. In order to
compute the objective function, it is necessary to ensure that all
of these parameters are measured using a consistent scale [30].
In light of this matter, it is imperative to standardize the values
of all service dependability parameters on a consistent scale. The
normalizing of service dependability metrics enables the
establishment of a standardized metric for evaluating their
values. To achieve this objective, a commonly employed
method involves normalizing the values of all parameters within
the range of zero to one. The criteria pertaining to service
reliability can be classified into two distinct categories: those
aimed at maximizing reliability and those aimed at minimizing
it. Maximization parameters refer to parameters that are
intended to be maximized, while minimization parameters refer
to parameters that are intended to be minimized. Relations (2)
and (3) illustrate the normalization principles for maximizing
and minimizing parameters, correspondingly.

TABLE I. AN EXPLANATION OF THE PARAMETERS FOR SERVICE RELIABILITY FOUND IN THE QWS DATASET

unit description Parameters

% The number of responses to the number of request messages Ability to succeed

% The extent to which the WSDL document conforms to the WSDL specification the answer

% The degree to which a service conforms to the base WS-I profile best way

Millisecond The amount of time it takes for the server to process a request Delay

% Measuring documentation (descriptive tags) in WSDL Documentation

Millisecond The time it takes to send a request and receive a response response time

% The number of successful calls over the total number of calls accessibility

Calls per second The total number of calls for a given time period Throughput

max

max min

max min

max min

.

.
1

i i
i i

i i

i
i i

Q CS Q
Q Q

Q Q

CS Q
Q Q

N

(2)

min

max min

max min

max min

.

.
1

i i

i i

i i

i
i i

CS Q Q
Q Q

Q Q

CS Q
Q Q

N

(3)

In the aforementioned relationships,𝐶𝑆. 𝑄𝑖 represents the
value assigned to the i-th parameter of service reliability
pertaining to the candidate service [31]. The normalized value
of CS and NCS is denoted as CS and𝑁𝐶𝑆.𝑄𝑖 , respectively.

Additionally, 𝑄𝑚𝑎𝑥
𝑖 and 𝑄𝑚𝑖𝑛

𝑖 represent the upper and lower
bounds of the i-th parameter across all services.

IV. PROPOSED METHOD

Given the fact that the issue of identifying cloud services that
are cognizant of service reliability falls under the classification
of NP-Hard issues, many approaches to discovery can be
employed in order to address this challenge. The primary
objective of this paper is to employ the chaotic particle
optimization technique in order to identify a dependable cloud
service. Collective intelligence is a highly potent optimization
strategy that relies on the behavior of a group. The particle
optimization algorithm is a social search algorithm that is
designed based on the collective behavior observed in flocks of
birds. Initially, this method was employed to uncover the
underlying patterns that regulate the concurrent flying of avian
species, as well as the abrupt alterations in their trajectory and
the ideal configuration of the flock. The particle optimization
algorithm involves the movement of particles inside the search
space. The relocation of particles within the search space is
influenced by both their own experiences and knowledge, as
well as the experiences and knowledge of their neighboring
particles. Hence, the alternative configuration of particle mass
influences the manner in which a particle is sought. The outcome

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1184 | P a g e

www.ijacsa.thesai.org

of simulating this social behavior manifests as a search process
wherein particles exhibit a tendency to converge towards
regions of success. Particles acquire knowledge from one
another and navigate towards their most optimal neighbors. The
particle optimization algorithm operates on the premise that
each particle in the search space determines its position based on
the best position it has previously occupied. Selects and
optimizes the most favorable position within its surrounding
vicinity. Through the analysis and refinement of this technique
within computer systems, as well as its adaptation to expert and
intelligent systems, it becomes feasible to apply it in addressing
a wide range of optimization problems. The use of the particle
swarm optimization algorithm is anticipated to enhance the
dependability of the cloud service generated. The application of
chaos theory has also been employed in addressing the issue of
local optima and enhancing the rate of convergence.

Fig. 1. Process flowchart of the proposed method.

The flow/block diagram in Fig. 1 shows the proposed
research process to improve the reliability of cloud services
using particle swarm optimization (PSO) algorithm and chaos
theory. At first, the particles are initialized and an initial
evaluation is done on them. Then the particle population is
divided into two subpopulations: one using the PSO algorithm
and the other using the chaos theory. The position of particles in
each subpopulation is updated and the chaotic search space is
reduced. After that, the particles are re-evaluated and the local
best (pbest) and global best (gbest) are updated. This update and
evaluation process continues until a stop condition is met.
Finally, the algorithm ends by finding a near-optimal solution.
This combined method of PSO and chaos theory helps to
improve the convergence and stability of the algorithm.

The particle optimization algorithm initiates its operation by
generating a set of particles within the search space. Each
particle represents the position of a potential solution to a given
problem, specifically in the context of a composite service
within a cloud environment. The starting positions of the
particles within the node are determined randomly [32]. The
program will subsequently conduct a search for the optimal

place based on the highest merit value. The subsequent section
outlines the sequential procedures involved in attaining the most
advantageous location, or in other words, elucidates the process
by which the algorithm progressively approaches a solution that
is close to optimal. Eq. (4) is utilized to represent the position of
the i-th particle.

𝑋𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑑 , . . . 𝑥𝑖𝐷) (4)

Eq. (5) is utilized to retain and present the prior optimal
position of the i-th particle.

𝑃𝑖 = (𝑝𝑖1, . . . , 𝑝𝑖𝑑 , . . . 𝑝𝑖𝐷 (5)

The term used to refer to this concept is known as pbest [33].
The optimal solution within a population of particles is
sometimes referred to as the global best (gbest). The velocity of
the i-th particle is also represented by the vector Vi, as depicted
in Eq. (6):

𝑉𝑖 = (𝑣𝑖1, . . . , 𝑣𝑖𝑑 , . . . 𝑣𝑖𝐷) (6)

The fundamental principle underlying particle swarm
optimization involves the manipulation of the location and
velocity of individual particles towards their personal best
(pbest) and global best (gbest) values, as described by Eq. (7)
and (8).

𝑣𝑖𝑑 = 𝑤 ∗ 𝑣𝑖𝑑 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑()(7)

∗ (𝑝𝑔𝑑 − 𝑥𝑖𝑑)

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 (8)

In this context, the symbol "w" represents the inertial weight,
while the numbers 𝑐1 and 𝑐2 denote the acceleration constants
[34]. Additionally, rand () refers to a random number generator
that produces values uniformly distributed throughout the
interval [0, 1]. Algorithm 1 presents the pseudocode for the
fundamental particle swarm optimization.

ALGORITHM 1: PSEUDO CODE OF BASIC PSO

01: Start

02: Initialize particle swarm
03: While (number of iterations, or the stopping criterion is not met)

04: Evaluate fitness of particle swarm

05: For n = 1 to number of particles
06: Find pbest

07: Find gbest

08: For d = 1 to number of dimensions of particle
09: Update the position of particles via equations (3-4) and (3-5)

10: End For

11: End For
12: End While

13: Stop

The fundamental particle swarm optimization approach has
demonstrated commendable efficacy in addressing intricate
challenges. However, notwithstanding this, it is afflicted by the
issue of succumbing to the local optimum trap [35]. There exist
various approaches for resolving this issue, with one particularly
significant option being the utilization of chaos theory.
According to the dictionary, the term "chaos" refers to a
condition characterized by a lack of organization and clarity. In
the realm of scientific discourse, a universally accepted
definition for the concept in question remains elusive. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1185 | P a g e

www.ijacsa.thesai.org

concept of chaos is commonly acknowledged as a phenomenon
characterized by distinct and discernible patterns within
unpredictable circumstances, often referred to as "order in
chaos." Chaos theory is a well-established theoretical
framework that may be formulated based on a set of
deterministic principles and mathematical equations. According
to the principles of chaos theory, the future is entirely governed
by preceding events. The logical equation, renowned for its
association with chaos theory, holds significant prominence and
finds application within the proposed methodology. Eq. (9)
represents the logical equation:

𝑥𝑡+1 = 𝜇𝑥𝑡(1 − 𝑥𝑡) (9)

The control parameter, denoted as

, and the variable x are
both present in the given context. The search algorithm
employed in the suggested method utilizes chaos theory
principles. In this approach, the population is divided into two
distinct sub-populations in the following manner:

The population in PSO is updated by utilizing the
fundamental algorithm (Algorithm 1) to modify the position and
velocity of the particles [36]. The population exhibits a state of
disorder, as indicated by the utilization of Eq. (9) to update the
positions of particles. The dynamic alteration of the particle
quantities in both the PSO and chaos populations is determined
by employing Eq. (10) and (11).

𝑁𝑒𝑤𝑃𝑆𝑂𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

=
𝑓𝑖𝑛𝑒𝑠𝑠𝑜𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡

𝑓𝑖𝑛𝑒𝑠𝑠𝑜𝑓𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡

∗ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 (10)

𝑁𝑒𝑤𝐶ℎ𝑎𝑜𝑡𝑖𝑐𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

= 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 − 𝑁𝑒𝑤𝑃𝑆𝑂𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (11)

Algorithm 2 presents the pseudo-code of the suggested
method, which incorporates the particle swarm optimization
algorithm with chaos search.

ALGORITHM 2: PSEUDO-CODE FOR OPTIMIZATION OF PARTICLE SWARM

AND CHAOS PROBE

Input: Composition request as a workflow (DAG) and Reil constraints

Output: Near optimal composite cloud service

Initialization as Basic PSO
While (number of iterations, or the stopping criterion is not met)

 For each particle in Chaotic Population

 Update Particle Position using equation (6)
 Decrease Chaotic search space

Xmax - Xmin

 where Xmax is the maximum position for PSO
 where Xmin is the minimum position for PSO

 End For

 For each particle In PSO Population
 Update particle velocity equation (4)

 Update Particle Position equation (5)

 END For
 For each particle In Population

 Evaluate fitness of particle

 If (current position < best position) Then
 Xpbest = current position

 End If

 If (current position< gbest position) Then
 gbest = current particle index

 End If

 End For
 Update PSO and Chaotic Populations using (7) and (8)

End While

A. Initialization

During the initialization step, it is necessary to generate the
initial population of particles. The particle optimization
approach utilizes particles to symbolize solutions to the problem
at hand. In this context, a solution refers to the compound cloud
service, which is represented by an array of size n, where n
corresponds to the number of jobs inside the workflow. In order
to fulfill the desired objective or meet the specified criteria [37].
The value contained at index i within the array represents the
identification number of the candidate service responsible for
executing task Ti. Given that the quantity of particles in the first
population is denoted as P, the initial population of solutions can
be represented as a matrix of dimensions P×n.

B. Merit Function

The primary objectives associated with addressing the
challenge of integrating cloud services while considering service
reliability are adhering to user-defined constraints and
maximizing a merit function. The optimization of service
dependability characteristics for the composite cloud service
should be the primary objective of the fitness function [38]. The
proposed reliability model has six parameters: reaction time
(Resp), availability (Avail), throughput (Through), success
capability (Succ), reliability (Reli), and delay (Late). The merit
function for a solution is determined by relation (12).

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑜𝑙) =
𝑤1∗𝑆𝑜𝑙.𝐴𝑣𝑎𝑖𝑙+𝑤2∗𝑆𝑜𝑙.𝑇ℎ𝑟𝑜𝑢+𝑤3∗𝑆𝑜𝑙.𝑆𝑢𝑐𝑐+𝑤4∗𝑆𝑜𝑙.𝑅𝑒𝑙𝑖

𝑤5∗𝑆𝑜𝑙.𝑅𝑒𝑠𝑝+𝑤6∗𝑆𝑜𝑙.𝐿𝑎𝑡𝑒
(12)

The coefficients w1, w2, w3, w4, w5, and w6 represent positive
weights assigned by the user to indicate the relative significance
of each service dependability metric.

V. DISCUSSION AND EVALUATION

The proposed combination algorithm was simulated and
evaluated using the MATLAB software. All tests were
conducted using a Dell computer equipped with a 2.0 GHz Core
i7 processor and 4 GB of RAM. Furthermore, the QWS dataset
has been employed as a source of service information pertaining
to applications in distributed systems.

In light of the fact that the method employed a heuristic
algorithm, an assessment has been conducted to evaluate the
outcomes in relation to convergence and stability. The ensuing
findings will be expounded upon in the subsequent sections.
Furthermore, the outcomes of the suggested approach have been
juxtaposed with those of two genetic algorithms and a
rudimentary particle swarm optimization technique. Tables II
and III present the parameters pertaining to the genetic algorithm
and optimization of both the basic particle swarm and the
suggested technique, respectively.

TABLE II. PARAMETERS OF A GENETIC ALGORITHM

Amount Parameter

200 Initial population size

300 Number of generations

two points Cut operator

Roulette wheel selection operator

0/8 Cutting rate

0/05 Mutation rate

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1186 | P a g e

www.ijacsa.thesai.org

TABLE III. PARAMETERS OF THE SUGGESTED TECHNIQUE AND THE

FUNDAMENTAL PARTICLE SWARM OPTIMIZATION ALGORITHM

Amount Parameter

200 Number of elementary
particles

300 The number of repetitions

0/5 Inertia weight (w)

0*0 2/5rnd C1

0*0 2/5rnd C2

max max* 0.1 1.0v x

Maximum speed

0.6 𝝁

A. Convergence Test

In order to assess convergence, the proposed method, along
with genetic algorithms and basic particle swarm optimization,
were applied to three distributed systems applications. These
applications consisted of 5, 10, and 20 tasks, respectively. Fig. 2,
3, and 4 depict the convergence process leading to the final
solution for each respective application. The aforementioned
graphs depict the horizontal axis representing the sequence of
algorithm iterations, while the vertical axis represents the
highest measure of performance achieved in each iteration.

Fig. 2. Convergence of the suggested combination method compared to

genetic and elementary particle optimization algorithms (number of tasks: 5).

Fig. 3. Convergence of the suggested combination method compared to

genetic and elementary particle optimization algorithms (number of tasks: 10).

Fig. 4. Convergence of the suggested combination method compared to

genetic and elementary particle optimization algorithms (number of tasks: 20).

B. Stability Test

It is imperative to conduct a thorough examination of the
stability of the associated algorithm when evaluating discovery
algorithms in distributed systems applications. Given the
inherent stochastic character of discovery algorithms, such as
the particle swarm optimization method, it is imperative to
assess their stability. The concept of algorithmic stability
pertains to the consistency of an algorithm's output throughout
multiple executions, ensuring that the method yields identical or
similar results. In order to evaluate the stability of the algorithm
under consideration, the suggested methodology was
implemented in four distinct distributed systems applications.
These applications were subjected to 5, 10, and 20 iterations,
respectively. The proposed technique was executed ten times for
each application, and the resulting service merit values were
recorded. These values are presented in Fig. 5, 6, and 7.

The graphs depict the order of algorithm execution on the
horizontal axis, while the vertical axis represents the merit value
of the composite cloud service in the applications of distributed
systems for each respective order of execution.

Fig. 5. The suggested combination algorithm's stability (number of tasks: 5).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1187 | P a g e

www.ijacsa.thesai.org

Fig. 6. The suggested combination algorithm's stability (number of tasks: 10).

Fig. 7. The suggested combination algorithm's stability (number of tasks: 20).

Upon analysis of the stability graphs, it is evident that the
suggested algorithm exhibits a notable degree of stability across
various distributed systems applications. The primary factor
contributing to the observed high stability is the consistent
absence of fluctuations in the near-optimal service merit value
over multiple algorithm iterations. The findings indicate that the
algorithm's stability is significantly greater for combination
requests involving a small number of tasks compared to those
involving a large number of tasks.

C. Evaluating the Generated Cloud Composite Services for

Quality

The primary objective of this experiment is to evaluate and
compare the efficacy of the suggested method with the
fundamental and genetic particle swarm optimization methods
in developing distributed systems applications. In order to
conduct the experiment, the aforementioned methodologies
were employed to analyze 20 distinct application requests, each
consisting of 5, 10, or 20 jobs. The resulting average merit
values derived from the execution of these methodologies are
presented in Table IV. Upon careful examination of the findings
shown in Table IV, it becomes evident that the service quality
of the applications generated using the suggested method
surpasses that of the fundamental particles and genetics

optimization algorithms, as indicated by the service quality
criteria.

TABLE IV. APPLICATIONS' SERVICE QUALITY COMPARISON

n = 5 n = 10 n = 20 Method

10.985 1.675 0/289 GA [16]

13.152 2.985 0.378 PSO [19]

15.685 4.898 0.426 Proposed Method

1) Test of service quality criteria: The purpose of this study

was to assess the efficacy of the developed cloud composite

service based on the dimensions of accessibility, dependability,

and success. To conduct the test, the user's service composition

request was distributed across all three techniques, and the

resultant cloud composite service was evaluated in terms of

accessibility, reliability, and success. Fig. 8, 9, and 10 depict

the values of the quality criteria for accessibility, reliability, and

success, respectively. The findings obtained indicate that the

suggested method yields a cloud composite service of superior

quality compared to the particle optimization algorithm [19]

and the genetics algorithm [16], as assessed by the

aforementioned quality standards.

Fig. 8. The application's service accessibility.

Fig. 9. The application's service reliability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1188 | P a g e

www.ijacsa.thesai.org

Fig. 10. The application's capacity for service success.

D. Package Delivery Rates

The quantity of packets received by application services
serves as one parameter for assessing the effectiveness of
algorithms in distributed system applications. A higher number
of packets received by the services indicates that the algorithm
performed better and supplied more data to the distribution
system. We simulate the number of different gateways and then
count the number of packets received by the services to get the
total number of received packets. The quantity of packets that
the distribution system application has received is displayed in
Fig. 11.

Fig. 11. The number of received packages.

The diagram presented below illustrates the packet delivery
rate of the method across various services, as indicated by the
observed trend (see Fig. 12).

Fig. 12. Packet delivery rate.

E. Energy Consumption

The subsequent significant metric assessed to gauge the
efficacy of the algorithm is the level of energy usage. The energy
consumption referred to in this section pertains to the aggregate
energy consumed by all services and applications throughout
distributed systems and gateways. Specifically, there are 60
gateways and an unspecified number of services within these
systems. The distribution value is set at 500 and the simulation
is executed. The energy consumption of the two algorithms is
quantified in Joules, as depicted in Fig. 13.

Fig. 13. Energy usage in all applications involving distributed systems.

The energy consumption in the proposed technique is
comparatively lower than that of the method described in
reference [17]. This can be attributed to the more efficient
selection of programs utilizing chaos-based particle swarming
for gateway services. When the service selection is optimized, it
implies that program services are not required to transmit their
data over vast distances in order to achieve their objectives,
hence resulting in reduced energy consumption.

F. Reliability

As depicted in Fig. 14, the determination of reliability
necessitates the presence of a timer that computes the temporal
aspects associated with diverse activities, including transmission
and reception. The degree of dependability associated with the
initial stage, specifically when the service is introduced into the
program, is disregarded. The longevity of the distributed system
is of significant concern, spanning several days or even weeks.
Consequently, the relatively brief duration of the first phase may
be disregarded.

Fig. 14. Comparison of reliability over time.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

45 60 75 90

P
a

c
k

a
g

e
 d

e
li

v
e
r
y

 r
a

te

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1189 | P a g e

www.ijacsa.thesai.org

Fig. 15. Comparison of dependability in relation to received packet size.

Fig. 15 presents a crucial comparison pertaining to
reliability, which is evaluated by quantifying the number of
received packets. It is evident that the proposed method exhibits
a high level of reliability across various quantities of received
packets.

The findings of the research carried out in this article show
that the use of particle swarm optimization (PSO) algorithm
along with chaos theory has been able to reduce the time
required to adjust the parameters of distributed systems and
achieve a near-optimal solution. These findings are consistent
with the results of previous researches that have investigated
reliability models in large commercial projects. For example,
research conducted by Al-Masri et al. has shown that the use of
reliable datasets can bring significant improvements in the
reliability assessment of cloud services.

However, the method proposed in this paper also has
innovations that have not been found in previous research. In
particular, combining the PSO algorithm with chaos theory to
improve the convergence and stability of the algorithm is a new
and innovative approach. This combination helps to reduce the
problem of entrapment in local optima and increases the
diversity of the particle population, which has not been
investigated in this way in previous research. Therefore, it can
be said that this research is consistent with previous findings and
provides innovations that have not been investigated before.

VI. CONCLUSION

This study introduces a framework that utilizes the particle
swarm optimization technique to optimize dependability
parameters in distributed systems applications. The objective of
the proposed methodology was to identify a suitable application
that offers optimal service and demonstrates a high degree of
expertise. Furthermore, the algorithm under consideration was
executed using various settings, and the resulting graphs were
subsequently analyzed. The utilization of the Particle Swarm
Optimization (PSO) algorithm has been seen to decrease the
time needed for determining the parameters of distributed
systems applications to a certain degree. However, it should be
noted that the PSO algorithm does not provide an absolute
solution, but rather yields an approximation that is in close

proximity to the optimal solution. In order to assess the efficacy
of any algorithm, it is important to do a comparative analysis
with respect to prior algorithms. Consequently, the outcomes of
the study were juxtaposed with the genetic algorithm. After
conducting a comparative analysis of the algorithms, it was
determined that the PSO algorithm exhibits a shorter response
time in comparison to both the genetic algorithm and PSO.
Additionally, the PSO algorithm has favorable stability,
resulting in the suggested technique yielding a solution that
closely approximates the optimal solution.

Based on the analysis of the convergence graphs, it is evident
that the Particle Swarm Optimization (PSO) algorithm has a
favorable convergence pattern when coupled with the principles
of chaos theory. Based on the stability level depicted in the
graphs, it is observed that the PSO algorithm employing the
chaos theory approach consistently produces a singular solution
across multiple tasks. This indicates that the stability of the PSO
algorithm with the chaos theory approach is commendable.
Consequently, it can be inferred that the solution derived from
the proposed algorithm has the potential to be the optimal
solution. Based on the findings and materials elucidated in this
study, a recommendation for future endeavors is conducting a
comparative analysis of these algorithms through the application
of chaos theory to alternative evolutionary algorithms, including
genetics and colonial competition, as well as ant colony
algorithms, among others.

Although this research has addressed the optimization of
reliability parameters in distributed systems using the Particle
Swarm Optimization (PSO) algorithm, it also has some
limitations. One of the most important limitations is that the PSO
algorithm only reaches a close approximation to the best
solution and not a definite and absolute solution. This can be
problematic in precision-sensitive applications. In addition, this
research has only been compared with the genetic algorithm and
has not used other evolutionary algorithms such as the colonial
competition algorithm or the ant colony algorithm. Also, the
presented method is implemented in the MATLAB
environment, which may have limitations in generalizing the
results to other platforms and execution environments.

For further studies, it can be suggested that a more
comprehensive comparison be made with other evolutionary
algorithms to determine the strengths and weaknesses of each
one more precisely. Also, reviewing and implementing the
algorithm in different environments and analyzing the results
can help to increase the generalizability and applicability of the
results. The use of more and more diverse real data can also lead
to a more accurate evaluation of the algorithm's efficiency.

REFERENCES

[1] J.-W. Wang, H.-N. Wu, Y. Yu, and C.-Y. Sun, “Mixed H2/H∞ fuzzy
proportional-spatial integral control design for a class of nonlinear
distributed parameter systems,” Fuzzy Sets Syst, vol. 306, pp. 26–47, 2017.

[2] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, and A. Jafarian,
“Improved chaotic binary grey wolf optimization algorithm for workflow
scheduling in green cloud computing,” Evol Intell, vol. 14, pp. 1997–2025,
2021.

[3] B. Huang, C. Li, and F. Tao, “A chaos control optimal algorithm for QoS-
based service composition selection in cloud manufacturing system,”
Enterp Inf Syst, vol. 8, no. 4, pp. 445–463, 2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1190 | P a g e

www.ijacsa.thesai.org

[4] A. G. Gad, “Particle swarm optimization algorithm and its applications: a
systematic review,” Archives of computational methods in engineering,
vol. 29, no. 5, pp. 2531–2561, 2022.

[5] J. Huang, Y. Liu, and Q. Duan, “Service provisioning in virtualization-
based cloud computing: Modeling and optimization,” in 2012 IEEE Global
Communications Conference (GLOBECOM), IEEE, 2012, pp. 1710–
1715.

[6] S. Gharehpasha and M. Masdari, “A discrete chaotic multi-objective SCA-
ALO optimization algorithm for an optimal virtual machine placement in
cloud data center,” J Ambient Intell Humaniz Comput, vol. 12, pp. 9323–
9339, 2021.

[7] K. Sellami, P. F. Tiako, L. Sellami, and R. Kassa, “Energy efficient
workflow scheduling of cloud services using chaotic particle swarm
optimization,” in 2020 IEEE Green Technologies Conference
(GreenTech), IEEE, 2020, pp. 74–79.

[8] H. Zhang and R. Jia, “Application of Chaotic Cat Swarm Optimization in
Cloud Computing Multi objective Task Scheduling,” IEEE Access, 2023.

[9] F. Tao, Y. LaiLi, L. Xu, and L. Zhang, “FC-PACO-RM: a parallel method
for service composition optimal-selection in cloud manufacturing system,”
IEEE Trans Industr Inform, vol. 9, no. 4, pp. 2023–2033, 2012.

[10] Fansen Wei, Liang Zhang, Ben Niu, Guangdegn Zong. Adaptive
decentralized fixed-time neural control for constrained strong
interconnected nonlinear systems with input quantization. International
Journal of Robust and Nonlinear Control, 2024,
https://doi.org/10.1002/rnc.7497.

[11] S. Wang, Q. Sun, H. Zou, and F. Yang, “Particle swarm optimization with
skyline operator for fast cloud-based web service composition,” Mobile
Networks and Applications, vol. 18, pp. 116–121, 2013.

[12] H. Cui, Y. Li, X. Liu, N. Ansari, and Y. Liu, “Cloud service reliability
modelling and optimal task scheduling,” Iet Communications, vol. 11, no.
2, pp. 161–167, 2017.

[13] H. Ben Alla, S. Ben Alla, A. Ezzati, and A. Mouhsen, “A novel architecture
with dynamic queues based on fuzzy logic and particle swarm optimization
algorithm for task scheduling in cloud computing,” in Advances in
Ubiquitous Networking 2: Proceedings of the UNet’16 2, Springer, 2017,
pp. 205–217.

[14] K. Mishra, R. Pradhan, and S. K. Majhi, “Quantum-inspired binary chaotic
salp swarm algorithm (QBCSSA)-based dynamic task scheduling for
multiprocessor cloud computing systems,” J Supercomput, vol. 77, pp.
10377–10423, 2021.

[15] Nasiri, E., & Wang, L. (2024). Hybrid force motion control with estimated
surface normal for manufacturing applications. arXiv preprint
arXiv:2404.04419.

[16] Asghari, A., Zoraghchian, A. A., & Trik, M. (2014). Presentation of an
algorithm configuration for network-on-chip architecture with
reconfiguration ability. International Journal of Electronics
Communication and Computer Engineering (IJECCE), 5(5), 124-136.

[17] Hosseini, A., Azar, P. A., & Yang-Seon, K. (2021). An Investigation on
the Impact of Retrofitting the Envelope of a Typical Small Office Building
with PCM on the Building Energy Consumption in Different Zones of the
US. ASHRAE Transactions, 127(1).

[18] Nasiri, E., & Wang, L. (2024). Admittance Control for Adaptive Remote
Center of Motion in Robotic Laparoscopic Surgery. arXiv preprint
arXiv:2404.04416.

[19] Trik, M., Pour Mozafari, S., & Bidgoli, A. M. (2021). An adaptive routing
strategy to reduce energy consumption in network on chip. Journal of
Advances in Computer Research, 12(3), 13-26..

[20] M. Trik, A. M. N. G. Molk, F. Ghasemi, and P. Pouryeganeh, “A hybrid
selection strategy based on traffic analysis for improving performance in
networks on chip,” J Sens, vol. 2022, 2022.

[21] Zhang, L., Hu, S., Trik, M., Liang, S., & Li, D. (2024). M2M
communication performance for a noisy channel based on latency-aware
source-based LTE network measurements. Alexandria Engineering
Journal, 99, 47-63.

[22] Liao, Y., Tang, Z., Gao, K., & Trik, M. (2024). Optimization of resources
in intelligent electronic health systems based on Internet of Things to
predict heart diseases via artificial neural network. Heliyon.

[23] Li, Y., Wang, H., & Trik, M. (2024). Design and simulation of a new
current mirror circuit with low power consumption and high performance
and output impedance. Analog Integrated Circuits and Signal Processing,
119(1), 29-41.

[24] Mokhlesi Ghanevati, D., Khorami, E., Boukani, B., & Trik, M. (2020).
Improve replica placement in content distribution networks with hybrid
technique. Journal of Advances in Computer Research, 11(1), 87-99.

[25] Hedayati, S., Maleki, N., Olsson, T., Ahlgren, F., Seyednezhad, M., &
Berahmand, K. (2023). MapReduce scheduling algorithms in Hadoop: a
systematic study. Journal of Cloud Computing, 12(1), 143.

[26] Z. Wang, Z. Jin, Z. Yang, W. Zhao, and M. Trik, “Increasing efficiency for
routing in Internet of Things using Binary Gray Wolf Optimization and
fuzzy logic,” Journal of King Saud University-Computer and Information
Sciences, vol. 35, no. 9, p. 101732, 2023.

[27] M. Samiei, A. Hassani, S. Sarspy, I. E. Komari, M. Trik, and F.
Hassanpour, “Classification of skin cancer stages using a AHP fuzzy
technique within the context of big data healthcare,” J Cancer Res Clin
Oncol, pp. 1–15, 2023.

[28] J. Sun, Y. Zhang, and M. Trik, “PBPHS: a profile-based predictive
handover strategy for 5G networks,” Cybern Syst, pp. 1–22, 2022.

[29] Minggang Liu and Ning Xu. Adaptive Neural Predefined-Time
Hierarchical Sliding Mode Control of Switched Under-Actuated Nonlinear
Systems Subject to Bouc-Wen Hysteresis, International Journal of Systems
Science, https://doi.org/10.1080/00207721.2024.2344059, 2024.

[30] Wang, G., Wu, J., & Trik, M. (2023). A novel approach to reduce video
traffic based on understanding user demand and D2D communication in
5G networks. IETE Journal of Research, 1-17.

[31] Xiangjun Wu, Ning Zhao, Shuo Ding, Huanqing Wang, and Xudong Zhao.
Distributed Event-Triggered Output-Feedback Time-Varying Formation
Fault-Tolerant Control for Nonlinear Multi-Agent Systems. IEEE
Transactions on Automation Science and Engineering, 2024, DOI:
10.1109/TASE.2024.3400325.

[32] M. Trik, H. Akhavan, A. M. Bidgoli, A. M. N. G. Molk, H. Vashani, and
S. P. Mozaffari, “A new adaptive selection strategy for reducing latency in
networks on chip,” Integration, vol. 89, pp. 9–24, 2023.

[33] W. Qi, “Optimization of cloud computing task execution time and user
QoS utility by improved particle swarm optimization,” Microprocess
Microsyst, vol. 80, p. 103529, 2021.

[34] Chen Cao, Jianhua Wang, Devin Kwok, Zilong Zhang, Feifei Cui, Da
Zhao, Mulin Jun Li, Quan Zou. webTWAS: a resource for disease
candidate susceptibility genes identified by transcriptome-wide association
study. Nucleic Acids Research.2022, 50(D1): D1123-D1130.

[35] Trik, M., Pour Mozaffari, S., & Bidgoli, A. M. (2021). Providing an
Adaptive Routing along with a Hybrid Selection Strategy to Increase
Efficiency in NoC‐Based Neuromorphic Systems. Computational
Intelligence and Neuroscience, 2021(1), 8338903.

[36] Fakhri, P. S., Asghari, O., Sarspy, S., Marand, M. B., Moshaver, P., & Trik,
M. (2023). A fuzzy decision-making system for video tracking with
multiple objects in non-stationary conditions. Heliyon, 9(11).

[37] Khosravi, M., Trik, M., & Ansari, A. (2024). Diagnosis and classification
of disturbances in the power distribution network by phasor measurement
unit based on fuzzy intelligent system. The Journal of Engineering,
2024(1), e12322.

[38] K. Guo and Y. Lv, “Optimizing routing path selection method particle
swarm optimization,” Intern J Pattern Recognit Artif Intell, vol. 34, no. 12,
p. 2059042, 2020.

[39] Huang, H., Wang, Y., Cai, Y., & Wang, H. (2024). A novel approach for
energy consumption management in cloud centers based on adaptive fuzzy
neural systems. Cluster Computing, 1-24.

[40] Pirozmand, P., Jalalinejad, H., Hosseinabadi, A. A. R., Mirkamali, S., &
Li, Y. (2023). An improved particle swarm optimization algorithm for task
scheduling in cloud computing. Journal of Ambient Intelligence and
Humanized Computing, 14(4), 4313-4327.

