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Abstract—In recent years, IT managers of large enterprises 

and stakeholders have turned to cloud computing due to the 

benefits of reduced maintenance costs and security concerns, as 

well as access to high-performance hardware and software 

resources. The two main challenges that need to be considered in 

terms of importance are ensuring that everyone has access to 

services and finding efficient allocation options. First, especially 

with software services, it is very difficult to predict every service 

that may be needed. The second challenge is to select the best 

independent service among different providers with features 

related to application reliability. This paper presents a framework 

that uses the particle swarm optimization technique to optimize 

reliability parameters in distributed systems applications. The 

proposed strategy seeks a program with the best service and a high 

degree of competence. Although this method does not provide an 

exact solution, the particle swarm optimization algorithm reaches 

a result close to the best solution and reduces the time required to 

adjust the parameters of distributed systems applications. The 

results of the work have been compared with the genetic algorithm 

and it has been shown that the PSO algorithm has a shorter 

response time than both the genetic algorithm and the PSO. Also, 

the PSO algorithm shows strong stability and ensures that the 

solution obtained from the proposed approach will be close to the 

optimal solution. 
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I. INTRODUCTION 

The augmentation of available services leads to a 
corresponding increase in the proliferation of services that 
possess comparable functionalities across several servers [1]. 
These comparable services are situated in distinct geographical 
locations and exhibit varying degrees of reliability based on 
different characteristics [2]. Due to this rationale, service 
composition employs suitable methodologies to choose an 
atomic service from a pool of identical services hosted on 
distinct servers, with the aim of attaining the utmost level of 
dependability based on specific requirements and priorities [3]. 
The user has been obtained. Because end user requirements and 
accessible services are always changing, service composition 
architecture in the cloud environment must be flexible and 
capable of running independently [4]. Hence, the selection of 
appropriate and efficient elementary services for integration into 
complex composite services constitutes a significant concern 
within this domain [5]. The service composition challenge in 
cloud computing refers to the determination of appropriate 
simple atomic services that, when combined, satisfy the 
functional and reliability requirements of complex services, as 
dictated by the end user's needs [6]. The complexity of service 
composition in cloud computing is attributed to the multitude of 

influential factors and the extensive range of basic services 
offered by numerous providers in the cloud pool. As a result, this 
problem is classified as NP-hard [7]. 

The issue of software reliability in distributed systems is a 
significant concern for both software providers and consumers 
that rely on such software [8]. Numerous models have 
undergone scrutiny and assessment with regards to their 
trustworthiness within the context of large-scale commercial 
projects [9]. Notably, these models have been subject to 
meticulous examination in the domains of e-government, e-
commerce, multimedia services, and other relevant scenarios 
[10]. However, the presence of dependability issues persists in 
software and systems [11]. Cloud environments have a dynamic 
nature characterized by both sporadic and deliberate 
modifications. The aforementioned modifications provide cloud 
computing with a range of issues within the context of 
distributed systems [12]. Several issues associated with 
applications in cloud computing have been identified [13]. a) 
The dynamic contracting of cloud service providers: an analysis 
of pricing policies employed by various service providers. The 
determination of costs for services is contingent upon the 
interplay between supply and demand factors. Hence, it is 
imperative to establish a method that facilitates the updating of 
the specification table pertaining to the range of resources that 
are now accessible. b) Resolving Insufficient Cloud Resources: 
The intermediary's decision on the ideal cloud service is 
contingent upon the presence of comprehensive and up-to-date 
information regarding the available services [14]. The 
occurrence of several alterations in service features has the 
potential to result in the inadvertent deletion or loss of certain 
data [15]. 

A significant portion of the research conducted on cloud 
services often results in suboptimal outcomes, necessitating the 
completion of the service within a limited timeframe [16]. 
Hence, it is imperative to put forth certain methodologies aimed 
at resolving the issue of partial optimization and enhancing the 
rate of convergence of the algorithm [17]. The chaotic 
evolutionary algorithm is founded upon the principles of 
optimization and the utilization of chaos operators, thereby 
synergistically integrating their respective benefits [18]. The 
randomness technique incorporates the concepts of 
unpredictability, initial sensitivity, and chaos operator to 
establish a mapping between the chaotic variable and a domain 
of linear optimization variables [19]. By employing this 
approach, the issue of stagnant search is mitigated and the 
absence of an optimization mechanism is addressed. 
Consequently, it enhances the algorithm's diversity and overall 
optimization [20]. 
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In choosing the particle swarm optimization (PSO) method 
based on chaos theory for the current research, there are several 
reasons that indicate the importance and necessity of using this 
method in checking the reliability of cloud computing programs. 
First, PSO is an optimization algorithm based on collective 
intelligence, which is known for its simple structure and high 
efficiency in solving complex optimization problems. By 
imitating the social behavior of birds or fish, this algorithm 
quickly converges towards optimization and has the ability to 
search more widely in the search space. The use of chaos theory 
in PSO is very effective to prevent the algorithm from falling 
into local optima and improve its convergence rate. By adding 
controlled uncertainty to the search process, chaos theory 
increases the variety of responses and helps the algorithm 
achieve more optimal results. 

In this study, we aim to examine the dependability of cloud 
computing applications by utilizing the particle swarm 
optimization algorithm grounded in chaos theory. This approach 
is anticipated to offer a thorough exploration of the problem-
solving domain and enhance the accuracy of predicting the 
reliability of cloud services. In order to fulfill the requirements 
of academic discourse, it is necessary to revise the user's text to 
conform to the standards of formal the proposed method will be 
implemented using the MATLAB software environment, with 
the aim of achieving an optimal solution in terms of both 
convergence and stability. In summary, the writers of this 
research have made the following contributions: 

 The application of chaos theory in predicting the 
reliability of cloud computing applications allows for a 
more extensive exploration of the problem area. 

 Identifying a cloud service that offers near-optimal 
performance while considering the reliability of the 
service. 

The subsequent sections of the article are structured in the 
following manner. The second half of the document provides a 
comprehensive review of prior research and scholarly 
contributions. Section III presents the formulation of the 
problem. In Section IV, the proposed method is expounded 
upon. Section V of the paper presents an evaluation and 
simulation of the proposed solution. Subsequently, Section VI 
provides the conclusion and outlines potential avenues for future 
research. 

II. RELATED WORKS 

A proposed strategy has emerged in response to the 
increasing significance of networks in the amalgamation of 
cloud services, which takes into account the distinct reliability 
of applications and network services [21]. In order to achieve 
this objective, the actual network delay between the desired 
services and their users is represented using a low time 
complexity model, enabling the selection of the service with the 
lowest delay time. The introduction of a reliability equation by 
researchers enables the calculation of application dependability, 
delay, and transmission rate. In the final stage of the 
methodology, the selection algorithm was devised to implement 
the proposed models using the genetic algorithm. The outcomes 
of this algorithm were then compared to those of Dijkstra's 
algorithm and random selection. The findings of this intriguing 

study can be enhanced through the utilization of real-world 
datasets. 

The authors of this study have presented an enhanced genetic 
algorithm [22] for the service provider system, taking into 
account self-adaptation. In this algorithm, the traditional 
competitive selection method for choosing individuals for 
intersection and mutation operators has been replaced with a 
clonal selection algorithm [23]. A well-established methodology 
has been employed. The primary article lacks a comprehensive 
discussion of the researchers' efforts in self-adaptation, as it fails 
to include specific details about the suggested algorithm and the 
experimental outcomes. 

The utilization of game theory by researchers has led to the 
development of a service combination algorithm that is founded 
on service level agreement [24]. This study encompasses four 
distinct components inside the agreement, namely: the primary 
details of the agreement, information pertaining to service 
providers and users, specifications about the type and 
dimensions of the service, and a comprehensive set of 
obligations for applications. The process of establishing an 
agreement involves the consideration of service composition as 
a dynamic multi-player game, referred to as the proposal game. 
In this game, the sellers and consumers of the service act as 
players with the objective of attaining their respective aims. 
Within the context of this competitive framework, it is 
imperative for every consumer to declare a price for each desired 
service, taking into account the relevant parameters and the 
suggested price set by other consumers. Subsequently, sellers 
have the autonomy to select their service based on the level of 
quality requested, which is duly influenced by the suggested 
price. Contained inside the mutually agreed upon and formally 
executed agreement. The method's reliability is constrained by 
its narrow scope, since it lacks comparative analysis with 
alternative approaches and fails to incorporate real-world data 
sets for comparison. 

The authors have introduced a variant of the chaotic 
optimization algorithm that operates in parallel, with the aim of 
addressing the issue of application services [25]. The length of 
the sequence was dynamically altered by the researchers, taking 
into consideration the evolutionary position of the answer. The 
researchers also employed the roulette wheel selection process 
as a preliminary step, followed by the application of the chaos 
operator, in order to mitigate the presence of randomly generated 
unsuitable solutions and avoid their detrimental effects. Given 
that a primary objective of this study is to minimize the duration 
of execution, the parallelization of the suggested algorithm is 
also taken into account. In order to accomplish this objective, a 
comprehensive connection architecture is selected based on its 
superior searchability and message transmission interface [26]. 
A novel migration technique, known as reactive path migration, 
has been recently devised and implemented to mitigate the 
communication overhead associated with fully connected 
topologies. In comparison to the genetic algorithm, chaos 
genetic algorithm, and chaos optimization, the method given in 
this study has demonstrated superior outcomes in terms of both 
the best fit achieved and the execution time required. 

In [27] present a novel paradigm for adaptive service 
selection in the context of mobile cloud computing. This 
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framework facilitates the prompt extraction of consumer 
preferences upon receipt of a request. Subsequently, utilizing the 
Euclidean distance metric, the customer priority services that 
exhibit the shortest distances are identified and subsequently 
recommended to the service adapter. Ultimately, the service 
adapter determines the optimal service from the available 
options for the consumer based on the compatibility of the 
underlying device and the efficacy of the service alternative. The 
service adapter module incorporates a fuzzy known map model 
to facilitate the achievement of context matching service based 
on input information. One limitation of this approach is that the 
offered framework is applicable solely for the purpose of 
selecting a singular service. Furthermore, it is worth noting that 
this particular strategy has not been subjected to comparative 
analysis with alternative methodologies. 

On a pay-as-you-go basis, cloud computing provides 
worldwide access to utility-based information technology 
services, with many uses in the commercial, academic, and 
consumer spheres. But data centers that host cloud applications 
use a lot of energy, which means they cost a lot to run and pollute 
the environment with their carbon emissions. Powerful servers 
that use a lot of energy and related peripherals are necessary for 
these centers to manage the daily influx of requests from various 
users. In order to lower energy consumption in data centers, 
resource efficiency is key. Focusing on energy reduction and 
load prediction, this research adopts a novel hybrid approach for 
dynamic resource allocation in the cloud. Specifically, they have 
migrated virtual machines using an ant colony optimization 
technique and utilized neural fuzzy networks for load prediction 
[39]. 

When it comes to cloud computing, the problem of work 
scheduling directly affects the quality of services provided. 
Allocating tasks to available resources according to demand is 
known as task scheduling. Finding the optimal allocation plan to 
get more done in less time is the objective of this NP-hard 
problem. The job scheduling problem has been addressed by 
several approaches. To fix this, the authors of [40] suggest an 
IPSO algorithm, which stands for enhanced particle swarm 
optimization. The original Particle Swarm Optimization (PSO) 
technique for cloud work scheduling is optimized using a multi-
adaptive learning strategy to reduce execution time. The 
proposed MALPSO method establishes two particle types—
normal particles and local best particles—during the first 
population stage. The population's variety is decreasing and the 
likelihood of reaching the local optimum is increasing at this 
stage. Distance, load balance, stability, and efficiency are the 
four metrics used to evaluate alternative algorithms in this study. 
In addition, the CEC 2017 benchmark is used to assess the 
suggested method. We can solve the problem faster and achieve 
the best answer for most of the criteria using the provided 
strategy compared to what is currently known. 

Our proposed work has significant differences from the 
works in the "Related Works" section. Unlike previous methods 
that mainly used genetic algorithms, game theory, and classical 
optimization algorithms, we use the combination of particle 
swarm optimization (PSO) algorithm with chaos theory. This 
combination not only has the ability to improve convergence and 
stability, but also effectively solves the local optimization 
problem. While previous methods such as genetic algorithms 

and game theory compare and select the best services based on 
complex models and with real data, our method uses a collective 
approach that brings a significant improvement in performance 
and prediction accuracy. 

In addition, our proposed approach using chaos theory and 
dynamic population size adjustment has been able to overcome 
the problems in classical PSO, such as being stuck in local 
optima and slow convergence. While some existing methods 
have only focused on optimizing the execution time of the 
algorithm or improving the quality of the services provided, our 
approach is a more comprehensive model by focusing on the 
stability and reliability of cloud services and it provides more 
efficiency that can be more widely used in real scenarios. 

III. PROBLEM FORMULATION 

The issue pertaining to reliability-aware cloud services in 
applications involves identifying a collection of potential cloud 
services that possess varying performance attributes. These 
services must fulfill two criteria: firstly, they must adhere to the 
limitations established by the user, and secondly, they must 
satisfy an objective function. To optimize refers to the process 
of maximizing efficiency or effectiveness in a given context. In 
this section, the aforementioned issue is explicitly articulated. 
One instance of the issue pertaining to the integration of cloud 
services while considering service reliability can be officially 
articulated as follows: 

A service composition request is represented as a workflow 
modeled using a directed acyclic graph G= (V, E). 

 𝑉 = {𝑇1, 𝑇2, . . . , 𝑇𝑛}, where n denotes the workflow's job 
count. 

 E: The group of edges indicating the order in which tasks 
are being completed. 

 The process for every Ti (1 ≤ 𝑖 ≤ 𝑛) job includes a set 
of nomination services called 𝐶𝑆𝑖 =

{𝐶𝑆𝑖
1, 𝐶𝑆𝑖

2, . . . , 𝐶𝑆𝑖
𝑚𝑖} , where 𝐶𝑆𝑖

𝑗
(1 ≤ 𝑗 ≤ 𝑚𝑖)a cloud 

nomination service is. 

 Mi: the entire number of potential workers that are 
willing to take up Ti jobs. 

 Every potential service A property of cloud services' 
service dependability is represented by Ql (1 ≤ 𝑙 ≤ 𝐾), 
one of the various sets of service reliability information 

𝑄𝑜𝑆𝑖
𝑗
= {𝑄1, 𝑄2, . . . , 𝑄𝐾}that 𝐶𝑆𝑖

𝑗
has. 

 The service reliability warehouse houses service 
reliability data pertaining to cloud services. 

 K: the quantity of cloud service-related service reliability 
features included in the service reliability model. 

Given the aforementioned context, the primary aim of the 
reliability-aware service composition problem is to identify a 
cloud composite service that is near-optimal [28]. This objective 
is achieved by ensuring that the selected service exhibits a high 
level of reliability. 

∀𝑗 = 1. . . 𝐾 {
∏ 𝑆𝑖.𝑄𝑗>𝐶𝑗𝑖𝑓𝑄𝑗𝑖𝑠𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒𝑛
𝑖=1

∑ 𝑆𝑖.𝑄𝑗<𝐶𝑗𝑖𝑓𝑄𝑗𝑖𝑠𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒
𝑛
𝑖=1   (1) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

1183 | P a g e  

www.ijacsa.thesai.org 

A. Service Reliability Model 

The dataset utilized in the suggested methodology for 
determining service dependability parameter values in 
applications is sourced from Al-Masri and colleagues. The 
provided dataset serves as a fundamental resource for academics 
in the field of service. The dataset comprises a collection of 2507 
cloud services together with their corresponding measurements 
of service dependability in various applications. The authors of 
the study have utilized their proposed service broker framework 
to measure the values of service dependability parameters [29]. 
The QWS dataset comprises individual records that encompass 
the values of ten distinct parameters associated with each cloud 
service. The initial eight elements inside each record pertain to 
service dependability metrics that were assessed over a duration 
of six days using the cloud service broker framework. The 
service reliability numbers within the dataset represent the mean 
measurements obtained during the specified time interval. 
Table I presents a concise overview of the eight service 
dependability metrics, including a straightforward description 
for each. 

Upon meticulous examination of the reliability parameters 
presented in Table I, it becomes evident that the response, best 
practice, and documentation parameters exhibit a consistent 

value across multiple service calls during execution. 
Consequently, in light of this observation, these two parameters 
are disregarded, and the values of the remaining six service 
reliability parameters are utilized. 

B. Service Reliability Parameter Values are Normalized 

Various service dependability characteristics associated with 
a cloud service are assessed using distinct units. In order to 
compute the objective function, it is necessary to ensure that all 
of these parameters are measured using a consistent scale [30]. 
In light of this matter, it is imperative to standardize the values 
of all service dependability parameters on a consistent scale. The 
normalizing of service dependability metrics enables the 
establishment of a standardized metric for evaluating their 
values. To achieve this objective, a commonly employed 
method involves normalizing the values of all parameters within 
the range of zero to one. The criteria pertaining to service 
reliability can be classified into two distinct categories: those 
aimed at maximizing reliability and those aimed at minimizing 
it. Maximization parameters refer to parameters that are 
intended to be maximized, while minimization parameters refer 
to parameters that are intended to be minimized. Relations (2) 
and (3) illustrate the normalization principles for maximizing 
and minimizing parameters, correspondingly.

TABLE I.  AN EXPLANATION OF THE PARAMETERS FOR SERVICE RELIABILITY FOUND IN THE QWS DATASET 

unit description Parameters 

% The number of responses to the number of request messages Ability to succeed 

% The extent to which the WSDL document conforms to the WSDL specification the answer 

% The degree to which a service conforms to the base WS-I profile best way 

Millisecond The amount of time it takes for the server to process a request Delay 

% Measuring documentation (descriptive tags) in WSDL Documentation 

Millisecond The time it takes to send a request and receive a response response time 

% The number of successful calls over the total number of calls accessibility 

Calls per second The total number of calls for a given time period Throughput 

max

max min

max min

max min
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(3) 

In the aforementioned relationships,𝐶𝑆. 𝑄𝑖 represents the 
value assigned to the i-th parameter of service reliability 
pertaining to the candidate service [31]. The normalized value 
of CS and NCS is denoted as CS and𝑁𝐶𝑆.𝑄𝑖 , respectively. 

Additionally, 𝑄𝑚𝑎𝑥
𝑖  and 𝑄𝑚𝑖𝑛

𝑖  represent the upper and lower 
bounds of the i-th parameter across all services. 

IV. PROPOSED METHOD 

Given the fact that the issue of identifying cloud services that 
are cognizant of service reliability falls under the classification 
of NP-Hard issues, many approaches to discovery can be 
employed in order to address this challenge. The primary 
objective of this paper is to employ the chaotic particle 
optimization technique in order to identify a dependable cloud 
service. Collective intelligence is a highly potent optimization 
strategy that relies on the behavior of a group. The particle 
optimization algorithm is a social search algorithm that is 
designed based on the collective behavior observed in flocks of 
birds. Initially, this method was employed to uncover the 
underlying patterns that regulate the concurrent flying of avian 
species, as well as the abrupt alterations in their trajectory and 
the ideal configuration of the flock. The particle optimization 
algorithm involves the movement of particles inside the search 
space. The relocation of particles within the search space is 
influenced by both their own experiences and knowledge, as 
well as the experiences and knowledge of their neighboring 
particles. Hence, the alternative configuration of particle mass 
influences the manner in which a particle is sought. The outcome 
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of simulating this social behavior manifests as a search process 
wherein particles exhibit a tendency to converge towards 
regions of success. Particles acquire knowledge from one 
another and navigate towards their most optimal neighbors. The 
particle optimization algorithm operates on the premise that 
each particle in the search space determines its position based on 
the best position it has previously occupied. Selects and 
optimizes the most favorable position within its surrounding 
vicinity. Through the analysis and refinement of this technique 
within computer systems, as well as its adaptation to expert and 
intelligent systems, it becomes feasible to apply it in addressing 
a wide range of optimization problems. The use of the particle 
swarm optimization algorithm is anticipated to enhance the 
dependability of the cloud service generated. The application of 
chaos theory has also been employed in addressing the issue of 
local optima and enhancing the rate of convergence. 

 

Fig. 1. Process flowchart of the proposed method. 

The flow/block diagram in Fig. 1 shows the proposed 
research process to improve the reliability of cloud services 
using particle swarm optimization (PSO) algorithm and chaos 
theory. At first, the particles are initialized and an initial 
evaluation is done on them. Then the particle population is 
divided into two subpopulations: one using the PSO algorithm 
and the other using the chaos theory. The position of particles in 
each subpopulation is updated and the chaotic search space is 
reduced. After that, the particles are re-evaluated and the local 
best (pbest) and global best (gbest) are updated. This update and 
evaluation process continues until a stop condition is met. 
Finally, the algorithm ends by finding a near-optimal solution. 
This combined method of PSO and chaos theory helps to 
improve the convergence and stability of the algorithm. 

The particle optimization algorithm initiates its operation by 
generating a set of particles within the search space. Each 
particle represents the position of a potential solution to a given 
problem, specifically in the context of a composite service 
within a cloud environment. The starting positions of the 
particles within the node are determined randomly [32]. The 
program will subsequently conduct a search for the optimal 

place based on the highest merit value. The subsequent section 
outlines the sequential procedures involved in attaining the most 
advantageous location, or in other words, elucidates the process 
by which the algorithm progressively approaches a solution that 
is close to optimal. Eq. (4) is utilized to represent the position of 
the i-th particle. 

𝑋𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑑 , . . . 𝑥𝑖𝐷)  (4) 

Eq. (5) is utilized to retain and present the prior optimal 
position of the i-th particle. 

𝑃𝑖 = (𝑝𝑖1, . . . , 𝑝𝑖𝑑 , . . . 𝑝𝑖𝐷   (5) 

The term used to refer to this concept is known as pbest [33]. 
The optimal solution within a population of particles is 
sometimes referred to as the global best (gbest). The velocity of 
the i-th particle is also represented by the vector Vi, as depicted 
in Eq. (6): 

𝑉𝑖 = (𝑣𝑖1, . . . , 𝑣𝑖𝑑 , . . . 𝑣𝑖𝐷)  (6) 

The fundamental principle underlying particle swarm 
optimization involves the manipulation of the location and 
velocity of individual particles towards their personal best 
(pbest) and global best (gbest) values, as described by Eq. (7) 
and (8). 

𝑣𝑖𝑑 = 𝑤 ∗ 𝑣𝑖𝑑 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑()(7) 

∗ (𝑝𝑔𝑑 − 𝑥𝑖𝑑) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑    (8) 

In this context, the symbol "w" represents the inertial weight, 
while the numbers 𝑐1 and 𝑐2 denote the acceleration constants 
[34]. Additionally, rand () refers to a random number generator 
that produces values uniformly distributed throughout the 
interval [0, 1]. Algorithm 1 presents the pseudocode for the 
fundamental particle swarm optimization. 

ALGORITHM 1: PSEUDO CODE OF BASIC PSO 

01: Start  

02:   Initialize particle swarm  
03:   While (number of iterations, or the stopping criterion is not met)  

04:     Evaluate fitness of particle swarm  

05:     For n = 1 to number of particles  
06:       Find pbest  

07:       Find gbest  

08:       For d = 1 to number of dimensions of particle  
09:         Update the position of particles via equations (3-4) and (3-5)  

10:       End For  

11:     End For  
12:    End While   

13:  Stop   

The fundamental particle swarm optimization approach has 
demonstrated commendable efficacy in addressing intricate 
challenges. However, notwithstanding this, it is afflicted by the 
issue of succumbing to the local optimum trap [35]. There exist 
various approaches for resolving this issue, with one particularly 
significant option being the utilization of chaos theory. 
According to the dictionary, the term "chaos" refers to a 
condition characterized by a lack of organization and clarity. In 
the realm of scientific discourse, a universally accepted 
definition for the concept in question remains elusive. The 
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concept of chaos is commonly acknowledged as a phenomenon 
characterized by distinct and discernible patterns within 
unpredictable circumstances, often referred to as "order in 
chaos." Chaos theory is a well-established theoretical 
framework that may be formulated based on a set of 
deterministic principles and mathematical equations. According 
to the principles of chaos theory, the future is entirely governed 
by preceding events. The logical equation, renowned for its 
association with chaos theory, holds significant prominence and 
finds application within the proposed methodology. Eq. (9) 
represents the logical equation: 

𝑥𝑡+1 = 𝜇𝑥𝑡(1 − 𝑥𝑡)  (9) 

The control parameter, denoted as


, and the variable x are 
both present in the given context. The search algorithm 
employed in the suggested method utilizes chaos theory 
principles. In this approach, the population is divided into two 
distinct sub-populations in the following manner: 

The population in PSO is updated by utilizing the 
fundamental algorithm (Algorithm 1) to modify the position and 
velocity of the particles [36]. The population exhibits a state of 
disorder, as indicated by the utilization of Eq. (9) to update the 
positions of particles. The dynamic alteration of the particle 
quantities in both the PSO and chaos populations is determined 
by employing Eq. (10) and (11). 

𝑁𝑒𝑤𝑃𝑆𝑂𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

=
𝑓𝑖𝑛𝑒𝑠𝑠𝑜𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡

𝑓𝑖𝑛𝑒𝑠𝑠𝑜𝑓𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑒𝑠𝑡
    

∗ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒  (10) 

𝑁𝑒𝑤𝐶ℎ𝑎𝑜𝑡𝑖𝑐𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

= 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒 − 𝑁𝑒𝑤𝑃𝑆𝑂𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (11) 

Algorithm 2 presents the pseudo-code of the suggested 
method, which incorporates the particle swarm optimization 
algorithm with chaos search. 

ALGORITHM 2: PSEUDO-CODE FOR OPTIMIZATION OF PARTICLE SWARM 

AND CHAOS PROBE 

Input: Composition request as a workflow (DAG) and Reil constraints 

Output: Near optimal composite cloud service 

Initialization as Basic PSO 
While (number of iterations, or the stopping criterion is not met)  

  For each particle in Chaotic Population 

    Update Particle Position using equation (6) 
    Decrease Chaotic search space 

Xmax - Xmin 

     where Xmax is the maximum position for PSO  
     where Xmin is the minimum position for PSO  

  End For 

  For each particle In PSO Population 
    Update particle velocity equation (4) 

    Update Particle Position equation (5) 

  END For 
  For each particle In Population 

    Evaluate fitness of particle  

    If (current position < best position) Then       
      Xpbest = current   position 

    End If 

    If (current position< gbest position) Then 
      gbest = current particle index 

    End If 

  End For 
  Update PSO and Chaotic Populations using (7) and (8) 

End While 

A. Initialization 

During the initialization step, it is necessary to generate the 
initial population of particles. The particle optimization 
approach utilizes particles to symbolize solutions to the problem 
at hand. In this context, a solution refers to the compound cloud 
service, which is represented by an array of size n, where n 
corresponds to the number of jobs inside the workflow. In order 
to fulfill the desired objective or meet the specified criteria [37]. 
The value contained at index i within the array represents the 
identification number of the candidate service responsible for 
executing task Ti. Given that the quantity of particles in the first 
population is denoted as P, the initial population of solutions can 
be represented as a matrix of dimensions P×n. 

B. Merit Function 

The primary objectives associated with addressing the 
challenge of integrating cloud services while considering service 
reliability are adhering to user-defined constraints and 
maximizing a merit function. The optimization of service 
dependability characteristics for the composite cloud service 
should be the primary objective of the fitness function [38]. The 
proposed reliability model has six parameters: reaction time 
(Resp), availability (Avail), throughput (Through), success 
capability (Succ), reliability (Reli), and delay (Late). The merit 
function for a solution is determined by relation (12). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑜𝑙) =
𝑤1∗𝑆𝑜𝑙.𝐴𝑣𝑎𝑖𝑙+𝑤2∗𝑆𝑜𝑙.𝑇ℎ𝑟𝑜𝑢+𝑤3∗𝑆𝑜𝑙.𝑆𝑢𝑐𝑐+𝑤4∗𝑆𝑜𝑙.𝑅𝑒𝑙𝑖

𝑤5∗𝑆𝑜𝑙.𝑅𝑒𝑠𝑝+𝑤6∗𝑆𝑜𝑙.𝐿𝑎𝑡𝑒
(12) 

The coefficients w1, w2, w3, w4, w5, and w6 represent positive 
weights assigned by the user to indicate the relative significance 
of each service dependability metric. 

V. DISCUSSION AND EVALUATION 

The proposed combination algorithm was simulated and 
evaluated using the MATLAB software. All tests were 
conducted using a Dell computer equipped with a 2.0 GHz Core 
i7 processor and 4 GB of RAM. Furthermore, the QWS dataset 
has been employed as a source of service information pertaining 
to applications in distributed systems. 

In light of the fact that the method employed a heuristic 
algorithm, an assessment has been conducted to evaluate the 
outcomes in relation to convergence and stability. The ensuing 
findings will be expounded upon in the subsequent sections. 
Furthermore, the outcomes of the suggested approach have been 
juxtaposed with those of two genetic algorithms and a 
rudimentary particle swarm optimization technique. Tables II 
and III present the parameters pertaining to the genetic algorithm 
and optimization of both the basic particle swarm and the 
suggested technique, respectively. 

TABLE II.  PARAMETERS OF A GENETIC ALGORITHM 

Amount  Parameter 

200 Initial population size 

300 Number of generations 

two points Cut operator 

Roulette wheel selection operator 

0/8 Cutting rate 

0/05 Mutation rate 
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TABLE III.  PARAMETERS OF THE SUGGESTED TECHNIQUE AND THE 

FUNDAMENTAL PARTICLE SWARM OPTIMIZATION ALGORITHM 

Amount  Parameter 

200 Number of elementary 
particles 

300 The number of repetitions 

0/5 Inertia weight (w) 

0*0 2/5rnd C1 

0*0 2/5rnd C2 

max max* 0.1 1.0v x   
 

Maximum speed 

0.6 𝝁 

A. Convergence Test 

In order to assess convergence, the proposed method, along 
with genetic algorithms and basic particle swarm optimization, 
were applied to three distributed systems applications. These 
applications consisted of 5, 10, and 20 tasks, respectively. Fig. 2, 
3, and 4 depict the convergence process leading to the final 
solution for each respective application. The aforementioned 
graphs depict the horizontal axis representing the sequence of 
algorithm iterations, while the vertical axis represents the 
highest measure of performance achieved in each iteration. 

 

Fig. 2. Convergence of the suggested combination method compared to 

genetic and elementary particle optimization algorithms (number of tasks: 5). 

 

Fig. 3. Convergence of the suggested combination method compared to 

genetic and elementary particle optimization algorithms (number of tasks: 10). 

 

Fig. 4. Convergence of the suggested combination method compared to 

genetic and elementary particle optimization algorithms (number of tasks: 20). 

B. Stability Test 

It is imperative to conduct a thorough examination of the 
stability of the associated algorithm when evaluating discovery 
algorithms in distributed systems applications. Given the 
inherent stochastic character of discovery algorithms, such as 
the particle swarm optimization method, it is imperative to 
assess their stability. The concept of algorithmic stability 
pertains to the consistency of an algorithm's output throughout 
multiple executions, ensuring that the method yields identical or 
similar results. In order to evaluate the stability of the algorithm 
under consideration, the suggested methodology was 
implemented in four distinct distributed systems applications. 
These applications were subjected to 5, 10, and 20 iterations, 
respectively. The proposed technique was executed ten times for 
each application, and the resulting service merit values were 
recorded. These values are presented in Fig. 5, 6, and 7. 

The graphs depict the order of algorithm execution on the 
horizontal axis, while the vertical axis represents the merit value 
of the composite cloud service in the applications of distributed 
systems for each respective order of execution. 

 

Fig. 5. The suggested combination algorithm's stability (number of tasks: 5). 
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Fig. 6. The suggested combination algorithm's stability (number of tasks: 10). 

 

Fig. 7. The suggested combination algorithm's stability (number of tasks: 20). 

Upon analysis of the stability graphs, it is evident that the 
suggested algorithm exhibits a notable degree of stability across 
various distributed systems applications. The primary factor 
contributing to the observed high stability is the consistent 
absence of fluctuations in the near-optimal service merit value 
over multiple algorithm iterations. The findings indicate that the 
algorithm's stability is significantly greater for combination 
requests involving a small number of tasks compared to those 
involving a large number of tasks. 

C. Evaluating the Generated Cloud Composite Services for 

Quality 

The primary objective of this experiment is to evaluate and 
compare the efficacy of the suggested method with the 
fundamental and genetic particle swarm optimization methods 
in developing distributed systems applications. In order to 
conduct the experiment, the aforementioned methodologies 
were employed to analyze 20 distinct application requests, each 
consisting of 5, 10, or 20 jobs. The resulting average merit 
values derived from the execution of these methodologies are 
presented in Table IV. Upon careful examination of the findings 
shown in Table IV, it becomes evident that the service quality 
of the applications generated using the suggested method 
surpasses that of the fundamental particles and genetics 

optimization algorithms, as indicated by the service quality 
criteria. 

TABLE IV.  APPLICATIONS' SERVICE QUALITY COMPARISON 

n = 5 n = 10 n = 20 Method 

10.985 1.675 0/289 GA [16] 

13.152 2.985 0.378 PSO [19] 

15.685 4.898 0.426 Proposed Method 

1) Test of service quality criteria: The purpose of this study 

was to assess the efficacy of the developed cloud composite 

service based on the dimensions of accessibility, dependability, 

and success. To conduct the test, the user's service composition 

request was distributed across all three techniques, and the 

resultant cloud composite service was evaluated in terms of 

accessibility, reliability, and success. Fig. 8, 9, and 10 depict 

the values of the quality criteria for accessibility, reliability, and 

success, respectively. The findings obtained indicate that the 

suggested method yields a cloud composite service of superior 

quality compared to the particle optimization algorithm [19] 

and the genetics algorithm [16], as assessed by the 

aforementioned quality standards. 

 

Fig. 8. The application's service accessibility. 

 

Fig. 9. The application's service reliability. 
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Fig. 10. The application's capacity for service success. 

D. Package Delivery Rates 

The quantity of packets received by application services 
serves as one parameter for assessing the effectiveness of 
algorithms in distributed system applications. A higher number 
of packets received by the services indicates that the algorithm 
performed better and supplied more data to the distribution 
system. We simulate the number of different gateways and then 
count the number of packets received by the services to get the 
total number of received packets. The quantity of packets that 
the distribution system application has received is displayed in 
Fig. 11. 

 

Fig. 11. The number of received packages. 

The diagram presented below illustrates the packet delivery 
rate of the method across various services, as indicated by the 
observed trend (see Fig. 12). 

 

Fig. 12. Packet delivery rate. 

E. Energy Consumption 

The subsequent significant metric assessed to gauge the 
efficacy of the algorithm is the level of energy usage. The energy 
consumption referred to in this section pertains to the aggregate 
energy consumed by all services and applications throughout 
distributed systems and gateways. Specifically, there are 60 
gateways and an unspecified number of services within these 
systems. The distribution value is set at 500 and the simulation 
is executed. The energy consumption of the two algorithms is 
quantified in Joules, as depicted in Fig. 13. 

 

Fig. 13. Energy usage in all applications involving distributed systems. 

The energy consumption in the proposed technique is 
comparatively lower than that of the method described in 
reference [17]. This can be attributed to the more efficient 
selection of programs utilizing chaos-based particle swarming 
for gateway services. When the service selection is optimized, it 
implies that program services are not required to transmit their 
data over vast distances in order to achieve their objectives, 
hence resulting in reduced energy consumption. 

F. Reliability 

As depicted in Fig. 14, the determination of reliability 
necessitates the presence of a timer that computes the temporal 
aspects associated with diverse activities, including transmission 
and reception. The degree of dependability associated with the 
initial stage, specifically when the service is introduced into the 
program, is disregarded. The longevity of the distributed system 
is of significant concern, spanning several days or even weeks. 
Consequently, the relatively brief duration of the first phase may 
be disregarded. 

 

Fig. 14. Comparison of reliability over time. 
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Fig. 15. Comparison of dependability in relation to received packet size. 

Fig. 15 presents a crucial comparison pertaining to 
reliability, which is evaluated by quantifying the number of 
received packets. It is evident that the proposed method exhibits 
a high level of reliability across various quantities of received 
packets. 

The findings of the research carried out in this article show 
that the use of particle swarm optimization (PSO) algorithm 
along with chaos theory has been able to reduce the time 
required to adjust the parameters of distributed systems and 
achieve a near-optimal solution. These findings are consistent 
with the results of previous researches that have investigated 
reliability models in large commercial projects. For example, 
research conducted by Al-Masri et al. has shown that the use of 
reliable datasets can bring significant improvements in the 
reliability assessment of cloud services. 

However, the method proposed in this paper also has 
innovations that have not been found in previous research. In 
particular, combining the PSO algorithm with chaos theory to 
improve the convergence and stability of the algorithm is a new 
and innovative approach. This combination helps to reduce the 
problem of entrapment in local optima and increases the 
diversity of the particle population, which has not been 
investigated in this way in previous research. Therefore, it can 
be said that this research is consistent with previous findings and 
provides innovations that have not been investigated before. 

VI. CONCLUSION 

This study introduces a framework that utilizes the particle 
swarm optimization technique to optimize dependability 
parameters in distributed systems applications. The objective of 
the proposed methodology was to identify a suitable application 
that offers optimal service and demonstrates a high degree of 
expertise. Furthermore, the algorithm under consideration was 
executed using various settings, and the resulting graphs were 
subsequently analyzed. The utilization of the Particle Swarm 
Optimization (PSO) algorithm has been seen to decrease the 
time needed for determining the parameters of distributed 
systems applications to a certain degree. However, it should be 
noted that the PSO algorithm does not provide an absolute 
solution, but rather yields an approximation that is in close 

proximity to the optimal solution. In order to assess the efficacy 
of any algorithm, it is important to do a comparative analysis 
with respect to prior algorithms. Consequently, the outcomes of 
the study were juxtaposed with the genetic algorithm. After 
conducting a comparative analysis of the algorithms, it was 
determined that the PSO algorithm exhibits a shorter response 
time in comparison to both the genetic algorithm and PSO. 
Additionally, the PSO algorithm has favorable stability, 
resulting in the suggested technique yielding a solution that 
closely approximates the optimal solution. 

Based on the analysis of the convergence graphs, it is evident 
that the Particle Swarm Optimization (PSO) algorithm has a 
favorable convergence pattern when coupled with the principles 
of chaos theory. Based on the stability level depicted in the 
graphs, it is observed that the PSO algorithm employing the 
chaos theory approach consistently produces a singular solution 
across multiple tasks. This indicates that the stability of the PSO 
algorithm with the chaos theory approach is commendable. 
Consequently, it can be inferred that the solution derived from 
the proposed algorithm has the potential to be the optimal 
solution. Based on the findings and materials elucidated in this 
study, a recommendation for future endeavors is conducting a 
comparative analysis of these algorithms through the application 
of chaos theory to alternative evolutionary algorithms, including 
genetics and colonial competition, as well as ant colony 
algorithms, among others. 

Although this research has addressed the optimization of 
reliability parameters in distributed systems using the Particle 
Swarm Optimization (PSO) algorithm, it also has some 
limitations. One of the most important limitations is that the PSO 
algorithm only reaches a close approximation to the best 
solution and not a definite and absolute solution. This can be 
problematic in precision-sensitive applications. In addition, this 
research has only been compared with the genetic algorithm and 
has not used other evolutionary algorithms such as the colonial 
competition algorithm or the ant colony algorithm. Also, the 
presented method is implemented in the MATLAB 
environment, which may have limitations in generalizing the 
results to other platforms and execution environments. 

For further studies, it can be suggested that a more 
comprehensive comparison be made with other evolutionary 
algorithms to determine the strengths and weaknesses of each 
one more precisely. Also, reviewing and implementing the 
algorithm in different environments and analyzing the results 
can help to increase the generalizability and applicability of the 
results. The use of more and more diverse real data can also lead 
to a more accurate evaluation of the algorithm's efficiency. 
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