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Abstract—This research tackles resource management in 

OpenWhisk-based serverless applications for the Internet of 

Things (IoT) by introducing a novel approach to container 

retention optimization. We leverage the capabilities of AWS 

Forecast, specifically its DeepAR+ and Prophet algorithms, to 

dynamically forecast workload patterns. This real-time forecast 

empowers us to make adaptive adjustments to container retention 

durations. By optimizing retention times, we can effectively 

mitigate cold start latency, the primary reason behind sluggish 

response times in IoT serverless environments. Our approach 

outperforms conventional preloading and chaining techniques by 

significantly increasing resource utilization efficiency. Since 

OpenWhisk is an open-source platform, our methodology was able 

to achieve a cost reduction. By integrating it with Amazon 

Forecast's built-in algorithms, we surpassed traditional cache cold 

start strategies. These findings strongly support the viability of 

dynamic container retention optimization for IoT serverless 

deployments. Evaluations conducted on the OpenWhisk platform 

demonstrate substantial benefits. We observed a remarkable 67% 

reduction in cold start latency, translating to expedited response 

times and a demonstrably enhanced end-user application 

experience. These findings convincingly validate the efficacy of 

AWS Forecast in optimizing container retention for IoT serverless 

deployments by capitalizing on its deep learning (DeepAR+) and 

interpretable forecasting (Prophet) abilities. This research lays a 

solid foundation for future studies on optimizing container 

management across various DevOps practices and container 

orchestration platforms, contributing to the advancement of 

efficient and responsive serverless architectures. 

Keywords—Serverless IoT; AWS Forecast Deep AR+; Prophet; 

AWS EKS; docker and containers; cold start; OpenWhisk  

I. INTRODUCTION 

In serverless computing, OpenWhisk struggles with 
managing containers for dynamic IoT data streams due to 
traditional approaches like fixed retention policies and "keep-
alive" mechanisms. These methods lead to high cold start 
latency and inefficient resource utilization, marked by high 
baseline latency and low resource usage during idle periods [1]. 
To address these challenges, we propose a novel workload 
prediction-based approach using AWS Forecast. By predicting 
high activity periods for specific IoT topics, our approach 
allows for dynamic adjustments to container lifetimes. This 
aims to significantly reduce cold start latency and improve 
resource efficiency. Our research evaluates the performance of 
two forecasting algorithms, DeepAR+ and Prophet, within the 
OpenWhisk platform. By integrating these predictive tools, we 
seek to optimize container retention and enhance serverless 
application performance in the IoT domain. This paper will 
detail the limitations of existing container management 

strategies, present our predictive approach, and analyze the 
impact of these algorithms on improving efficiency and 
reducing latency in serverless environments. 

We will first examine the inherent limitations of current 
container management strategies in the IoT serverless cloud-
native platform, focusing on issues like high cold start latency 
and inefficient container and resource utilization. Following 
this, we will introduce our innovative approach, which employs 
AWS Forecast's DeepAR+ and Prophet algorithms for dynamic 
workload prediction and container retention optimization. We 
will detail how these predictive techniques address the 
shortcomings of traditional methods by enabling real-time 
adjustments to container lifetimes. Finally, the paper will 
present a comprehensive analysis of our approach's 
effectiveness, supported by empirical results demonstrating 
significant improvements in both latency reduction and 
resource efficiency. Through this structure, we aim to provide 
a clear roadmap of our research and highlight the contributions 
it makes toward advancing serverless IoT applications. 

II. FUNCTION PRELOADING AND FUNCTION CHAINING 

A. Function Preloading 

Function preloading tackles cold start latency. 

 Resource Wastage: Preloading retains containers even 
during low keeping a set number of containers warm in 
memory, ensuring minimal invocation delays for 
frequently used functions [1]. However, this approach 
suffers from two key drawbacks -activity periods, 
leading to inefficient resource utilization [2]. 
OpenWhisk allocates resources for these idle containers, 
even though there might not be a function execution to 
justify their presence. 

 Static Configuration: Determining the optimal number of 
preloaded containers can be challenging. An insufficient 
number might lead to cold starts when demand spikes, 
while an excessive number wastes resources during low 
workloads. 

B. Function Chaining 

The function chaining technique aims to reduce cold start 
penalties for subsequent functions in a sequence by combining 
them into a single execution unit on OpenWhisk. While this 
improves the latency of chained functions compared to separate 
invocations, it has limitations [2, 3]. 

 Limited Applicability: Chaining is only effective for 
functions specifically designed and ordered for 
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sequential execution [3]. This might not be feasible for 
all IoT use cases. 

 Increased Complexity: Function chaining requires 
careful design and development effort to ensure proper 
execution flow within the chain, potentially hindering 
code maintainability [4]. 

III. PREDICTION-DRIVEN RETENTION 

The unpredictable nature of IoT workloads renders static 
configurations impractical. Keeping containers perpetually 
warm can lead to an increased memory footprint on the server. 
Studies have shown that this can result in higher than necessary 
compute resource utilization, potentially causing execution 
lags, a direct contradiction to the goal of minimizing container 
request latency [5, 12]. 

This study explores a solution that optimizes resource 
utilization while mitigating cold starts. We leverage AWS 
Forecast, a machine learning service, to strike a balance 
between container retention and minimizing resource waste. 

While incorporating mathematical expressions for container 
retention is intriguing, directly modeling this duration can be 
challenging due to the dynamic nature of workloads. However, 
we can explore how the workload prediction forecasting 
approach relates to cold start latency and resource utilization. 

Cold start latency (CSL) can be expressed as: 

CSL = T_fresh + T_init + T_deps             (1) 

T_fresh is the time to allocate new resources (CPU, 
memory) for a container. T_init is time to initialize the runtime 
environment (e.g., Python). T_deps is time to download and 
load function dependencies. 

The implemented forecasting in our study aims to minimize 
this latency by keeping containers warm during anticipated 
high-activity periods. 

Let P (high_activity) represent the probability of a high 
workload based on the AWS forecast. We can estimate the 
average cold start latency (ACSL) with forecasting as 

ACSL = (1 – P (high_activity)) * CSL + 

P (high_activity) * T_warm                         (2) 

T_warm is the minimal overhead associated with a warm 
container (potentially close to 0). 

Here, by maximizing P (high_activity) through accurate 
forecasting, we aim to minimize ACSL compared to scenarios 
where containers are not retained strategically. 

Resource Utilization (RU) can be a complex metric 
depending on the specific resource being considered (CPU, 
memory, etc.). However, we can conceptually represent it as: 

RU = 
total resource consumption

total available resources
                 (3) 

Preloading a fixed number of containers (N) leads to a 
baseline resource utilization (RU_preloading). 

RU_preloading 

= 
N*average container resource consumption  

total available resource             
               (4) 

The implemented AWS forecasting approach dynamically 
adjusts the number of retained containers (N_t) based on the 
predicted workload. This leads to potentially more efficient 
resource utilization. 

R U_forecasting 

=
 Σ(N_t *Average Container) (Resource Consumption)

Total Available Resource ( Σ across time intervals)
          (5) 

Here, N_t varies based on the forecast, potentially leading 
to a lower average value compared to N in preloading, thus 
improving resource utilization. 

Consider an average cold start latency (CSL) of 100 ms and 
a warm container overhead (T_warm) of 10 ms. If Workload 
Prediction forecast a 70% chance, (P(high_activity) = 0.7) of 
high workload, the average cold start latency with forecasting 
(ACSL) would be: 

ACSL = (1 - 0.7) * 100 ms + 0.7 * 10 ms = 40 ms   (6) 

This represents a significant reduction in latency compared 
to scenarios without container retention. 

 

Fig. 1. ACSL vs. P (high_activity). 

Considering Fig. 1, for instance, with no prediction (P 
(high_activity) = 0.0), the cold start latency is at its highest 

(represented by the point at the far left of the line). This reflects 
the cold start penalty when containers are not retained 
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proactively. Conversely, as the probability of high activity 
approaches 1.0 (far right of the line), the ACSL approaches a 
minimum value (potentially close to 10 ms in your example). 
This represents the minimal overhead associated with keeping 
a container warm, significantly reducing cold start latency. The 
overall trend reinforces the core concept of our research: 
utilizing workload prediction (P (high_activity)) allows for 
dynamic container retention, minimizing cold starts, and 
improving response times in serverless IoT applications. 

IV. AWS FORECAST 

AWS Forecast with machine learning algorithms like 
DeepAR+ or Prophet offers a more efficient and scalable 
solution on OpenWhisk by dynamically adjusting container 
retention durations based on workload predictions. 

Workload Prediction: AWS Forecast analyses historical 
data on IoT function invocation patterns to identify trends and 
seasonality. This allows for predictions of future invocation 
frequencies, enabling informed decisions about container 
retention. 

Dynamic Retention: Based on the predicted workload, 
OpenWhisk can dynamically adjust container retention 
durations. During periods with high-predicted invocation rates, 
containers are retained for a longer duration to minimize cold 
starts. Conversely, during low-predicted activity, containers are 
allowed to be downscaled. 

Algorithm Selection: DeepAR+, with its deep learning 
architecture, excels at capturing complex patterns or seasonality 
in IoT function workload data. Prophet is a good choice for 
simpler trends or seasonality, offering faster training times and 
interpretable models for easier understanding of the predictions. 

AWS Forecast with machine learning offers a dynamic and 
technically superior solution compared to preloading and 
chaining on OpenWhisk. It overcomes their limitations by 

enabling workload predictions and dynamic container 
retention, leading to optimal resource management for 
serverless IoT applications. 

V. PROPOSED WORKLOAD PREDICTION FRAMEWORK 

The proposed Cloud Architecture outlines an infrastructure 
on AWS Cloud Platform for optimizing container retention in a 
serverless environment shown in Fig. 2. 

Here's a breakdown of the components and their 
interactions: 

A. Data Source and Load Generation 

 Locust: This is a load testing tool. It uses the provided 
data set to simulate real-world usage patterns and 
generate load on your Azure Functions. 

 EC2 Deployment: Locust is deployed on an EC2 
instance, a virtual server within the AWS cloud. This 
provides a platform for running the load tests and 
generating data. 

 AWS IoT Core: This acts as the central message hub 
within AWS. It receives the simulated data stream 
(function invocation patterns) from the Locust load test 
running on the EC2 instance. 

 S3: Amazon Simple Storage Service. This is a cloud 
storage solution where the simulated data from IoT Core 
is likely stored. 

 AWS Forecast, a managed service for time-series 
forecasting, provides pre-built datasets and various 
algorithms. We implemented DeepAR+, a deep learning 
algorithm ideal for complex patterns and seasonality in 
IoT data, and Prophet, suitable for simpler trends with its 
interpretable models and faster training. 

 

Fig. 2. Proposed cloud architecture. 
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B. Decision Making and Container Management 

DeepAR+ and Prophet will generate separate predictions 
for future workload patterns based on the ingested IoT function 
data. 

OpenWhisk on EKS: Simultaneously, Apache OpenWhisk, 
a serverless computing platform deployed on AWS through 
EKS (Elastic Kubernetes Service) [6], is utilized for executing 
serverless functions triggered by incoming events or data. 

The output generated by AWS Forecast, containing 
predictions generated by both Prophet and AWS DeepAR+, is 
directed to storage in Amazon S3. S3 serves as a centralized 
repository for storing the forecasted data. Based on the 
predictions, OpenWhisk can dynamically adjust container 
retention durations for IoT functions. 

During periods with a high predicted workload, containers 
will be retained for longer durations to minimize cold start 
latency. Conversely, during low-demand periods, containers 
can be recycled, freeing up resources for other applications. 

Dynamic Container Management (Controller, Invoker and 
Docker): Container Retention Decisions: Based on the chosen 
or aggregated prediction, the OpenWhisk Controller determines 
optimal container retention durations. 

Docker and Warm Containers: Based on the controller's 
decisions, the number of warm containers (containing IoT 
Functions) is dynamically adjusted using Docker within the 
OpenWhisk framework [6]. 

During high-demand periods (predicted based on workload 
forecasts), more containers are kept warm to minimize cold 
start latency. Conversely, during low-demand periods, 
containers can be recycled, freeing up resources. 

VI. MODEL SELECTION CRITERIA 

Prophet: Effective for stable IoT workloads with moderate 
fluctuations, a single dominant trend (upward/downward), and 
well-represented by the decomposition [7]. 

y(t) = g(t) + h(t) + s(t) + ε(t)                   (7) 

where y(t) is the predicted value at time t, 

g(t) is the piecewise linear trend function, 

h(t) is the seasonality component (can model daily, weekly, 
and yearly cycles), 

s(t) is the effect of holidays (if included) and 

ε(t) is the error term. 

DeepAR+ captures complex IoT workload patterns with 
high data variability (sensor readings, user interactions), 
frequent workload invocations (predicts spikes or troughs), 
multiple trends and complex seasonality (changing usage, 
varying amplitude or periodicity) [7]. 

Analysing the DeepAR+ and Prophet suitability lines across 
workload complexity reveals trends in Fig. 3. DeepAR+ excels 
when its line consistently surpasses Prophet's within a specific 
complexity range (shaded area), making it preferable for 
workloads in that band. Conversely, Prophet demonstrates 
superiority when its line consistently remains above 
DeepAR+'s within another complexity range, indicating its 
suitability for workloads in that zone. Considering these trends 
alongside the workload's characteristics enables an informed 
decision on the most suitable model for study on workload 
prediction. 

 

Fig. 3. Model selection based on workload complexity. 
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A. Workload Prediction with Prophet 

Prophet predicts the future workload (function invocation 
frequency) at time t, denoted as y (t). This prediction is based 
on the Prophet model's internal workings (including 
considerations for trend, seasonality, and holidays) and the 
combined feature set (F_manual and potentially F_built-in) [7]. 

Container Retention Threshold (T_c): Define a threshold 
(T_c) representing the minimum number of active containers 
required to ensure acceptable performance during peak 
workload periods [8]. This threshold considers factors like 
average function execution time, which is the desired maximum 
latency for function invocation. 

Scaling Decisions Based on Predictions: 

Up-scaling Containers: If Prophet's prediction,   y(t_future), 
for a future time period (t_future) exceeds a pre-defined 
threshold (T_up), 

where T_up > T_c 

T_up represents a buffer zone above the minimum threshold 
to account for potential workload surges beyond the predicted 
value. 

We had initiated scaling up IoT Function application by 
launching additional containers. This ensures enough 
containers are available to handle the anticipated workload 
without excessive cold starts. Down-scaling Containers: If 
Prophet's prediction,     y (t_current), for the current time period 
(t_current) falls below a pre-defined threshold (T_down), 
where T_down < T_c: 

T_down represents a safety margin below the minimum 
threshold to avoid under-provisioning during unexpected 
workload spikes. 

We had initiated scaling down IoT application by gracefully 
terminating unnecessary containers. This reduces resource 
consumption during low workload periods. 

Mathematical Representation: 

Up-scaling: if y(t_future) > T_up, then launch additional 
containers. 

Down-scaling: if y(t_current) < T_down, then terminate 
unnecessary containers. 

Setting thresholds (T_up & T_down) Setting these 
thresholds effectively depends on factors such as predicted 
workload variations based on output y(t). 

AWS Forecast's built-in features (F_built-in) again provide 
pre-built information about common temporal patterns (e.g., 
weekly seasonality, holidays). 

B. Workload Prediction with DeepAR+ 

Both F_manual and F_built-in features are fed into the 
DeepAR+ model during training. The model learns to extract 

relevant information from these features and utilize it for IoT 
workload prediction (function invocation frequency). 

DeepAR+ builds upon a combination of mathematical 
concepts to achieve its deep learning capabilities [9, 10]. 

Loss Function: During training, a loss function (e.g., mean 
squared error) measures the difference between the model's 
predictions and the actual workload data. The model iteratively 
adjusts its internal parameters to minimize this loss, improving 
its prediction accuracy over time [11]. 

Mathematical Representation (Simplified): 

DeepAR+ employs a complex series of mathematical 
operations within its RNN architecture [10, 14]. However, a 
simplified representation could be: 

y(t) = f [W * {x(t-1), ..., x(t-n)} + b]            (8) 

where: y(t): predicted workload (function invocation 
frequency) at time t. 

f: activation function (e.g., sigmoid) introducing non-
linearity for complex pattern modelling, 

W: weight matrix learned during training, 

x(t-i): feature vector at time t-i (incorporating F_manual and 
F_built-in features). 

b: bias vector 

This simplified equation demonstrates how DeepAR+ uses 
weights (W) to combine past feature vectors (x) with a bias (b) 
and applies an activation function (f) to generate a prediction y 
(t). The weight matrix (W) captures the complex relationships 
between features and workload that the model learns during 
training. 

VII. ANALYSIS FORECAST WORKLOAD PREDICTION 

In Fig. 4, spanning weeks 1 to 4, the forecast workload 
prediction approach showcases notable enhancements in 
container retention across all four IoT topics. The retention 
rates soar from 96% to 100%, showcasing a considerable 
decrease in prematurely discarded containers. This underscores 
the efficacy of the proposed approach in accurately predicting 
future workloads, thus maintaining active containers to handle 
incoming requests. Consequently, this minimizes the necessity 
for container restarts, thereby augmenting operational 
efficiency. 

Weeks 5-8 (Function Preloading/Function Chaining): The 
second half of the table shows the performance of the combined 
Function Preloading and Function Chaining approach for the 
same IoT topics. Compared to forecast workload prediction, 
container retention improvement is lower, ranging from 46% to 
93%. 
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Fig. 4. Workload prediction vs. traditional. 

Algorithm 1: Container Retention based on Workload   
Predictions 

Inputs: workload predictions (y(t)) for future time intervals (t_i) 
from DeepAR+ or Prophet and minimum container threshold (T_c) 
for acceptable performance. 

Step 1: For each future time interval (t_i): 

    Get predicted workload y(t_i) for time interval t_i 

 

Decision: Does enough warm containers exist? 

(does_container_exist(t_i)) 

 Yes: Proceed to down-scaling check 

 No: Launch a new container (create_container) 

(optional: set resource limits based on predicted 

workload) 

New (Down-scaling): If containers exist and the predicted   

workload is low (y(t_i) < T_down), gracefully terminate 

unnecessary ones (maintaining at least T_c) 

Step 2: Execute the IoT Function: With sufficient warm     

containers, execute the IoT function efficiently (minimal cold 

start latency) 

End 
 
 

 

Algorithm 2: Custom Invoker  

Input: function request from Locust via AWS IoT Core Function 

Does Container Exist () 

 Query Docker for warm containers 

 Return True if a warm container exists, False otherwise 

Function Create Container () 

 Create a warm Docker container 

 Execute Function () 

 Run the function request in the container 

 Terminate the container 

Decision: Does Container Exist () == True? 

Yes: 

 Get the name of the existing warm container (container) 

 Execute Function () 

No: 

 Create Container () 

 Execute Function () 

       End 

       Write Logfile () to S3 

In Fig. 5, this category showcases the potential impact of a 
workload prediction approach. With a higher number of 
invocations in this range compared to Function Preloading and 
Function Chaining, it suggests a potential in reduction in cold 
starts. 

Combined Stream (Moderate Latency) (501-1000 
milliseconds): The number of invocations in this range for the 
prediction approach might still be higher than the alternatives. 
This indicates some functions might require slightly more 
processing time. 

Individual Topic Types (Over 1000 + milliseconds): As we 
move into categories representing specific topic types, the 
latency distribution might become more balanced. This 
suggests the processing complexity of these data streams might 
contribute to slightly higher latencies. 

Function Preloading and Function Chaining: These 
approaches show a presence across all latency ranges. They 
might still achieve some level of cold start reduction, but their 
distribution suggests they might have a higher number of cold 
starts compared to a workload prediction approach, particularly 
within the low latency range. 
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Fig. 5. Workload prediction. 

A. Merits of Workload Prediction 

 Reduced Cold Starts: A workload prediction approach 
(like Forecast) has the potential to significantly reduce 
cold starts by proactively preparing functions for 
incoming requests, leading to faster response times. 

 Improved Efficiency: By minimizing the delays 
associated with cold starts, a prediction approach can 
improve the overall performance of serverless functions 
processing combined IoT topic data. 

 Scalability: The ability to handle diverse data streams 
(various topic types) with reduced cold starts highlights 
the potential scalability and adaptability of a workload 
prediction approach. 

In Fig. 6, a substantial dataset comprising 1000 data points 
are utilized to depict the performance metrics for both before 
and after optimization scenarios. 

 

Fig. 6. Optimization impact. 
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Before Latency: Random values between 40 ms and 120 ms 
represent the cold start latency experienced before 
implementing your approach.After Latency: These values are 
calculated by multiplying the before latency by 0.33, simulating 
a 67% reduction in cold start latency achieved through your 
optimization.Workload: Random values between 20 and 100 
represent the workload (function invocations) experienced 
during each cold start. 

Median Latency: The thin line within each violin indicates 
the median cold start latency for that optimization state. A 
lower median in the "after optimization" violin suggests a 
general reduction in latency. 

VIII. COMPARITIVE STUDIES 

This comparative study (Table I) analyzes the efficiency of 
different methods for reducing cold start latency and improving 
resource utilization in serverless architectures. The study 
compares the proposed approach utilizing AWS Forecast with 
DeepAR+ and Prophet for container retention optimization 
against four referenced papers [1, 2, 3, 4]. 

Cold Start Reduction: The proposed work achieves a 
significant 67% reduction, comparable to or better than other 
techniques like adaptive pooling and predictive autoscaling. 

Resource Utilization: Resource utilization fluctuates across 
the studies [1, 2, 3, 4], often lower during off-peak times or 
optimized through various scheduling and scaling techniques. 
However, the proposed work ensures high resource utilization 
optimized for current demand. The proposed approach ensures 
high resource utilization by minimizing unnecessary container 
activity, similar to workload-aware scheduling and cost-
efficient strategies. 

Implementation Complexity: Proposed work maintains 
moderate complexity by leveraging AWS Forecast, which 
simplifies the implementation compared to ML model-based 
predictive autoscaling. 

Scalability: The proposed method is highly scalable with 
reduced complexity, making it a robust solution for varying 
workloads. 

Leveraging AWS Forecast for container retention 
optimization offers a balanced and effective solution for 
reducing cold start latency, optimizing resource utilization, and 
maintaining scalability with moderate implementation 
complexity. The proposed approach stands out as a practical 
alternative to more complex and traditional serverless 
computing techniques. 

Implementation complexity ranges from high to moderate, 
with the proposed work leveraging AWS Forecast to maintain 
moderate complexity. Scalability is generally effective across 
all references, but the proposed work is highlighted as highly 
scalable with reduced complexity. Continuous model retraining 
is necessary for many adaptive and predictive techniques, yet 
the proposed work reduces this need by relying on AWS 
Forecast, thus streamlining the process. Lastly, while 
prewarming resource wastage is a concern during low traffic 
periods for some techniques, the proposed work effectively 
prevents wastage through dynamic adjustment. 

TABLE I. COMPARATIVE STUDY- 1 

Metric 
Implementation 

Complexity 

Continuous 

Model 

Retraining 

Prewarming 

Resource 

Wastage 

Ref [1] 

High for dynamic 

allocation and 

request prediction 

Required for 

request 
prediction 

models 

Yes, during low 
traffic periods 

Ref [2] 
Moderate, requires 
workload analysis 

Necessary for 

adaptive 

techniques 

Reduced 

through 
adaptive 

pooling 

Ref [3] 

High, involves ML 

model training and 
deployment 

Necessary for 

predictive 
autoscaling 

Minimized 
through 

accurate auto 

scaling 

Ref [4] 

Moderate, balancing 

cost and 

performance 

Not specified, 

focus on cost 

efficiency 

Balanced with 

cost-aware pre-

warming 

Proposed 

Work 

Moderate, utilizing 

AWS Forecast 

Reduced need, 

AWS Forecast 

handles it 

No, dynamic 
adjustment 

prevents 

wastage 

TABLE II. COMPARATIVE STUDY- 2 

Study/ 

Reference 
Techniques 

Cold Start 

Reduction 

Resource 

Utilization 
Scalability 

Proposed 
Study 

AWS 

Forecast 
(DeepAR+, 

Prophet) 

67% 

High, 

dynamic 

adjustments 

High 

Ref [5] 
Caching 

Techniques 
50-60% Variable Good 

Ref  [6] 
SAAF 
Framework 

Not 
specific 

High, 

predictive 

modeling 

High 

Ref [7] 
Pool-Based 

Approach 
60-66% 

Improved 
through pre-

warming 

High 

Ref [8] 
Function 

Fusion 
55-65% 

Enhanced by 
reducing 

cold starts 

Moderate to 

High 

Table II compares various studies and references on 
techniques for optimizing serverless computing, focusing on 
cold start reduction, resource utilization, implementation 
complexity, and scalability. The proposed study uses AWS 
Forecast (DeepAR+ and Prophet) to achieve a 67% reduction 
in cold starts, high resource utilization through dynamic 
adjustments, and moderate implementation complexity while 
offering high scalability. The research in [5] employs caching 
techniques; achieving a 50-60% reduction in cold starts with 
variable resource utilization, moderate complexity, and good 
scalability. The study in [6] utilizes the SAAF Framework, 
which does not specify cold start reduction but ensures high 
resource utilization through predictive modeling, though it 
comes with high implementation complexity and scalability. 
The research in [7] uses a pool-based approach to achieve a 60-
66% reduction in cold starts, with improved resource utilization 
through pre-warming, moderate complexity, and high 
scalability. Lastly, the study in [8] applies function fusion, 
reducing cold starts by 55–65% and enhancing resource 
utilization by minimizing cold starts, with high implementation 
complexity and moderate to high scalability. Each study offers 
a unique balance of benefits and challenges, with the proposed 
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study standing out for its effective cold start reduction and 
scalability. 

IX. CONCLUSION AND FUTURE WORK 

This study focused on Python-based programming 
workloads and examined the performance of the OpenWhisk 
Platform in comparison to existing serverless computing 
platforms in terms of system cost. The findings demonstrated 
that the OpenWhisk Platform outperformed existing cache cold 
start tactics, resulting in a reduction of overall system cost. To 
achieve these improvements, the study proposed the use of the 
AWS Forecast service with the DeepAR+, Prophet algorithms 
in combination with containerization. This approach allows for 
the prediction of demand for a specific function and the pre-
warming of a container, thereby reducing cold start-up time in 
serverless IoT applications. The retention of containers further 
enhances this technique by keeping the runtime environment 
warm and ready for subsequent invocations of the function. The 
application of the Prophet algorithm in container latency 
prediction offers potential benefits for optimizing resource 
allocation and workload management in containerized 
environments. By leveraging its time series forecasting 
capabilities, it becomes possible to anticipate and mitigate 
latency issues, thereby enhancing the overall system 
performance and user experience [12, 13]. Extending the 
solution to incorporate edge computing can be a promising 
direction. By deploying the deep learning model on edge 
devices or edge servers closer to the data source, latency can be 
reduced, and real-time processing can be achieved [14]. This 
can be especially beneficial for applications that require low-
latency responses or deal with large volumes of data. 
Facilitating the execution of the solution on other operating 
systems and supporting serverless functions in multiple 
programming languages can broaden its applicability and 
adoption. This can involve developing platform-specific 
implementations, providing comprehensive documentation and 
examples, and ensuring compatibility with popular serverless 
frameworks. However, our limitations are: The study is focused 
on Python-based workloads, which may not be generalized for 
use in other programming environments. Moreover, we have 
used Cloud Service Provider IoT Functions datasets rather than 
Industrial 4.0 IIoT device data. 
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