
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1217 | P a g e

www.ijacsa.thesai.org

Forecast for Container Retention in IoT Serverless

Applications on OpenWhisk

Ganeshan Mahalingam, Rajesh Appusamy

Department of Computer Science, Jain (Deemed to be University), Bangalore, India

Abstract—This research tackles resource management in

OpenWhisk-based serverless applications for the Internet of

Things (IoT) by introducing a novel approach to container

retention optimization. We leverage the capabilities of AWS

Forecast, specifically its DeepAR+ and Prophet algorithms, to

dynamically forecast workload patterns. This real-time forecast

empowers us to make adaptive adjustments to container retention

durations. By optimizing retention times, we can effectively

mitigate cold start latency, the primary reason behind sluggish

response times in IoT serverless environments. Our approach

outperforms conventional preloading and chaining techniques by

significantly increasing resource utilization efficiency. Since

OpenWhisk is an open-source platform, our methodology was able

to achieve a cost reduction. By integrating it with Amazon

Forecast's built-in algorithms, we surpassed traditional cache cold

start strategies. These findings strongly support the viability of

dynamic container retention optimization for IoT serverless

deployments. Evaluations conducted on the OpenWhisk platform

demonstrate substantial benefits. We observed a remarkable 67%

reduction in cold start latency, translating to expedited response

times and a demonstrably enhanced end-user application

experience. These findings convincingly validate the efficacy of

AWS Forecast in optimizing container retention for IoT serverless

deployments by capitalizing on its deep learning (DeepAR+) and

interpretable forecasting (Prophet) abilities. This research lays a

solid foundation for future studies on optimizing container

management across various DevOps practices and container

orchestration platforms, contributing to the advancement of

efficient and responsive serverless architectures.

Keywords—Serverless IoT; AWS Forecast Deep AR+; Prophet;

AWS EKS; docker and containers; cold start; OpenWhisk

I. INTRODUCTION

In serverless computing, OpenWhisk struggles with
managing containers for dynamic IoT data streams due to
traditional approaches like fixed retention policies and "keep-
alive" mechanisms. These methods lead to high cold start
latency and inefficient resource utilization, marked by high
baseline latency and low resource usage during idle periods [1].
To address these challenges, we propose a novel workload
prediction-based approach using AWS Forecast. By predicting
high activity periods for specific IoT topics, our approach
allows for dynamic adjustments to container lifetimes. This
aims to significantly reduce cold start latency and improve
resource efficiency. Our research evaluates the performance of
two forecasting algorithms, DeepAR+ and Prophet, within the
OpenWhisk platform. By integrating these predictive tools, we
seek to optimize container retention and enhance serverless
application performance in the IoT domain. This paper will
detail the limitations of existing container management

strategies, present our predictive approach, and analyze the
impact of these algorithms on improving efficiency and
reducing latency in serverless environments.

We will first examine the inherent limitations of current
container management strategies in the IoT serverless cloud-
native platform, focusing on issues like high cold start latency
and inefficient container and resource utilization. Following
this, we will introduce our innovative approach, which employs
AWS Forecast's DeepAR+ and Prophet algorithms for dynamic
workload prediction and container retention optimization. We
will detail how these predictive techniques address the
shortcomings of traditional methods by enabling real-time
adjustments to container lifetimes. Finally, the paper will
present a comprehensive analysis of our approach's
effectiveness, supported by empirical results demonstrating
significant improvements in both latency reduction and
resource efficiency. Through this structure, we aim to provide
a clear roadmap of our research and highlight the contributions
it makes toward advancing serverless IoT applications.

II. FUNCTION PRELOADING AND FUNCTION CHAINING

A. Function Preloading

Function preloading tackles cold start latency.

 Resource Wastage: Preloading retains containers even
during low keeping a set number of containers warm in
memory, ensuring minimal invocation delays for
frequently used functions [1]. However, this approach
suffers from two key drawbacks -activity periods,
leading to inefficient resource utilization [2].
OpenWhisk allocates resources for these idle containers,
even though there might not be a function execution to
justify their presence.

 Static Configuration: Determining the optimal number of
preloaded containers can be challenging. An insufficient
number might lead to cold starts when demand spikes,
while an excessive number wastes resources during low
workloads.

B. Function Chaining

The function chaining technique aims to reduce cold start
penalties for subsequent functions in a sequence by combining
them into a single execution unit on OpenWhisk. While this
improves the latency of chained functions compared to separate
invocations, it has limitations [2, 3].

 Limited Applicability: Chaining is only effective for
functions specifically designed and ordered for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1218 | P a g e

www.ijacsa.thesai.org

sequential execution [3]. This might not be feasible for
all IoT use cases.

 Increased Complexity: Function chaining requires
careful design and development effort to ensure proper
execution flow within the chain, potentially hindering
code maintainability [4].

III. PREDICTION-DRIVEN RETENTION

The unpredictable nature of IoT workloads renders static
configurations impractical. Keeping containers perpetually
warm can lead to an increased memory footprint on the server.
Studies have shown that this can result in higher than necessary
compute resource utilization, potentially causing execution
lags, a direct contradiction to the goal of minimizing container
request latency [5, 12].

This study explores a solution that optimizes resource
utilization while mitigating cold starts. We leverage AWS
Forecast, a machine learning service, to strike a balance
between container retention and minimizing resource waste.

While incorporating mathematical expressions for container
retention is intriguing, directly modeling this duration can be
challenging due to the dynamic nature of workloads. However,
we can explore how the workload prediction forecasting
approach relates to cold start latency and resource utilization.

Cold start latency (CSL) can be expressed as:

CSL = T_fresh + T_init + T_deps (1)

T_fresh is the time to allocate new resources (CPU,
memory) for a container. T_init is time to initialize the runtime
environment (e.g., Python). T_deps is time to download and
load function dependencies.

The implemented forecasting in our study aims to minimize
this latency by keeping containers warm during anticipated
high-activity periods.

Let P (high_activity) represent the probability of a high
workload based on the AWS forecast. We can estimate the
average cold start latency (ACSL) with forecasting as

ACSL = (1 – P (high_activity)) * CSL +

P (high_activity) * T_warm (2)

T_warm is the minimal overhead associated with a warm
container (potentially close to 0).

Here, by maximizing P (high_activity) through accurate
forecasting, we aim to minimize ACSL compared to scenarios
where containers are not retained strategically.

Resource Utilization (RU) can be a complex metric
depending on the specific resource being considered (CPU,
memory, etc.). However, we can conceptually represent it as:

RU =
total resource consumption

total available resources
 (3)

Preloading a fixed number of containers (N) leads to a
baseline resource utilization (RU_preloading).

RU_preloading

=
N*average container resource consumption

total available resource
 (4)

The implemented AWS forecasting approach dynamically
adjusts the number of retained containers (N_t) based on the
predicted workload. This leads to potentially more efficient
resource utilization.

R U_forecasting

=
 Σ(N_t *Average Container) (Resource Consumption)

Total Available Resource (Σ across time intervals)
 (5)

Here, N_t varies based on the forecast, potentially leading
to a lower average value compared to N in preloading, thus
improving resource utilization.

Consider an average cold start latency (CSL) of 100 ms and
a warm container overhead (T_warm) of 10 ms. If Workload
Prediction forecast a 70% chance, (P(high_activity) = 0.7) of
high workload, the average cold start latency with forecasting
(ACSL) would be:

ACSL = (1 - 0.7) * 100 ms + 0.7 * 10 ms = 40 ms (6)

This represents a significant reduction in latency compared
to scenarios without container retention.

Fig. 1. ACSL vs. P (high_activity).

Considering Fig. 1, for instance, with no prediction (P
(high_activity) = 0.0), the cold start latency is at its highest

(represented by the point at the far left of the line). This reflects
the cold start penalty when containers are not retained

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1219 | P a g e

www.ijacsa.thesai.org

proactively. Conversely, as the probability of high activity
approaches 1.0 (far right of the line), the ACSL approaches a
minimum value (potentially close to 10 ms in your example).
This represents the minimal overhead associated with keeping
a container warm, significantly reducing cold start latency. The
overall trend reinforces the core concept of our research:
utilizing workload prediction (P (high_activity)) allows for
dynamic container retention, minimizing cold starts, and
improving response times in serverless IoT applications.

IV. AWS FORECAST

AWS Forecast with machine learning algorithms like
DeepAR+ or Prophet offers a more efficient and scalable
solution on OpenWhisk by dynamically adjusting container
retention durations based on workload predictions.

Workload Prediction: AWS Forecast analyses historical
data on IoT function invocation patterns to identify trends and
seasonality. This allows for predictions of future invocation
frequencies, enabling informed decisions about container
retention.

Dynamic Retention: Based on the predicted workload,
OpenWhisk can dynamically adjust container retention
durations. During periods with high-predicted invocation rates,
containers are retained for a longer duration to minimize cold
starts. Conversely, during low-predicted activity, containers are
allowed to be downscaled.

Algorithm Selection: DeepAR+, with its deep learning
architecture, excels at capturing complex patterns or seasonality
in IoT function workload data. Prophet is a good choice for
simpler trends or seasonality, offering faster training times and
interpretable models for easier understanding of the predictions.

AWS Forecast with machine learning offers a dynamic and
technically superior solution compared to preloading and
chaining on OpenWhisk. It overcomes their limitations by

enabling workload predictions and dynamic container
retention, leading to optimal resource management for
serverless IoT applications.

V. PROPOSED WORKLOAD PREDICTION FRAMEWORK

The proposed Cloud Architecture outlines an infrastructure
on AWS Cloud Platform for optimizing container retention in a
serverless environment shown in Fig. 2.

Here's a breakdown of the components and their
interactions:

A. Data Source and Load Generation

 Locust: This is a load testing tool. It uses the provided
data set to simulate real-world usage patterns and
generate load on your Azure Functions.

 EC2 Deployment: Locust is deployed on an EC2
instance, a virtual server within the AWS cloud. This
provides a platform for running the load tests and
generating data.

 AWS IoT Core: This acts as the central message hub
within AWS. It receives the simulated data stream
(function invocation patterns) from the Locust load test
running on the EC2 instance.

 S3: Amazon Simple Storage Service. This is a cloud
storage solution where the simulated data from IoT Core
is likely stored.

 AWS Forecast, a managed service for time-series
forecasting, provides pre-built datasets and various
algorithms. We implemented DeepAR+, a deep learning
algorithm ideal for complex patterns and seasonality in
IoT data, and Prophet, suitable for simpler trends with its
interpretable models and faster training.

Fig. 2. Proposed cloud architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1220 | P a g e

www.ijacsa.thesai.org

B. Decision Making and Container Management

DeepAR+ and Prophet will generate separate predictions
for future workload patterns based on the ingested IoT function
data.

OpenWhisk on EKS: Simultaneously, Apache OpenWhisk,
a serverless computing platform deployed on AWS through
EKS (Elastic Kubernetes Service) [6], is utilized for executing
serverless functions triggered by incoming events or data.

The output generated by AWS Forecast, containing
predictions generated by both Prophet and AWS DeepAR+, is
directed to storage in Amazon S3. S3 serves as a centralized
repository for storing the forecasted data. Based on the
predictions, OpenWhisk can dynamically adjust container
retention durations for IoT functions.

During periods with a high predicted workload, containers
will be retained for longer durations to minimize cold start
latency. Conversely, during low-demand periods, containers
can be recycled, freeing up resources for other applications.

Dynamic Container Management (Controller, Invoker and
Docker): Container Retention Decisions: Based on the chosen
or aggregated prediction, the OpenWhisk Controller determines
optimal container retention durations.

Docker and Warm Containers: Based on the controller's
decisions, the number of warm containers (containing IoT
Functions) is dynamically adjusted using Docker within the
OpenWhisk framework [6].

During high-demand periods (predicted based on workload
forecasts), more containers are kept warm to minimize cold
start latency. Conversely, during low-demand periods,
containers can be recycled, freeing up resources.

VI. MODEL SELECTION CRITERIA

Prophet: Effective for stable IoT workloads with moderate
fluctuations, a single dominant trend (upward/downward), and
well-represented by the decomposition [7].

y(t) = g(t) + h(t) + s(t) + ε(t) (7)

where y(t) is the predicted value at time t,

g(t) is the piecewise linear trend function,

h(t) is the seasonality component (can model daily, weekly,
and yearly cycles),

s(t) is the effect of holidays (if included) and

ε(t) is the error term.

DeepAR+ captures complex IoT workload patterns with
high data variability (sensor readings, user interactions),
frequent workload invocations (predicts spikes or troughs),
multiple trends and complex seasonality (changing usage,
varying amplitude or periodicity) [7].

Analysing the DeepAR+ and Prophet suitability lines across
workload complexity reveals trends in Fig. 3. DeepAR+ excels
when its line consistently surpasses Prophet's within a specific
complexity range (shaded area), making it preferable for
workloads in that band. Conversely, Prophet demonstrates
superiority when its line consistently remains above
DeepAR+'s within another complexity range, indicating its
suitability for workloads in that zone. Considering these trends
alongside the workload's characteristics enables an informed
decision on the most suitable model for study on workload
prediction.

Fig. 3. Model selection based on workload complexity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1221 | P a g e

www.ijacsa.thesai.org

A. Workload Prediction with Prophet

Prophet predicts the future workload (function invocation
frequency) at time t, denoted as y (t). This prediction is based
on the Prophet model's internal workings (including
considerations for trend, seasonality, and holidays) and the
combined feature set (F_manual and potentially F_built-in) [7].

Container Retention Threshold (T_c): Define a threshold
(T_c) representing the minimum number of active containers
required to ensure acceptable performance during peak
workload periods [8]. This threshold considers factors like
average function execution time, which is the desired maximum
latency for function invocation.

Scaling Decisions Based on Predictions:

Up-scaling Containers: If Prophet's prediction, y(t_future),
for a future time period (t_future) exceeds a pre-defined
threshold (T_up),

where T_up > T_c

T_up represents a buffer zone above the minimum threshold
to account for potential workload surges beyond the predicted
value.

We had initiated scaling up IoT Function application by
launching additional containers. This ensures enough
containers are available to handle the anticipated workload
without excessive cold starts. Down-scaling Containers: If
Prophet's prediction, y (t_current), for the current time period
(t_current) falls below a pre-defined threshold (T_down),
where T_down < T_c:

T_down represents a safety margin below the minimum
threshold to avoid under-provisioning during unexpected
workload spikes.

We had initiated scaling down IoT application by gracefully
terminating unnecessary containers. This reduces resource
consumption during low workload periods.

Mathematical Representation:

Up-scaling: if y(t_future) > T_up, then launch additional
containers.

Down-scaling: if y(t_current) < T_down, then terminate
unnecessary containers.

Setting thresholds (T_up & T_down) Setting these
thresholds effectively depends on factors such as predicted
workload variations based on output y(t).

AWS Forecast's built-in features (F_built-in) again provide
pre-built information about common temporal patterns (e.g.,
weekly seasonality, holidays).

B. Workload Prediction with DeepAR+

Both F_manual and F_built-in features are fed into the
DeepAR+ model during training. The model learns to extract

relevant information from these features and utilize it for IoT
workload prediction (function invocation frequency).

DeepAR+ builds upon a combination of mathematical
concepts to achieve its deep learning capabilities [9, 10].

Loss Function: During training, a loss function (e.g., mean
squared error) measures the difference between the model's
predictions and the actual workload data. The model iteratively
adjusts its internal parameters to minimize this loss, improving
its prediction accuracy over time [11].

Mathematical Representation (Simplified):

DeepAR+ employs a complex series of mathematical
operations within its RNN architecture [10, 14]. However, a
simplified representation could be:

y(t) = f [W * {x(t-1), ..., x(t-n)} + b] (8)

where: y(t): predicted workload (function invocation
frequency) at time t.

f: activation function (e.g., sigmoid) introducing non-
linearity for complex pattern modelling,

W: weight matrix learned during training,

x(t-i): feature vector at time t-i (incorporating F_manual and
F_built-in features).

b: bias vector

This simplified equation demonstrates how DeepAR+ uses
weights (W) to combine past feature vectors (x) with a bias (b)
and applies an activation function (f) to generate a prediction y
(t). The weight matrix (W) captures the complex relationships
between features and workload that the model learns during
training.

VII. ANALYSIS FORECAST WORKLOAD PREDICTION

In Fig. 4, spanning weeks 1 to 4, the forecast workload
prediction approach showcases notable enhancements in
container retention across all four IoT topics. The retention
rates soar from 96% to 100%, showcasing a considerable
decrease in prematurely discarded containers. This underscores
the efficacy of the proposed approach in accurately predicting
future workloads, thus maintaining active containers to handle
incoming requests. Consequently, this minimizes the necessity
for container restarts, thereby augmenting operational
efficiency.

Weeks 5-8 (Function Preloading/Function Chaining): The
second half of the table shows the performance of the combined
Function Preloading and Function Chaining approach for the
same IoT topics. Compared to forecast workload prediction,
container retention improvement is lower, ranging from 46% to
93%.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1222 | P a g e

www.ijacsa.thesai.org

Fig. 4. Workload prediction vs. traditional.

Algorithm 1: Container Retention based on Workload
Predictions

Inputs: workload predictions (y(t)) for future time intervals (t_i)
from DeepAR+ or Prophet and minimum container threshold (T_c)
for acceptable performance.

Step 1: For each future time interval (t_i):

 Get predicted workload y(t_i) for time interval t_i

Decision: Does enough warm containers exist?

(does_container_exist(t_i))

 Yes: Proceed to down-scaling check

 No: Launch a new container (create_container)

(optional: set resource limits based on predicted

workload)

New (Down-scaling): If containers exist and the predicted

workload is low (y(t_i) < T_down), gracefully terminate

unnecessary ones (maintaining at least T_c)

Step 2: Execute the IoT Function: With sufficient warm

containers, execute the IoT function efficiently (minimal cold

start latency)

End

Algorithm 2: Custom Invoker

Input: function request from Locust via AWS IoT Core Function

Does Container Exist ()

 Query Docker for warm containers

 Return True if a warm container exists, False otherwise

Function Create Container ()

 Create a warm Docker container

 Execute Function ()

 Run the function request in the container

 Terminate the container

Decision: Does Container Exist () == True?

Yes:

 Get the name of the existing warm container (container)

 Execute Function ()

No:

 Create Container ()

 Execute Function ()

 End

 Write Logfile () to S3

In Fig. 5, this category showcases the potential impact of a
workload prediction approach. With a higher number of
invocations in this range compared to Function Preloading and
Function Chaining, it suggests a potential in reduction in cold
starts.

Combined Stream (Moderate Latency) (501-1000
milliseconds): The number of invocations in this range for the
prediction approach might still be higher than the alternatives.
This indicates some functions might require slightly more
processing time.

Individual Topic Types (Over 1000 + milliseconds): As we
move into categories representing specific topic types, the
latency distribution might become more balanced. This
suggests the processing complexity of these data streams might
contribute to slightly higher latencies.

Function Preloading and Function Chaining: These
approaches show a presence across all latency ranges. They
might still achieve some level of cold start reduction, but their
distribution suggests they might have a higher number of cold
starts compared to a workload prediction approach, particularly
within the low latency range.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1223 | P a g e

www.ijacsa.thesai.org

Fig. 5. Workload prediction.

A. Merits of Workload Prediction

 Reduced Cold Starts: A workload prediction approach
(like Forecast) has the potential to significantly reduce
cold starts by proactively preparing functions for
incoming requests, leading to faster response times.

 Improved Efficiency: By minimizing the delays
associated with cold starts, a prediction approach can
improve the overall performance of serverless functions
processing combined IoT topic data.

 Scalability: The ability to handle diverse data streams
(various topic types) with reduced cold starts highlights
the potential scalability and adaptability of a workload
prediction approach.

In Fig. 6, a substantial dataset comprising 1000 data points
are utilized to depict the performance metrics for both before
and after optimization scenarios.

Fig. 6. Optimization impact.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1224 | P a g e

www.ijacsa.thesai.org

Before Latency: Random values between 40 ms and 120 ms
represent the cold start latency experienced before
implementing your approach.After Latency: These values are
calculated by multiplying the before latency by 0.33, simulating
a 67% reduction in cold start latency achieved through your
optimization.Workload: Random values between 20 and 100
represent the workload (function invocations) experienced
during each cold start.

Median Latency: The thin line within each violin indicates
the median cold start latency for that optimization state. A
lower median in the "after optimization" violin suggests a
general reduction in latency.

VIII. COMPARITIVE STUDIES

This comparative study (Table I) analyzes the efficiency of
different methods for reducing cold start latency and improving
resource utilization in serverless architectures. The study
compares the proposed approach utilizing AWS Forecast with
DeepAR+ and Prophet for container retention optimization
against four referenced papers [1, 2, 3, 4].

Cold Start Reduction: The proposed work achieves a
significant 67% reduction, comparable to or better than other
techniques like adaptive pooling and predictive autoscaling.

Resource Utilization: Resource utilization fluctuates across
the studies [1, 2, 3, 4], often lower during off-peak times or
optimized through various scheduling and scaling techniques.
However, the proposed work ensures high resource utilization
optimized for current demand. The proposed approach ensures
high resource utilization by minimizing unnecessary container
activity, similar to workload-aware scheduling and cost-
efficient strategies.

Implementation Complexity: Proposed work maintains
moderate complexity by leveraging AWS Forecast, which
simplifies the implementation compared to ML model-based
predictive autoscaling.

Scalability: The proposed method is highly scalable with
reduced complexity, making it a robust solution for varying
workloads.

Leveraging AWS Forecast for container retention
optimization offers a balanced and effective solution for
reducing cold start latency, optimizing resource utilization, and
maintaining scalability with moderate implementation
complexity. The proposed approach stands out as a practical
alternative to more complex and traditional serverless
computing techniques.

Implementation complexity ranges from high to moderate,
with the proposed work leveraging AWS Forecast to maintain
moderate complexity. Scalability is generally effective across
all references, but the proposed work is highlighted as highly
scalable with reduced complexity. Continuous model retraining
is necessary for many adaptive and predictive techniques, yet
the proposed work reduces this need by relying on AWS
Forecast, thus streamlining the process. Lastly, while
prewarming resource wastage is a concern during low traffic
periods for some techniques, the proposed work effectively
prevents wastage through dynamic adjustment.

TABLE I. COMPARATIVE STUDY- 1

Metric
Implementation

Complexity

Continuous

Model

Retraining

Prewarming

Resource

Wastage

Ref [1]

High for dynamic

allocation and

request prediction

Required for

request
prediction

models

Yes, during low
traffic periods

Ref [2]
Moderate, requires
workload analysis

Necessary for

adaptive

techniques

Reduced

through
adaptive

pooling

Ref [3]

High, involves ML

model training and
deployment

Necessary for

predictive
autoscaling

Minimized
through

accurate auto

scaling

Ref [4]

Moderate, balancing

cost and

performance

Not specified,

focus on cost

efficiency

Balanced with

cost-aware pre-

warming

Proposed

Work

Moderate, utilizing

AWS Forecast

Reduced need,

AWS Forecast

handles it

No, dynamic
adjustment

prevents

wastage

TABLE II. COMPARATIVE STUDY- 2

Study/

Reference
Techniques

Cold Start

Reduction

Resource

Utilization
Scalability

Proposed
Study

AWS

Forecast
(DeepAR+,

Prophet)

67%

High,

dynamic

adjustments

High

Ref [5]
Caching

Techniques
50-60% Variable Good

Ref [6]
SAAF
Framework

Not
specific

High,

predictive

modeling

High

Ref [7]
Pool-Based

Approach
60-66%

Improved
through pre-

warming

High

Ref [8]
Function

Fusion
55-65%

Enhanced by
reducing

cold starts

Moderate to

High

Table II compares various studies and references on
techniques for optimizing serverless computing, focusing on
cold start reduction, resource utilization, implementation
complexity, and scalability. The proposed study uses AWS
Forecast (DeepAR+ and Prophet) to achieve a 67% reduction
in cold starts, high resource utilization through dynamic
adjustments, and moderate implementation complexity while
offering high scalability. The research in [5] employs caching
techniques; achieving a 50-60% reduction in cold starts with
variable resource utilization, moderate complexity, and good
scalability. The study in [6] utilizes the SAAF Framework,
which does not specify cold start reduction but ensures high
resource utilization through predictive modeling, though it
comes with high implementation complexity and scalability.
The research in [7] uses a pool-based approach to achieve a 60-
66% reduction in cold starts, with improved resource utilization
through pre-warming, moderate complexity, and high
scalability. Lastly, the study in [8] applies function fusion,
reducing cold starts by 55–65% and enhancing resource
utilization by minimizing cold starts, with high implementation
complexity and moderate to high scalability. Each study offers
a unique balance of benefits and challenges, with the proposed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

1225 | P a g e

www.ijacsa.thesai.org

study standing out for its effective cold start reduction and
scalability.

IX. CONCLUSION AND FUTURE WORK

This study focused on Python-based programming
workloads and examined the performance of the OpenWhisk
Platform in comparison to existing serverless computing
platforms in terms of system cost. The findings demonstrated
that the OpenWhisk Platform outperformed existing cache cold
start tactics, resulting in a reduction of overall system cost. To
achieve these improvements, the study proposed the use of the
AWS Forecast service with the DeepAR+, Prophet algorithms
in combination with containerization. This approach allows for
the prediction of demand for a specific function and the pre-
warming of a container, thereby reducing cold start-up time in
serverless IoT applications. The retention of containers further
enhances this technique by keeping the runtime environment
warm and ready for subsequent invocations of the function. The
application of the Prophet algorithm in container latency
prediction offers potential benefits for optimizing resource
allocation and workload management in containerized
environments. By leveraging its time series forecasting
capabilities, it becomes possible to anticipate and mitigate
latency issues, thereby enhancing the overall system
performance and user experience [12, 13]. Extending the
solution to incorporate edge computing can be a promising
direction. By deploying the deep learning model on edge
devices or edge servers closer to the data source, latency can be
reduced, and real-time processing can be achieved [14]. This
can be especially beneficial for applications that require low-
latency responses or deal with large volumes of data.
Facilitating the execution of the solution on other operating
systems and supporting serverless functions in multiple
programming languages can broaden its applicability and
adoption. This can involve developing platform-specific
implementations, providing comprehensive documentation and
examples, and ensuring compatibility with popular serverless
frameworks. However, our limitations are: The study is focused
on Python-based workloads, which may not be generalized for
use in other programming environments. Moreover, we have
used Cloud Service Provider IoT Functions datasets rather than
Industrial 4.0 IIoT device data.

ACKNOWLEDGMENT

We thank Dr. Sandeep Shastri for his expertise and
assistance throughout all aspects of our study and for the help
in writing the manuscript.

REFERENCES

[1] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah,
Aleksander Slominski, Philippe Suter, "Serverless Computing: Current
Trends and Open Problems," Research Advances in Cloud Computing,
pp. 1-20, 2017.

[2] Hosein Shafiei, Arash Khonsari, Payam Mousavi, “Serverless
Computing: A Survey of Opportunities, Challenges, and Applications,”
ACM Computing Surveys, vol. 54, no. 11s, pp. 1–32, 2022.

[3] Pawel Zuk, Krzysztof Rzadca, “Scheduling methods to reduce response
latency of function as a service,” IEEE 32nd International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD),
pp. 6, 2020.

[4] Narges Mahmoudi, Hamzeh Khazaei, “Performance Modeling of
Serverless Computing Platforms,” IEEE Transactions on Cloud
Computing, vol. 10, no. 4, pp. 2834–2847, 2020.

[5] Shuli Wu, Zhipeng Tao, Honghui Fan, Zhaobin Huang, Xuezheng Zhang,
Hai Jin, Chunzhi Yu, Chao Cao, “Container lifecycle-aware scheduling
for serverless computing,” Software: Practice and Experience, vol. 52, no.
2, pp. 337–352, 2022.

[6] Apache OpenWhisk, available at Apache OpenWhisk.

[7] B.C. Ghosh, S. K. Addya, N. B. Somy, S. B. Nath, S. Chakraborty, S. K.
Ghosh, “Caching techniques to improve latency in serverless
architectures,” International Conference on Communication Systems &
Networks, pp.1, 2020.

[8] R. Cordingly, W. Shu, W. J. Lloyd, “Predicting Performance and Cost of
Serverless Computing Functions with SAAF,” IEEE International
Symposium on Dependable, Autonomic and Secure Computing (DASC),
pp 640-649, 2020.

[9] P.M. Lin, A. Glikson, “Mitigating cold starts in serverless platforms: A
pool based approach,” arXiv preprint, 2019. Available at
https://doi.org/10.48550/arXiv.1903.12221.

[10] https://docs.aws.amazon.com/pdfs/whitepapers/latest/ demand-
forecasting /demand-forecasting.pdf

[11] P.M. Lin and A. Glikson, “Mitigating cold starts in serverless platforms:
A pool based approach,” https://doi.org/10.48550/arXiv.1903.12221

[12] S. Lee, D. Yoon, S. Yeo, and S. Oh, “Mitigating cold start problem in
serverless computing with function fusion,” Sensors, vol. 21, no. 24, pp
8416, 2021.

[13] https://docs.aws.amazon.com/pdfs/forecast/latest/dg/forecast.dg.pdf#aws
-forecast-recipe-prophet.

[14] Salinas, V. Flunkert, J. Gasthaus, T. Januschowski, “DeepAR:
Probabilistic forecasting with autoregressive recurrent networks,”
International Journal of Forecasting, Vol. 36, Issue 3, pp. 1181-1191,
July–September 2020.

https://docs.aws.amazon.com/pdfs/whitepapers/latest/
https://docs.aws.amazon.com/pdfs/forecast/latest/dg/forecast.dg.pdf#aws-forecast-recipe-prophet
https://docs.aws.amazon.com/pdfs/forecast/latest/dg/forecast.dg.pdf#aws-forecast-recipe-prophet

