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Abstract—In the field of geotechnical engineering Rocks' 

unconfined compressive strength (UCS) is an important variable 

that plays a significant part in civil engineering projects like 

foundation design, mining, and tunneling. These projects' stability 

and safety depend on how accurately UCS predicts the future. In 

this study, machine learning (ML) techniques are applied to 

forecast UCS for soil-stabilizer combinations. This study aims to 

build complex and highly accurate predictive models using the 

robust Decision Tree (DT) as a primary ML tool. These models 

show relationships between UCS considering a variety of intrinsic 

soil properties, including dispersion, plasticity, linear particle size 

shrinkage, and the kind of and number of stabilizing additives. 

Furthermore, this paper integrates two meta-heuristic algorithms: 

the Population-based vortex search algorithm (PVS) and the 

Arithmetic optimizer algorithm (AOA) to enhance the precision of 

models. These algorithms work in tandem to bolster the accuracy 

of predictive models. This study has subjected models to rigorous 

validation by analyzing UCS samples from different soil types, 

drawing from historical stabilization test results. This study 

unveils three noteworthy models: DTAO, DTPB, and an 

independent DT model. Each model provides invaluable insights 

that support the meticulous projection of UCS for soil-stabilizer 

blends. Notably, the DTAO model stands out with exceptional 

performance metrics. With an R2 value of 0.998 and an 

impressively low RMSE of 1.242, it showcases precision and 

reliability. These findings not only underscore the accuracy of the 

DTAO model but also emphasize its effectiveness in predicting soil 

stabilization outcomes. 
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I. INTRODUCTION 

Geotechnical Engineering (𝐺𝐸)  is no exception to the 
widespread adoption of 𝑀𝐿  techniques in several industries. 
Applications of 𝑀𝐿  at 𝐺𝐸  cover a broad variety of 
responsibilities, from landslip from detection to prediction of 
material properties. Creating predictive models for 𝐺𝐸  issues 
has demonstrated astounding success and cutting-edge 
technology. It is becoming increasingly clear that there is a 
growing need for more accurate predictive models to address 
various geotechnical challenges in various domains. Continuous 
improvement and advancement are necessary to enable the 
wide-scale adoption of such models, providing more precise and 
practical answers to various geotechnical problems [1], [2], [3]. 

Compaction of loose soils is a critical component of 
engineering projects because it increases the weight per unit area 
of engineering structures like earth dams and highway 
embankments. This compaction process improves soil 
endurance, boosts load-bearing capacity, and stabilizes 
embankment slopes to prevent settlement problems, going 
beyond merely increasing soil strength [4], [5]. Additionally, 
compaction has various advantages, including increases in 
density, volume, permeability, waterproofing, and porosity. 
Together, these improvements raise the soil's general quality and 
increase its capacity to support structural loads. 𝑈𝐶𝑆 is a critical 
component of geomechanical modeling, particularly in 
investigating mechanical rock behavior [6]. The ultimate 
compressive stress, or 𝑈𝐶𝑆 , that a rock can withstand when 
subjected to controlled, uniaxial loading before undergoing 
failure. Rock mechanics, which combines theoretical concepts 
with real-world applications, illuminates how rocks respond to 
various stress situations [7], [8]. In areas like the production of 
solid materials and wellbore stability, particularly in the 
petroleum operations context, the effects of rock failure have 
wide-ranging effects. In drilling operations, guiding bit 
hydraulics, determining the ideal mud weight, controlling costs, 
and improving drilling efficiency overall, the availability of 
𝑈𝐶𝑆 data from subsurface formations is of utmost importance 
[9], [10], [11]. Due to its crucial role in resolving geotechnical 
issues, the assessment of 𝑈𝐶𝑆 is a fundamental pillar in rock 
engineering [12]. Direct 𝑈𝐶𝑆 measurement is performed using 
the Unconfined Compression Test (𝑈𝐶𝑇) , a standardised 
procedure that has the support of both the American Society for 
Testing and Substances (𝐴𝑆𝑇𝑀) and the International Society 
for Rock Mechanics (𝐼𝑆𝑅𝑀) [13]. However, performing 𝑈𝐶𝑆 
tests in a lab requires carefully prepared core samples in addition 
to time and resources. When collaborating with brittle, thinly 
bedded, or severely fractured rock formations, it can be 
challenging to meet these requirements. Many researchers 
recommend indirect approaches for 𝑈𝐶𝑆 prediction in response 
to these difficulties. These techniques, which include the 
Brazilian tensile strength test (𝐵𝑇𝑆), the point load index test 
(𝐼𝑠(50)) , and the ultrasonic test (𝑉𝑝) , provide quick, 
affordable, and transportable substitutes for 𝑈𝐶𝑆  testing. 
Combined with engineering knowledge, these correlated index 
tests offer applicable initial 𝑈𝐶𝑆 evaluations. Direct mechanical 
rock property evaluation is based on experiments performed on 
extracted core samples, which offer insights into actual stress 
conditions and mechanical characteristics. These tests use 
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various techniques, including point load tests, scratch tests, 
Schmidt hammer tests, and uniaxial and triaxial compressive 
strength tests. Together, these methods create the benchmark for 
identifying property [14], [15], [16]. To secure representative 
core samples, however, obtaining a continuous 𝑈𝐶𝑆  profile 
along wellbores presents difficulties that include high costs and 
labor-intensive procedures. Indirect approaches have been 
developed to get around this restriction, bridging the gap by 
proving relationships between petrophysical well-log data and 
rock characteristics. 𝑈𝐶𝑆 has significantly impacted foundation 
design, slope stability analysis, and structural integrity. Its 
significance extends beyond rocks to encompass a variety of 
materials, including industrial wastes and soils. In stabilized 
materials, 𝑈𝐶𝑆  is crucial, impacting both the aesthetics and 
performance of pavements [17]. However, determining a 
material's 𝑈𝐶𝑆  requires takconsidering several factors, 
including physicochemical characteristics, the kind of 
cementitious admixtures used, and curing time. These factors 
call for carefully thought-out laboratory experiments and 
specialized tools. The pursuit of accuracy, reflected in the 
specimens' sizes, makes these tests reliable [18], [19]. 

This study centers around predicting critical soil properties, 
precisely the 𝑈𝐶𝑆 outcomes, using a 𝑀𝐿 approach. Given the 
challenges in obtaining experimental data, this study focuses on 
improving the 𝐷𝑇 algorithm's performance. To overcome this 
challenge, a combination of two algorithms is employed, 
including the 𝑃𝑉𝑆  and the 𝐴𝑂𝐴 . The research highlights the 
significant positive impact of optimizing the planning and 
building of UCS buildings for the infrastructure industry. 
Through the compilation of a large-scale UCS dataset, this study 
enables comparison analyses to evaluate the efficacy of the 
suggested framework. The study's conclusions provide useful 
insights into accurately predicting 𝑈𝐶𝑆  in civil engineering 
projects. This approach revolves around forecasting 𝑈𝐶𝑆  by 
incorporating the 𝐷𝑇  algorithm into the 𝑀𝐿  strategy. This 
addresses the complexity of acquiring empirical 𝑈𝐶𝑆 data by 
optimizing the 𝐷𝑇 model's parameters through the integration of 
𝑃𝑉𝑆  and 𝐴𝑂𝐴  algorithms. In essence, this research provides 
practical guidance and essential information for tackling 𝑈𝐶𝑆 
prediction, a crucial aspect of soil behavior in civil engineering. 

II. LITERATURE REVIEW 

The aforementioned challenges with the fundamental 
sample preparation required for standard testing and the 
limitations of statistical models may be addressed with the help 
of certain predictive ML models. Meulenkamp and Grima [20], 
for example, used Artificial Neural Networks (ANN) to predict 
UCS and discovered that ANN in 194 rock samples had better 
generalization than statistical models. Sonmez et al. [21] used 
regression and fuzzy inference systems (FIS) to predict UCS and 
elasticity modulus simultaneously, observing that regression 
performed better for elasticity modulus and that FIS had a good 
prediction accuracy for UCS. Regression and fuzzy models were 
used by Gokceoglu and Zorlu [22] to forecast the elasticity 
modulus and UCS in difficult rocks. Regression and a neural 
network were used by Dehghan et al. [23] to predict these 
values; regression was not as successful as the neural network. 
To estimate UCS for three different rock types, Mishra and Basu 
[24] employed multiple regression and FIS, proving the 
superiority of these methods over simple regression. The 

predicted accuracy of the UCS estimate has been substantially 
enhanced by several groundbreaking research. 

III. MATERIALS AND METHODOLOGY 

A. Data Gathering 

In order to ensure the accuracy of predicting the 𝑈𝐶𝑆  of 
rocks, it is crucial to compile a comprehensive dataset that 
includes relevant input variables. This endeavor involves 
carefully considering various factors and has been undertaken 
with unwavering commitment. As part of this pursuit, the data 
is meticulously divided into 70% as the training set, 15% as the 
validation set, and 15% as the testing set. It has been repeatedly 
demonstrated and scientifically verified that this allocation 
improves the performance of prediction models [25]. The 
prediction of 𝑈𝐶𝑆  is accomplished using a 𝐷𝑇  model, which 
effectively leverages the predictive capabilities inherent in the 
aforementioned variables. These input parameters, accompanied 
by their detailed definitions and measurement units, serve as 
critical components in developing predictive models [26]. The 
subsequent section delineates the process of collecting data, 
providing an in-depth overview of each input variable: 

1) Bulk Density (BD): Bulk Density quantifies the mass of 

a rock specimen per unit volume, measured in kilograms per 

cubic meter (𝑘𝑔/𝑚³). This parameter offers valuable insights 

into the rock's density and compactness. 

2) Brazilian Tensile Strength (BTS): Brazilian Tensile 

Strength (𝐵𝑇𝑆) evaluates a rock's resistance to tensile forces, 

expressed in megapascals (𝑀𝑃𝑎). It is determined through the 

Brazilian Tensile Strength Test, wherein a rock specimen 

undergoes diametrical compression until failure occurs. 

3) Dry Density (DD): Dry Density signifies the mass of a 

rock specimen per unit volume when completely dry, akin to 

Bulk Density. It is also measured in kilograms per cubic meter 

(𝑘𝑔/𝑚³)  and characterizes the rock's density under dry 

conditions. 

4) P-Wave Velocity (Vp): P-Wave Velocity (𝑉𝑝)  gauges 

the speed at which compressional (𝑃 − 𝑤𝑎𝑣𝑒) seismic waves 

propagate through a rock specimen, expressed in meters per 

second (𝑚/𝑠). This parameter provides valuable insights into 

the rock's elastic properties and structural integrity. 

5) Saturated Rock name (𝑆𝑅𝑛 ): Saturated Rock Name 

(𝑆𝑅𝑛) denotes a rock's compressive strength when saturated 

with water, measured in megapascals (𝑀𝑃𝑎). Understanding 

how water impacts a rock's strength characteristics is essential, 

and 𝑆𝑅𝑛 plays a vital role in this context. 

6) Point load index (Is (50)): Point Load Index (𝐼𝑠 (50)) is 
determined through the Point Load Index Test, which assesses 

a rock's strength under concentrated loads. It is quantified in 

megapascals (𝑀𝑃𝑎)  and provides insights into the rock's 

durability [27]. 

𝑈𝐶𝑆 represents the ultimate objective within this dataset. It 
signifies the maximum axial load a rock specimen can endure 
without lateral confinement, and it serves as the variable to be 
predicted using the other input parameters [28]. The successful 
prediction of 𝑈𝐶𝑆 in rocks is contingent upon the quality and 
comprehensiveness of the dataset, encompassing the input 
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variables outlined in Table I. Diligent data collection and 
preprocessing are indispensable stages in constructing accurate 
predictive models, which contribute significantly to both rock 
mechanics and geotechnical engineering. Fig. 1 visually 
portrays the distribution relationship between the input variables 

and 𝑈𝐶𝑆 , facilitating the assessment of how changes in one 
input parameter positively or negatively affect 𝑈𝐶𝑆 concerning 
the other inputs [29].

TABLE I.  DATA PROPERTIES OF UCS AND INPUT 

Features 
Dataset Components 

BD (kg/m3) BTS (MPa) DD (kg/m3) Vp (m/s) 𝑺𝑹𝒏 (MPa) Is(50) (MPa) UCS (MPa) 

Min 0.00 0.00 0.00 1247.00 0.00 0.10 5.50 

Max 3.54 4.20 3011.00 6440.00 45.40 6.07 108.68 

Mean 0.97 0.83 1669.73 4092.11 23.75 2.51 47.93 

St.Dev. 1.276067 1.226962 1308.101 1722.211 18.84653 1.568194 26.84946 

  

  

  

 

Fig. 1. The input and output distribution plot. 
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B. Decision Tree (DT) 

The DT is a popular supervised learning method for handling 
regression and classification problems. Because of the tree's split 
structure or hierarchy, regression analysis may still be used to 
forecast the expected outcome based on independent variables 
in cases when a precise category grouping or classification is 
lacking [30], [31]. The model in Fig. 2 illustrates a basic DT with 
two continuous variables, 𝑥1 and 𝑥2 , whose values are all 
between 0 and 1, and one binary target variable, 𝑌, with values 

that are either 0 or 1. Additionally, as Fig. 3 illustrates, the 
structure may be seen as a segmented geographic region. 
Dividing the sample space into distinct, well-defined, and 
comprehensive subspaces is a typical analytical paradigm. Each 
of these sections is linked to a particular leaf node, which 
denotes the result of a series of subsequent decision-making 
processes. In a DT, each record has a single segment that acts as 
its home, known as a leaf node. The main objective of utilizing 
DTs for analysis is to find the most effective model that can 
precisely divide all available data into discrete segments [32].

 
Fig. 2. 𝑌 is a binary target variable used in this example DT [33]. 

 
Fig. 3. Sample space view with DT [33]. 

Nodes and branches are the basic components of a DT 
model, and splitting, stopping, and pruning are essential steps in 
its development [34]. 

C. Population-Based Vortex Search Algorithm (PVS) 

As a metaheuristic relying on a solitary explanation, the 
Vortex Search algorithm demonstrates effective exploitation 

capabilities, allowing it to execute rapidly [35]. The Gaussian 
distribution centered on a single point is used by the Vortex 
Search (𝑉𝑆)  method to produce fresh candidate solutions. 
Nevertheless, despite attempts to promote variety in the search 
area, this may result in early convergence in some situations. On 
the other hand, population-based tactics perform better during 
the search space's exploration stage, when it's necessary to 
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conduct a detailed analysis of unknown regions. These methods 
create new points based on the understanding gained from each 
iteration's previous points [36]. A community-driven 𝑉𝑆 
algorithm known as 𝑃𝑉𝑆 is presented in this study. There are 3 
stages to the algorithm: 𝑎) initialization, 𝑏) the primary phase, 
and 𝑐) another phase. 

1) Initializing: Control parameters including population 

size (𝑝𝑠𝑖𝑧𝑒), vortex size (𝑣𝑠𝑖𝑧𝑒), termination condition, and 

likelihood of mutation (Ƞ𝑚) are specified during the algorithm's 

initialization phase. The entire quantity of potential fixes 

generated in a single iteration is represented by the value of 

𝑝𝑠𝑖𝑧𝑒, which is divided equally by halved to produce the value 

of 𝑣𝑠𝑖𝑧𝑒 , which is equal to 𝑝𝑠𝑖𝑧𝑒/2 . The value of 𝑣𝑠𝑖𝑧𝑒 

determines how many candidate solutions (𝐶𝑆) are generated 

in the initial stage and the subsequent stage generates the 

remaining 𝐶𝑆𝑠  from (𝑣𝑠𝑖𝑧𝑒 +  1)  to 𝑝𝑠𝑖𝑧𝑒  [37]. The 

maximum number of function evaluations (𝑚𝑎𝑥𝐹𝐸𝑠) serves as 

the method's halting criterion, and the polynomial mutation 

used in the second phase of the procedure utilizes the 

probability value Ƞ𝑚 . Additionally, 𝜇0  and 𝑞0  are calculated 

using, respectively, Eq. (1) and Eq. (2). 

𝜇0
𝑖 =

𝑢𝑝𝑝𝑒𝑟𝑖 + 𝑙𝑜𝑤𝑒𝑟𝑖
2

 (1) 

𝑞0
𝑖 = 𝜎0

𝑖 =
max (𝑢𝑝𝑝𝑒𝑟𝑖) − min (𝑙𝑜𝑤𝑒𝑟𝑖)

2
 (2) 

2) First phase: The first iteration of this phase involves 

randomly generating the entire population of size 𝑝size. Merely 

50%  of the population (𝑣𝑠𝑖𝑧𝑒) is created at random in the 

subsequent iterations. After this phase, updating the focal point 

(𝜇) is the optimal course of action. In this phase, the Gaussian 

distribution is used to generate half of the inhabitants, in 

accordance with Eq. (3) from the original 𝑉𝑆  algorithm. A 

population-based technique with selection pressure is used to 

update half of the population, while the other half is subjected 

to the best-center-oriented exploitation procedure. Overflowing 

solutions are recast into the designated range by applying Eq. 

(4). 

𝑠𝑖
𝑡(𝑥𝑖

𝑡 |𝜇𝑡 , 𝑣) = ((2𝜋)
𝑑|𝑣|)−(

1
2
) 𝑒

(−1/2(𝑥𝑖
𝑡−𝜇𝑡)

𝑇
𝑣−1(𝑥𝑖

𝑡−𝜇𝑡)

 (3) 

𝑠𝑖(𝑙𝑜𝑤𝑒𝑟𝑖 ∨ 𝑠𝑖)𝑢𝑝𝑝𝑒𝑟𝑖 → 𝑠𝑖
= 𝑟𝑎𝑛𝑑 × (𝑢𝑝𝑝𝑒𝑟𝑖 − 𝑙𝑜𝑤𝑒𝑟𝑖)
+ 𝑙𝑜𝑤𝑒𝑟𝑖  

(4) 

Although it is not explicitly specified, the starting population 
is generated by using the starting centering point (𝜇0) in the 
original 𝑉𝑆  algorithm. The midpoints of the population are 
selected at random after the initial population. This is where a 
modification to the 𝑉𝑆  algorithm is proposed, leading to 
variations of the 𝑃𝑉𝑆 method. 𝑃𝑉𝑆_𝑎 designates the version in 
which 𝜇0  was present in the starting population, whereas 
𝑃𝑉𝑆_𝑏 designates the version in which it was absent. The 
computed center point 𝜇0  is used as the initial potential fix 
𝑃𝑂𝑃 (1) in the population during the first iteration of 𝑃𝑉𝑆_𝑎, 
and the remainder 𝑝𝑠𝑖𝑧𝑒 − 1 candidate solutions 

𝑃𝑂𝑃 (2: 𝑝𝑠𝑖𝑧𝑒) are created at random. On the other hand, 𝑝𝑠𝑖𝑧𝑒 
candidate solutions 𝑃𝑂𝑃 (1: 𝑝𝑠𝑖𝑧𝑒) are generated at random to 
form the initial population of 𝑃𝑉𝑆_𝑏. 

3) Second phase: By relying on interactions between 

potential solutions throughout the course of iterations to modify 

their locations during the search, population-based algorithms 

vary from single-solution-based algorithms. The basic strategy 

involves expressing the local or global experiences of potential 

solutions in a vector format to enable information sharing, 

while the updating method may differ based on the specific 

algorithm employed. Potential solutions are matched by the 

𝑃𝑉𝑆 algorithm using a proportional selection mechanism. This 

approach incorporates the 𝐴𝐵𝐶  algorithm's onlooker bee 

phase's location update procedure, with some modifications 

made specifically to address minimization issues. Eq. (5) is 

employed to calculate the selection  𝑝𝑏  for each candidate 

solution. 

𝑝𝑏𝑖 = 𝑐𝑠𝑢𝑚𝑖/𝑐𝑠𝑢𝑚𝑝𝑠𝑖𝑧𝑒  

𝑐𝑠𝑢𝑚𝑖 =∑𝑛𝑜𝑟𝑚𝑝𝑖   𝑎𝑛𝑑

𝑖

𝑗=1

 

𝑛𝑜𝑟𝑚𝑝𝑖 = 𝑝𝑖/ ∑ 𝑝𝑖   𝑎𝑛𝑑

𝑝𝑠𝑖𝑧𝑒

𝑖=1

 

𝑝𝑖 = 0.9 × (𝑚𝑎𝑥{𝑓} − 𝑓𝑖) + 0.1 

(5) 

𝑓  symbolizes the suitability value of the  𝑖𝑡ℎ  solution and 

𝑚𝑎𝑥{𝑓} 𝑝𝑖  signifies the 𝑖𝑡ℎ′𝑠 scaled fitness value solution for 

minimization, which was achieved by converting the values of 
the objective function, which range from maximization to 
minimization. denotes the population's greatest fitness value at 
this time. The function 𝑛𝑜𝑟𝑚𝑝 is used to calculate the 
probability values obtained by normalizing the 𝑝 values in the 
0.5– 1 range. The cumulative sum vector of norm 𝑝 values is 
denoted by 𝑐𝑠𝑢𝑚. The remaining 50% of the populace, for each 
solution 𝐶𝑆𝑖  where 𝑖  ranges from 𝑣𝑠𝑖𝑧𝑒 +  1  to 𝑝𝑠𝑖𝑧𝑒 , using 
the prob vector, an arbitrary neighbor solution is chosen from 
each of the population's solutions. To produce a new solution 
(𝐶𝑆𝑛𝑒𝑤), the amount of a randomly chosen dimension is updated 
using Eq. (6). The acquired dimension value is next subjected to 
an Eq. (7) check for limit exceedance. 

𝐶𝑆𝑛𝑒𝑤 = 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑡ℎ𝑒𝑛 𝐶𝑆𝑛𝑒𝑤
𝑖

= 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖 + (𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑖  
− 𝐶𝑆𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟

𝑖 ) × (𝑟 − 0.5) × 2 

(6) 

𝐶𝑆𝑛𝑒𝑤 = {

𝑙𝑜𝑤𝑒𝑟𝑖 ,                        𝐶𝑆𝑛𝑒𝑤
𝑖 < 𝑙𝑜𝑤𝑒𝑟𝑖   

𝐶𝑆𝑛𝑒𝑤
𝑖 ,        𝑙𝑜𝑤𝑒𝑟𝑖 ≤ 𝐶𝑆𝑛𝑒𝑤

𝑖 ≤ 𝑢𝑝𝑝𝑒𝑟𝑖
𝑢𝑝𝑝𝑒𝑟𝑖 ,                        𝐶𝑆𝑛𝑒𝑤

𝑖 > 𝑢𝑝𝑝𝑒𝑟𝑖

 (7) 

The usefulness of the new solution 𝐶𝑆𝑛𝑒𝑤 is calculated with 
a random number 𝑟  ranging from 0.5  to 1,  and subsequently 
contrasted with the current solution's fitness value 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. If 
the If 𝐶𝑆𝑛𝑒𝑤 has a higher fitness level than 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, the former 
takes the place of the latter. On the other hand, a mutant solution 
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𝐶𝑆𝑚𝑢𝑡𝑎𝑛𝑡 is produced by the polynomial mutation in accordance 
with Eq. (8) if 𝐶𝑆𝑛𝑒𝑤 is not superior to 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. 

𝐶𝑆𝑚𝑢𝑡𝑎𝑛𝑡 = 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝛿𝑞 × (𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟) 

𝛿𝑞 =

{
 

 [
2𝑟+(1−2𝑟)

(1−𝛿1)
Ƞ𝑚+1]

1

Ƞ𝑚+1
,                               𝑖𝑓  𝑟 ≤ 0.5

1 − [
2(1−𝑟)+2(𝑟−0.5)

(1−𝛿2)
Ƞ𝑚+1 ]

1

Ƞ𝑚+1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

𝛿1 =
𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑙𝑜𝑤𝑒𝑟

𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟
 

𝛿2 =
𝑢𝑝𝑝𝑒𝑟 − 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟

 

In this instance, a random number 𝑟𝑛𝑑 is created for each 
dimension between 0.5 and 1. Further processing is applied if 
𝑟𝑛𝑑 is less than the Ƞ𝑚 value, which is calculated in this section 
by dividing 1  by the dimensionality of the problem. The 
research suggests that the polynomial mutation operator is the 
best method for overcoming the problem of preventing local 
peaks and maintaining variety in the search space, which is a 
major roadblock for metaheuristics. After the answer is warped 
using a polynomial probability distribution, the polynomial 
mutation operator generates a perturbation effect. Next, a 
contrast is drawn between 𝐶𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and 𝐶𝑆𝑚𝑢𝑡𝑎𝑛𝑡  using a 
greedy selection process. After completing this process, the best 
option discovered is applied to update the center point (𝜇). 

After the current generation is finished, the radius size for 
the following generation is decreased by calculating Eq. (9). As 
long as the 𝑃𝑉𝑆  algorithm completes the greatest number of 
function evaluations, it keeps running. First, 𝑣𝑠𝑖𝑧𝑒  solutions 
inside the lowered radius are repeated, and in the second phase, 
random data is added to the answers, which comprise the 
remaining 50% of the population. 

𝑟𝑡 = 𝜎0 ×
1

𝑥
× Γ(𝑥, 𝑎𝑡) 

𝑤ℎ𝑒𝑟𝑒  𝑎𝑡 =
(𝑀𝑎𝑥𝐹𝐸𝑠 − 𝐹𝑒𝑠)

𝑀𝑎𝑥𝐹𝐸𝑠
 

𝑡ℎ𝑒𝑛  𝑖𝑓  (𝑎𝑡 ≤ 0)𝑎𝑡 = 0.1 

(9) 

D. Arithmetic Optimizer Algorithm (AOA) 

This algorithm was proposed by Abualigah, employing 
some mathematical operators and formulas in 2020  [38]. 
The  𝐴𝑂𝐴  algorithm begins with a random population of 
solutions. At each iteration, the objective value for each solution 
is computed. This algorithm has two control parameters called 
𝑀 and \, which need to be updated before updating the solution 
position in the following: 

𝑀(𝑖) = 𝑀𝑖𝑛 + 𝑖 × (
𝑀𝑎𝑥 −𝑀𝑖𝑛

𝐼
) (10) 

The function's value at the current iteration is shown by 
𝑀(𝑖), the maximum iteration is shown by 𝐼, and the 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

and 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 values for the bounds of 𝑀 are shown by 𝑀𝑖𝑛 
and 𝑀𝑎𝑥. 

𝑃(𝑖) = 1 − (
𝑖

𝐼
)

1
𝑐
 (11) 

Here, the coefficient of the mathematical optimizer 
probability (𝑃)  determines the function's value at the 𝑖𝑡ℎ 
iteration. After updating the 𝑃 and 𝑀, it also generates a random 
number called 𝑟3  to switch between exploitation and 
exploration. The search makes use of Eq. (12). 

𝑥𝑖,,𝑗(𝑡 + 1) = 

{

𝑏𝑒𝑠𝑡(𝑥𝑗)

(𝑃+𝛼)
× (𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑀 + 𝑙𝑏𝑗    𝑖𝑓   𝑟1 < 0.5 (𝑎)

𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑃 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑀 + 𝑙𝑏𝑗   𝑖𝑓   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑏)
  (12) 

Furthermore, Eq. (13) is utilized for exploitation: 

𝑥𝑖,,𝑗(𝑡 + 1) = 

{
𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑃 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑀 + 𝑙𝑏𝑗   𝑖𝑓   𝑟2 < 0.5 (𝑎)

𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑃 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑀 + 𝑙𝑏𝑗    𝑖𝑓   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑏)
  (13) 

It should be noted that section 2.3  mentions the 𝐴𝑂𝐴 
parameters, which are the same as 𝐷𝐴𝑂𝐴′𝑠. Additionally, the 
AOA flowchart is shown in Fig. 4. 

E. Performance Evaluation Methods  

This article assesses the models using several metrics, such 
as the previously stated Mean Absolute Relative Error (𝑀𝐴𝑅𝐸), 
Correlation Coefficient (R2), Mean Square Error (𝑀𝑆𝐸) , 
Normalized Root Mean Squared Error (𝑁𝑅𝑀𝑆𝐸) , and Root 
Mean Square Error (𝑅𝑀𝑆𝐸) . Excellent performance of the 
algorithm during the phases of training, validation, and testing 
is indicated by a high R2 value. On the other hand, lower 𝑅𝑀𝑆𝐸 
and 𝑀𝑆𝐸  values are preferable because they exhibit reduced 
model inaccuracy. Eq. (14) to (18) are used to calculate these 
metrics. 

Coefficient of Correlation 

𝑅2 = (
∑ (ℎ𝑖−ℎ̅)(𝑞𝑖−�̅�)
𝑊
𝑖=1

√[∑ (ℎ𝑖−ℎ)
2𝑊

𝑖=1 ][∑ (𝑞𝑖−�̅�)
2𝑊

𝑖=1 ]

)

2

  (14) 

Root Mean Square Error 

𝑅𝑀𝑆𝐸 = √
1

𝑊
∑ (𝑞𝑖 − ℎ𝑖)

2𝑊
𝑖=1            (15) 

Mean Square Error 

𝑀𝑆𝐸 =
1

𝑊
∑ 𝑞𝑖

2𝑤
𝑖=1                (16) 

Mean Absolute Relative Error 

𝑀𝐴𝑅𝐸 =
1

𝑊
∑

|𝑞𝑖−ℎ𝑖|

|�̅�−ℎ̅|

𝑤
𝑖                      (17) 

Normalized Root Mean Squared Error 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑞𝑖−�̅�
                                (18) 
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Fig. 4. The flowchart of AOA. 

The anticipated and experimental values are denoted by the 
variables ℎ𝑖  and 𝑞𝑖  in these equations, respectively. The mean 
values of the expected and experimental samples are denoted by 

the symbols ℎ̅  and �̅� , respectively. Alternatively, 𝑊  indicates 
how many samples are being examined. 

The study employed three models, namely 𝐷𝑇, 𝐷𝑇𝐴𝑂, and 
𝐷𝑇𝑃𝐵 , for the prediction of 𝑈𝐶𝑆 . These models underwent 
evaluation using experimental measurements in Table II, with 

the evaluation process divided into four phases: training (70%), 
validation (15%) , testing (15%) , and overall assessment 
(100%), ensuring an unbiased evaluation. To comprehensively 
assess and compare the algorithms, five statistical metrics were 
utilized, including 𝑁𝑅𝑀𝑆𝐸, 𝑀𝑆𝐸, R2, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝑅𝐸. The 
primary metric for assessing model performance was R2, 
indicating how effectively the independent variable accounts for 
variance in the dependent variable. 

TABLE II.  THE OUTCOME OF THE MODELS CREATED FOR DT 

𝑴𝒐𝒅𝒆𝒍 𝑷𝒉𝒂𝒔𝒆 
Index values 

𝑹𝑴𝑺𝑬 R2 𝑴𝑺𝑬 𝑵𝑹𝑴𝑺𝑬 𝑴𝑨𝑹𝑬 

DT 

𝑇𝑟𝑎𝑖𝑛 3.537 0.984 12.518 0.048 0.121 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 5.375 0.958 28.887 0.336 0.095 

𝑇𝑒𝑠𝑡 5.841 0.972 34.122 0.365 0.103 

𝐴𝑙𝑙 4.271 0.975 18.250 0.040 0.114 

DTAO 

𝑇𝑟𝑎𝑖𝑛 1.242 0.998 1.543 0.017 0.020 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 3.715 0.988 13.802 0.232 0.052 

𝑇𝑒𝑠𝑡 4.299 0.989 18.480 0.269 0.072 

𝐴𝑙𝑙 2.439 0.993 5.950 0.023 0.032 

DTPB 

𝑇𝑟𝑎𝑖𝑛 2.444 0.992 5.971 0.033 0.044 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 5.254 0.985 27.605 0.328 0.066 

𝑇𝑒𝑠𝑡 5.382 0.981 28.965 0.336 0.085 

𝐴𝑙𝑙 3.565 0.987 12.708 0.034 0.053 
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The 𝐷𝑇𝐴𝑂  model demonstrated superior performance 
during the training phase, boasting the highest R2 value (0.998) 
among all models. In contrast, the 𝐷𝑇 model exhibited slightly 
lower training-phase R2 values at 0.984. Additionally, 𝑅𝑀𝑆𝐸, 
an error indicator, was evaluated in the study, with a range of 
1.242 to 5.841. The 𝐷𝑇 model had the largest RMSE, while the 
𝐷𝑇𝐴𝑂 model showcased the lowest. In the training phase, the 
𝐷𝑇 model had the highest 𝑁𝑅𝑀𝑆𝐸 value (0.048), whereas the 
𝐷𝑇𝐴𝑂 model had the lowest (0.017). The 𝐷𝑇𝐴𝑂 model also 
excelled in terms of 𝑀𝐴𝑅𝐸, with a value of 0.020, while the 𝐷𝑇 
model had the highest 𝑀𝑆𝐸 among the models evaluated, with 
a value of 12.518. Overall, the findings showed that in certain 
phases, the  𝐷𝑇𝐴𝑂 model performed better than the 𝐷𝑇  and 
𝐷𝑇𝑃𝐵  models. But when choosing a model for practical 
applications, other aspects including computational 
effectiveness, model complexity, and simplicity of 

implementation should also be taken into account. However, the 
results indicate that 𝐴𝑂𝐴 modification improved the 𝐷𝑇 
model's prediction of 𝑈𝐶𝑆 substantially. 

The performance of hybrid models is efficiently compared 
using a scatter plot in Fig. 5, which considers two important 
parameters: R2 and 𝑅𝑀𝑆𝐸. R2 is a robust indicator of agreement, 
while 𝑅𝑀𝑆𝐸  quantifies the extent of deviation. The plot's 
central axis acts as a reference point, and the proximity of 
individual data points to this axis reveals the precision of the 
models. Notably, the 𝐷𝑇𝐴𝑂  model stands out as a model of 
exceptional accuracy, as indicated by its data points closely 
clustering around the central axis, highlighting minimal 
divergence. In contrast, the 𝐷𝑇𝑃𝐵  and 𝐷𝑇  models exhibit 
similar performance levels, with their respective data points 
scattered widely, indicating significant variability.

 

 

Fig. 5. The hybrid model's produced scatter plot. 
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Fig. 6. Comparison between measured and expected values. 

Fig. 6 depicts a thorough comparison between expected 
results and actual measurements, neatly broken down into stages 
of testing, validation, and training. The best state can be found 
using these expected outcomes as a guide. Examining the 𝐷𝑇𝐴𝑂 
model's behavior reveals a slight discrepancy between measured 
values obtained during the training and testing phases, with the 
latter typically exhibiting relatively higher values. Similar to the 
𝐷𝑇𝐴𝑂  model's projected points, the 𝐷𝑇𝑃𝐵  model's projected 
points also deviate slightly from the measurements taken, 
though not as significantly. The 𝐷𝑇 model, in contrast, reveals a 

more pronounced level of variance and exhibits comparatively 
diminished efficacy in comparison to the other two models. 

Fig. 7 shows a line plot of the error % of the created models. 
𝐷𝑇𝐴𝑂 has the lowest error rate, as seen by the graph, with the 
majority of values falling within the 17% range. More values 
above 43% and a wider range of error percentages are present 
for 𝐷𝑇 and 𝐷𝑇𝑃𝐵. The 𝐷𝑇 and 𝐷𝑇𝑃𝐵 distributions are notably 
tilted to the right, suggesting that certain data points have 
notably larger error percentages. This illustrates both the 
improved accuracy of the 𝐷𝑇𝐴𝑂 and the way the graphs of the 
generated models' error percentage distributions are shown.
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Fig. 7. The line plot determines the error rate percentage for the line models. 

Fig. 8 displays an interval map that illustrates the error 
percentages of the models that were employed in this study. 
Throughout the training phase, the 𝐷𝑇𝐴𝑂 model demonstrated 
remarkable performance, maintaining errors below the 20% 
threshold with a consistent mean error rate of 0%. There was 
minimal dispersion in the data's normal distribution. The 𝐷𝑇 
model, on the other hand, demonstrated dispersion in all phases 

and a very symmetrical and homogenous normal distribution, 
despite the error rate being below 20%. On the other hand, out 
of the three models, the DTPB model showed the most 
substantial and diversified inconsistencies. An uncommon event 
in statistical analysis occurred during the assessment step when 
one outlier data point accounted for more than 20% of the 
dataset. In contrast to the other two models, the DT model's 
Gaussian distribution showed better dispersion and a lower 
frequency of occurrences close to 0.
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Fig. 8. The normal supply of errors between the intermission plot models. 

IV. DISCUSSION 

Table III provides a comparative summary of various 
published articles on the prediction of UCS using different 
datasets, variables, models, and evaluators, including R² and 
RMSE metrics. Narendra et al. [39] utilized a dataset of 186 
samples with variables such as curing period, clay water-cement 
ratio, cement content, liquid limit, liquidity index, water content, 
pH, and Na+. They applied a Genetic Programming (GP) model, 
reaching an R² of 0.988 and an RMSE of 1.135. Ceryan et al. 
[40] worked with a smaller dataset of 56 samples, using 
variables like Clt, Cly, Fld, Qrz, Qq, Bi, n, ne, Id, Vp, and Vm. 
Their model of regression (REG) yielded an R² of 0.883 and an 
RMSE of 1.108. A dataset of 93 samples was employed by 
Majdi and Rezaei [41] and Rezaei et al. [42]. The variables 
included rock type, Schmidt hardness, density, and porosity. 
While Rezaei et al. employed a Mamdani fuzzy model and 
produced an R² of 0.943 and an RMSE of 3.2, Majdi and Rezaei 
utilized an ANN model and obtained an R² of 0.972 and an 
RMSE of 1.113. Mohamad et al. [43] analyzed 160 samples with 
variables such as rock type, weathering grade, BD, BTS, Is(50), 
and Vp. Their ANN-PSO model demonstrated high accuracy 
with an R² of 0.982 and an RMSE of 0.077. The present study 
involved 106 samples and variables including BD, BTS, DD, 
Vp, SRn, and Is. Using the Decision Tree-Arithmetic Optimizer 
(DTAO) model, this study achieved a striking R² of 0.988 and 
an RMSE of 1.242, demonstrating comparable accuracy to the 
best-performing models reviewed. 

1) Limitation: While this study demonstrates significant 

advancements in predicting UCS for soil-stabilizer 

combinations using ML techniques, several limitations must be 

acknowledged. Firstly, the dataset size, though reasonably 

substantial, may still limit the generalizability of the models. A 

larger and more diverse dataset encompassing a wider range of 

soil types and conditions would enhance the robustness and 

applicability of the models. Secondly, the models developed are 

highly specific to the input variables used in this study. 

Variables such as particle size distribution, plasticity, and 

stabilizer type are crucial, but other potentially influential 

factors like temperature, humidity, and long-term aging effects 

were not considered. Including these factors could further 

improve model accuracy and reliability. Thirdly, the study's 

reliance on historical data means that any inaccuracies or biases 

in the original data could propagate through the models, 

affecting their predictions. Rigorous data validation and 

cleaning procedures are essential to mitigate this risk. 

Additionally, the integration of meta-heuristic algorithms like 

the PVS and the AOA, while enhancing model precision, 

introduces complexity. This complexity may pose challenges 

for practical implementation and computational efficiency, 

particularly for large-scale projects. Lastly, the models, though 

validated against historical data, require further testing in real-

world scenarios to confirm their practical effectiveness and 

reliability in diverse geotechnical applications. 

2) Future study: A potential future study stemming from 

this research could delve into the application of advanced ML 

techniques beyond DTs for predicting UCS in soil-stabilizer 

combinations. One avenue could involve exploring ensemble 

methods such as Random Forests, Gradient Boosting Machines, 

or Neural Networks to compare their predictive performance 

with the DT-based models developed in this study. This 

comparative analysis would provide a more comprehensive 

understanding of which ML algorithms are most effective for 

this specific prediction task. Moreover, considering the 

integration of meta-heuristic algorithms like the PVS and the 

AOA, a future study could focus on optimizing the parameters 

and configurations of these meta-heuristic algorithms. This 

optimization process could enhance the precision and 
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efficiency of the predictive models, leading to even more 

accurate UCS forecasts for various soil-stabilizer combinations. 

Additionally, extending the validation process to include real-

world field data from ongoing construction projects or 

geological surveys could strengthen the practical applicability 

of the predictive models developed. This extension would 

involve collaborating with industry partners or governmental 

agencies to access and analyze relevant datasets, ensuring that 

the models are validated under diverse and realistic conditions. 

TABLE III.  THE SUMMARY OF PUBLISHED ARTICLES 

Article Num. of Dataset Variables Model 
Evaluator 

R2 RMSE 

Narendra et al. [39] 186 
Curing period, clay water-cement ratio, cement content, liquid 

limit, liquidity index, water content, pH, Na+ 
GP 0.9881 135 

Ceryan et al. [40] 56 Clt, Cly, Fld, Qrz, Qq, Bi, n, ne, Id, Vp, and Vm REG 0.8837 1.108 

Majdi and Rezaei [41] 93 Rock type, Schmidt hardness, Density, and Porosity ANN 0.9725 1.113 

Rezaei et al. [42] 93 Rock type, Schmidt hardness, Density, and Porosity 
Mamdani 
fuzzy 

0.9437 3.2 

Mohamad et al. [43] 160 Rock type, Weathering grade, BD, BTS, Is(50), and Vp ANN-PSO 0.982 0.077 

Present study 106 BD, BTS, DD, Vp, SRn, and Is DTAO 0.988 1.242 
 

V. CONCLUSION 

By 𝑀𝐿  techniques, specifically DT algorithms, this study 
presents an innovative approach to predict 𝑈𝐶𝑆 values with a 
high level of accuracy. This method provides an affordable 
alternative and drastically cuts down on the amount of time 
needed for UCS prediction. Using DT techniques, a unique ML 
model serves as the foundation for the main framework for UCS 
prediction. To enhance precision and reduce errors, 3 models 
were developed by combining the 𝐴𝑂𝐴 and 𝑃𝑉𝑆 meta-heuristic 
algorithms, namely 𝐷𝑇, 𝐷𝑇𝐴𝑂, and 𝐷𝑇𝑃𝐵. These models were 
put through a rigorous validation process that used lab samples 
from publically accessible sources for the testing, validation, and 
training phases. In order to thoroughly assess model 
performance, various metrics such as 𝑅𝑀𝑆𝐸 , 𝑀𝑆𝐸 , R2, 
𝑁𝑅𝑀𝑆𝐸 , and 𝑀𝐴𝑅𝐸  were employed. These metrics 
collectively provide a deep insight into the model's ability to 
predict 𝑈𝐶𝑆  accurately and its overall effectiveness in 
estimation. This research significantly advances the field of soil 
mechanics by improving understanding of the factors 
influencing 𝑈𝐶𝑆  through the application of ML techniques. 
Consequently, it opens up opportunities for more precise and 
dependable 𝑈𝐶𝑆  predictions in various engineering 
applications. In this investigation, it was demonstrated that the 
𝐷𝑇𝐴𝑂  models achieved the highest R2 values, while the 𝐷𝑇 
model exhibited the lowest R2 value, albeit with a marginal 
difference of only 2.1% . Furthermore, the error indicators 
revealed that the 𝐷𝑇𝐴𝑂  models outperformed the 𝐷𝑇  and 
𝐷𝑇𝑃𝐵  models by demonstrating lower error values. Notably, 
the 𝐷𝑇𝐴𝑂 models  

Consistently exhibited the last 𝑅𝑀𝑆𝐸  values across all 
phases, with a significant difference of 96%  and 65%  when 
compared to the 𝐷𝑇  and 𝐷𝑇𝑃𝐵  models, respectively. This 
highlights the exceptional accuracy and reliability of the 𝐷𝑇𝐴𝑂 
models in predicting 𝑈𝐶𝑆. 
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