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Abstract—Globally, lung cancer remains the leading cause of 

cancer-related deaths, with early detection significantly 

improving survival rates. Developing robust machine learning 

models for early detection necessitates access to high-quality, 

localized datasets. This project establishes the first lung cancer 

dataset in Tunisia, utilizing DICOM CT scans from 123 Tunisian 

patients. The dataset, annotated by experienced radiologists, 

includes diverse forms of lung cancer at various stages. Using 

transfer learning with pre-trained 3D ResNet models from 

Tencent’s MedicalNet, our tests showed the dataset 

outperformed previous models in specificity and sensitivity. This 

demonstrates its effectiveness in capturing the unique clinical 

characteristics of the Tunisian population and its potential to 

significantly enhance lung cancer diagnosis and detection. 
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I. INTRODUCTION 

The lungs are the main organs of respiration. They regulate 
breathing, ensuring that each and every cell in the body 
receives oxygen [1]. The human body’s specifically designed 
defense mechanisms shield the organs. However, they are 
unable to completely eliminate the risk of contracting specific 
lung diseases. Infections, inflammation, or even more serious 
conditions like the emergence of a malignant tumor can affect 
the lungs. One of the main causes of death in industrialized 
countries is lung cancer. Toxic surroundings, long-term 
inflammation, and smoking are only a few of the variables that 
frequently cause long-term harm. Phlegm is one of many 
strategies that the lungs use to clean their airways on their 
own. However, this is not enough for a smoker [2]. 

The latest advancements in imaging and sequencing 
technology have resulted in tremendous progress in the 
clinical investigation of lung cancer. However, the human 
mind’s ability to comprehend and utilize the collection of 
such enormous amounts of data is limited. Machine 
learning-based techniques enable the integration and analysis 
of these large and complex datasets, which have extensively 
described lung cancer through the application of diverse 
viewpoints from these acquired data [3]. 

Developing precise and trustworthy diagnostic tools, 
especially in the areas of cancer detection and medical 
imaging, requires a rich dataset. Researchers can train 
sophisticated machine and deep learning models that can 
effectively generalize to a wide range of populations by using 
comprehensive datasets that include a wide array of patient 

demographics, imaging modalities, and annotated examples. 
These datasets are essential for enhancing individualized 
treatment strategies, early diagnosis, and early detection of 
diseases like lung cancer [4]. 

Nevertheless, there is a dearth of such extensive medical 
records in Tunisia. The creation of specialized diagnostic 
instruments that can cater to the unique requirements and 
traits of the community is hampered by this scarcity. Due to 
variations in genetics, environment, and demography, 
diagnostic models trained on data from other locations could 
not perform as well in the absence of localized datasets. To 
close this gap and improve the precision and efficacy of lung 
cancer diagnosis and treatment in the area, high-quality, 
annotated medical datasets must be created and shared 
immediately in Tunisia. 

This study intends to overcome these shortcomings and 
offer a useful resource that can aid in the development of AI-
driven diagnostic tools customized for the Tunisian population 
by producing the first dataset from Tunisia for intelligent lung 
cancer detection. Such initiatives are necessary to ensure that 
medical technology improvements benefit all regions equally 
and to improve healthcare outcomes. 

We start this article with a definition of lung cancer where 
we present the lung anatomy and explain the origin of the 
disease, its types, and stages. Next, Section III describes lung 
cancer detection and diagnoses using imaging techniques. 
Moving on to Section IV, highlights the importance and 
impact of data in cancer detection, introducing the challenges 
we face in finding Tunisian datasets for regional analysis. 
Section V describes related work, positioning our research in 
the context of other studies and highlighting how our approach 
differs and contributes to the field. Then, the process of 
building our Tunisian lung cancer dataset is described. We go 
over how we found and collected the data, how the images 
were prepared and annotated, and the stringent quality control 
procedures put in place to guarantee data integrity. In Section 
VII, we present the model used to validate our created dataset, 
the results are then compared with literature models and 
discussed in Section VIII. Finally, the paper is concluded in 
Section IX. 

II. LUNG CANCER DEFINITION 

The lungs are two sponge-like organs inside the chest. 
Three lobes, or parts, make up the right lung. Two lobes make 
up the left lung. It is smaller on that body side because the 
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heart occupies more space there. When we inhale, air enters 
our nose or mouth and goes to our lungs via the trachea 
(windpipe). The trachea divides into bronchi, which enter the 
lungs and divide further into smaller bronchi. Bronchioles are 
tiny branches that divide from them. There at the tip of the 
bronchioles are small sacs of air known as alveoli. When we 
breathe air, the alveoli transport oxygen in the blood and 
expel carbon dioxide. Our lungs’ primary functions are to 
take in oxygen and expel carbon dioxide. Lung cancers 
typically develop in the cells that make up the bronchi and 
other parts of the lung, like the alveoli or the bronchioles. The 
pleura is a thin layer of membrane that surrounds the lungs. As 
the lungs expand and contract during breathing, the pleura 
shields them and aids in their sliding back and forth against 
the chest wall. A narrow, dome-shaped muscle known as the 
diaphragm, separates the chest from the belly beneath the 
lungs. As we breathe, the organ contracts and expands, 
propelling air into and out of the lungs [5]. Cancer arises when 
the body’s cells begin to proliferate uncontrolled. When it’s in 
the lungs, we talk about Lung Cancer. For both sexes, lung 
cancer is one of the most common cancer-related causes of 
death [6]. 

The most common indicator of this type of cancer is 
coughing, which needs to be treated carefully because most 
lung cancer patients also have chronic obstructive 
pulmonary disease, which can cause coughing on its own. 
More importantly, the cough’s characteristics change—
becoming more intense, persistent, and possibly accompanied 
by expectoration or bloody sputum. Lung cancer also 
manifests as expectoration, chest pain, shortness of breath, 
anorexia, fever, hemoptysis, and weight loss [7]. 

A pulmonary nodule, often known as an abnormal growth, 
forms in the lung. Respiratory problems and infections can 
lead to the development of nodules in the lungs. Most lung 
nodules are not indicative of lung cancer and do not require 
medical attention. On X-rays or scans, these growths could 
show up as a shadow or spot on the lung. One or more nodules 
may form in one lung or more in both [2]. 

A. Lung Cancer Types 

Two primary forms of lung cancer exist [10]: 

Non-small cell lung cancer (NSCLC): The most common 
type, approximately 80–85% of instances of lung cancer are 
caused by non-small cell lung cancer (NSCLC). 
Adenocarcinoma, Squamous cell carcinoma and Giant cell 
carcinoma are the three main types of non-small cell lung 
cancer. 

 The most prevalent subtype of NSCLC, 
Adenocarcinoma is typically present in the lung’s outer 
regions. It affects women and non-smokers more 
frequently. 

 Squamous Cell Carcinoma is frequently associated with 
smoking, typically begins in the middle of the lungs, 
close to a bronchus. 

 Large Cell Carcinoma is a rarer variety that can develop 
anywhere in the lung and has a rapid growth and 
dissemination rate. 

Small cell lung cancer (SCLC): It is less common and 
more aggressive than NSCLC, this type of lung cancer 
accounts for 10% to 15% of all cases of lung cancer. It’s also 
known as oat cell cancer at times. Compared to NSCLC, this 
type of lung cancer develops and spreads faster. In most 
patients, the cancer has already exited the lungs when they are 
diagnosed with SCLC. Because it spreads quickly, this cancer 
usually responds well to chemotherapy and radiation 
treatments. Unfortunately, most patients will experience 
recurrent cancer. SCLC is heavily associated with smoking 
and it has two main subtypes which are: 

 Small Cell Carcinoma: Sometimes referred to as Oat 
cell cancer, is the most aggressive type and frequently 
spreads to other body areas. 

 Combined Small Cell Carcinoma: It consists of both 
non-small cell and small cell cancer. 

B. Lung Cancer Stages 

Comprehending the distinct forms of lung cancer is 
imperative in order to comprehend the progression of each 
type through its varied phases. Depending on the severity of 
the disease, each kind of lung cancer—small cell lung cancer 
(SCLC) or non-small cell lung cancer (NSCLC)—follows a 
different course of development and dissemination and is 
divided into phases. 

1) NSCLC stages: NSCLC develops in a number of 

stages, each of which indicates how far the disease has spread. 

The tumors’ stage is determined by their size and whether or 

not they have spread to adjacent lymph nodes or other organs 

[9]: 

a) First stage: A 5 mm diameter tumor was discovered; 

it has not spread to any organs or lymph nodes. Usually, these 

tumors can be removed surgically. 

b) Second stage: The tumor has grown to neighboring 

lymph nodes and is no more than 7 mm across. As an 

alternative, there can be more than one distinct tumor nodule 

visible. These tumors can usually be surgically removed. 

c) Third stage: Any size tumor is possible, and it has 

spread to the lymph nodes. It might have also extended to 

nearby regions. It is possible for a single lung to have two or 

more tumors in separate lobes. At this point, it is not possible 

to remove the tumors. 

d) Fourth stage: Characterized by pleural effusion or 

metastasis (spread) to other body parts. Any size lung tumor 

has progressed to the fluid surrounding the lungs, lymph 

nodes, and other distant organs. 

Fig. 1 shows the different NSCLC stages explained. 
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Fig. 1. NSCLC stages [8]. 

Fig. 2 presents the two SCLC stages. 

2) SCLC stages: Because SCLC is aggressive in 

character, it splits into two primary stages [8]: 

a) Limited stage: One radiation field can be used to treat 

cancer that is limited to one side of the chest, including just 

one lung and adjacent lymph nodes. 

b) Extensive stage: The cancer has progressed to distant 

organs or other areas of the chest. Because SCLC progresses 

quickly, the majority of cases are diagnosed at this point. 

 
Fig. 2. SCLC stages [11]. 

Understanding the stage of your lung cancer is 
essential to determining course of therapy. Even though 
advanced-stage cancer might potentially prolong a person’s 
life, earlier-stage tumors are usually easier to treat. 

III. LUNG CANCER DIAGNOSIS AND IMAGING 

A general practitioner (GP) will talk about the patient’s 
overall health and symptoms in order to identify lung cancer. If 
the patient’s physical examination and history suggest that they 
may have lung cancer, more testing will be done. Imaging 
studies may be one of them. Imaging tests produce pictures 
of the internal organs. There are several reasons to undergo 
imaging tests, both before and after being diagnosed with lung 
cancer [12], such as: investigating suspicious or possibly 

malignant areas; estimating the extent to which cancer may 
have spread; evaluating the efficacy of the treatment; and 
looking for any signs that the disease might recur following 
treatment. 

When it comes to lung cancer detection, staging, and 
treatment, imaging is essential. Comprehensive information 
regarding lung tumors’ existence, size, location, and extent—
as well as their potential to spread to other body parts—can 
be obtained using a variety of imaging methods. Chest X-
rays, computed tomography (CT), positron emission 
tomography (PET), and magnetic resonance imaging (MRI) are 
the main imaging modalities used in lung cancer  [13]: 

When lung cancer is suspected, X-rays of the chest are 
frequently the first imaging tests carried out. Large tumors and 
notable anomalies may be seen, but smaller or less noticeable 
lesions may go unnoticed. The majority of lung cancers appear 
as a white-gray mass on X-rays like shown in Fig. 3. 

 

Fig. 3. Lung X-ray image [15]. 

More precise cross-sectional images of the lungs and other 
chest tissues are provided by CT scans, which aid in the 
detection of smaller tumors as well as the localization and 
size of malignancy. It is common practice to perform a CT 
scan after a chest X-ray. A CT scan uses X-rays and a 
computer to create detailed images of the inside of the body. It 
creates complex images of the body in cross-section. A CT 
scan gathers many images, as opposed to a typical X-ray, 
which only captures one or two. These images are then 
combined by a computer to create a slice of the body portion 
under study [14]. The Fig. 4 shows an example of a lung 
cancer CT scan. 

 
Fig. 4. Lung CT scan image [16]. 
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Usually, PET scans are performed to find metastases and 
evaluate the metabolic activity of lung cancer cells. A tiny 
quantity of radioactive glucose is injected using this 
approach, and because cancer cells have a greater metabolic 
rate than other cells, they absorb the glucose. In order to 
improve diagnostic precision, PET scans are frequently 
coupled with CT scans (PET/CT). The Fig. 5 shows an 
example of a lung cancer PET scan. 

 

Fig. 5. Lung PET image [17]. 

While less frequently used for lung cancer, MRI is 
especially helpful for analyzing tumors close to important 
blood vessels and determining whether cancer has progressed 
to the brain or spinal cord. Similar to CT scans, MRIs produce 
finely detailed images of the body’s soft tissues. However, 
MRI scans employ strong magnets and radio waves in place of 
X-rays. The most prevalent use for MRI scans includes the 
detection of possible brain or spinal cord metastases from lung 
cancer. 

Out of all the approaches outlined, the CT image technique 
is the most widely used since it may give a view without 
showing structures that overlap. It might be difficult for 
physicians to diagnose and interpret cancer. The use of CT 
imaging allows for the accurate diagnosis of lung cancer 
[14]. 

On imaging studies, lung cancer can appear as a single 
microscopically small nodule, ground-glass opacity, lung 
collapse, pleural effusion, numerous nodules, or multiple 
opacities. Simple and tiny lesions are extremely hard to locate. 
Due to their late diagnosis, lung cancer patients usually have 
a poor prognosis. Due to the unpredictability of imaging 
results, and histology, it is challenging for doctors to 
choose the best course of treatment for lung cancer [1]. 
Because so many images need to be analyzed, radiologists 
must rely largely on their years of expertise to spot anomalies. 
Even highly qualified individuals may overlook tiny 
indications of cancer. The process is made more difficult by 
the variety in tumor appearance, which includes variations in 
size, shape, and density. Tumors can be hidden by overlapping 
bodily structures, making it challenging to identify them. 
Furthermore, determining the difference between benign and 
malignant lesions necessitates meticulous examination, which 
is laborious and prone to human mistakes. Patient outcomes 
may be impacted by missed diagnoses or false positives due 
to human error and fatigue. 

These constraints can be overcome by machine learning 
models, especially deep learning algorithms. These algorithms 

are able to understand and identify complicated patterns 
linked to different types of malignancies because they have 
been trained on large databases of annotated medical images. 

Using these models contributes to early tumor diagnosis, 
which is essential for bettering patient outcomes. Large 
volumes of imaging data can be processed and analyzed 
swiftly by automated methods, which can deliver reliable 
results quickly. This improves overall diagnostic efficiency by 
relieving radiologists of some of their duty and freeing them up 
to concentrate on more complex patients. Additionally, as 
these models are exposed to additional data, they can get 
better over time, increasing their capacity to identify even the 
smallest and most subtle problems. Thus, the application of 
AI to medical imaging marks a substantial breakthrough in the 
early diagnosis and treatment of cancer, resulting in a quicker, 
more precise, and more easily accessible diagnostic 
procedure. 

IV. DATA IMPORTANCE 

The development and success of machine learning models, 
particularly in medical imaging and cancer diagnostics, 
depend heavily on rich and comprehensive datasets. The 
quality and comprehensiveness of the data directly affect the 
models’ performance, accuracy, and reliability. Extensive 
datasets with a wide range of patient demographics, imaging 
modalities, and detailed annotations are crucial for capturing 
the entire spectrum of disease presentations and variations. 

Machine learning models need to be trained on datasets 
that accurately represent the variety of real-world medical 
cases in order for them to identify and categorize cancers. This 
covers differences in imaging methods and instruments in 
addition to variances in tumor sizes, forms, locations, and 
stages. Rich datasets let the model understand intricate patterns 
and characteristics linked to various tumor forms, improving 
generalization and improving prediction accuracy across a 
range of patient populations. 

A large dataset helps reduce the possibility of overfitting, 
in which a model performs well on training data but poorly on 
new, unseen data; by exposing the model to an extensive 
variety of examples, it learns to generalize well, improving 
its robustness and accuracy. This is especially important in 
medical imaging, where variation in patient anatomy and 
imaging conditions can be significant. A high-performing 
model requires a large amount of data to be trained on. 

Reducing biases resulting from training models on 
small or homogeneous datasets is another benefit of having 
an extensive data set. The model’s capacity to discriminate 
between benign and malignant lesions is enhanced when it is 
trained on a dataset that encompasses a wide variety of cases. 
This is especially crucial for early detection, as tiny 
irregularities could be readily missed in the absence of an 
extensive collection of training data. 

Furthermore, thorough annotations from knowledgeable 
radiologists and oncologists improve learning by giving 
exact labels and classifications. The model uses these 
annotations as a vital source of information when it is 
being trained, which enables it to link particular imaging 
characteristics to related diagnostic categories. Extensive data 
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means that the model is exposed to a broad range of scenarios, 
increasing its robustness and ability to manage challenging 
cases in actual practice. 

A. Localized Data Importance 

Not only data is necessary for training machine learning 
models, but having a unique dataset for every location is also 
essential. Local data document the population’s distinct 
demographic, genetic, and environmental features, all of which 
have a substantial impact on how diseases like lung cancer 
manifest, develop, and react to therapy. Diagnostic 
techniques and treatment plans might not work as well without 
localized data because they are frequently created using data 
from other areas with distinct demographic characteristics. 

The access of such extensive medical databases is 
restricted in Tunisia for a number of reasons: 

 First, many healthcare organizations lack the 
infrastructure and resources necessary for the 
systematic gathering and processing of data. This 
includes a lack of financing for the staff and equipment 
required to compile and manage huge datasets. 

 Second, issues with privacy and regulations may make 
it difficult to integrate and share data throughout 
various medical facilities. The capacity to gather and 
exploit big, centralized datasets is frequently hampered 
by stringent data protection regulations and worries 
about patient confidentiality. 

 Third, incomplete or inconsistent datasets are frequently 
the result of a lack of qualified individuals who can 
appropriately annotate and curate medical images. 

 Fourth, different healthcare facilities lack uniform 
standards for data collection and interpretation. This 
discrepancy can result in inconsistent and fragmented 
data, which makes it challenging to assemble a coherent 
and extensive dataset. 

 Sixth, the low acceptance and knowledge of electronic 
health records (EHRs) in many healthcare settings is 
another difficulty. A considerable portion of patient 
data is still in unstructured or paper formats in the 
absence of widespread use of EHRs, making it difficult 
to access for in-depth analysis and model training. 

 Seventh, healthcare facilities sometimes face financial 
barriers that keep them from making the investments in 
the equipment and training needed for efficient data 
handling. 

 Eighth, a large number of healthcare practitioners may 
also give priority to short-term clinical demands over 
long- term data gathering initiatives, which adds to the 
dearth of thorough datasets. 

 On top of that, competitive tactics or a lack of 
incentives to exchange data might hinder collaboration 
between institutions, resulting in underutilized 
information silos. 

B. The Impact of Limited Data 

The creation and application of sophisticated diagnostic 
techniques in Tunisia are severely hampered by the 
absence of good datasets. Due to variations in demographics, 
genetics, and environmental factors, machine learning models 
trained on datasets from other regions would not function as 
well in the Tunisian setting without extensive local data. 
Poorer patient outcomes and less accurate diagnosis may 
result from this. Personalized medicine, which depends on 
comprehensive patient data to customize therapies to specific 
needs, is also constrained by the incapacity to use large 
amounts of data. 

Improving Tunisia’s healthcare will require addressing 
these data constraints. The creation and dissemination of 
superior annotated medical datasets would improve the 
precision and dependability of diagnostic models, resulting in 
improved identification and management of conditions like 
lung cancer. Tunisia can make sure that its healthcare 
system takes advantage of the advances in medical 
technology and offers its people equitable care by making 
investments in data infrastructure, hiring qualified staff, and 
creating frameworks for data sharing. 

V. RELATED WORK 

Localizing populations in medical datasets is crucial for 
ensuring that diagnostic models are accurate and applicable to 
specific demographic groups. Many existing machine learning 
models for medical diagnosis are trained on datasets with a 
broad demographic range, which may not capture the unique 
characteristics of specific populations, such as those in 
Tunisia. This lack of localization can limit the effectiveness of 
these models in particular clinical settings. For instance, while 
the Lung-PET-CT-Dx dataset is extensive, it predominantly 
includes data from diverse regions and may not reflect the 
specific clinical characteristics seen in the Tunisian 
population. 

Generalizing machine learning models across diverse 
populations is essential for robust performance. However, this 
generalization must be balanced with localization to ensure 
that models remain effective for specific demographic groups 
[33]. Localized datasets are tailored to capture the nuances of 
a particular population, leading to improved diagnostic 
accuracy within that group. Researchers stress the importance 
of creating more localized and representative datasets to 
address gaps in current research and ensure that models can 
accurately diagnose within specific populations [34]. 

A study titled "Optimizing double-layered convolutional 
neural networks for efficient lung cancer classification," 
published by BioMed Central, underscores the importance of 
localized datasets in training robust models. This research 
demonstrates that incorporating data from specific regions 
enhances a model’s ability to accurately diagnose within those 
populations, thereby improving diagnostic accuracy and 
reliability. The authors found that models trained on localized 
datasets perform better in real-world scenarios, emphasizing 
the need for datasets like ours that focus on the Tunisian 
population [34]. 
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Regarding Tunisian data, significant advancements have 
been made in understanding the epidemiological profile and 
risk factors specific to Tunisia. The study “Lung Cancer in 
Central Tunisia: Epidemiology and Clinicopathological 
Features” details the clinical and pathological characteristics 
of lung cancer cases in Central Tunisia over a 15-year period. 
It reveals that lung cancer is the most common cancer among 
Tunisian men, typically presenting at advanced stages, with 
squamous cell carcinoma being the most prevalent histological 
type in men and adenocarcinoma in women. These findings 
highlight the need for effective lung cancer control and 
prevention programs tailored to the Tunisian context [35]. 

The initial study is outdated, with its dataset created for a 
specific purpose that is now rather limited. Our new study, on 
the other hand, utilizes a more comprehensive and current 
dataset specifically designed for lung cancer detection, a 
crucial medical application. As a retrospective study covering 
the years 1993 to 2007, there may be biases from inaccurate or 
incomplete historical medical records. Additionally, the study 
does not consider several potential confounding variables that 
could affect lung cancer incidence and prognosis, such as 
genetic predispositions, environmental exposures, or 
socioeconomic factors. The outdated diagnostic equipment 
may not adequately capture the complexities of lung cancer 
progression and treatment response, making some findings 
less applicable to modern clinical practices. These limitations 
should be considered when interpreting the study's results and 
recommendations. 

Another valuable resource is the RECIST PFS/OS lung 
cancer dataset, available on Mendeley Data. This dataset 
includes annotated CT scan images of lung cancer cases. The 
Salah Azaiez Institute in Tunisia provided data for creating a 
dataset that includes, for each patient, age, sex, treatment, 
presence of mass and nodules, censoring information, 
objective response, and survival time in days, using CT scans 
and reports from radiologists at the institute [36]. The dataset 
primarily uses the RECIST criteria to evaluate tumor response 
to treatment, which, while standardized, may not fully account 
for all the subtleties of tumor biology and patient outcomes. 
Additionally, as a retrospective and observational dataset, it 
may suffer from biases such as selection bias and information 
bias. Lastly, although it includes key variables such as sex, 
age, type of therapy, and survival times, it may lack other 
significant factors like genetic data, detailed treatment plans, 
and environmental exposures. 

These datasets are limited by their lack of diversity and 
clinical settings that may not fully represent the unique 
characteristics of lung cancer in Tunisia. 

Our study addresses this gap by creating the first Tunisian 
lung cancer dataset, which includes DICOM CT scans from 
123 Tunisian individuals, annotated by experienced 
radiologists to cover various types of lung cancer at different 
stages. This comprehensive dataset ensures a more accurate 
representation of the Tunisian demographic, making it better 
suited for developing localized diagnostic tools. The aim of 
our dataset is to provide the necessary data to detect lung 
cancer accurately. 

VI. TUNISIAN LUNG CANCER DATASET 

In order to meet the urgent demand for localized medical 
datasets in Tunisia, we sought the advice of experts at the 
esteemed ”Military Hospital of Instruction of Tunis (HMPIT)” 
[31], an institution renowned for its competence in medical 
care and research. It is one of Africa’s biggest and most 
prominent university hospitals. The Tunisian Ministry of 
National Defense is in charge of this medical center. The 
partnership with Military Hospital of Instruction of Tunis 
(HMPIT) played a pivotal role in procuring the superior CT 
scans required for our project. 

We obtained DICOM-formatted CT scans from 123 
individuals, where 80% or 98 persons have lung cancer and 
are treated at this hospital. For the purpose of compiling an 
extensive and representative dataset of lung cancer cases 
unique to the Tunisian population, these scans were essential. 
Because of the medical experts, the dataset was made more 
robust and applicable by included a variety of patients that 
represented different stages and forms of lung cancer. 

Along with the radiologists and oncologists involved, the 
annotation process was carried out to guarantee the dataset’s 
quality and dependability. Their knowledge was extremely 
helpful in precisely identifying and dividing up the lung 
nodules and other pertinent elements in the CT scans. This 
cooperative method helped the concerned teams create 
capacity and transmit expertise, in addition to improving the 
quality of the annotations. 

The DICOM format CT scans of 98 lung cancer patients, 
encompassing adenocarcinoma, squamous cell carcinoma, and 
small cell lung cancer in all stages, are included in the 
collection from the Military Hospital of Instruction of Tunis 
(HMPIT) along with the CT scans of the other 25 healthy 
indivduals representing 20% of the dataset. Nodule counts, 
sizes, types, features, follow- up status, tumor volume, 
density, growth rates, involvement of lymph nodes, and 
documentation of metastases are all included in the 
annotations. The scans provide high-resolution images with an 
average of 350 slices per scan, and they are obtained 
utilizing advanced imaging modalities including Siemens 
SOMATOM Perspective and GE Healthcare Lightspeed VCT. 
Included are demographics, clinical data on symptoms, past 
medical histories, and results. 

A. Scanners Used 

Modern CT scanners commonly found in hospitals 
through- out Tunisia—the Siemens SOMATOM Perspective 
and the GE Healthcare Lightspeed VCT—were used to 
carefully generate the lung cancer dataset images. Our dataset 
contains high-quality and consistent data because these 
scanners were selected due to their extensive use in clinical 
settings, advanced imaging capabilities, and dependability. 

1) Siemens SOMATOM perspective: The Siemens SO- 

MATOM Perspective is well known for its remarkable image 

quality and low radiation dosage, which makes it perfect for 

the in-depth imaging needed to diagnose lung cancer. With the 

use of cutting- edge technology like iterative reconstruction, 

this scanner greatly improves image clarity while lowering the 
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patient’s radiation dose. By reducing distortions brought on by 

metal implants, the metal artifact reduction feature helps to 

improve diagnostic precision. Moreover, the scanner offers 

adaptability in identifying a variety of illnesses and supports a 

broad range of clinical applications. 

However, like presented in Table I, the scanner does, have 
certain drawbacks, including high operating costs because of 
maintenance and operating costs, the requirement for thorough 
training for best use, potential problems with image quality 
because of patient movement (motion artifacts), and the lack 
of advanced features in older models. 

TABLE I.  SIEMENS SOMATOM PERSPECTIVE STRENGTHS AND 

WEAKNESSES 

Siemens SOMATOM Perspective 

Strengths Weaknesses 

High image quality High operational costs 

Low radiation dose Complex operation 

Iterative reconstruction Susceptibility to movement artifacts 

Metal artifact reduction 
Limited advanced features in older 

models 

Versatile clinical applications  

2) GE Healthcare Lightspeed VCT: Another high- 

performance scanner with a reputation for quick and high- 

resolution imaging is the GE Healthcare Lightspeed VCT. It 

has cutting-edge technology like low-dose imaging protocols 

and the Volume Imaging Protocol (VIP), which guarantee 

thorough lung scans with little radiation exposure. Because of 

its quick picture acquisition capabilities, this scanner is perfect 

for use in high-throughput clinical settings and emergency 

situations where time is of the essence. Its advantages include 

quick image acquisition, improved workflow efficiency, 

detailed images appropriate for in-depth analysis, low-dose 

protocols that minimize radiation exposure while preserving 

image quality, and quick and easy image acquisition in hectic 

clinical settings. 

Its shortcomings include the necessity for frequent 
calibration to preserve picture accuracy, the high cost of 
maintenance and consumables, the vulnerability to artifacts 
caused by patient movement, and the limited availability of 
specialized imaging modes in certain configurations. Table II 
summarizes the GE Healthcare Lightspeed VCT Strengths and 
Weaknesses. 

TABLE II.  GE HEALTHCARE LIGHTSPEED VCT STRENGTHS AND 

WEAKNESSES 

GE Healthcare Light speed VCT 

Strengths Weaknesses 

Rapid image acquisition High operational costs 

High-resolution imaging Susceptibility to movement artifacts 

Low-dose protocols Requires frequent calibration 

Efficient workflow Limited specialized imaging modes 

To guarantee data integrity, quality and patient 
confidentiality, the generated images were safely stored in 

DICOM format on encrypted external drives. The external 
drives were kept in a safe, climate-controlled environment, 
and frequent backups were made to guard against data loss. 
Extensive metadata was recorded to make retrieval and 
analysis simple. 

B. DICOM Format CT Scans 

The images in the collection are kept in the DICOM 
(Digital Imaging and Communications in Medicine) format, 
which is a commonly utilized format for organizing, 
transferring, and storing data related to medical imaging. 
DICOM is made to make sure that systems that create, show, 
transmit, store, query, process, retrieve, print, and manage 
medical pictures can communicate with one another. The 
DICOM format was selected primarily because it can maintain 
excellent picture quality without adding compression artifacts, 
which is essential for preserving the images’ diagnostic 
integrity. 

In addition to the image data, DICOM files include an 
abundance of metadata, such as patient demographics, scan 
parameters, imaging modality specifics, and facts on the 
hospital and its equipment. This metadata is immediately 
included into the DICOM file, offering a thorough record that 
is necessary for precise diagnosis, study repeatability, and 
other purposes. For instance, for comparison research and to 
ensure uniformity between scans, scan characteristics 
including slice thickness, resolution, and radiation dose are 
essential. 

Furthermore, DICOM is a flexible option for multi-
modality imaging investigations since it supports a broad 
variety of imaging modalities, such as CT, MRI, ultrasound, 
and X-ray. Sensitive information is safeguarded since the 
format complies with global standards for patient privacy and 
medical data security. 

By using the DICOM format, the dataset can be used in a 
variety of clinical and research settings because it is 
compatible with a wide range of medical imaging applications 
and systems. In order to provide easy access and analysis by 
medical professionals, this compatibility is especially crucial 
for integration with Picture Archiving and Communication 
Systems (PACS), which are utilized in clinics and hospitals. 
Furthermore, DICOM’s ability to handle sophisticated 
imaging capabilities including 3D reconstructions and multi-
frame functionality increases its usefulness for in-depth 
research of lung cancer. 

CT scans are especially useful in the detection of lung 
cancer because they provide high-resolution images that can 
detect tumors and small nodules that might not be visible 
with other imaging modalities. Additionally, CT imaging 
offers excellent contrast between different types of tissue, 
which is crucial for precisely identifying and characterizing 
lung nodules, as well as determining their size, composition, 
and size. 

CT scans provide 3D reconstruction of the lung structure, 
offering a thorough perspective that facilitates accurate tumor 
location and evaluation in relation to adjacent tissues. 
Planning surgical procedures, directing biopsies, and tracking 
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the efficacy of treatments over time are all made possible by 
this capacity. 

By choosing CT scans in DICOM format, we ensure that 
the dataset meets the highest standards of image quality, data 

integrity, and interoperability, making it a robust and 
valuable resource for ongoing and future research in lung 
cancer diagnosis and treatment. Detailed information about 
the dataset is provided in the Table III. 

TABLE III.  DATASET DETAILS FROM MILITARY HOSPITAL OF INSTRUCTION OF TUNIS (HMPIT) 

 
 

Attribute Details 

Number of Patients 123 (including both healthy and sick patients) 

Health Status • Healthy Patients: 25 
• Sick Patients: 98 

Format DICOM 

Types of Lung Cancer 
• Adenocarcinoma: 45 patients 
• Squamous Cell Carcinoma: 33 patients 
• Small Cell Lung Cancer: 20 patients 

Stages 
• Stage I: 34 patients 
• Stage II: 26 patients 
• Stage III: 28 patients 
• Stage IV: 10 patients 

Annotations 

• Number of nodules: Detailed count per patient 
• Size of nodules: Measurements in millimeters 
• Nodule type: Solid, part-solid, or ground-glass 
• Nodule characteristics: Margin, shape, and calcification status 
• Follow-up status: Monitoring of nodule changes over time 
• Tumor volume and density 
• Tumor growth rate (if multiple scans available) 
• Identification and annotation of affected lymph nodes 
• Documentation of any metastasis to other parts of the body visible in scans 

Imaging Modalities and Scanners 
• GE Healthcare LightSpeed VCT: High-speed imaging capabilities and good spatial 

resolution 
• Siemens SOMATOM Perspective CT Scanner: Precise imaging and dose efficiency 

Technical Details 

• Resolution: Typically 512 x 512 pixels 
• Slice Thickness: 1-5 mm, ensuring consistency and quality 
• Number of Slices per Scan: Average of 300 slices per CT scan 
• Scan Duration: Approximately 5-15 minutes per scan 
• Imaging Dates: January 2020 - April 2024 
• Scanner Settings: Voltage (120 kVp), Current (200-400 mA), Exposure Time (0.5-1 

seconds per slice) 

Demographics 

• Age: Range from 20 to 80 years, with an average age of 60 
• Gender: 73 males, 50 females 
• Relevant Medical History: Includes smoking history (80% of patients), family 

history of lung cancer (30% of patients) 

Clinical Data 

• Symptoms: 

○ Cough: 84 patients 
○ Chest pain: 53 patients 
○ Shortness of breath: 76 patients 

• Treatment History: 

○ Surgery: 42 patients 
○ Chemotherapy: 69 patients 
○ Radiation therapy: 50 patients 

• Outcomes: 

○ Survival rate 
○ Recurrence 
○ Cancer-free 

• Additional Annotations: 

○ Histopathological findings 
○ Genetic mutations (e.g., EGFR, ALK) 
○ Biomarker levels (e.g., PD-L1 expression) 
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C. Data Quality 

The lung cancer dataset was created with the highest 
priority on ensuring high data quality. Advanced imaging 
technologies such as Siemens SOMATOM Perspective and GE 
Healthcare LightSpeed VCT CT Scanners were used to obtain 
all CT scans. This ensured that all images were high-
resolution, with a typical resolution of 512 x 512 pixels and 
consistent slice thicknesses ranging from 1 to 5 mm. In order 
to protect the quality and integrity of the images and prevent 
compression artifacts, they were stored in DICOM format. 

Qualified radiologists painstakingly analyzed the images, 
recording in-depth information regarding every nodule, 
such as numbers, millimeter diameters, kinds (solid, part-
solid, or ground- glass), and features including margin, shape, 
and calcification status. The volume, density, and growth rates 
of the tumor were annotated, as well as the lymph nodes that 
were afflicted and any obvious metastases. These thorough 
annotations were saved as structured CSV files, which offer a 
common format for simple analysis and integration with 
different data processing applications. 

A thorough validation procedure was put in place to 
guarantee the highest level of accuracy. Peer evaluations of 
the annotations, several cross-checks, and consistency checks 
against accepted medical norms were all part of this 
process. To make sure that data management procedures 
were being followed, the dataset also went through routine 
audits and quality reviews. To stop data deterioration, the 
external disks holding the data were encrypted, often backed 
up, and kept in a safe, climate-controlled location. 

The dataset is an important and dependable resource for 
research and development in lung cancer diagnosis and 
therapy because of the exact, well-documented annotations 
and high-quality photos. Table III contains comprehensive 
details about the dataset. 

D. Data Preparation 

Making ensuring the raw data is appropriately structured, 
cleaned, and arranged is the goal of data preparation so 
that it may be used for additional processing and analysis. 
There were several important steps in this phase. To enable 
uniform analysis, all CT scans were first standardized to a 
uniform resolution and slice thickness, usually between 1 
and 5 mm. The maintenance of uniformity across images 
acquired from various scanners, such as the Siemens 
SOMATOM Perspective and the GE Healthcare Lightspeed 
VCT, required this standardization. The quality of the 
scans was then improved by applying image noise reduction 
techniques, which included algorithms to filter out aberrations 
and improve the visibility of minute features. 

After that, radiologists performed a preliminary 
examination of the scans to find and fix any irregularities, like 
motion artifacts or partial images. This quality check made 
sure that the dataset contained only the best images. Critical 
data, including patient demographics, scan parameters, and 
gear characteristics, were included in the metadata and 
carefully checked for accuracy. 

1) Data cleaning: Data cleaning in the data preparation 

stage of our Tunisian lung cancer dataset entailed finding and 

fixing mistakes or inconsistencies in the DICOM images. 

Before processing the dataset further, this involved correcting 

missing values, standardizing data formats, and eliminating 

duplicate records in order to guarantee its integrity and 

quality. 

2) CT imaging parameters: There are 123 subjects’ worth 

of CT images in DICOM format available. Since this is a ret- 

respectively gathered dataset, various subjects were scanned 

with different scanners, protocols, and parameters: slice 

thickness of 1-4 mm (median: 3 mm) and an X-ray tube 

current of 200-400 mA (mean 250 mA) at 100-140 kVp (mean 

120 kVp). Specific scanning parameters, such as the make and 

model of the scanner, are specified in the DICOM headers. 

The subjects were scanned while supine, and the scans were 

obtained from the apex of the lung to the adrenal gland in a 

single breath-hold. 

3) Image segmentation: Further, a segmentation 

procedure was applied to each scan, defining the lung regions 

in order to isolate the key areas of the image and concentrate 

on the area of interest. For it to enable accurate annotations 

and lessen computing load during analysis, this step was 

crucial. As part of the preparation stage, imaging protocols 

were standardized to reduce variability brought about by 

various scanning configurations and methods. 

E. Image Annotations 

The process of locating and labeling pulmonary nodules 
in CT scans and other medical imaging studies is known as 
”nodule annotation.” Medical professionals must conduct a 
thorough examination of 3D volumetric data in order to 
identify, quantify, and categorize nodules that might be signs 
of lung cancer. The purpose of nodule annotation is to produce 
an accurate and thorough dataset that can be utilized to train 
machine learning models for dependable and accurate lung 
nodule detection. 

The first step in annotating our our Tunisian lung cancer 
dataset CT scans, is selecting the right annotation software. 
We employed software such as 3D Slicer and ITK-SNAP, 
which are well acclaimed in the medical imaging field for their 
feature-rich and intuitive interfaces. For the purpose of 
designating pulmonary nodules, these technologies are perfect 
because they enable the thorough inspection and annotation of 
3D volumetric data. 

 3D Slicer is an open-source software platform that can 
handle a wide range of imaging formats and is highly 
adaptable for medical image informatics, image 
processing, and three-dimensional visualization. Users 
can load DICOM images, and it offers strong 
visualization tools for precisely locating and labeling 
nodules [20]. 

 Another well-liked software with a focus on 3D medical 
image segmentation is ITK-SNAP. Experts can more 
easily annotate nodules with precision thanks to its 
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semi-automated segmentation capabilities and user-
friendly manual segmentation features [21]. 

Second step, the CT scans for our Tunisian dataset were 
imported into the selected tools which were set up to show the 
pictures in a way that makes it simple to identify nodules. This 
setup comprised: 

 Changing the Window and Level Settings: To bring the 
nodules out against the background lung tissue, adjust 
the brightness and contrast. 

 Multi-Planar Reconstructions (MPR) are made possible: 
permitting views in the axial, sagittal, and coronal 
planes to give a thorough understanding of the nodule’s 
structure. 

 Effective Navigation: Guaranteeing that images are 
easily panned, zoomed in on, and navigated so that 
specialists can examine them in-depth. 

After that, each scan was examined by radiologists and 
oncologists from hospitals in Tunisia to look for lung 
nodules. Being able to differentiate nodules from other 
anatomical features and possible artifacts needed a high level 
of knowledge. In order to obtain a thorough grasp of the 
nodule’s properties, we collaborated with the specialists and 
made use of the tools’ features to zoom in on areas of 
interest, change the contrast of the image, and switch between 
different views. 

The following was a part of the annotation process: 

 Exact Position: The nodule’s x, y, and z coordinates 
were noted. Mapping the nodule’s location in the lung’s 
three-dimensional space requires these coordinates. 

 The size measurement: A measurement of the nodule’s 
diameter was made. This measurement aids in the 
classification of the nodule and determines whether it is 
potentially cancerous. 

 Classification: Based on its features, each nodule was 
categorized. Nodules were often categorized as 
malignant or benign (0). 

 Existence of Nodules: In order to clearly distinguish 
between scans with and without nodules, this was 
additionally noted if there were none. 

 Disease Stage: Each patient’s disease stage was 
recorded, which added further context for the severity 
and course of the sickness. 

More annotations are found in the dataset descriptive 
Table I. 

For convenience of access and integration with machine 
learning techniques, the annotated data was stored as a CSV 
file. The CSV file contained multiple distinct columns, each of 
which represented a single nodule. Table IV lists and 
describes some annotations in our CSV file. 

Several experts examined the annotations to guarantee 
their uniformity and accuracy. After disagreements between 
reviewers were reviewed and settled, the final annotations 

underwent validation and quality control to make sure they 
adhered to the required accuracy requirements. In order to 
confirm the validity and suitability of the Tunisian lung 
cancer dataset for machine learning model training, this step 
was essential. 

TABLE IV.  ANNOTATION CSV FILE COLUMNS 

Column Description 

patient id A distinct identitfier for each patient. 

series id 
A unique and distinct identifier for the collection of 
images of each patient. 

coordX, coordY, 
coordZ 

The nodule coordinates within the lungs. 

diameter mm The nodule diameter in millimeters. 

class 
The nodule classification (0 for benign, 1 for 
malignant). 

nodule present 
A boolean representing whether nodules are present 
(1) or absent (0). 

stage 
The cancer stage (Stage I, Stage II, Stage III, 
Stage IV). 

F. Data Compliance and Standards 

One of the main tenets for establishing the lung cancer 
dataset was adhering to legal and ethical guidelines. The 
relevant institutional review board granted ethical approval to 
the project prior to data collection, guaranteeing that the study 
complied with all relevant ethical standards. Every patient 
gave their informed consent, ensuring that they understood 
exactly how their information would be used, maintained, and 
safeguarded. 

In accordance with the Tunisian National Instance for the 
Protection of Personal Data (INPDP) [18], the dataset was 
painstakingly de-identified to remove any personal identifiers. 
The integrity and usability of the data were preserved while 
patient privacy was protected thanks to this de-identification 
procedure. 

1) De-Identification of imaging DICOM data: Before 

being analyzed at the Military Hospital of Instruction of Tunis 

(HMPIT), all imaging data were de-identified. Using XNAT 

(eXtensible Neuroimaging Archive Toolkit), we were able to 

de-identify the imaging data. With the help of XNAT, medical 

imaging data can be securely managed and made anonymous, 

guaranteeing that DICOM objects no longer contain protected 

health information (PHI). 

Every personal identification was eliminated from the 
dataset in order to preserve patient confidentiality. By de-
identifying the data, privacy laws were satisfied with by the 
dataset. To further improve the dataset’s resilience, several 
versions of the preexisting photos were produced using data 
augmentation techniques. To give context and make it easier 
for other researchers to use the dataset, thorough 
documentation about its creation, properties, and annotations 
was produced. 

We used again XNAT to execute a second round of de- 
identification before releasing the data for research, ensuring 
that all identifying information had been completely removed. 
With options like Clean Pixel Data, Clean Descriptors, Retain 
Longitudinal with Modified Dates, Retain Patient 
Characteristics, Retain Device Identity, and Retain Safe 
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Private Options, this de- identification procedure conforms to 
international requirements for medical data privacy. 

2) Data encryption: The DICOM standard, which offers a 

framework for the interchange and storage of medical 

images and related data, is one of the worldwide standards for 

medical imaging that the dataset was created to comply 

with. The broad use and integration of medical imaging 

devices and software is facilitated by compliance with 

DICOM standards, which guarantees interoperability. 

The dataset was also stored using encryption and frequent 
backups, which followed the best practices for data security 
and integrity. We made sure that the dataset respects patient 
rights and privacy in addition to meeting high-quality 
benchmarks by closely adhering to these ethical and 
regulatory norms. This makes it a dependable and morally 
sound resource for lung cancer research. 

To preserve data quality, the external disks were kept in a 
safe, climate-controlled environment. Extensive metadata 
documentation made it simple to retrieve and analyze the 
dataset, which made it a strong and useful tool for studying 
lung cancer. 

VII. TUNISIAN LUNG CANCER DATASET MODEL SELECTION 

To make certain our lung cancer dataset is high-quality 
and useful for training cutting-edge machine learning 
models, it must be tested. Extensive tests enable us to assess 
the dataset’s robustness and detect any potential biases or 
restrictions that can impair model performance. We can learn 
a great deal about the dataset’s suitability for lung nodule 
identification and diagnosis by carefully evaluating it. Our 
dataset’s value in practical applications is demonstrated by 
benchmarking it against well-established models, which also 
reveals its potential to increase diagnostic accuracy. The 
results of these studies will serve as a strong basis for 
upcoming investigations, propelling the creation of more 
accurate and effective medical imaging instruments. 

A. Comparative Analysis of Model Architectures 

In this section, we compare and contrast a number of 
renowned model architectures from the field of medical 
imaging, including CNN, U-Net, VGG, and ResNet. These 
models were selected for comparison because they are 
widely used and have a track record of success in a variety of 
image processing applications, including medical imaging. It 
is crucial to comprehend these models’ performance and 
applicability for lung nodule identification in order to choose 
the best architecture for our dataset. We hope to determine the 
advantages and disadvantages of each model through this 
comparison, giving a convincing explanation for our selection. 
This comparison analysis aids in our decision-making process 
for choosing the most suitable model for our application by 
offering a thorough grasp of how various architectures 
function in the context of lung nodule identification. 

Table V shows the different architecture and various use 
cases of each model mentioned. 

Table VI lists the multiple advantages and also 
disadvantages of each model. 

TABLE V.  MODELS ARCHITECTURE AND USE CASES 

Model Architecture Use Case 

CNN [25] 

sequence of convolutional layers, 
pooling layers, and fully connected 
layers in order of succession 

General image 
classification 

U-Net [26] 
symmetric layer encoder-decoder 
design with skip connections 

Biomedical image 
segmentation 

VGG [27] 
16 or 19-layer deep architecture 
with tiny (3x3) convolution filters 

Large-scale image 
classification 

ResNet [19] 

Identity mapping can be achieved 
with a deep architecture featuring 
residual blocks. 

Complex image 
classification and 
detection 

TABLE VI.  MODELS ADVANTAGES AND DISADVANTAGES 

Model Advantages Disadvantages 

CNN [24] 

Simple and efficient 
for extracting 

features, well-
established and 

straightforward to 

develop 

Vanishing gradient causes 
Problems with highly 
deep networks, which 
may necessitate 
extensive tweaking for 
complicated tasks. 

U-Net [28] 

Great for 

segmenting images, 

very accurate for 
localization tasks 

Computationally demanding, 
could not adapt well to tasks 
requiring classification 
without adjustments 

VGG [29] 

Robust large-scale image 
classification 
performance with a 
straightforward and deep 
architecture 

High memory consumption, 
high computational 
expense, and less useful for 
very deep networks 

ResNet [30] 

Residual learning reduces 
the vanishing gradient 
issue and enables the 

formation of extremely 

deep networks with 
exceptional 
performance on 
challenging tasks. 

Can have a more 

complicated architecture and 
be computationally 

demanding than 

conventional CNNs. 

The comparison study draws attention to the unique traits 
and functionalities of the CNN, U-Net, VGG, and ResNet 
models. Every architecture has advantages and disadvantages 
that affect which medical imaging tasks they are best suited 
for. 

Based on the unique needs of lung nodule detection—
which necessitates a deep architecture capable of capturing 
delicate and detailed features—ResNet models were chosen 
over CNN, U-Net, and VGG. We have collected high-
resolution CT scans from 123 individuals 80% from them 
have lung cancer in Tunisia and 20% are healthy. This large 
and heterogeneous dataset demands a model that can 
efficiently identify and learn from intricate patterns and 
minute differences in the data. A model that can successfully 
capture and learn from intricate patterns and minor 
variations in the data is required because of this large and 
diverse dataset. 

The vanishing gradient issue is successfully addressed by 
ResNet’s residual learning framework, which makes it 
especially suitable for this purpose and makes it possible to 
train very deep networks—which are necessary for high-
accuracy detection tasks. ResNet is perfect for managing the 
complex characteristics in our dataset because of its ability 
to retain performance in deep networks by alleviating the 
vanishing gradient issue [19], making it possible to extract 
detailed features from complicated data. Even with deeper 
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network architecture, steady training and enhanced 
performance are guaranteed by the incorporation of residual 
blocks and skip connections. CNNs lack the depth required for 
more sophisticated tasks, even if they are simple and 
efficient for basic picture categorization [24]. U-Net performs 
quite well in segmentation, but its large processing overhead 
increases when applied to classification tasks [28]. Though 
powerful, VGG’s high memory needs make it computationally 
costly and less useful for very deep networks [29]. 

The most balanced method for creating a lung nodule 
identification model that can effectively utilize the rich and 
extensive data in our Tunisian dataset is ResNet, thanks to its 
depth, resilience, and performance. Accurate and dependable 
lung nodule detection in a variety of clinical scenarios can 
be efficiently supported by its ability to handle complicated 
data structures and retain high accuracy [30]. 

B. Resnet Models 

In their 2015 publication”Deep Residual Learning for 
Image Recognition”, Kaiming He et al. [19] introduced 
ResNet, short for Residual Network, a kind of deep neural 
network. ResNet’s main breakthrough is residual learning 
architecture, which makes it possible for the network to train 
considerably deeper models than it could have before. With 
this invention, the vanishing gradient problem—a prevalent 
difficulty in deep learning—is addressed. As network depth 
increases, gradients become increasingly small, making 
learning ineffective. ResNet models were initially created to 
classify 2D images; however, they have since been expanded 
to 3D versions to handle volumetric data, including CT 
scans. To be more specific, ResNet models have been 
expanded to 3D versions [23] in the context of medical 
imaging, particularly for 3D data such as CT and MRI 
scans. These models make use of 3D convolutional layers, 
which perform three-dimensional convolution operations to 
capture spatial data in the dimensions of depth, height, and 
width. This is crucial for activities that depend on the 
geographical context in three dimensions, such as lung nodule 
detection. 

Multiple residual blocks, each having a set of 
convolutional layers, make up ResNet models. The input is 
added back to the original input after passing through 
convolutional layers in a residual block, creating a skip or 
shortcut link. This facilitates the learning of identity mappings 
by the model and aids in maintaining the gradient flow, which 
facilitates the training of deeper networks. 

Bypassing one or more layers, the skip connections add the 
input straight to the stacked layers’ output. This lessens the 
degradation issue, which occurs when a sufficiently deep 
model gains more layers, increasing training error. 

The multiple layers that make up the architecture of 3D 
ResNet models are intended to capture varying degrees of 
abstraction from the input data. The essential elements 
consist of [19]: 

 3D Convolutional Layers: These layers use three- 
dimensional convolution processes to capture spatial 
data related to the input volumes’ depth, height, and 
width. 

 Layers for batch normalization: These layers speed up 
training and increase the stability of the model by 
normalizing the output of convolutional layers. 

 Layers of ReLU Activation: The Rectified Linear Unit 
(ReLU) activation adds non-linearity to the model so 
that it may pick up intricate patterns. 

 Residual Blocks: By allowing the model to learn 
residual functions in relation to the layer inputs, these 
blocks make it possible to build extremely deep 
networks without experiencing any degradation. 

 Pooling layers: These layers help to downsample the 
data and lower computational complexity by reducing 
the spatial dimensions of the input. 

 Fully Connected Layers: These layers create final 
predictions at the conclusion of the network by 
combining features that were extracted by earlier levels. 

ResNet models come in a number of depths: ResNet10, 
ResNet18, ResNet34 and ResNet50. The number denotes the 
total number of layers in each model. To depict varied levels of 
complexity and detail, these models feature different 
arrangements of leftover blocks [19]. 

 ResNet10: 

Architecture: Ten-layer ResNet’s most basic model. It is 
effective at capturing important information during training 
even with constrained computational resources. 

Use: Fits well with activities that need faster inference 
times and less complexity. 

 ReNet18: 

Architecture: An eighteen-layered, relatively deeper 
model. Its ability to strike a balance between performance and 
complexity qualifies it for a variety of uses. 

Use: Frequently applied to tasks involving generic medical 
picture classification. 

 ResNet34: 

Architecture: A 34-layer, deeper model that enables more 
precise feature extraction. 

Use: Perfect for jobs like segmentation and tiny anomaly 
identification that call for in-depth analysis and excellent 
accuracy. 

 ResNet50: 

Architecture: A complex model with 50 layers, offering 
the highest capacity for capturing intricate patterns in the data. 

Use: Best suited for highly detailed tasks that require 
extensive computation, such as multi-class segmentation and 
advanced diagnostic analysis. 

VIII. DATASET ROBUSTNESS TESTING 

We ran thorough tests using multiple 3D ResNet 
models to assess the resilience of our lung cancer dataset. CT 
scan pictures with annotations for lung nodules were used to 
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train the models. Several ResNet designs (ResNet10, 
ResNet18, ResNet34, and ResNet50) were used in the training 
process, and the outcomes were contrasted with those attained 
using the Tencent MedicalNet models. 

A. Tencent MedicalNet Models 

A set of pre-trained models created especially for medical 
imaging tasks are available through Tencent’s MedicalNet 
initiative [22]. The models are optimized for certain tasks, such 
lung nodule identification, after having undergone extensive 
and varied pre-training on a vast collection of medical 
images. 

We painstakingly duplicated Tencent MedicalNet’s 
experimental setting to verify the reliability of our lung cancer 
dataset. To guarantee a direct and impartial comparison 
between the MedicalNet models’ and our dataset’s 
performance, this required sticking to the same 3D ResNet 
models and training parameters. 

A wide range of modalities, target organs, and diseases 
were covered by the 23 datasets that were combined for the 
MedicalNet project. The models can acquire universal feature 
representations through this thorough pre-training, which they 
may then apply to a variety of medical imaging tasks. The 
models were tested for adaptability and high performance on a 
variety of tasks, such as lung segmentation and pulmonary 
nodule classification. The research ensured a thorough and 
diversified dataset for pre-training by compiling data from 
multiple sources, such as MRI and CT scans. The study 
made use of a variety of 3D ResNet designs (ResNet10, 
ResNet18, ResNet34, and ResNet50) to capture varying 
degrees of intricacy and detail in the data. MedicalNet used 
spatial and intensity normalizing approaches to address the 
diversity in spatial resolution and intensity distributions. This 
improved the training process by guaranteeing that the data 
given into the models was consistent. 

We selected Tencent’s MedicalNet to showcase the 
resilience of our lung cancer dataset, thanks to its pre-trained 
3D ResNet models. Pre-trained on an extensive and varied 
collection of medical images, MedicalNet’s models improve 
their generalization and performance on a range of tasks. We 
are able to assess our dataset’s quality and its potential to 
help construct high-performance diagnostic tools by using 
these pre-trained models. This thorough assessment highlights 
the contribution of our dataset to the advancement of medical 
image processing in general and lung nodule detection 
specifically. 

B. Transfer Learning 

Transfer learning is a potent deep learning technique in 
which a pre-trained model is refined on a smaller, task-specific 
dataset after it was first trained on a larger dataset. By utilizing 
the knowledge gained from the lengthy pre-training phase, this 
method improves generalization and increases the model’s 
efficiency in learning from the smaller dataset. In medical 
imaging, where it might be difficult to gather big annotated 
datasets, transfer learning is very helpful [32]. We may 
greatly improve our models’ performance by utilizing pre-
trained models, like Tencent’s MedicalNet, since they gain 
from the wide range of feature representations that are 

acquired during the pre-training stage. This methodology 
enhances the models’ accuracy and robustness when used for 
particular tasks, such lung nodule identification in our dataset, 
while also lowering the computational resources needed for 
training. 

We used pre-trained 3D ResNet models from Tencent’s 
MedicalNet to implement transfer learning in our study. Since 
a big and varied collection of medical images served as the 
initial training set, the models were able to pick up a wealth of 
attributes pertinent to medical imaging. With the help of our 
lung cancer dataset, we adjusted these pre-trained models so 
they could be specifically used for lung nodule detection. 

The procedure entailed starting with the MedicalNet 
models’ pre-trained weights and completing the training on 
our dataset. By using this method, the models were better able 
to identify and categorize lung nodules because they could 
make use of the generic traits that they had acquired during 
the first training phase. Our goal in fine-tuning these models 
was to bring together the unique characteristics of our dataset 
with the advantages of thorough pre-training. 

C. Pre-processing and Training 

We were able to use the same architectures—ResNet10, 
ResNet18, ResNet34, and ResNet50—and apply comparable 
pre-processing methods, optimization tactics, and evaluation 
criteria by coordinating our experiments with those carried out 
by MedicalNet. We were able to provide a thorough and 
consistent review thanks to this strategy, which also made sure 
that any discrepancies in performance could be traced back to 
the datasets themselves instead of deviations in methodology. 

To guarantee consistency and enhance the learning 
process, the CT scan images had been processed before 
being used for the training and assessment of the 3D ResNet 
models. Among the preprocessing actions were: 

 Format Conversion: DICOM CT scans were 
programmatically transformed to NEFTII format. This 
modification made handling and processing of both our 
and Tencent Medicalnet volumetric data more efficient. 

 Normalization: To make sure that the intensity values 
were scaled correctly for the neural network, each CT 
scan was normalized to a range of [-1, 1]. 

 Resizing: To standardize the input size and lower 
processing needs, the scans were downsized to a 
uniform shape of 64x64x64 voxels. 

 Data Augmentation: During training, data augmentation 
techniques like random rotations and flips were used to 
improve the models’ capacity for generalization. 

 Data Division: The dataset was divided into training, 
validation, and testing subsets in order to guarantee the 
efficient training and assessment of machine learning 
models. This tactical separation is essential to creating 
reliable and accurate models. The full range of 
variations seen in the entire dataset was carefully 
reflected in these divides, which were made to maintain 
diversity and balance. Training is for 70% of the split, 
validation for 15%, and testing for 15%. 
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The preliminary actions made to collect, arrange, and 
structure the raw data in order to make it suitable for analysis 
or modeling are referred to as data preparation. A more 
detailed step called “data pre-processing” entails getting the 
cleaned and sorted data ready for the real machine learning 
or data analysis work. The goal of this step is to change the 
data in order to improve the models’ accuracy and 
performance. Therefore after making sure that our data is 
ready for the models we proceed to the training. 

There were multiple steps in the training: 

1) Data loading: After being loaded, CT scan images 

underwent preprocessing to standardize and resize them into a 

form that would work with the models. Tencent MedicalNet’s 

pre-trained ResNet models, including ResNet10, ResNet18, 

ResNet34, and ResNet50, are loaded. These models have a 

good pattern recognition capacity because they have already 

been trained on big datasets. The final layers are adjusted to 

meet our classification requirements in order to customize 

these models for our particular task of lung nodule 

identification. By utilizing the power of transfer learning, this 

phase enables the pre-trained models to efficiently apply the 

features they have learnt to our dataset. 

2) Hyperparameter configuration: One important stage in 

the training process is configuring the hyperparameters. The 

learning rate, which regulates the step size during gradient 

descent, the number of epochs, or full runs through the 

training dataset, the batch size, which establishes the quantity 

of samples processed before the updating of the model’s 

internal parameters, and the loss criteria, which direct the 

optimization procedure, are important hyperparameters. 

Appropriate hyperparameter selection is essential to maximize 

model performance and guarantee effective training. 

3) Training of the models: Using the training set, the 

models’ weights are modified during the training phase. The 

validation set is used to assess the model’s performance at 

each epoch in order to keep an eye out for overfitting. When a 

model performs well on training data but poorly on unknown 

data, this is known as overfitting. We can reduce overfitting 

by using early stopping or other regularization strategies by 

evaluating the validation set. Every ResNet model underwent 

ten epochs of training, during which the accuracy and loss 

were noted. 

4) Evaluation: Accuracy served as the main performance 

indicator for each model. Ten epochs were required to record 

the final accuracy. The test set is used to assess the final 

models’ performance after training, giving an objective 

appraisal of the model’s capabilities. The model’s accuracy is 

assessed to assess how well it detects lung nodules. To verify 

the reliability and efficacy of our dataset and model 

modifications, these outcomes are then contrasted with the 

performance metrics of the previously trained models on 

comparable datasets 

D. Results and Analysis 

The resilience and good quality of the dataset were 
demonstrated by the models trained on it, which repeatedly 
displayed excellent performance. 

The accuracy trends of each model trained on our dataset, 
are clearly represented visually in the Fig. 6. 

 
Fig. 6. Comparison of the accuracy achieved by different 3D ResNet models 

over the training epochs 

Following training, each model’s final accuracy is listed in 
Table VII below which shows a comparison between the 
accuracy of each model trained on our dataset and the models 
trained on Tencent MedicalNet datasets. 

TABLE VII.  COMPARISON OF ACCURACY BETWEEN OUR DATASET AND 

TENCENT MEDICALNET MODELS 

Model Your Dataset Accuracy MedicalNet Accuracy 

ResNet10 84.21% 96.56% 

ResNet18 83.90% 94.68% 

ResNet34 84.33% 94.14% 

ResNet50 84.36% 89.25% 

All of the models that were trained on our dataset per- 
formed admirably, with an accuracy rate of above 84%. 
ResNet50 demonstrated the best accuracy of 84.36%, 
demonstrating the resilience of our dataset in the identification 
of lung nodules. Nevertheless our models’ accuracy was 
slightly lower than Tencent’s MedicalNet models’, which were 
pre-trained on a larger and more varied collection of medical 
images. For example, the MedicalNet ResNet10 model 
attained an astounding 96.56% accuracy, while our dataset 
only managed 84.21%. There are various reasons for this 
disparity. 

 First off, MedicalNet has a big edge because to its 
thorough pre-training on a variety of medical images. 
By learning a wide range of characteristics that are 
applicable to many tasks, the models benefit from this 
pre-training, which improves their performance on new 
datasets. Even though our dataset is strong, it is smaller 
and less varied than MedicalNet’s, which restricts the 
models’ capacity to generalize to previously 
undiscovered data. 
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 Second, the improved performance of the MedicalNet 
models can be attributed to the variety in the dataset, 
which encompasses numerous modalities and target 
organs. This variety enhances the models’ accuracy and 
resilience across a range of tasks by enabling them to 
gain a more thorough grasp of medical imagery. 

 Thirdly, more thorough training and fine-tuning are 
made possible by MedicalNet’s large computational 
resources and longer training periods, which can have a 
big impact on the final performance. We could get 
better outcomes if we extend the training period and 
increase our computational resources. 

 Fourthly, the discrepancies in accuracy seen might have 
been caused by the scanners we utilized to obtain our 
dataset, including the Siemens SOMATOM Perspective 
and GE Healthcare Lightspeed VCT. Variations in 
imaging techniques and scanner features may result in 
inconsistent image quality and resolution, which could 
have an impact on the performance of the model. 

E. An Overview of the Tunisian Lung Cancer Dataset 

Creation Workflow 

To ascertain the quality, reliability, and usability of the 
Tunisian lung cancer dataset for the development of 
sophisticated machine learning models, a number of crucial 
procedures have to be taken during the creation process, like 
shown in Fig. 7. 

1) Data collection: We started by gathering DICOM 

images from the Military Hospital of Instruction in Tunisia 

(HMPIT). Siemens SOMATOM Perspective and GE 

Healthcare Lightspeed VCT were the two scanners used to 

capture the images. 

2) DICOM image storage: The integrity and 

confidentiality of patient data were then preserved by 

importing these images onto a safe external device. 

3) Data preparation: The data preparation stage began 

along with gathering and safely storing the DICOM images 

from the Military Hospital of Instruction of Tunis (HMPIT). 

Setting up parameters, fixing mistakes, getting rid of 

duplication, and standardizing formats are all part of this 

phase. Furthermore, segmentation is done to divide the data 

into areas that make sense, allowing for more focused and 

effective analysis. By doing this, we guarantee that the dataset 

is reliable, consistent, and prepared for the thorough 

annotation and pre-processing stages necessary for training a 

machine learning model. 

4) Nodule annotation: We worked together with 

specialized software like 3D Slicer and ITK-SNAP to annotate 

the CT images. Strong capabilities and intuitive user interfaces 

were offered by these tools for in-depth examination and 

annotation. 

5) Nodule annotation validation: Several experts 

examined the annotations to guarantee uniformity and 

accuracy. Consensus meetings were used to settle 

disagreements. 

 
Fig. 7. The workflow of the creation and validation of the lung cancer 

Tunisian dataset. 

6) Dataset splitting: To make sure that each set accurately 

reflected the diversity of the full dataset, it was divided into 

training, validation, and testing sets. Typically, training would 

account for 70% of the split, validation for 15%, and testing 

for 15%. 

7) Data pre-processing: To ensure compatibility with 

Tencent MedicalNet models, data pre-processing for our 

Tunisian lung cancer dataset project entailed converting 

DICOM pictures to NEFTII format. Standardized image 

resolutions and normalized intensity values were achieved. 

Rotation and flipping are examples of data augmentation 

techniques that produced additional training samples. To 

ensure accurate model evaluation and peak performance, the 

dataset was finally divided into 70% training, 15% validation, 

and 15 % testing. 

8) Transfer learning with ResNet models from tencent 

MedicalNet: We used Tencent MedicalNet’s pre-trained 

ResNet models (e.g. ResNet10, ResNet18, ResNet34, and 

ResNet50). We adjusted these models with our Tunisian lung 
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cancer dataset. Using the knowledge from pre-trained models, 

transfer learning was used to improve performance on our 

particular dataset. 

9) Experiments and validation: We ran experiments to 

assess how well the refined ResNet models performed using 

our dataset defining how well the models can detect lung 

cancer patients thus the accuracy was measured. 

10) Compare accuracy: The robustness of our dataset was 

evaluated by contrasting its results with those obtained from 

the MedicalNet models. To make sure the models translate 

effectively to fresh, untested data, they were verified using the 

testing set. Upon contrasting our accuracy outcomes with 

those obtained from MedicalNet, we discovered that although 

our dataset had strong performance, the models trained on 

MedicalNet data demonstrated slightly greater accuracy. This 

demonstrates that in order to match the performance of 

existing datasets, additional improvements in data quality and 

diversity are required. 
Every stage of the dataset creation procedure, including 

data preparation, annotation, pre-processing, training of 
models, and collection, was thoroughly documented. This 
documentation guarantees reproducibility and offers precise 
instructions for further study and advancements. In order to 
provide transparency and promote cooperation with other 
researchers, it also includes metadata regarding the dataset, 
annotation processes, and pre-processing techniques utilized. 
Following ethical and privacy rules, the dataset and model 
results were shared and archived securely. 

IX. CONCLUSION 

To enhance lung nodule detection and develop diagnostic 
techniques tailored to the local population, it is crucial to 
address the lack of a lung cancer dataset in Tunisia. We 
assembled a comprehensive dataset of 123 well-annotated 
DICOM-format CT images from various locations within 
Tunisia. By utilizing pre-trained 3D ResNet models from 
Tencent’s MedicalNet and applying transfer learning, we 
validated the robustness of our dataset. After refinement, these 
models exhibited outstanding performance, demonstrating the 
effectiveness of our approach. 

The significance of broad and varied pre-training on a 
variety of datasets is shown by the superior performance of 
MedicalNet models. Future work will focus on several key 
areas to enhance the dataset and its applicability. First, 
improving pre-processing and augmentation techniques will 
be crucial to improve the quality and robustness of the dataset. 
Additionally, we aim to expand the dataset by including more 
diverse and comprehensive data sourced from additional 
medical institutions across Tunisia. Incorporating multi-
modality imaging, such as MRI and PET scans, will provide a 
more holistic view of lung cancer characteristics, enhancing 
the depth and scope of the dataset. Finally, we will seek 
collaboration with international research bodies to standardize 
annotation protocols and integrate the Tunisian dataset with 
global datasets, facilitating broader applicability and creating 
new research opportunities. 
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