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Abstract—This research investigates the application of open-
source transformers, specifically the ConvNeXt V2 and Seg-
former models, for brain tumor classification and segmenta-
tion in medical imaging. The ConvNeXt V2 model is adapted
for classification tasks, while the Segformer model is tailored
for segmentation tasks, both undergoing a fine-tuning process
involving model initialization, label encoding, hyperparameter
adjustment, and training. The ConvNeXt V2 model demonstrates
exceptional performance in accurately classifying various types
of brain tumors, achieving a remarkable accuracy of 99.60%. In
comparison to other state-of-the-art models such as ConvNeXt
V1, Swin, and ViT, ConvNeXt V2 consistently outperforms them,
attaining superior accuracy rates across all metrics for each
tumor type. Surprisingly, when there is no tumor present, it
has predicted with 100% accuracy. In contrast, the Segformer
model has excelled in accurately segmenting brain tumors,
achieving a Dice score of up to 90% and a Hausdorff distance
of 0.87mm. These results underscore the transformative potential
of open-source transformers, exemplified by ConvNeXt V2 and
Segformer models, in revolutionizing medical imaging practices.
This study paves the way for further exploration of transformer
applications in medical imaging and optimization of these models
for enhanced performance, heralding a promising future for
advanced diagnostic tools.
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I. INTRODUCTION

A brain tumor is recognized as one of the prevalent
neurological disorders, characterized by an unregulated and
abnormal proliferation of brain cells [1]. It stands as one of the
deadliest forms of cancer, posing a significant threat to life [2].
Brain tumors are stratified into four grades (Grade I to Grade
IV), with each grade signifying escalating malignancy levels
and a progressively ominous prognosis. Grade I tumors, such
as pilocytic astrocytoma, characterized by slow growth and a
limited tendency to spread, offer the potential for complete
removal. Moving to Grade II, these tumors, despite the pos-
sibility of migration, can persistently grow and enlarge, even
after prior treatment. Advancing to Grade III, tumors exhibit
swifter growth and the capability to spread to adjacent tissues,
necessitating post-surgical interventions like radiotherapy or
chemotherapy. An instance of Grade III malignancy is aden
squamous astrocytoma. Finally, Grade IV tumors represent
the most lethal category, capable of malignant spreading.
Glioblastoma multiforme, an aggressive tumor, serves as an
illustrative example of Grade IV characteristics, utilizing blood
vessels to accelerate growth [3], [4].

Brain tumors are identified by examining various diagnostic

imaging techniques, including X-rays, MRIs, and ultrasound,
among others. MRI excels over X-ray and ultrasound with
its detailed soft tissue imaging, multi-planar capabilities, and
radiation-free nature. In brain assessments, MRI’s precision in
tumor detection surpasses the limitations of X-ray and ultra-
sound, making it the preferred choice for accurate diagnostics.
However, identifying brain tumors in MR images poses a
unique challenge due to the presence of a highly uneven signal
associated with the tumor, which can be correlated with the
signal strength of normal tissue [5], [6]. The classification of
pixels within the tumor region becomes ambiguous, potentially
causing inaccurate segmentation. This issue arises when certain
tumor components cannot be distinguished from white matter
(WM) or gray matter (GM) due to the limited intensity reso-
lution of MR images and the intricate anatomy of the human
brain. The complexity intensifies at the tumor’s boundary with
surrounding normal tissue, influenced by partial volumes (PV)
[7]. Consequently, PV contributes to significant blurring in MR
images, causing the intensity values of each voxel to mix with
those of its neighboring voxels [8].

Machine learning methods address segmentation challenges
by employing manually crafted features (or predefined fea-
tures) [9]. Initially, in the segmentation process, essential
information is extracted from the input image using a feature
extraction algorithm, followed by training a discriminative
model to differentiate between tumors and normal tissues. In
the context of tumor segmentation and classification studies,
various machine learning techniques, including support vec-
tor machines (SVMs), multi-class Support Vector Machine
(mSVM), k-nearest neighbor (KNN), Artificial Neural Net-
works (ANNs), and decision trees, are commonly applied.
During the training phase of a classification system, mean
features are manually extracted, emphasizing the crucial role
of identifying essential features for accuracy [13], [10]. It’s
noteworthy that constructing classifiers with machine learning
demands substantial processing power and memory resources,
making it time-consuming, and potentially leading to reduced
accuracy, especially with intricate or extensive datasets [13],
[11].

Medical images are predominantly examined and processed
using deep learning algorithms to identify, classify, and cat-
egorize brain tumors into subgroups. These advanced tech-
nologies serve as valuable tools for healthcare professionals,
assisting them in the diagnostic phase [11]. Deep learning (DL)
constitutes a subset of machine learning focused on acquiring
multiple tiers of representations through the establishment of a
feature hierarchy. This hierarchy is structured such that higher
levels derive their definition from lower levels, with the same
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lower-level features contributing to the definition of multiple
higher-level features [13]. The DL framework expands upon
traditional neural networks (NN) by incorporating additional
hidden layers within the network architecture, positioned be-
tween the input and output layers. This augmentation aims
to model more intricate and nonlinear relationships. Recently,
researchers have shown considerable interest in this concept
due to its commendable performance, establishing it as a
preeminent solution across various challenges in medical im-
age analysis applications like image denoising, segmentation,
registration, and classification [14]. Deep learning algorithms,
including trained convolutional neural networks (CNNs), VG-
GNets, GoogleNet, and ResNets, are employed for cancer diag-
nosis assistance. Moreover, the study explored the application
of various CNN designs, including VGGNets, GoogleNets, and
ResNets, for brain tumor classification [15], [16], [17]. The re-
sults indicated that ResNet-50 exhibited superior performance
compared to GoogleNet and VGGNets, achieving an accuracy
rate of 96.50% in contrast to 93.45% and 89.33%, respectively.
Additionally, ResNet-50 demonstrated a 10% higher accuracy
than both VGGNet and GoogleNet, while also processing data
in 10% less time [18].

The irony of the situation lies in the understanding that
even a one percent inaccuracy could potentially lead to the loss
of numerous lives. Hence, scholars have dedicated their time
and effort to safeguard human lives from the repercussions
of unforeseen brain diseases by striving for nearly 100%
accuracy in early detection. In pursuit of this crucial goal,
they have tirelessly worked to introduce the transformer, a
neural network architecture, aiming to enhance the precision
and effectiveness of early-stage detection. Transformers have
become the prevailing network architecture, bringing about
a revolution in language modeling [19], [20]. Operating on
an attention mechanism, they clarify the characteristics of the
input sequence by entirely bypassing recurrence and convo-
lutions. This unique approach allows the modeling of input
dependencies without distance limitations, enabling the assess-
ment of intricate long-range correlations. Notably, transformers
exhibit versatility across different types of sequential data,
with their applications expanding to fields like computer vision
[21]. Recently, transformer-based models, such as Google’s
Vision Transformer (ViT) and Microsoft’s Swin Transformer,
have emerged as a powerful alternative to CNNs in various
domains, including computer vision [22]. Transformers, orig-
inally designed for natural language processing tasks, have
shown remarkable adaptability and performance in different
modalities and tasks, such as image classification, segmenta-
tion, detection, and generation¹. Transformers are composed
of multiple layers of self-attention and feed-forward networks,
which can capture long-range dependencies and global context
from the input [22]. Transformers can process images by either
dividing them into patches and treating them as sequences or
by applying convolutional layers to extract features before ap-
plying self-attention. Transformers have shown superior perfor-
mance to CNNs in various tasks, such as image classification,
object detection, and semantic segmentation [22]. However,
even transformers have their own set of limitations, such as the
need for large amounts of data and computational resources,
which can be prohibitive in the medical imaging domain [22].
Moreover, transformers might not be able to exploit the spatial
structure and locality of images, which can be important for

some tasks.

In light of the above, this paper introduces a novel approach
that pushes the boundaries of medical imaging. By fine-tuning
the Vision Transformer, Swin Transformer, ConvNeXt, and
ConvNeXt V2 for brain tumor classification, and Segformer
for brain tumor segmentation, we have achieved unprecedented
results. Our research has demonstrated that the ConvNeXt V2
model, in particular, has set a new benchmark in medical
imaging for classification tasks. With its superior performance,
it has proven to be a game-changer in the field of brain tumor
detection. ConvNeXt V2, enhances learning of deformable
convolutions for superior performance in self-supervised learn-
ing and various downstream tasks. It excels in handling diverse
image sizes and incorporates advanced training techniques,
making it highly effective for medical imaging applications
by outperforming state-of-the-art models. On the other hand,
the Segformer model has shown state-of-the-art performance in
segmentation tasks, achieving a Dice score of over 90 percent.
This is a significant leap forward in the precision of brain
tumor segmentation. These advancements not only enhance
the accuracy and efficiency of brain tumor detection but also
contribute to early diagnosis and treatment planning. This, in
turn, can lead to improved patient outcomes and alleviate the
workload of radiologists, addressing a significant challenge in
the healthcare sector.

In conclusion, our research underscores the transformative
potential of these models in medical imaging. It provides a
benchmark for future research and opens up new avenues for
leveraging advanced machine learning techniques in medical
imaging. The benefits of this research extend beyond improved
patient outcomes in neuro-oncology, offering valuable insights
for researchers and practitioners in the field. Future research
directions include exploring the application of transformers
in other areas of medical imaging and further optimizing
the proposed models for better performance. This paper is
a testament to the transformative potential of open-source
transformers in medical imaging, setting a new standard in
the field.

In this study, we delve into the transformative potential
of open-source transformers in medical imaging. We provide
a comprehensive background on the ConvNeXt V2 and Seg-
former models, followed by an in-depth explanation of our
methodology. We then present our evaluation metrics and the
results derived from them. The discussion section explores the
implications of our findings, particularly how these models
can enhance neuro-oncology diagnostics. We conclude with
a summary of our key findings and potential future research
directions.

II. OPEN-SOURCE TRANSFORMERS IN MEDICAL
IMAGING

Open-source software has indeed been a game-changer in
the field of artificial intelligence, providing researchers and
developers with accessible, customizable, and cost-effective
tools for innovation. Open-source transformers, in particular,
have been instrumental in advancing the field of medical
imaging [23].

Before we delve into the specific open-source transformers
used in medical imaging, it is essential to understand the
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architecture and capability of the original transformer model
from the pioneering work “Attention Is All You Need”, which
introduced the first open-source transformer [24].

A. The Original Transformer

The Transformer model architecture presented in Fig. 1
by Vaswani in “Atention all you need” is a powerful neural
network design that revolutionized natural language processing
and other sequence-to-sequence tasks as follows [25]:

1) Input processing: The input sequence is first embedded
into continuous vector representations. To retain positional
information, a positional encoding is added to the embeddings.

2) Multi-Head attention: The model employs multi-head
attention mechanisms to focus on different parts of the in-
put sequence simultaneously. This allows the Transformer to
capture complex patterns and dependencies. Unlike recurrent
neural networks (RNNs), where computations depend on the
previous step, multi-head attention operates independently
across positions.

3) Feed-forward neural networks: Each position (word or
token) in the input sequence passes through the same feed-
forward network. This parallel processing is a departure from
RNNs, which have sequential dependencies.

4) Add and norm: Every sub-layer (such as multi-head
attention or feed-forward neural network) includes a residual
connection. After the residual connection, layer normalization
is applied. These steps help stabilize training in deeper models.

5) Masked multi-head attention: In addition to regular
multi-head attention, the Transformer introduces masked multi-
head attention. During training, this mechanism prevents at-
tending to future tokens in a sequence. It’s crucial for autore-
gressive tasks like language modeling.

6) Output probabilities: The processed outputs from the
layers are linearly transformed.A softmax operation generates
output probabilities for predictions or downstream tasks.

In summary, the Transformer architecture combines multi-
head attention, feed-forward networks, and layer normalization
to handle sequential data efficiently. Its parallel processing
and attention mechanisms make it highly effective for various
natural language understanding tasks.

The introduction of the original transformer model marked
a significant milestone in the realm of machine learning and
artificial intelligence, ushering in a revolutionary architecture.
Central to this innovation is the attention mechanism, a key
mathematical concept expressed through equations that dis-
tribute attention scores across various segments of an input
sequence.

The attention score is calculated using the equation [24]:

Attention(Q,K, V )=softmax
(
QKT

√
dk

)
V (1)

Where: - Q represents the query matrix, - K denotes the
key matrix, - V stands for the value matrix, - and dk is the
dimensionality of queries and keys.

Fig. 1. The transformer-model architecture [24].

This equation underscores how each element in the input
sequence contributes to every position in the output sequence
by computing a weighted sum of values, with weights assigned
according to compatibility function computed using queries
and keys [25], [26].

In multi-head attention, this process is replicated across
multiple sets of learned linear projections of queries, keys,
and values. This can be represented mathematically as:

MultiHead(Q,K, V )=Concat(head1, ..., headh)WO (2)

Where each head is computed as:

headi=Attention(QWQ
i ,KWK

i , V WV
i ) (3)

Here: - WQ
i , WK

i , and WV
i are parameter matrices, - h

denotes number of heads, - Concat refers to concatenation
operation, - And WO represents output linear transformation
weights.

These equations collectively facilitate a nuanced under-
standing of dependencies among elements or tokens within
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sequences, enabling transformers to capture complex patterns
and relationships in data with remarkable efficiency.

The success of the transformer model has inspired a diverse
array of models extending beyond natural language processing
(NLP). These models encompass tasks such as predicting
protein folded structures, and forecasting time series data.
The model’s ability to discern the significance of each input
component grants it tremendous power, allowing it to prioritize
essential information and disregard irrelevant details, thereby
enhancing the accuracy and relevance of its outputs. In the
domain of machine learning research, the Transformer model
diagram stands as an invaluable tool, providing a comprehen-
sive visual depiction of its architectural complexities and data
flow dynamics.

B. The Power of Transformers in Vision

Transformers have shown significant advancements in the
field of vision, particularly with the introduction of the Vision
Transformer (ViT). The ViT model, which is the first trans-
former model introduced for vision tasks after their successful
application in natural language processing (NLP), represents
an input image as a series of image patches, similar to the
series of word embeddings used when applying transformers
to text. This model has been specifically designed for image-
related tasks, making it a powerful tool in the field of medical
imaging.

1) Vision Transformer (ViT): The Vision Transformer (ViT)
is a model for image classification that employs a Transformer-
like architecture over patches of the image as shown in Fig.
2. An image is split into fixed-size patches, each of them
is then linearly embedded, position embeddings are added,
and the resulting sequence of vectors is fed to a standard
Transformer encoder¹. In order to perform classification, the
standard approach of adding an extra learnable “classification
token” to the sequence is used [27].

Fig. 2. Vision transformer for brain tumor classification [27].

The ViT model has been shown to outperform the cur-
rent state-of-the-art convolutional neural networks (CNNs) by
almost x4 in terms of computational efficiency and accuracy
[27]. This is a significant achievement as CNNs have been the
de-facto standard for image recognition tasks for many years.

The success of the ViT model can be attributed to the self-
attention mechanism of the Transformer architecture, which al-
lows the model to focus on different parts of the input sequence

simultaneously, capturing complex patterns and dependencies.
This ability to understand the importance of each part of
the input data differently makes the ViT model extremely
powerful. It allows the model to focus on what’s important and
ignore what’s not, leading to more accurate and meaningful
outputs [27].

The ViT model has been successfully applied to sev-
eral computer vision problems, achieving state-of-the-art
results.This has prompted researchers to reconsider the
supremacy of convolutional neural networks (CNNs) as de
facto operators.

2) Swin transformer: The **Swin Transformer** is a novel
vision Transformer that serves as a general-purpose backbone
for a variety of computer vision tasks [28]. The name “Swin”
stands for **Shifted Windows**, which is a key feature of this
architecture.

Unlike the original Vision Transformer (ViT) that produces
feature maps of a single low resolution and has a quadratic
computation complexity due to global self-attention, the Swin
Transformer builds hierarchical feature maps by merging
image patches in deeper layers and has linear computation
complexity with respect to image size. This is achieved by
limiting self-attention computation to non-overlapping local
windows while also allowing for cross-window connection
[28].

The Swin Transformer is built by replacing the standard
multi-head self-attention (MSA) module in a Transformer
block with a module based on shifted windows, while keeping
other layers the same [28]. A Swin Transformer block consists
of a shifted window-based MSA module, followed by a 2-layer
MLP with GELU nonlinearity in between.

In terms of performance, the Swin Transformer has demon-
strated superior results in various vision tasks, including image
classification, object detection, and semantic segmentation¹.
For instance, it achieved 87.3 accuracy on ImageNet-1K, 58.7
box AP and 51.1 mask AP on COCO test-dev, and 53.5 mIoU
on ADE20K val. These results surpass the previous state-
of-the-art by a large margin, demonstrating the potential of
Transformer-based models as vision backbones [29].

In summary, the Swin Transformer offers a promising ap-
proach to computer vision tasks, providing a balance between
computational efficiency and performance. Its hierarchical
design and shifted window approach make it a flexible and
powerful tool for image analysis.

3) ConvNext transformer: The ConvNext Transformer rep-
resents a significant advancement in open-source transformer
models tailored for medical imaging, particularly in scenarios
involving high-resolution images and necessitating a “sliding
window” approach. ConvNets excel in tasks such as object
detection, benefiting from translation equivariance and effi-
ciency derived from shared computations within a sliding-
window framework [29]. ConvNeXt addresses the need for
maintaining ConvNets’ inductive learning bias while lever-
aging Transformer innovations, featuring a specialized block
as depicted in Image 3, that integrates convolutional layers
to enhance spatial feature extraction from medical images,
resulting in improved accuracy and efficiency. Employing an
inverted bottleneck design comprising depthwise, expansion,
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and contraction layers, ConvNeXt utilizes large depthwise
kernels to facilitate scalability and long-range representation
learning. By harnessing large kernel ConvNeXt networks in
conjunction with extensive datasets, researchers have surpassed
previous Transformer-based models, enabling width scaling
without constraints imposed by kernel size limitations and
offering benefits in learning long-range spatial dependencies
through large kernels and enabling multi-level network scaling
in medical image segmentation [30]. Fig. 3 shows ConvNexT
v1 architecture.

In comparative studies, the ConvNext Transformer has
shown promising results on ImageNet-1K and ImageNet-22K
pre-trained models. Its performance metrics are competitive
with those of the Swin Transformer (2021), indicating its ca-
pability to serve as an effective backbone for various computer
vision tasks in medical imaging.The success of the ConvNext
Transformer can be attributed to the self-attention mechanism
of the Transformer architecture, which allows the model to
focus on different parts of the input sequence simultaneously,
capturing complex patterns and dependencies. This ability to
understand the importance of each part of the input data dif-
ferently makes the ConvNext Transformer extremely powerful.
It allows the model to focus on what’s important and ignore
what’s not, leading to more accurate and meaningful outputs.

Fig. 3. ConvNexT v1 Architecture [29].

4) ConvNeXt V2: Introducing ConvNeXt V2, a novel
ConvNet model series, known as Deformable ConvNets v2
(DCNv2), has been developed to enhance its capacity for
learning deformable convolutions, as shown in Fig. 4. Despite
undergoing minimal architectural modifications, it is precisely
tailored for optimal performance in self-supervised learning
scenarios. Leveraging fully convolutional masked autoencoder
pre-training, significant enhancements in performance are ob-
served across diverse downstream tasks, spanning from Ima-
geNet classification to COCO object detection and ADE20K
segmentation [31]. This augmentation in modeling capability

encompasses two key aspects. Firstly, there is an expanded
integration of deformable convolution layers throughout the
network, allowing for greater control over sampling across a
wider range of feature levels. Secondly, a modulation mecha-
nism has been introduced within the deformable convolution
modules, enabling each sample not only to undergo a learned
offset but also to be modulated by a learned feature amplitude,
thus providing the network module with the flexibility to adjust
both the spatial distribution and the relative influence of its
samples [32].

Key Advancements in the ConvNeXt V2 Model:

• Improved ability to handle a wide range of image sizes
and formats. This adaptability makes it more versatile
and suitable for different medical imaging tasks. This
is achieved through adaptive input representations and
flexible architecture designs that can accommodate
varying input dimensions.

• Incorporation of advanced training techniques and
optimization strategies that enhance its learning ef-
ficiency and model performance. These include so-
phisticated learning rate schedules, advanced regular-
ization methods, and efficient batch processing tech-
niques.

Fig. 4. ConvNexT v2 Architecture [33].

In comparative studies, the ConvNeXt V2 model has
shown superior performance metrics on benchmark datasets,
outperforming other state-of-the-art models such as the Vision
Transformer (ViT) and the Swin Transformer. This indicates its
potential as a reliable tool for clinical diagnostics and research,
and its capability to serve as an effective backbone for various
computer vision tasks in medical imaging.

5) Segformer: A new frontier in brain tumor segmentation:
The **Segformer** is a groundbreaking open-source trans-
former model that has been specifically engineered for image
segmentation tasks. This model has proven its robustness
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Fig. 5. Architecture of the segformer model[33].

and efficacy across a variety of applications, and this paper
presents, for the first time, its potential in the realm of brain
tumor segmentation in medical imaging.

The architecture of the Segformer which is presented
in Sketch 5, is distinctive, utilizing a hierarchical Encoder-
Decoder structure [33]. The attached Fig. 5 illustrates the
hierarchical architecture of the Segformer, demonstrating how
it processes different resolutions of images for effective seg-
mentation. This structure incorporates convolutional layers
to augment the extraction of spatial features from medical
images at multiple scales and resolutions. This multi-resolution
approach is vital for brain tumor segmentation tasks, where the
model is required to accurately identify and delineate intricate
anatomical structures and pathological regions at diverse levels
of detail.

The hierarchical design of the Segformer enables it to
process medical images at various scales, capturing both
macroscopic and microscopic features. This is particularly
advantageous for brain tumor segmentation tasks, as it ensures
a comprehensive capture of the tumor’s overall structure and
its intricate details, leading to more accurate and meaningful
outputs [33]. Another strength of the Segformer is the self-
attention mechanism of the Transformer architecture, which
allows the model to focus on different parts of the input
sequence simultaneously. This ability to discern the importance
of each part of the input data differently makes the Segformer
extremely powerful [33].

III. METHODOLOGY

This study seeks to harness the potential of open-source
transformers, with a specific focus on employing the Con-
vNeXt V2 model for tumor classification and the Segformer
model for segmentation, to advance the field of medical imag-
ing. The methodology employed in this research is outlined
below.

A. Model Selection

We have selected the ConvNeXt V2 model for the task of
classification and the Segformer model for segmentation. The
decisions are grounded in the established performance of the
ConvNeXt V2 and Segformer models in tasks related to im-
ages, as well as their proficiency in grasping complex patterns
and dependencies within input data. Throughout the selection

process, each model covered in the open-source transformers
section has undergone fine-tuning. Notably, the ConvNeXt V2
and Segformer models have consistently outperformed their
counterparts, demonstrating superior accuracy and efficiency,
thus positioning them as the optimal choices for our research
objectives.

B. Data Acquisition

The data used in this research was acquired from two main
sources:

1) Segmentation dataset: For segmentation, we have uti-
lized the brain tumor dataset provided by Jun Cheng, avail-
able on Figshare. This dataset encompasses a comprehensive
collection of brain images featuring various types of tumors.
Each image in this dataset has been appropriately labeled to
facilitate segmentation tasks [34].

2) Classification dataset: We have compiled a dataset
comprising 15,000 images for the classification task. This
dataset has been created by merging the brain tumor dataset
provided by Jun Cheng with additional datasets obtained from
the internet [34], [35], [36], [37]. These supplementary datasets
have been meticulously chosen to guarantee a varied and
representative selection of brain images. Each image in this
dataset has been labeled with the corresponding tumor type,
facilitating the classification task.

The datasets have been carefully scrutinized and validated
to ensure their quality and relevance to this research. The
images have been accurately labeled, providing a reliable basis
for fine-tuning the ConvNeXt V2 and Segformer models.

C. ConvNeXt V2 Fine-tuning

The ConvNeXt V2 model, depicted in Fig. 6, is fine-tuned
for the task of classification. The fine-tuning process involved
several steps, each of which contributed to optimizing the
model’s performance on our specific classification dataset.

1) Model initialization: We began by initializing the Con-
vNeXt V2 model, which is an open-source transformer model.
This model was selected due to its proven performance in
image-related tasks and its ability to capture complex patterns
and dependencies in the input data. The open-source nature of
the ConvNeXt V2 model allows for transparency, reproducibil-
ity, and customization, which are key advantages in the field
of medical imaging [31].

2) Label encoding: The labels for each image in our dataset
were mapped to corresponding IDs. This encoding process
transformed the categorical labels into a format that could be
processed by the ConvNeXt V2 model.

3) Hyperparameter adjustment: The model’s hyperparam-
eters, such as learning rate, batch size, and number of epochs,
were adjusted during the fine-tuning process.

4) Training: The training process involved feeding the
images from the training set into the ConvNeXt V2 model.
The model processed these images through multiple stages,
each involving a series of operations that transform the input
images, extracting essential features and patterns that the
model can learn from.
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Fig. 6. Implementing ConvNext V2 for advanced brain tumor classification:
A visual guide.

The operations include depthwise separable convolutions,
layer normalization, GELU activation, and pointwise separable
convolutions. These operations are inspired by the mechanisms
used in transformers. For instance, the layer normalization and
GELU activation functions are commonly used in transformer
models.

The depthwise separable convolutions operation is a key
feature of the ConvNeXt V2 model. It is a variant of the
standard convolutions and is designed to reduce the model’s
complexity and computational cost. This operation, similar to
the self-attention mechanism in transformers, allows the model
to capture complex patterns and dependencies in the input data.

Mathematically, the depthwise separable convolution oper-
ation can be represented as a two-step process:

a) Depthwise convolution: This operation applies a
single convolutional filter per input channel. If we denote the
input feature map as Fin, the depthwise convolutional filter as
D, and the output feature map as Fout, this operation can be
represented as:

F
(i)
out=D

(i) ∗ F (i)
in (4)

where ∗ denotes the convolution operation, and i is the
index of the input channel.

b) Pointwise convolution (1x1 convolution): This op-
eration applies a 1x1 convolution to combine the outputs
of the depthwise convolution. If we denote the pointwise
convolutional filter as P , and the final output feature map as
Ffinal, this operation can be represented as [38]:

Ffinal=P ∗ Fout (5)

The depthwise separable convolution operation, therefore,
can be represented as [39]:

Ffinal=P ∗ (D ∗ Fin) (6)

This operation, similar to the self-attention mechanism in
transformers, allows the model to capture complex patterns
and dependencies in the input data while reducing the model’s
complexity and computational cost. It’s a crucial part of the
ConvNeXt V2 model’s architecture.

While the specific mathematical operations are different,
both mechanisms allow the model to capture complex patterns
and dependencies in the input data, which is crucial for tasks
like image classification and natural language processing. This
is why the depthwise separable convolution operation is said
to be similar to the self-attention mechanism in transformers.

During training, the model’s parameters are adjusted to
minimize the loss function. This involves updating the weights
and biases in each layer of the model using a backpropagation
algorithm and an optimization technique such as the Adam
optimizer. The learning rate, which determines the step size
at each iteration while moving toward a minimum of the loss
function, was carefully chosen to ensure efficient learning.
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Mathematically, the update of the model parameters
(weights and biases) at each iteration is given by [40]:

θnew=θold − learning rate ×∇J(θold) (7)

where, θ represents the model parameters, J is the cost
function, and ∇J(θold) is the gradient of the cost function
evaluated at θold.

This equation is a fundamental part of the training process
in both ConvNets and transformers, highlighting the shared
principles between these two types of models.

Through this meticulous training process, the ConvNeXt
V2 model effectively learns to classify brain tumors, demon-
strating the power of combining ConvNet and transformer
principles in a single model. This process underscores the
transformative potential of open-source transformers in medi-
cal imaging, setting a new standard in the field.

The attached figure illustrates the architecture of the Con-
vNeXt V2 model and the mathematical equations associated
with each block during the training process. This visual
representation provides a comprehensive understanding of the
model’s operations and the transformations it undergoes to
extract essential features and patterns from the input images.

D. Validation

The validation process is a critical step in the fine-tuning
of the ConvNeXt V2 model. It serves to evaluate the model’s
performance on a separate set of data that was not used during
the training process. This helps to ensure that the model is not
overfitting to the training data and can generalize well to new,
unseen data.

During validation, the images from the validation set are
fed into the ConvNeXt V2 model. The model processes
these images in the same way as during the training process,
extracting features and making predictions. However, unlike in
the training process, the model’s parameters are not updated
during validation. This allows for an unbiased evaluation of
the model’s performance [31].

The model’s predictions are then compared with the actual
labels of the images in the validation set. This comparison
allows us to assess how well the model is performing in terms
of its ability to correctly classify brain tumors.

The performance of the model on the validation set is
quantified using the accuracy metric. A high accuracy on the
validation set indicates that the model is performing well and
can accurately classify brain tumors. Conversely, a low accu-
racy may indicate that the model is struggling to generalize
to new data and may require further fine-tuning or a different
approach.

Through this validation process, we can ensure that the
ConvNeXt V2 model is robust and reliable, capable of accu-
rately classifying brain tumors in a variety of different images.
This is a crucial step in the development of effective tools for
medical imaging and diagnosis.

E. Segformer Fine-tuning

The Segformer model is fine-tuned for the task of segmen-
tation. The fine-tuning process involved several steps as Fig. 7
depicts, each of which contributed to optimizing the model’s
performance on our specific segmentation dataset [33].

1) Model initialization: We began the process by initial-
izing the Segformer model with pre-trained weights. These
weights were obtained from a model that has demonstrated
strong performance in tasks related to image processing. This
model was chosen due to its ability to capture complex
patterns and dependencies in the input data, which is a crucial
aspect of our task. The use of pre-trained weights provides
a solid starting point for the fine-tuning process, potentially
leading to improved model performance and efficiency. This
approach leverages the power of open-source transformers,
harnessing their capabilities for our specific task of brain tumor
segmentation. The use of pre-trained weights also exemplifies
the power of open-source resources in advancing the field of
medical imaging. By utilizing these resources, we can build
upon the collective knowledge of the research community,
accelerating innovation and improving patient care.

2) Label encoding: The labels for each image in our dataset
were encoded as integers. This encoding process transformed
the categorical labels into a format that could be processed
by the Segformer model. In this case, the labels “background”
and “tumor” were encoded as 0 and 1, respectively.

3) Hyperparameter adjustment: The model’s hyperparam-
eters, such as learning rate, batch size, and number of epochs,
were adjusted during the fine-tuning process. The learning rate
was set to 0.0006, which determines the step size at each
iteration while moving toward a minimum of a loss function.
The batch size was set to 10, referring to the number of training
examples utilized in one iteration. The model was trained for
a total of 15 epochs, which is the number of times the learning
algorithm will work through the entire training dataset.

4) Training: The training process involved feeding the
images from the training set into the Segformer model. The
model processed these images through multiple stages, each
involving a series of operations that transform the input im-
ages, extracting essential features and patterns that the model
can learn from.

• Overlap Patch Embeddings: This operation is a
key feature of the Segformer model. It divides the
input image into overlapping patches and embeds
them into vectors. This operation, similar to the self-
attention mechanism in transformers, allows the model
to capture complex patterns and dependencies in the
input data. Mathematically, if we denote the input
image as I , the stride or overlap size as S, and the
total number of patches as P , this operation can be
represented as:

P=
I-S
S

+ 1 (8)

• Transformer Blocks: Each patch embedding undergoes
transformation through multiple transformer blocks.
If we denote the input patch embeddings as Xi and
the transformation operation as T , this process can be
represented as:
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Fig. 7. Adapting segformer for superior brain tumor segmentation: An
illustrated overview.

Xi+1=T (Xi) (9)

• Upsample Blocks: In the decoder stages, upsample
blocks are used to increase resolution. If we denote
the upsample operation by U , this process can be
represented as:

Yi=U(Xi) (10)

where Yi represents the output after upsampling.

• During training, the model’s parameters were adjusted
to minimize the loss function. This involved updating
the weights and biases in each layer of the model us-
ing a backpropagation algorithm and an optimization
technique such as the Adam optimizer. The learning
rate, which determines the step size at each iteration
while moving toward a minimum of the loss function,
was carefully chosen to ensure efficient learning.

• Mathematically, the update of the model parameters
(weights and biases) at each iteration is given by the
equation 7, [40].

• Through this meticulous training process, the Seg-
former model effectively learns to segment brain tu-
mors, demonstrating the power of combining ConvNet
and transformer principles in a single model. This is
a testament to the transformative potential of open-
source transformers in medical imaging, setting a new
standard in the field.

5) Validation: The validation process is a critical step in
the fine-tuning of the Segformer model. It serves to evaluate
the model’s performance on a separate set of data that was not
used during the training process. This helps to ensure that the
model is not overfitting to the training data and can generalize
well to new, unseen data.

During validation, the images from the validation set are
fed into the Segformer model. The model processes these
images in the same way as during the training process,
extracting features and making predictions. However, unlike in
the training process, the model’s parameters are not updated
during validation. This allows for an unbiased evaluation of
the model’s performance.

The model’s predictions are then compared with the actual
labels of the images in the validation set. This comparison
allows us to assess how well the model is performing in terms
of its ability to correctly segment brain tumors.

The performance of the model on the validation set is
quantified using the mean intersection over union (mIoU)
metric. A high mIoU score on the validation set indicates that
the model is performing well and can accurately segment brain
tumors. Conversely, a low mIoU score may indicate that the
model is struggling to generalize to new data and may require
further fine-tuning or a different approach.

Through this validation process, we can ensure that the
Segformer model is robust and reliable, capable of accurately
segmenting brain tumors in a variety of different images. This
is a crucial step in the development of effective tools for
medical imaging and diagnosis.
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Through this meticulous fine-tuning process, the Segformer
model was effectively adapted to our specific task of brain
tumor segmentation, leading to improved performance and
more accurate predictions.

IV. EVALUATION METRICS

The performance of the ConvNeXt V2 and Segformer
models was evaluated using appropriate metrics for both
classification and segmentation tasks. These metrics provide
a quantitative measure of the models’ performance, allowing
us to assess their effectiveness and accuracy.

A. Classification Metrics

1) Accuracy: Accuracy is a measure of how many pre-
dictions the model got right out of all predictions made. It is
calculated as the ratio of correct predictions to the total number
of predictions. Mathematically, accuracy is given by [41]:

Accuracy=
Number of Correct Predictions
Total Number of Predictions

(11)

2) Precision: Precision is a measure of how many true
positive predictions were made out of all positive predictions.
It is calculated as the ratio of true positives to the sum of
true positives and false positives. Mathematically, precision is
given by [42]:

Precision=
True Positives

True Positives + False Positives
(12)

3) Recall: Recall, also known as sensitivity or true positive
rate, is a measure of how many true positive predictions were
made out of all actual positives. It is calculated as the ratio of
true positives to the sum of true positives and false negatives.
Mathematically, recall is given by [41]:

Recall=
True Positives

True Positives + False Negatives
(13)

4) F1-Score: The F1-score is the harmonic mean of pre-
cision and recall, and it provides a balance between them. It
is calculated as 2 times the product of precision and recall
divided by the sum of precision and recall. Mathematically,
F1-score is given by [41]:

F1-Score=2× Precision × Recall
Precision + Recall

(14)

B. Segmentation Metrics

1) mIoU: For the segmentation task, the primary metric
used was the Mean Intersection over Union (mIoU). This met-
ric computes the average intersection over union of predicted
and ground truth segments, providing a measure of the model’s
segmentation performance. The Intersection over Union (IoU)
for a single prediction is calculated as the area of overlap
between the predicted segment and the ground truth segment
divided by the area of union of the two segments. The mIoU
is then calculated as the average IoU over all predictions.
Mathematically, IoU and mIoU are given by: [42]

IoU=
Area of Overlap
Area of Union

(15)

And mIoU is given by:

mIoU=
1

N

N∑
i=1

IoUi (16)

where N is the total number of predictions, and IoUi is
the IoU for the i-th prediction.

A high mIoU indicates that the model is performing well
and can accurately segment brain tumors. Conversely, a low
mIoU may indicate that the model is struggling to generalize
to new data and may require further fine-tuning or a different
approach.

2) Dice score: The Dice score, also known as the Dice
similarity coefficient or the F1-score, is a measure of the
overlap between two segments. It is calculated as two times
the area of overlap divided by the sum of the areas of the two
segments. Mathematically, the Dice score is given by [43]:

Dice=
2×AreaofOverlap

AreaofSegment1 +AreaofSegment2
(17)

A high Dice score indicates that the predicted segment
and the ground truth segment have a high degree of overlap,
meaning that the model is able to capture the shape and
location of the brain tumor accurately. Conversely, a low Dice
score indicates that the predicted segment and the ground truth
segment have a low degree of overlap, meaning that the model
is missing or including regions that do not belong to the brain
tumor.

3) Hausdorff distance: The Hausdorff distance is a mea-
sure of the maximum distance between the boundaries of two
segments. It is calculated as the maximum of the minimum
distances from each point on the boundary of one segment
to the closest point on the boundary of the other segment.
Mathematically, the Hausdorff distance is given by [44]:

Hausdorff=maxh(Seg 1, Seg 2), h(Seg 2, Seg 1) (18)

where h(Segment1,Segment2) is the maximum of the min-
imum distances from each point on the boundary of Segment
1 to the closest point on the boundary of Segment 2, and vice
versa. A low Hausdorff distance indicates that the predicted
segment and the ground truth segment have similar boundaries,
meaning that the model is able to delineate the brain tumor
precisely. Conversely, a high Hausdorff distance indicates that
the predicted segment and the ground truth segment have
dissimilar boundaries, meaning that the model is producing
large errors or inconsistencies in the segmentation.

Through these evaluation metrics, we can ensure that the
ConvNeXt V2 and Segformer models are robust and reliable,
capable of accurately classifying and segmenting brain tumors
in a variety of different images. This is a crucial step in the
development of effective tools for medical imaging and diagno-
sis. It allows us to assess the effectiveness of our methodology
and make necessary adjustments for future improvements.
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V. RESULTS

This section presents the results obtained from our ex-
periments and discusses their implications. We evaluated the
performance of the ConvNeXt V2 and Segformer models on
our datasets and compared these results with other state-of-
the-art methods.

A. Performance of ConvNeXt V2 for Classification

The ConvNeXt V2 model has demonstrated exceptional
performance in the classification of brain tumors, as evidenced
by the results obtained from our experiments.The Table I.
shows the model’s effectiveness is highlighted through various
metrics including accuracy, precision, recall, and F1-score.

TABLE I. PERFORMANCE OF CONVNEXT V2 FOR CLASSIFICATION

Class Precision Recall F1-score
No Tumor 1.000 1.000 1.000
Glioma Tumor 0.995 0.997 0.996
Meningioma Tumor 0.994 0.993 0.993
Pituitary Tumor 0.999 0.997 0.998

• Accuracy: The ConvNeXt V2 model boasts an im-
pressive accuracy of 99.60%, indicating its reliability
in correctly identifying and classifying different types
of brain tumors.

• Precision and Recall: Analyzing Table I reveals that
the model exhibits high precision and recall across all
classes. For instance:

◦ Glioma Tumor: Precision - 0.995, Recall -
0.997

◦ Meningioma Tumor: Precision - 0.994, Recall
- 0.993

◦ No Tumor: Precision - 1.000, Recall - 1.000
◦ Pituitary Tumor: Precision – 0.999, Recall –

0.997

• F1-Score: The F1-scores further affirm the model’s
capability to balance both precision and recall effec-
tively, ensuring that it is not biased towards a particular
class.

The confusion matrix of our proposed transformer, as
illustrated in Fig. 8, compares the detection rates of four dis-
tinct tumor types: glioma, meningioma, absence of tumor, and
pituitary tumors. The x-axis represents the model’s predicted
labels, while the y-axis depicts the true labels. Within each cell
of the matrix lies a numeric value indicating the frequency of
occurrences for different combinations of predicted and actual
categories. To visually represent instance counts, the matrix
utilizes varying shades of green, with darker shades signifying
higher frequencies. For example, there are 1499 instances of
true positives for glioma tumors, indicating accurate identifi-
cation by the model. However, there are 8 instances where
glioma tumors are misclassified as meningioma, revealing a
99.5% accuracy rate for glioma tumor detection. Regarding
meningioma tumors, approximately 1225 samples are correctly
identified, while 5 samples are misclassified as glioma and 3
as pituitary tumors. Notably, all 702 samples categorized as no
tumor are correctly identified. Furthermore, the model demon-
strates significant success in detecting pituitary tumors, with

Fig. 8. Evaluating model performance: A confusion matrix for brain tumor
classification.

892 out of 893 samples accurately classified. In summary, this
matrix serves as a crucial tool for evaluating the classification
model’s performance, providing insights into areas of accurate
predictions and errors.

B. Comparative Analysis of Different Methods

In our study, we compared the performance of the Con-
vNeXt V2 model with other state-of-the-art models, including
ConvNeXt V1, Swin, and ViT. The comparison was based on
various metrics such as precision, recall, and F1-score across
different types of tumors.

The ConvNeXt V2 model demonstrated superior perfor-
mance, consistently outperforming the other models in all
metrics for each tumor type. Specifically, the ConvNeXt V2
model achieved an impressive accuracy of 99.60%, indicating
its reliability in correctly identifying and classifying different
types of brain tumors.

In contrast, the ConvNeXt V1, Swin, and ViT models
achieved accuracies of 99.11%, 99.01%, and 98.5% respec-
tively. While these are high accuracy rates, they are still lower
than the accuracy achieved by the ConvNeXt V2 model.

According to Fig. 8 he high precision, recall, and F1-score
of ConvNeXt V2 indicate its robustness in correctly identifying
and classifying different types of brain tumors. The model
exhibits high precision and recall across all classes, ensuring
that it is not biased towards a particular class. The F1-scores
further affirm the model’s capability to balance both precision
and recall effectively.

These results underscore the ConvNeXt V2 model’s robust-
ness and reliability in classifying brain tumors, setting a new
benchmark in the field of medical imaging. The model’s high
accuracy and balanced precision and recall metrics make it a
promising tool for aiding radiologists in the early detection and
classification of brain tumors, potentially leading to improved
patient outcomes.
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Fig. 9. Performance comparison of evaluation metrics of different models for
brain tumor detection using bar charts.

C. Performance of Segformer for Segmentation

The Segformer model has demonstrated exceptional per-
formance in the segmentation of brain tumors (see Fig. 9).
The effectiveness of the model is highlighted through various
metrics, including the Dice score and Hausdorff distance, both
of which reached up to 90 %.

D. Segmentation Results

Fig. 10 shows the output of the Segformer model on a
sample brain image. The first row shows the original brain
scans, the second row shows the ground truth labels (down-
sampled labels), and the third row shows the segmentation
maps produced by the Segformer model.

From a visual inspection, it is evident that the Segformer
model’s segmentation maps closely match the ground truth
labels, indicating high accuracy in segmenting the tumor region
from the rest of the brain tissue.

1) Dice score and hausdorff distance: The Dice score and
Hausdorff distance are commonly used metrics for evaluating
the performance of segmentation models. In our experiments,
both these metrics reached up to ideal ones(90% dice score
and 0.05mm Hausdorff distance) for the Segformer model,
indicating its superior performance in accurately segmenting
brain tumors.

A Dice score of 90% suggests a high degree of overlap
between the predicted segment and the ground truth segment,
meaning that the model is able to capture the shape and
location of the brain tumor accurately. Similarly, a Hausdorff
distance less then 0.10 indicates that the predicted segment and
the ground truth segment have similar boundaries, meaning
that the model is able to delineate the brain tumor precisely.

Fig. 10. Demonstrating the efficacy of segformer: Original scans, ground
truth, and segmentation maps in brain tumor detection.

2) Comparison with other methods: The performance of
the ConvNeXt V2 model was compared with other state-of-the-
art methods. The ConvNeXt V2 model outperformed Method
A and Method B, achieving higher accuracy and F1-score.

TABLE II. COMPARISON OF SEGFORMER WITH OTHER METHODS

Method Dice
Score

Hausdorff
Distance(mm)

Reference

Deep Learning Based 0.85 1.5 [45]
CNN based 0.87 3.58 [46]
ANTS 0.83 6.71 [46]
Registration Method 0.84 4.01 [46]
U-Net 0.85 1.5 [47]
U-Net++ 0.78 9.4 [48]
3D U-Net 0.90 4.29 [49]
NMF 0.74 7.4 [50]
3D CNN 0.91 3 [51]
Segformer (Our Method) 0.95 0.87 This study

The Table II titled “COMPARISON OF SEGFORMER
WITH OTHER METHODS,” presenting a comparison be-
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tween the Segformer approach and alternative methods based
on their Dice Score and Hausdorff Distance metrics. The table
consists of five columns: “Method,” “Dice Score,” “Hausdorff
Distance (mm),” and “Reference.” Listed in the table are
various methods alongside their respective Dice Scores and
Hausdorff Distances: Deep Learning Based (Dice Score: 0.85,
Hausdorff Distance: 0.15), CNN based (Dice Score: 0.87,
Hausdorff Distance: 3.56), ANTs Registration Method (Dice
Score: 0.83, Hausdorff Distance: 6.71), U-Net++ (Dice Score:
0.78, Hausdorff Distance: 15), 3D U-net (Dice Score: 0.90,
Hausdorff Distance: 4), NMF (Dice Score: 0.74, Hausdorff
Distance: 7.4), 3D CNN (Dice Score: 0.91, Hausdorff Dis-
tance: 0.34), and Segformer (Our Method) (Dice Score: 0.95,
Hausdorff Distance: 0.87). Notably, the Segformer method
demonstrates the highest Dice Score and one of the lowest
Hausdorff Distances among the listed approaches, highlighting
its superior performance in this study.

VI. DISCUSSION

The findings of this study highlight the potential of open-
source transformers, specifically the ConvNeXt V2 and Seg-
former models, in the realm of medical imaging. These models,
when fine-tuned for specific tasks, have shown exceptional
performance in brain tumor classification and segmentation
respectively. [31,33] The ConvNeXt V2 model, with its im-
pressive accuracy of 99.60% in classification tasks, and the
Segformer model, with its high Dice score and low Hausdorff
distance in segmentation tasks, have set a new benchmark
in the field. This study has opened up new possibilities for
future research, including the exploration of the application of
transformers in other areas of medical imaging and further op-
timization of the proposed models for enhanced performance.

VII. CONCLUSION

This research has shed light on the transformative potential
of open-source transformers, specifically the ConvNeXt V2
and Segformer models, in the domain of medical imaging.
The study has demonstrated that these models, when fine-
tuned for specific tasks, can deliver exceptional performance
in the classification and segmentation of brain tumors. The
ConvNeXt V2 model exhibits outstanding performance in
brain tumor classification, achieving an impressive accuracy
of 99.60%. Across all tumor classes, it demonstrates remark-
able precision and recall. Specifically, for Glioma Tumor, the
precision is 0.995 and recall is 0.997, while for Meningioma
Tumor, the precision is 0.994 and recall is 0.993. Notably,
for cases where there is no tumor present, both precision and
recall are perfect at 1.000. Additionally, for Pituitary Tumor
classification, the model achieves a precision of 0.999 and
recall of 0.997. These results underscore the model’s robust-
ness and reliability in accurately identifying different types
of brain tumors, establishing ConvNeXt V2 as a promising
tool for aiding in medical diagnostics. The Segformer model
showcases remarkable performance in accurately segmenting
brain tumors, as highlighted by its exceptional Dice score and
Hausdorff distance metrics, reaching up to ideal values of 90%
and 0.87 mm respectively. Visually, the segmentation maps
generated by Segformer closely align with ground truth labels,
indicating precise delineation of tumor regions within brain
scans. Moreover, the study has opened up new possibilities

for future research which has significant contribution to the
ongoing efforts to improve patient outcomes in neuro-oncology
and beyond.
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