
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

Degree Based Search: A Novel Graph Traversal
Algorithm Using Degree Based Priority Queues

Shyma P V, Sanil Shanker K P
Department of Information Technology, Kannur University, India

Abstract—This paper introduces a novel graph traversal
algorithm, Degree Based Search, which leverages degree-based
ordering and priority queues to efficiently identify shortest paths
in complex graph structures. Our method prioritizes nodes based
on their degrees, enhancing exploration of related components
and offering flexibility in diverse scenarios. Comparative analysis
demonstrates superior performance of Degree Based Search in
accelerating path discovery compared to traditional methods like
Breadth First Search and Depth First Search. This approach
improves exploration by focusing on related components. Using
a priority queue ensures optimal node selection; the method
iteratively chooses nodes with the highest or lowest degree.
Based on this concept, we classify our approach into two distinct
algorithms: the Ascendant Node First Search, which prioritizes
nodes with the highest degree, and the Descent Node First
Search , which prioritizes nodes with the lowest degree. This
methodology offers diversity and flexibility in graph exploration,
accommodating various scenarios and maximizing efficiency in
navigating complex graph structures. The study demonstrates the
Degree based Searching algorithm’s efficacy in accelerating path
discovery within graphs. Experimental validation illustrates its
proficiency in solving intricate tasks like detecting communities
in Facebook networks. Moreover, its versatility shines across
diverse domains, from autonomous driving to warehouse robotics
and biological systems. This algorithm emerges as a potent
tool for graph analysis, efficiently traversing graphs and sig-
nificantly enhancing performance. Its wide applicability unlocks
novel possibilities in various scenarios, advancing graph-related
applications.

Keywords—Graph traversal; degree based search algorithm;
ascendant node; ascendant node first searching algorithm; descent
node; descent node first searching algorithm

I. INTRODUCTION

In today’s interconnected world, the analysis and com-
prehension of complex systems have become pivotal across
various domains including social interactions, communication
networks, and engineered systems such as the power grid
and the Internet. These systems can be effectively modeled
and analyzed using graph theory, which provides a powerful
framework for representing and understanding relationships
between entities. Graphs, consisting of vertices and edges,
serve as a fundamental abstraction for representing diverse
real-world phenomena. Graph traversal, the systematic explo-
ration of vertices and edges within a graph, lies at the heart
of many graph analysis tasks. Traditionally, algorithms such
as Breadth First Search (BFS) and Depth First Search (DFS)
have been extensively utilized for traversing graphs and solving
fundamental problems like identifying spanning trees, finding
shortest paths, and detecting strongly connected components.
However, these traditional methods have inherent limitations
that hinder their effectiveness in modern applications [1].

Breadth First Search explores the graph level by level,
starting from a source vertex, and is particularly useful for
finding shortest paths due to its systematic approach. However,
it consumes significant memory and may not be suitable
for large-scale graphs with millions of nodes. On the other
hand, DFS explores the graph depth-wise, often employing
recursion or stack data structures. While DFS is memory-
efficient, it lacks the ability to guarantee the shortest path and
may encounter issues such as stack overflow and infinite loops,
especially in graphs with cycles.Moreover, neither BFS nor
DFS adequately address the consideration of edge weights,
limiting their applicability in scenarios where edge weights
play a crucial role [2]. Additionally, these traditional algo-
rithms may fail to cover all connected components of a graph,
potentially missing vital information, and may become stuck
in infinite loops, further complicating their use in dynamic or
cyclic graph structures [4]. To overcome these challenges and
develop more efficient traversal algorithms, researchers have
focused on enhancing memory optimization, scalability for
large networks, consideration of edge weights, and the ability
to handle various graph structures effectively. The development
of novel traversal methodologies that address these limitations
is imperative to advance graph analysis techniques and address
the growing demands of modern applications.

The effectiveness of unique priority queue-based degree-
based graph search algorithm must be validated using this
method. We seek to demonstrate the computational benefits
of node-degree prioritised exploration by contrasting this al-
gorithm with state-of-the-art optimisation techniques as well
as classic graph search algorithms such as Depth-First Search
(DFS) and Breadth-First Search (BFS) [3]. By leveraging
priority queue-based methods and prioritizing nodes based on
their degrees, the Degree based Search algorithm achieves
increased efficacy and efficiency in graph traversal tasks.
Furthermore, its dynamic selection mechanism enables adapt-
ability to changing graph topologies, enhancing its robustness
and versatility across diverse application domains. Through
a comprehensive comparison with traditional algorithms and
real-world applications, we demonstrate the effectiveness and
scalability of the Degree based Search algorithm in addressing
the fundamental challenges of graph traversal.

II. RELATED WORKS

It is becoming more and more crucial to analyse and
comprehend social interaction data, relational data in general,
complex engineered systems like the power grid and the Inter-
net, communication data like email and phone networks, and
biological systems using graph abstractions. These application
fields frequently encounter graph-theoretic issues including

www.ijacsa.thesai.org 1366 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

identifying and rating significant entities, seeing unusual pat-
terns or rapid changes in networks, locating strongly connected
clusters of entities, and others. For issues like discovering
spanning trees, shortest paths, biconnected components, match-
ing, and flow-based computations in these graphs, traditional
techniques are frequently used as solutions. A traversal is a
methodical exploration of each vertex and edge in a graph.
Graph traversals, such as Breadth First Search and Depth First
Search provide foundation for much higher-level graph anal-
ysis approaches and is the basic primitive for graph analytics
[1]. Breadth First Search is a common graph analysis technique
that examines every vertex in all levels of a graph starting
from a source vertex [2]. The shortest path between vertices
can be found using Breadth First Search as it always finds
optimal solution. As the Breadth First Search examines level
by level, it is impossible to locate a pointless or ineffective path
[4]. The Depth First Search method starts at the root node
and chooses an edge that originates from the most recently
visited vertex that has unexplored edges [5]. In Depth First
Search, a stack is used to hold a collection of old vertices
with possibly unexplored edges and it’s intricacy depends on
the number of paths. Depth First Search has a flaw that cannot
check for duplicate nodes and cannot guarantee the shortest
path [6]. Depth First Search is difficult to apply when the
graph is infinite while there are cycles within the graph [4].
The primary distinction between BFS and DFS is the order in
which they are traversed; the former is in horizontal order and
the latter is in vertical order. BFS is preferable for identifying
components closer to the root, whereas DFS is preferred for
locating elements deeper in the ground. In the worst-case
scenario, however, both algorithms would take the same time
O (V+E) because they visit all nodes once [7].

Although BFS ensures that the shortest path will always be
found, it uses too much memory and is not suitable for large-
scale graphs. Furthermore, it could be ineffective for networks
with millions of nodes due to its thorough investigation of
nearby nodes [8]. DFS, on the other hand, relies on recur-
sion or stack data structures, which makes it susceptible to
stack overflow issues and fails to guarantee the shortest path.
Furthermore, DFS may not cover all connected components
of the network, thereby missing important information, and
it may become stuck in infinite loops, particularly in the
presence of cycles [9], [10]. Additionally, neither algorithm
takes edge weights into account, which limits its usefulness
in situations when edge weights are important. In order to
overcome these drawbacks and create an even better traversal
algorithm, memory optimisation, scalability for big networks,
edge weight consideration, strong termination conditions to
avoid infinite loops, and adaptability to various graph structures
should be prioritised [11]. Overcoming these obstacles can lead
to a novel traversal method that provides enhanced scalability,
performance, and versatility for a range of graph traversal
problems in both practical and research fields.

The primary objective is to address the fundamental task
of searching algorithm by utilising the concept of degree of
a node for efficient graph traversal. This work presents a
novel traversal methodology called the Degree based Search
algorithm, which has several advantages over conventional
graph traversal techniques like BFS and DFS. Through the
integration of priority queue-based methods, the algorithm
attains increased efficacy and efficiency when examining graph

structures. Its capacity to rank nodes according to degrees
is one of its main benefits, as it enables a more methodical
and efficient traversal procedure. By ensuring that the algo-
rithm concentrates on nodes with stronger connectivity, this
prioritisation technique speeds up path identification and the
investigation of pertinent graph components. Moreover, the
Degree based Search algorithm may dynamically adjust to the
graph’s shifting topology while traversing thanks to the use of
a priority queue. Identifying key pathways and components
in an efficient manner, the algorithm traverses the network
by repeatedly choosing nodes with the highest or lowest
degrees from the priority queue. The algorithm’s robustness
and versatility are increased by this dynamic selection process,
which makes it appropriate for a variety of graph types and
applications. Additionally, the Degree based Search algorithm
performs exceptionally well in memory management because
it uses effective data structures like priority queues to reduce
the memory footprint. This feature is especially helpful for
large-scale graphs with millions of nodes, where performance
and scalability are dependent on memory efficiency. In Table
I, a comparison of the three algorithms is presented.

TABLE I. COMPARISON OF BFS, DFS AND DBS

Strategy Complete Optimal Time complexity Space complexity
BFS Yes Yes O(bd), where b and

d are branching fac-
tor and depth re-
spectivly

O(bd)

DFS No No O(bm), where
b and m are
branching factor
and maximum
depth respectivly

O(bm)

DBS Yes Yes O((V +E)logV),
where m and n are
number of edges
and vertices respec-
tivly

O(V + E)

III. METHODOLOGY

This work explores the combination of degree-based traver-
sal algorithms and priority queues, with a particular application
to the exploration of related elements in graphs. Priority queues
are an effective tool for node selection strategy optimisation
because of their ability to manage items based on predeter-
mined keys. Our suggested algorithms drive research towards
nodes that are most likely to produce important information
by prioritising high- or low-degree nodes according to their
degrees. The degree-based traversal algorithms considered here
demonstrate two different strategies: one giving priority to
nodes with the highest degree, while the other prioritises nodes
with the lowest degree. Selecting one of these approaches
offers a framework that is adaptable to the particular features
of the graph being studied. Graph exploration is given a new
dimension by integrating degree-based traversal algorithms
with priority queues, which makes it possible to find as many
connected components as possible in an efficient manner. By
methodically extracting and processing nodes, the algorithmic
strategy ensures a thorough analysis of the graph while taking
the connectivity structure into account. The purpose of this
research is to ascertain the significance of the proposed tech-
niques by means of an extensive empirical review. We compare
degree-based traversal algorithms with traditional methods in

www.ijacsa.thesai.org 1367 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

order to illustrate the advantages of using priority queues
in the context of connected components. The results of the
study may have implications for a wide range of applications,
such as social network analysis and routing optimisation in
communication networks.

A. Degree-Based Traversal Algorithms with Priority Queue

In order to track visited vertices, the method first initialises
an empty priority queue Q and an array visited. The search is
started by inserting the source vertex s into the priority queue.
Although the priority queue is not empty, the algorithm selects
the vertex u with the lowest degree from the queue and, if it
hasn’t been visited previously, marks it as visited. Next, the
method investigates neighbouring vertices of u, adding each
unexplored neighbouring vertex, according to its degree, to the
priority queue. The graph search result is represented by the
collection of visited vertices, and the process continues until
the priority queue is empty.

Based on the ascending or descending order of node
degrees within the priority queue, the proposed approach
dynamically modifies its exploration method.

A

CB

D

F

E

Fig. 1. Graph for illustration of the algorithm.

The algorithm begins with an initial state where no vertices
have been visited, and the priority queue contains all vertices
along with their respective degrees. In Fig. 1, the first step,
vertex A is selected as the source vertex, marking it as visited
and updating the priority queue by removing A. In the second
step, the algorithm selects vertex F, the adjacent vertex to A
with the highest degree, adds it to the visited set, and updates
the priority queue accordingly. Next, vertex B, the highest-
degree adjacent vertex to the current visited set, is selected
and added to the visited set. This process continues with the
selection of vertex E, followed by vertex D, each time updating
the visited set and priority queue. Finally, vertex C is selected,
completing the traversal with all vertices visited. The final state
shows all vertices A, F, B, E, D, C in the visited set and
an empty priority queue, demonstrating the efficient traversal
based on the highest-degree selection criterion.

Let G = (V,E) be an undirected graph. Let Q be a priority
queue with keys based on node degrees and visited be an
empty set to keep track of visited nodes.

Algor i t hm ANFS(Graph G, Node s) :
I n i t i a l i z e an empty p r i o r i t y queue Q
I n i t i a l i z e an a r r a y v i s i t e d [] t o keep t r a c k
of v i s i t e d v e r t i c e s
P Q i n s e r t (Q, s)
I n s e r t t h e s o u r c e v e r t e x s i n t o t h e
p r i o r i t y queue
w h i l e Q i s n o t empty :

u = PQ ext rac tMin (Q)
E x t r a c t t h e v e r t e x wi th t h e minimum
d e g r e e
i f v i s i t e d [u] i s f a l s e :

v i s i t e d [u] = t r u e [Mark u as v i s i t e d]
f o r each v e r t e x v a d j a c e n t t o u :

i f v i s i t e d [v] i s f a l s e :
P Q i n s e r t (Q, v)
I n s e r t v i n t o t h e p r i o r i t y
queue

r e t u r n v i s i t e d

Algo r i t hm DNFS(Graph G, Node s) :
I n i t i a l i z e an empty p r i o r i t y queue Q
I n i t i a l i z e an a r r a y v i s i t e d [] t o keep t r a c k
of v i s i t e d v e r t i c e s
P Q i n s e r t (Q, s)

I n s e r t t h e s o u r c e v e r t e x s i n t o t h e
p r i o r i t y queue
w h i l e Q i s n o t empty :

u = PQ extractMax (Q) E x t r a c t t h e
v e r t e x wi th t h e maximum d e g r e e

i f v i s i t e d [u] i s f a l s e :
v i s i t e d [u] = t r u e / / Mark
u as v i s i t e d
f o r each v e r t e x v a d j a c e n t t o u :

i f v i s i t e d [v i s f a l s e :
P Q i n s e r t (Q, v)
I n s e r t v i n t o t h e p r i o r i t y
queue

r e t u r n v i s i t e d

An empty priority queue Q and an array visited[]
to record visited vertices are initialised at the start of the
algorithm. To start the search, the source vertex s is added
to the priority queue. The procedure retrieves the vertex u
with the lowest degree from the priority queue, even though
it is not empty, and if it hasn’t been visited previously, it
marks it as visited. Subsequently, the algorithm investigates
u’s neighbouring vertices, adding each unexplored vertex to
the priority queue according to its degree. The set of visited
vertices indicates the outcome of the graph search, and the
process continues until the priority queue is empty. This
unique notation employs symbols like PQ_insert(Q, v)
and PQ_extractMin(Q) to describe operations on the
priority queue and visited[v] to represent the status of
a vertex. The phases and operations of the algorithm are rep-
resented clearly and concisely in this notation, which facilitates
understanding and implementation.

www.ijacsa.thesai.org 1368 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

IV. DEFINITIONS FOR THE DEGREE-BASED TRAVERSAL
ALGORITHMS

A. Degree Based Search Traversal Algorithm

The Degree Based Search Traversal Algorithm implicitly
searches all the vertices from a given source vertex of a graph
G = (V,E). This computation is achieved by traversing in the
order of degree of nodes of the graph. Based on this concept, a
mathematical description of the Degree Based Search Traversal
Algorithm is defined.

Definition 1: A sequence P = P1, P2, . . . , Pn represents
the traversal of a graph in Degree level ordering where each
Pi = {v1, v2, . . . , vm} is the sequence of vertices traversed at
Degree level order, where the degree sequence of the graph
{deg(v1), deg(v2), . . . , deg(vm)} is in ascending or descend-
ing order.

Ascendant and Descent Nodes for the classification of
the Degree based Traversal Algorithm, we introduce two
preliminary concepts: Ascendant and Descent nodes of the
graph. The node with the maximum degree in a graph is known
as the Ascendant node of the graph.

Definition 2: If there exists a sequence of vertices
v1, v2, v3, . . . , vn in graph G = (V,E), then vi is called the
Ascendant node of the graph if deg(vi) is the maximum degree
of graph G.

The node with the minimum degree in a graph is known
as the Descent node of the graph.

Definition 3: If there exists a sequence of vertices
v1, v2, v3, . . . , vn in graph G = (V,E), then vi is called the
Descent node of the graph if deg(vi) is the minimum degree
of graph G.

B. Ascendant Node First Search Algorithm (ANFS)

We cast the problem of finding a method for traversing a
graph using an adjacency list. The algorithm initializes with the
source node, then finds all of the adjacent nodes of the source
node and continues with the ascendant node as the current
node. In the ANFS Algorithm, there is an additional array to
store the degrees of the vertices and the main constraint in the
algorithm is to check whether the array becomes empty.

Definition 1: A sequence P = P1, P2, . . . , Pn represents
the traversal of a graph in Degree level ordering where each
Pi = {v1, v2, . . . , vm} is the sequence of vertices traversed
at Degree level order where the degree sequence of the graph
{deg(v1), deg(v2), . . . , deg(vm)} is in descending order.

C. Descent Node First Search Algorithm (DNFS)

In the DNFS Algorithm, instead of starting from
the Ascendant node, it starts from the Descent node.

Definition 1: A sequence P = P1, P2, . . . , Pn represents
the traversal of a graph in Degree level ordering where each
Pi = {v1, v2, . . . , vm} is the sequence of vertices traversed
at Degree level order where the degree sequence of the graph
{deg(v1), deg(v2), . . . , deg(vm)} is in ascending order.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

The time complexity analysis of the proposed Degree-
Based Traversal Algorithm can be broken down into several
key steps. Initially, the algorithm requires the initialization
of various data structures, including the priority queue and
the visited array, each of which has a time complexity of
O(V), where V represents the number of vertices in the graph.
Inserting the source vertex into the priority queue incurs a
logarithmic time complexity, specifically O(log V), due to
the nature of the priority queue operations. The core of the
algorithm is encapsulated in the main loop, which iterates
through the vertices, resulting in O(V) iterations. During each
iteration, the algorithm performs several operations: extracting
the minimum degree vertex from the priority queue, which has
a time complexity of O(V log V), and processing all adjacent
vertices, leading to a complexity of O(E log V), where E
denotes the number of edges. Combining these operations, the
overall time complexity of the algorithm can be expressed as
O((V +E) log V). This comprehensive analysis highlights the
efficiency of the DBS algorithm in traversing graphs, ensuring
that it scales well with both the number of vertices and edges.

VI. EXPERIMENTAL RESULT

The experimental results highlight the exceptional effi-
ciency of the new traversal approach, which intelligently pri-
oritizes nodes based on their degree while avoiding revisiting
already explored nodes. Across the Facebook, Twitter, and
Email social network datasets, the new algorithm consistently
demonstrated superior performance compared to both Breadth-
First Search (BFS) and Depth-First Search (DFS) in terms of
execution time. This signifies a substantial improvement in
traversal efficiency, particularly evident when exploring highly
connected nodes within the networks. By selecting nodes
with higher degrees first, the new algorithm navigates through
the graph in a manner that minimizes redundant visits and
maximizes the coverage of important, central nodes.

These results strongly advocate for the effectiveness of
the new approach in optimizing traversal tasks within social
networks, offering a promising avenue for enhancing graph
exploration and analysis in various network-based applica-
tions. The substantial reduction in traversal times across all
three datasets underscores the significant impact of prioritizing
highly connected nodes, reinforcing the potential of the new
traversal strategy as a valuable tool in the realm of social
network analysis and exploration.

In Fig. 2, the comparison of execution times for the three
algorithms across the social networks Facebook, Twitter, and
Email is depicted.

www.ijacsa.thesai.org 1369 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

Fig. 2. Comparison of execution times for BFS, DFS, and the new traversal
algorithm across the Facebook, Twitter, and Email datasets.

A. Datasets Overview

1) Facebook dataset: The Facebook dataset represents the
friendship network among users of the popular social media
platform. Comprising 4,039 nodes and 88,234 edges, each
node in this undirected graph signifies a user, while an edge
denotes a friendship connection. Researchers commonly use
this dataset to study social network analysis, community de-
tection, and information spreading on social media platforms
[12].

2) Twitter dataset: The Twitter dataset captures the fol-
lower relationships among users of the microblogging plat-
form. With 81,306 nodes and 1,768,149 edges, it is a large
undirected graph where nodes represent Twitter users and
edges represent the ”follow” relationship. This dataset is
instrumental in studying information diffusion, influence max-
imization, and follower prediction on Twitter [12].

3) Email-Eu-core dataset: The Email-Eu-core dataset of-
fers insight into email communication within a European
research institution. This smaller directed graph consists of
1,005 nodes and 25,571 edges, where nodes represent email
addresses and directed edges represent email exchanges. Re-
searchers use this dataset to analyse email networks, study
communication patterns, and detect anomalies in email traffic
[12].

VII. DISCUSSION

Using benchmark graph datasets with different sizes and
architectures, we perform comprehensive experimental assess-
ments to verify the efficacy of our optimisation technique. We
assess how well our priority queue-based degree-based graph
search algorithm performs in comparison to other cutting-
edge optimisation methods and conventional degree-based
graph search algorithms. Our tests illustrate the computational
improvements from prioritised exploration based on node de-
grees, empirically demonstrating search efficiency, scalability,

and computational overhead. The method that was developed is
being compared to the Depth First Search (DFS) and Breadth
First Search (BFS) algorithms [13]. The fundamental ideas of
graph theory and algorithm design serve as the cornerstone of
our research. BFS is a popular graph analysis technique that
traverses all levels of the graph and methodically examines
every vertex beginning from a given source [14]. As opposed
to the traditional method of beginning at the root node, our
Degree-Based Search Algorithm finds the vertex with the
highest degree before beginning its search. This method is
predicated on the idea that high-degree nodes frequently have
important roles in network topologies, which could result in
more effective graph exploration.

In the context of graph theory, both the efficiency of storage
is high when using an adjacency list due to the requirement
of storing edge values. Within the context of the Degree
based Search algorithm, an adjacency list is utilised as a data
structure to contain the values pertaining to the edges. In
the context of BFS, it is necessary to utilise a queue data
structure to maintain a record of the child nodes that have been
examined but not yet traversed. The DFS algorithm employs a
stack data structure to maintain a set of traversed vertices that
may contain unexplored edges.

The experimental results show significant gains in search
efficiency and scalability in addition to validating the effec-
tiveness of our suggested optimisation technique. Our priority
queue-based degree-based graph search method displays higher
performance, particularly in cases involving large-scale graphs
with heterogeneous degree distributions. We demonstrate the
practical impact of our optimisation strategy by showing
that prioritising nodes based on their degrees considerably
improves the algorithm’s ability to navigate complex graph
structures. As we move forward, it will be crucial to further
investigate the performance of our algorithm across an even
wider range of graph types and sizes. Additionally, explor-
ing potential hybridizations with other graph algorithms and
adapting our method to dynamic or streaming graph scenarios
could open up new avenues for research and application
[15]. By continuing to refine and expand upon this work,
we aim to contribute to the ongoing evolution of efficient
graph algorithms, addressing the growing demands of complex
network analysis in various domains.

VIII. CONCLUSION

In this paper, we introduced a novel degree-based traversal
algorithm for graph exploration, emphasizing its efficiency and
effectiveness in comparison to traditional Breadth-First Search
(BFS) and Depth-First Search (DFS) methods. By prioritizing
nodes based on their degrees and employing a priority queue
to manage the traversal process, our algorithm significantly
reduces redundant visits and enhances coverage of important
nodes within the network.The theoretical analysis demon-
strated that our algorithm achieves an overall time complexity
of O((V +E) log V), highlighting its scalability and suitability
for large-scale graphs. Experimental results across diverse
datasets, including Facebook, Twitter, and Email networks,
corroborated the theoretical findings, showing substantial im-
provements in execution time and traversal efficiency.

This research underscores the importance of leveraging
node degree information to optimize graph traversal tasks,

www.ijacsa.thesai.org 1370 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

presenting a promising avenue for enhancing social network
analysis and other network-based applications. Future work
will focus on further optimizing the algorithm for specific
types of networks and exploring its applicability in real-time
dynamic graph scenarios. Overall, the proposed degree-based
traversal algorithm offers a valuable tool for efficient graph
exploration, with potential impacts across various domains
requiring effective network analysis and information dissemi-
nation.

REFERENCES

[1] Jialiang Zhang and Jing Li. (2018). Degree-aware Hybrid
Graph Traversal on FPGA-HMC Platform. In Proceedings
of 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. ACM, New York, NY, USA, 10
pages. https://doi.org/10.1145/3174243.3174245.

[2] Takuji Mitsuishi et al (September 2015). Breadth First Search
on Cost-efficient Multi-GPU Systems, ACM SIGARCH
Computer Architecture News Volume 43 Issue 4, pp 58–63.
https://doi.org/10.1145/2927964.2927975.

[3] U. Kang, C. E. Tsourakakis and C. Faloutsos, ”PEGASUS: A Peta-
Scale Graph Mining System Implementation and Observations,” 2009
Ninth IEEE International Conference on Data Mining, Miami Beach,
FL, USA, 2009, pp. 229-238, doi: 10.1109/ICDM.2009.14.

[4] Richard E Korf (1999), Artificial intelligence search algorithms, Algo-
rithms Theory Computation Handbook. Boca Raton, FL: CRC Press.

[5] John H. Reif (1985), Depth-first search is inherently sequential, In-
formation Processing Letters, Volume 20, Issue 5, Pages 229-234.
https://doi.org/10.1016/0020-0190(85)90024-9.

[6] Larry A. Taylor and Richard E. Korf (1993). Pruning duplicate nodes
in depth-first search. In AAAI, pages 756–761.

[7] Jonathan L. Gross and Jay Yellen (2005), Graph Theory and Its
Applications. (2nd Edition), Chapman and Hall/CRC.

[8] Michael D Atkinson, J-R Sack, Nicola Santoro, and Thomas Strothotte.
Min-max heaps and generalized priority queues. Communications of the
ACM, 29(10):996–1000, 1986. https://doi.org/10.1145/6617.6621.

[9] Ashish, D.D.V.S., Munjal, S., Mani, M., Srivastava, S. (2021). Path
Finding Algorithms. In: Hassanien, A.E., Bhattacharyya, S., Chakrabati,
S., Bhattacharya, A., Dutta, S. (eds) Emerging Technologies in Data
Mining and Information Security. Advances in Intelligent Systems and
Computing, vol 1286. Springer, Singapore. https://doi.org/10.1007/

[10] Xindong Wu, Xingquan Zhu, and Minghui Wu. 2022. The
Evolution of Search: Three Computing Paradigms. ACM Trans.
Manage. Inf. Syst. 13, 2, Article 20 (June 2022), 20 pages.
https://doi.org/10.1145/3495214.

[11] L. Singh, S. Khare, A. Parvez and S. Verma, ”Research Paper on
Path-finding Algorithm Visualizer,” 2022 International Conference on
Cyber Resilience (ICCR), Dubai, United Arab Emirates, 2022, pp. 1-4.
https://doi.org/10.1109/ICCR56254.2022.9995925.

[12] Jure Leskovec and Andrej Krevl, SNAP Datasets: Stanford Large
Network Dataset Collection, http://snap.stanford.edu/data, Jun 2014.

[13] Shaukat, Fatima & Shafique, Ayesha & Islam Qadri, Ayesha.
(2022). Comparative Analysis of Search Algorithms in AI.
10.13140/RG.2.2.29282.61123.

[14] T. H. Cormen et al., Introduction to Algorithms, 4th ed. Cambridge,
MA: MIT Press, 2022

[15] Schiller, Benjamin & Deusser, Clemens & Castrillón, Jerónimo &
Strufe, Thorsten. (2016). Compile- and run-time approaches for the
selection of efficient data structures for dynamic graph analysis. Applied
Network Science. 1. 10.1007/s41109-016-0011-2.

www.ijacsa.thesai.org 1371 | P a g e

