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Abstract—With the rapid development of generative models,
the fidelity of AI-generated images has almost reached a level
that is difficult for humans to distinguish true from fake. The
rapid development of this technology may lead to the widespread
dissemination of fake content. Therefore, developing effective AI-
generated image detectors has become very important. However,
current detectors still have limitations in their ability to generalize
detection tasks across different generative models. In this paper,
we propose an efficient and simple neural network framework
based on inter-patch dependencies, called IPD-Net, for detecting
AI-generated images produced by various generative models.
Previous research has shown that there are inconsistencies in
the inter-pixel relations between the rich texture region and
the poor texture region in AI-generated images. Based on this
principle, our IPD-Net uses a self-attention calculation method
to model the dependencies between all patches within an image.
This enables our IPD-Net to self-learn how to extract appropriate
inter-patch dependencies and classify them, further improving
detection efficiency. We perform experimental evaluations on the
CNNSpot-DS and GenImage datasets. Experimental results show
that our IPD-Net outperforms several state-of-the-art baseline
models on multiple metrics and has good generalization ability.

Keywords—AI-generated image detection; image forensics; self-
attention mechanism

I. INTRODUCTION

In recent years, generative model technology has achieved
rapid development. As shown in Fig. 1, the quality of AI-
generated images is getting higher and higher. Various gener-
ative models such as VAE [1], GAN [2] and their derivative
models continue to emerge. Ho et al. [3] provided rigorous
mathematical derivation for the diffusion model, and then
Dhariwal et al. [4] made the diffusion model gradually become
the most mainstream generative model together with GAN, and
promoted many derivative models. AI-generated images are
becoming more and more realistic and difficult to distinguish
with the naked eye, which opens up a wide range of pos-
sibilities for a variety of application scenarios. However, the
development of this technology has two sides, and there have
been some egregious incidents of malicious use of generative
models to generate fake images. Because of this, in the face
of the continuous evolution of future generative models, there
is an urgent need to develop a universal detection method to
distinguish AI-generated images from real ones.

A simple strategy is to use an existing multi-class CNN
such as ResNet [5] for the binary classification task. However,
when this method detects the generative model that is seen
during training, it can recognize AI-generated images from
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the real images effectively, but its accuracy is significantly
reduced in the detection across the generative model. CNNSpot
[6] shows that with careful pre- and post-processing and data
augmentation, a standard image classifier trained on a specific
CNN-generated image training set can be extended to detect
unseen GAN-generated image detection tasks. However, this
method is found to perform well within the same family of
generative models, but its generalization ability is limited when
detected across different families [7]. For example, a model
trained on a dataset containing images generated by ProGAN
[18] (a variant of GAN) and real images, when tested on a
dataset containing images generated by SD v1.4 [30] (a variant
of diffusion models) and real images, shows a sharp decline
in accuracy compared to detection within the same generative
family. UnivFD [7] further points out that the previous method
[6] relies mainly on the common features of the AI-generated
images of the generative model seen during training to classify
images as “fake” or “true”. Therefore, they propose to use
untrained features to distinguish AI-generated images from
real images and use a frozen large pre-trained vision-language
model for classification. This method significantly improves
the generalization ability of detection models on unknown
generative models. However, because real images cover a
large number of categories, determining a general classification
range becomes a challenge, which may affect the classification
accuracy of unknown generative models.

(a) (b)

(c) (d)

Fig. 1. Can you determine which are real images and which are
AI-generated images? Where (a) and (d) are real images, and (b) and (c) are

AI-generated images.
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The diversity of real images makes it difficult to place
them in a single category. Therefore, some detection methods
try to distinguish real images from AI-generated images by
finding common features among multiple generative models.
However, with the continuous evolution of the field of the
generative model, some early methods fail to generalize well
to new models [6], [8], [9], [10]. In this paper, we propose
IPD-Net, which can extract features from noise patterns of the
pre-processed image and model the dependencies between all
patches in the image by computing the dot product similarity
between all vectors. The dependencies matrix is then classified
into binary categories using a specially designed classification
layer to determine whether the input image is an AI-generated
image. Experimental results show that our proposed IPD-Net
has a stronger generalization ability in detecting AI-generated
images compared to baseline models.

In general, our main contributions are as follows:

• We propose IPD-Net, a novel neural network frame-
work for AI-generated image detection based on inter-
patch dependencies. IPD-Net can generalize to the
detection of images generated by unseen generative
models and has a fast inference speed.

• Unlike methods that directly segment pre-processed
images into multiple patches and compute relation-
ships between the patches, our proposed IPD-Net cal-
culates the dot-product similarity between all vectors
in the feature map using a self-attention mechanism,
thereby modeling dependencies between patches in the
image. In addition, we design dedicated classification
layers to classify the modeled inter-patch dependen-
cies to determine whether the image is AI-generated.

• We collect a highly diverse dataset containing im-
ages from various resolutions, operation types, and
a wide range of generative models for evaluating
our approach. Experimental results show that IPD-Net
outperforms baseline models on multiple metrics and
it has good generalization ability.

II. RELATED WORK

In the following, we present an overview of related work
in terms of both AI-generated image techniques and AI-
generated image detection techniques. Additionally, we discuss
the connections to our approach.

A. AI-Generated Image Techniques

In recent years, AI-generated image techniques have made
great progress and caused a lot of concern. Among them, the
Generative Adversarial Network (GAN) model [2] is one of the
early important generative models. Its basic principle involves
adversarial training between a generator and a discriminator,
where the generator is responsible for generating images, and
the discriminator is used to discriminate the authenticity of the
images. As training progresses, the fidelity of the generated
images increases and eventually reaches a very high level.
The success of this technique has spawned many variants,
such as [19], [20]. Ho et al. [3] brought rigorous mathematical
derivation to the diffusion model, leading to its wider appli-
cation in the field of image generation. The basic idea of the

diffusion model is to gradually add noise to the data during the
forward process and then learn to restore the original data from
the noise during the reverse process. This technique has also
produced many related models [30], [31], [32]. In contrast,
the goal of our proposed IPD-Net is that, after training on
the AI-generated image training set of a specific generative
model, it can be generalized to other unknown generative
models to perform AI-generated image detection tasks, thus
better generalized to real-world scenarios.

B. AI-Generated Image Detection Techniques

With the rapid advances in generative techniques, modern
AI-generated images have reached a level nearly indistinguish-
able from real images. Although generative technology has
brought convenience to some industries such as AI mapping,
like the two sides of a coin, this also brings potential social
risks. For example, highly realistic AI-generated images could
be exploited by criminals as a medium to disseminate fake
information, thereby causing social problems. Therefore, the
research and development of AI-generated image detection
technology is particularly urgent.

Wang et al. [6] constructed a dataset containing AI-
generated images from 11 different generative models based
on CNN. For the construction of the training set, they trained
20 ProGAN [18] models, each trained on a different LSUN
[17] object class. For each trained ProGAN model, 36K
(for training) +200 (for validation) AI-generated images are
generated, and the corresponding images for training Pro-
GAN models are used as the real class, and the resulting
training set and validation set contain the same number of
true/fake images. Therefore, the resulting training set has a
total of 720k images and the validation set has 4k images.
Through careful pre-processing and data augmentation, they
trained a binary classifier using a ResNet50 [5] pre-trained on
ImageNet [29], and tested on a dataset of true/fake images
collected from 11 different generative models. Experimental
results show that even standard image classifiers trained for
specific CNN generators can generalize over unseen generative
model detection. Additionally, several other works [8], [9]
investigated the frequency domain of GAN-generated images
and leveraged the frequency domain for detection. Before the
diffusion model became popular, most researchers focused
on identifying GAN-generated images. However, these efforts
were later found to be difficult to generalize to detecting AI-
generated images from more recent generative models [7],
such as diffusion models. With the rise of diffusion models,
many previous detection methods have difficulty identifying
this emerging model. Wang et al. [34] found that, unlike
real images, images generated by diffusion models can be
reconstructed through pre-trained diffusion models. So they
use the error between the reconstructed image and the input
image to detect AI-generated images. However, this method
mainly focuses on diffusion models. Ojha et al. [7] found that
although detection methods trained on ProGAN [6] generalize
well when tested on the same generation model family (GAN
model family), their accuracy significantly drops when tested
on different generative model family (diffusion model family).
Previous methods [6] mainly relied on features of seen models
to classify images. Therefore, Ojha et al. [7] proposed using
untrained features to distinguish AI-generated images from
real ones and using a frozen large pre-trained vision-language
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model for classification, thus enhancing the generalization of
the detection model to the unknown generation models, but
this leads to a slower inference speed. Zhong et al. [14] used
the inconsistency between rich and poor texture regions in
AI-generated images as a universal fingerprint. Chen et al.
[35] proposed using the noise pattern of the simplest patch
of the input image to identify AI-generated images. However,
both approaches require selecting specific patches from a large
number of patches through mathematical calculations before
sending them into the neural network. For this reason, we hope
that our IPD-Net to not only adapt to the detection tasks of
the above generation models but also achieve ultra-fast forward
inference speed to attain efficient scalability.

III. OUR METHOD

A. Motivation

To ensure that a detector trained on a specific GAN-
generated image training set can be generalized to other
GAN-generated image detection, or even generalized to the
detection task of images generated by different families of
generative models, it is crucial to find common features of fake
images. For example, Zhong et al. [14] found that AI-generated
images processed with a carefully selected set of SRM filters
[15] (a type of high-pass filter with fixed parameters) have
inconsistencies in inter-pixel relations between the rich texture
region and the poor texture region. Inspired by [14], we
argue that there exists some kind of dependencies between
different patches of AI-generated images processed by the
SRM filter, which can be used as common features of the
AI-generated images, and such dependencies are not limited
to those between rich texture patches and poor texture patches.
To extract these dependencies efficiently, we designed IPD-Net
that enables the model to capture interdependencies from all
patches. To avoid the huge computational overhead associated
with actively selecting specific patches, we are inspired by
Wang et al. [16], who proposed a self-attention mechanism
that, in the process of computing the weight matrix, can be
viewed as modeling dependencies between patches of the
preprocessed image. Based on this process, we discarded the
softmax operation and performed spatial transformations to
avoid the step of actively selecting patches. In this way, we
can obtain the dependencies between all patches we need.
Next, we specifically designed a classification layer so that the
obtained dependencies can be directly used for classification.
This design enables the model to achieve end-to-end training,
allowing it to self-learn how to extract suitable dependencies
and perform classification, thus further improving detection
efficiency. Through this method, our model can not only
recognize AI-generated images generated by generative models
seen in training data but also can be generalized to other
unseen generative model image detection tasks, improving the
generalization ability of the detector.

B. Inter-Patch Dependencies Extraction

As shown in Fig. 2, our network architecture is divided
into two parts: Inter-Patch Dependencies Extraction and Inter-
Patch Dependencies Classification. In the Inter-Patch Depen-
dencies Extraction part, our neural network aims to extract
dependencies between image patches processed by the SRM
filter. Therefore, firstly the pre-processed input image needs

to be processed using the SRM filters. This filter has been
widely adopted in the field of fake image detection [12], [13].
To validate our IPD-Net of generality, we chose the same as
the [12], [13], general SRM filter configuration. In terms of
the computation of inter-patch dependencies, we are inspired
by the self-attention computation method proposed by Wang
et al. [16], where the computation process can be viewed as
calculating a correlation score between each patch in the image
and all other patches (including itself). Specifically, each patch
is processed by the neural network to become a feature vector.
We input the noise patterns processed by the SRM filter into
the backbone to obtain a feature map of size C × H × W ,
where C, H , and W represent the number of channels, height,
and width of the feature map, respectively. For each patch Pi,
the corresponding feature vector extracted by the backbone
is denoted as ei, and its size is C. For the relationship
between any two patches, such as Pi and Pj , we use their
corresponding feature vectors ei and ej to calculate their dot
product similarity to represent the dependencies between them,
as described by the following equation:

Dependency(ei, ej) = f(ei) · f(ej) (1)

Where f represents a 1× 1 convolution. We perform this
operation for all feature vectors, i.e., calculating their dot
product similarity with all other feature vectors, resulting in
a dependencies matrix of size (H ×W )×H ×W . This can
be viewed as H ×W two-dimensional dependencies matrices
of size H ×W , where each point represents the dependency
score between the feature vector ei of a certain patch Pi and
the feature vector of another patch. Through this step, we
successfully extract the inter-patch dependencies matrix.

C. Inter-Patch Dependencies Classification

After extracting the inter-patch dependencies matrix for
each input image, to enable end-to-end training of the model,
we classify the inter-patch dependencies and use the classifi-
cation loss to optimize the model training. However, directly
flattening the dependencies matrix for linear classification
would result in huge computational overhead. Convolution
is also unsuitable because the dependencies matrix is not a
traditional feature map, and direct convolution may destroy
it. Therefore, we adopt a 2D AdaptiveAvgPool operation. For
the dependencies matrix of size (H × W ) × H × W , we
can regard it as the feature matrix of C ′ × H × W , where
C ′ = H × W , is regarded as the number of channels, and
H and W can be regarded as the feature matrix height and
width. At this point, any channel represents a two-dimensional
matrix of dependencies between a particular feature vector
and all other feature vectors (including itself). Given this, we
perform a two-dimensional average pooling operation on the
inter-patch dependencies matrices to scale the size to (H×W )
to directly extract the average dependency scores between
each patch and other patches. Subsequently, since the inter-
patch dependencies matrix is processed into vectors of size
(H ×W ), it can directly be input into the linear classification
layer. Meanwhile, the pooling operation significantly reduces
the number of parameters in the model, further improving
the inference speed. To validate the effectiveness of our IPD-
Net, our linear classification layer uses only one or two linear
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Fig. 2. Structure of IPD-Net. The preprocessed images are first processed by SRM filter and backbone to extract the dependencies between patches by a
simple modified self-attention computation method. Subsequently, these dependencies are fed into a specially designed classification layer to determine

whether the input image is an AI-generated image (Fake) or a real image (Real).

layers. The final output vector is processed with a sigmoid
function to constrain the values to the [0, 1], determining
whether the input image is real or fake. We use Binary Cross
Entropy Loss as the loss function, and our neural network is
defined as NN(·), formulated as follows:

L = −
N∑
i=1

[yi log(NN(xi)) + (1− yi) log(1− NN(xi))] (2)

Where xi and yi represent the input image and its corre-
sponding label, respectively. The goal is to minimize this total
loss during the training process to improve classification accu-
racy. Meanwhile, our network is more friendly to computation
and memory due to the average pooling operation and simple
linear classification operation.

IV. EXPERIMENT

A. Datasets

To fully evaluate the effectiveness of our proposed IPD-
Net, we conducted experiments using the CNNSpot-DS [6]
and GenImage dataset [11]. The AI-generated image in the
former is mainly composed of the image generated by the
GAN model, and the AI-generated image in the latter is mainly
composed of the image generated by the diffusion model. We
follow the same protocol as described in the baselines [6],
[7], the training set we use for training is the training set of
CNNSpot-DS [6]. The AI-generated images in the training set
were generated by ProGAN [18], and the training set contains
a total of 720k images, which contains 360k real images and
360k AI-generated images, where the real images are from
LSUN [17] dataset of 20 categories. We only use it as the
training set for all subsequent training, so our training and
validation are restricted to only accessing the real/fake images
of one generative model, and detecting other generative models
that are not seen during training.

When evaluating the detector’s ability, we considered var-
ious generative models. We tested the generative models on
the test set of the CNNSpot-DS following the baselines [6],

[7]: ProGAN [18], StyleGAN [19], BigGAN [20], CycleGAN
[21], StarGAN [22], GauGAN [23], CRN [24], IMLE [25],
SAN [26], SITD [27], and DeepFakes [28]. Additionally, we
tested the test set of the GenImage dataset [11], which mainly
contains many AI-generated images generated by diffusion
models. Zhu et al. [11] used ImageNet [29] to generate 1.3
million AI-generated images. We tested the generation models
in the GenImage dataset: Midjourney*, SDV1.4 [30], SDV1.5
[30], ADM [4], GLIDE [31], Wukong†, VQDM [32], and
BigGAN [20].

B. Implementation Details

All training is implemented on an NVIDIA GeForce RTX
3090 GPU and an Intel Xeon Gold 6238R CPU. Our model is
implemented using PyTorch [33] and the batch size was set to
32. We optimize using Adam with a learning rate of 0.0001.
For the SRM filters [15], we follow the settings from [12], [13],
adopting the three commonly used kernels from the original
SRM filters [15]. To model the inter-patch dependencies of a
feature map processed by the backbone, assuming the input
feature map is C × H × W , we use two different 1 × 1
convolutions to process the feature map separately, reducing
the number of channels to half of the original, and obtaining
two different feature maps with sizes of

(
C
2

)
×H ×W . We

reshape them to
(
C
2

)
× (H ×W ), converting them into two-

dimensional matrices. We transpose one of the feature maps
and then multiply it with another feature map to obtain a
product f with a size of (H ×W )× (H ×W ). After that, we
transpose f once and reshape its size to (H ×W ) ×H ×W
to perform the next step of the average pooling operation. We
select a non-trained ResNet50 [5] as the backbone for feature
extraction. In the design of the backbone, we consider three
variants: ResNet50-Layer2, ResNet50-Layer3, and ResNet50-
Layer4, where Layer2, Layer3, and Layer4 denote the layers
after which truncation is applied. The input image can be
of any size, we apply reflect padding to add 224 pixels on
all sides of the image, then crop out 224 pixels and resize
it to 256 pixels. During training, after resizing, we apply

*Midjourney, https://www.midjourney.com/home/. 2022.
†Wukong, https://xihe.mindspore.cn/modelzoo/wukong. 2022.
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TABLE I. EVALUATION RESULTS. AVERAGE PRECISION (AP) OF DIFFERENT TRUE/FAKE IMAGE DETECTION METHODS. WE REPORT MEAN AVERAGE
PRECISION (MAP) BY AVERAGING THE AP SCORES FOR EACH GENERATIVE MODEL DETECTION METHOD

Detection
method Variant

Generative Adversarial Networks Low level
vision

Perceptual
loss GenImage [11] Total

Pro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN

Deep-
fakes SITD SAN CRN IMLE Mid-

journey
SD-
v1.4

SD-
v1.5 ADM GLIDE Wu-

kong VQDM Big-
GAN mAP

CNNSpot[6] Aug(0.1) 100.0 92.42 83.20 99.60 87.79 98.18 90.69 68.64 53.84 98.78 98.67 58.32 59.14 59.42 72.27 66.86 54.83 60.21 86.75 78.40
Aug(0.5) 99.99 95.33 88.90 98.85 97.30 96.01 68.48 85.93 56.36 99.36 99.56 51.16 54.29 54.38 67.94 66.68 51.62 67.80 94.10 78.63

Fusing[10] - 100.0 97.52 95.95 98.80 96.43 99.65 65.52 88.36 72.58 98.50 99.21 68.06 61.08 61.13 90.31 65.85 62.82 77.72 95.65 83.95
UnivFD[7] - 100.0 99.80 99.27 97.56 99.98 99.37 81.76 63.84 78.81 96.59 98.61 74.61 86.56 86.19 87.13 84.26 91.34 96.65 98.21 90.55

Ours
Layer2 100.0 96.50 89.00 99.76 79.40 99.94 89.37 80.26 91.38 90.23 91.90 86.53 94.63 94.46 94.08 99.27 92.36 91.98 99.14 92.64
Layer3 99.99 96.51 89.99 99.86 84.36 99.93 91.83 79.87 93.21 87.61 92.03 86.55 94.41 94.11 95.05 99.15 92.69 93.32 99.34 93.15
Layer4 99.99 97.73 88.82 99.58 78.86 99.92 93.67 73.47 94.15 85.35 84.75 85.70 94.89 94.56 94.26 99.38 92.35 91.86 99.12 92.02

TABLE II. EVALUATION RESULTS ACCURACY (ACC) OF DIFFERENT TRUE/FAKE IMAGE DETECTION METHODS. WE REPORT AVERAGE ACCURACY
(AVG. ACC) BY AVERAGING THE ACC SCORES FOR EACH GENERATIVE MODEL DETECTION METHOD

Detection
method Variant

Generative Adversarial Networks Low level
vision

Perceptual
loss GenImage [11] Total

Pro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN

Deep-
fakes SITD SAN CRN IMLE Mid-

journey
SD-
v1.4

SD-
v1.5 ADM GLIDE Wu-

kong VQDM Big-
GAN

Avg.
acc

CNNSpot[6] Aug(0.1) 99.97 85.08 70.52 88.98 78.66 92.24 57.74 61.94 49.77 80.40 80.35 53.59 53.08 53.15 60.61 56.54 51.48 53.61 77.33 68.69
Aug(0.5) 99.97 82.28 62.12 73.72 81.82 81.81 51.26 56.38 50.22 95.64 96.80 50.43 49.97 49.98 52.58 52.78 50.08 52.53 71.25 66.40

Fusing[10] - 99.98 91.67 82.82 80.06 83.54 96.97 54.41 72.77 52.28 93.93 95.85 52.02 50.56 50.53 54.20 54.46 51.03 57.32 84.90 71.54
UnivFD[7] - 99.81 98.33 95.08 84.93 99.47 95.75 68.57 62.22 56.62 56.59 69.11 56.24 63.75 63.57 66.94 62.53 71.06 85.42 90.18 76.11

Ours
Layer2 99.98 86.57 81.02 95.19 68.67 99.08 62.11 79.11 71.73 64.73 64.42 72.19 80.03 79.70 84.38 95.05 77.19 79.37 93.75 80.75
Layer3 99.97 86.51 81.52 94.71 72.91 98.61 63.75 77.43 71.57 70.38 70.41 69.36 75.48 74.92 82.87 93.23 74.21 77.50 93.52 80.47
Layer4 99.94 89.87 80.12 94.74 67.82 98.42 69.42 81.87 81.05 63.53 63.37 70.14 79.64 78.89 84.42 95.56 76.61 78.05 93.13 81.40

Gaussian blur with σ ∼ Uniform[0, 3] with 10% probability,
JPEG compression with quality q ∼ Uniform{30, 31, . . . , 100}
with 10% probability. In addition, we added random flip with
50% probability, and the above crop operations use random
crop. During testing, our crop operations uniformly use center
crop. For the classification part, we set up two linear layers
for ResNet50-Layer2 and one linear layer for both ResNet50-
Layer3 and ResNet50-Layer4.

For the baseline methods, we used CNNSpot [6], Fusing
[10] and UnivFD [7]. For UnivFD [7], we tested using its
publicly published training weights and open-source code. And
for CNNSpot [6] and Fusing [10], we trained from scratch with
the training dataset, following the settings in their open-source
code. In evaluating our model and the baseline methods, we
used Average Precision (AP) and Accuracy (ACC) to evaluate
our model, which is consistent with recent related work [7].
We report the mean Average Precision (mAP) and Average
Accuracy (Avg. acc) of each detector by averaging the AP
scores and ACC scores obtained when each detector was tested
against each test set of the generative model.

C. Evaluations

1) Combined dataset evaluation: Following the indicator
setting of recent baselines [7], Table I and Table II present the
average precision (AP) and accuracy (acc) of real/fake image
detection by the baseline models and our IPD-Net (rows) for
different generative models (columns). Following the training
setting of recent baseline [6], [7], all our training is performed
on the training set of CNNSpot-DS [6], the AI-generated
images in the training set were all only generated by ProGAN.
Therefore, models other than ProGAN can be considered as

generalization domains. In the variant setting, Aug (0.1) and
Aug (0.5) represent two training configurations of CNNSpot
[6] open-source code, which apply JPEG compression and
Gaussian blur with 10% or 50% probability, respectively.
“Ours” represents our model’s test results, and Layer2, Layer3,
Layer4 correspond to the three backbone variants mentioned
in Section IV-B, namely, ResNet50-Layer2, ResNet50-Layer3
and ResNet50-Layer4. The settings of the other two baseline
methods [7], [10] are the same as those in the papers and
open-source codes. Compared to the three baselines, all three
variants of our proposed IPD-Net achieved better mAP and
average accuracy. The mAP of our three variants improved by
1.47-2.6% over the best-performing baseline, and the average
accuracy improved by 4.36-5.29% over the best baseline.
Our model performs worse on Perceptual loss compared to
other baseline models. We speculate that GAN models and
Perceptual loss share some common features, which the base-
line models may tend to fit. However, this common feature
does not apply to diffusion models. In contrast, the common
feature self-learned by our model is common to both the
GANs model and the diffusion models, except that it is less
general on Perceptual loss. Overall, our IPD-Net achieves
the best performance in terms of mAP and average accuracy
in combined dataset evaluation, indicating that our model
has stronger generalization ability compared to the baseline
models.

2) In-dataset and cross-dataset evaluation: To more effec-
tively reflect the generalization ability of our proposed IPD-
Net, we conducted in-dataset and cross-dataset evaluation. As
shown in Table III, we analyzed the accuracy of the test set
of CNNSpot-DS [6] and GenImage [11] datasets respectively.
Among them, the accuracy of the CNNSpot-DS is an in-
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TABLE III. EVALUATION RESULTS ACCURACY OF THE CNNSPOT-DS
AND GENIMAGE DATASET. WE REPORT ACCURACY BY AVERAGING THE
ACCURACY SCORES FOR EACH GENERATIVE MODEL DETECTION IN THE

CORRESPONDING DATASET IN TABLE II FOR EACH DETECTOR

Detection method CNNSpot-DS [6] GenImage [11]
ACC ACC

CNNSpot [6] 76.88 57.42
Fusing [10] 82.21 56.88
UnivFD [7] 80.59 69.96

Ours Layer4 79.33 82.71

dataset evaluation, and the accuracy of the GenImage dataset
is a cross-dataset evaluation. We report accuracy by averaging
the accuracy scores for each generative model detection in
the corresponding dataset in Table II for each detector. In
the in-dataset evaluation, that is the evaluation on the test
set of CNNSpot-DS. Because the AI-generated images in the
training set are all generated by ProGAN, the trained baseline
models still have high accuracy in detecting GAN variants.
The CNNSpot-DS’s test set is mainly generated by a large
number of GAN-generated images, so all detectors achieved
high accuracy. The in-dataset accuracy between all detectors
ranged from 76-82%. In the cross-dataset evaluation, that is the
evaluation on the test set of the GenImage dataset. When the
baseline models are faced with the GenImage dataset’s test set
mainly containing a large number of images generated by the
diffusion model, their detection accuracy drops significantly.
Among them, the cross-dataset accuracy of CNNSpot [6]
and Fusion [10] is even between 50-60%. In comparison,
our IPD-Net’s cross-dataset accuracy is 12.75% higher than
the best baseline model. Overall, the results show that the
generalization ability we demonstrated in the combined dataset
evaluation is effective both within and across datasets, further
demonstrating that our IPD-Net has a stronger generalization
ability than other baseline models.

D. Effect of Different Backbone

When we design the IPD-Net backbone network, as the
number of backbone network layers decreases, in the feature
map extracted by the backbone network, the area correspond-
ing to the original image for each feature vector becomes
smaller. Therefore, we speculate that as the number of layers
decreases, IPD-Net can learn to extract more detailed inter-
patch dependencies, thereby achieving better results. In this
section, we will study what happens when our proposed IPD-
Net selects different backbone networks for feature extraction.
We consider the three variants mentioned in Section IV-B: (i)
ResNet-Layer2, (ii) ResNet-Layer3, and (iii) ResNet-Layer4.
We trained each model again using the same ProGAN real/fake
image training set as in the above experiments.

To better analyze these three different variants, we provide
a visual analysis of these three variants. We saved the vectors
obtained by average pooling and flattening of the inter-patch
dependencies, tested them on the CNNSpot-DS and GenImage
dataset respectively, and drew six t-SNE diagrams, as shown
in Fig. 3, where the true/fake labels were marked in red/blue
respectively. From top to bottom represent three variants: (i)
ResNet-Layer2, (ii) ResNet-Layer3, and (iii) ResNet-Layer4.
The left column (a) represents the three variants tested on the
CNNSpot-DS test set, and the right column (b) represents the

Fig. 3. Visualization results of three variants of t-SNE. True/fake labels are
shown in red/blue, where the rows from top to bottom represent the three

variants: (i) ResNet-Layer2, (ii) ResNet-Layer3, and (iii) ResNet-Layer4, left
column (a) represents the results of the CNNSpot-DS test set, and the right

column (b) represents the results of the GenImage test set.

results of the three variants tested on the GenImage test set.
However, it can be seen from the t-SNE visualization results
that with the increase in the number of layers, the inter-patch
dependencies after average pooling and flattening can be better
divided into true/fake, and the features of the same class are
more concentrated, even though the difference between these
three variants in mean average precision and average accuracy
indicators seems to be very small. This suggests that deeper
model structures may still have better results, although they
are less detailed in dividing patches than shallow backbone
networks.

E. Analysis of Limitations

We evaluated the robustness of our ResNet-Layer4 variant
and the best-performing baseline model against jpeg compres-
sion and Gaussian blurring. Fig. 4 shows the mAP of both
the ResNet-Layer4 variant and the best-performing baseline
model under different post-processing configurations. Without
any post-processing, the mAP of our method is significantly
higher than that of the best-performing method. However,
the robustness of our model to post-processing operations is
significantly weaker than that of the best-performing baseline
model, especially in the case of JPEG compression. We
speculate that this may be because the way of extracting inter-
patch dependencies in our IPD-Net is too simple, resulting in
higher sensitivity to data changes and thus weaker robustness
compared to the best-performing baseline model. We also
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Fig. 4. Limitations analysis robustness analysis of different image
post-processing operations.

analyzed the scalability issue. IPD-Net uses the self-attention
calculation method proposed in [16]. To compare with the
baseline models, the size of the input is only 256 × 256,
and the training time per epoch is about 10-30 minutes
slower than directly using ResNet50. However, because IPD-
Net does not need to actively select specific patches, it is
significantly faster than [14], [35]. If the input size increases,
the calculation time of IPD-Net will significantly increase.
Assume that when the height and width of the feature map to
be multiplied both become n times larger, the number of dot
products becomes n4, while the number of channels remains
the same. Therefore, optimizing the computation scheme for
modeling the dependencies between patches is a problem for
IPD-Net. For example, [36] proposed the Asymmetric Non-
local Neural Network to improve Non-local Net. Therefore,
reducing the number of steps in matrix multiplication, such as
through dimensionality reduction or sampling before matrix
multiplication, could potentially improve efficiency.

V. CONCLUSION

In this paper, we propose IPD-Net based on the existing
inference that there is an inconsistency in the inter-pixels
relation between the rich texture region and the poor texture
region of AI-generated images. Firstly, we use a self-attention
computation method and design a classification layer adapted
to classification tasks, aiming to capture the interdependencies
between patches of input images processed by the SRM filter.
This enables the model to avoid the huge overhead caused by
actively selecting specific patches and self-learn the common
features of AI-generated images, thus improving computational
efficiency. Secondly, we conduct extensive experiments on a
test dataset containing 18 generative models, and the results
show that our IPD-Net has high accuracy and good general-
ization ability. Thirdly, we conduct a comparison with several
recent methods. IPD-Net outperforms the baseline models
on multiple metrics. Regarding the future improvement of
IPD-Net, we will focus on improving its network structure,
especially the method of calculating the dependencies between
patches to enhance its scalability and robustness. We hope that
our work can provide some reference for future research.
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