
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

An FPA-Optimized XGBoost Stacking for
Multi-Class Imbalanced Network Attack Detection

Hui Fern Soon1, Amiza Amir2, Hiromitsu Nishizaki3,
Nik Adilah Hanin Zahri4, Latifah Munirah Kamarudin5

Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia1

University of Yamanashi, Kofu, Yamanashi, Japan1

Faculty of Electronic Engineering & Technology-Centre of Excellence for Advanced Computing (ADVCOMP),
Universiti Malaysia Perlis, Arau, Perlis, Malaysia2

Integrated Graduate School of Medicine, Engineering & Agricultural Science, University of Yamanashi, Kofu, Yamanashi, Japan3

CoE Advanced Computing (ADVCOMP), Universiti Malaysia Perlis, Arau, Perlis, Malaysia4

Centre of Excellence for Advanced Sensor Technology (CEASTECH), Universiti Malaysia Perlis, Arau, Perlis, Malaysia5

Abstract—Network anomaly detection systems face challenges
with imbalanced datasets, particularly in classifying underrepre-
sented attack types. This study proposes a novel framework for
improving F1-scores in multi-class imbalanced network attack
detection using the UNSW-NB15 dataset, without resorting to
resampling techniques. Our approach integrates Flower Pol-
lination Algorithm-based hyperparameter tuning with an en-
semble of XGBoost classifiers in a stacking configuration. Ex-
perimental results show that our FPA-XGBoost-Stacking model
significantly outperforms individual XGBoost classifiers and ex-
isting ensemble models. The model achieved a higher overall
weighted F1-score compare to the individual XGBoost classifier
and Thockchom et al.’s heterogeneous stacking ensemble. Our
approach demonstrated remarkable effectiveness across various
levels of class imbalance, for example Analysis and Backdoor
which is highly underrepresented classes, and DoS which is
moderately underrepresented class. This research contributes to
more effective network security systems by offering a solution
for imbalanced classification without resampling techniques’
drawbacks. It demonstrates that homogeneous stacking with
XGBoost can outperform heterogeneous approaches for skewed
class distributions. Future work will extend this approach to other
cybersecurity datasets and explore its applicability in real-time
network environments.

Keywords—Intrusion detection; multi-class imbalanced classifi-
cation; ensemble learning approaches

I. INTRODUCTION

The proliferation of digital technology has led to a rise
in cybersecurity concerns. The European Union Agency for
Cybersecurity (ENISA) [1] reports that from the end of 2022
to the beginning of 2023, there was an increase in malware
attack events. The increasing frequency of cyberattacks places
sensitive data at danger of compromise. Researchers frequently
use deep learning and machine learning algorithms to classify
network traffic. The effectiveness of these algorithms in ac-
curately classifying network traffic depends on the data used
to train them. Typically, normal traffic constitutes the majority
of training datasets, while abnormal traffic includes various
potential attack types. Rare or unusual attacks are often un-
derrepresented compared to regular or more common attacks,
leading to an uneven class distribution. This imbalance can
cause model bias towards the majority class [2], resulting in

inaccurate predictions and difficulty in detecting rare network
attacks.

Sampling approaches are commonly used to address data
imbalance. Oversampling techniques, such as Random Over-
sampling [3] and SMOTE (Synthetic Minority Oversampling)
[4], increase minority class samples to match the majority
class. Conversely, undersampling methods, like Tomek-link [5]
and Random Undersampling [3], reduce majority class samples
to achieve a balanced distribution. Hybrid sampling combines
both oversampling and undersampling techniques. However,
oversampling can lead to overfitting [3], and undersampling
may result in information loss.

Some researchers have proposed ensemble methods to ad-
dress imbalanced datasets without resampling techniques [6],
[7], [8]. However, these methods are typically applied only to
binary classification. It is undeniable that some works involve
ensemble approaches for multi-class imbalanced classification
in network intrusion systems [9], [10], [11]. These works
use a heterogeneous stacking ensemble approach, employing
different algorithms as the base classifiers for the stacking
model.

XGBoost model has shown superior ability to handle
multi-class imbalanced classification [12] for network attack
classification. It has also been widely used as a base learner
in heterogeneous stacking models for multi-class imbalanced
classification in network attack detection [13], [14], [15].
However, the use of XGBoost in homogeneous stacking en-
semble approaches, where multiple instances of the same
algorithm are used as base learners to solve imbalanced data,
is limited and has not been applied to multi-class network
attack detection [16]. The potential of homogeneous stacking
with XGBoost, remains largely unexplored in the context of
network attack classification. This gap in the literature is
significant, as homogeneous stacking could potentially offer
advantages in terms of model consistency and interpretability
by leveraging the strength of XGBoost especially when dealing
with the complex, multi-class nature of network attacks. Our
work aims to address this research gap by investigating the
effectiveness of homogeneous stacking with XGBoost for
imbalanced multi-class network attack classification, without

www.ijacsa.thesai.org 1380 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

resorting to resampling techniques.

Although XGBoost has shown remarkable success com-
pared to other machine learning algorithms [12], some re-
searchers [17], [18], [19], [20], [21] have applied hyperpa-
rameter tuning techniques to further enhance its performance
in network attack detection. Additionally, researchers such as
[22], [23], [24] have involved hyperparameter tuning such as
grid search and random search with heterogeneous stacking
models that use XGBoost as one of the base classifiers for
network anomaly detection. While meta-heuristic algorithms
have shown promising results in optimizing machine learn-
ing hyperparameters across various domains, there remains a
significant gap in their application to network attack classi-
fication, particularly in conjunction with XGBoost. However,
the integration of the Flower Pollination Algorithm (FPA) with
XGBoost for hyperparameter tuning in the context of network
security remains largely unexplored. Existing studies utiliz-
ing FPA and XGBoost have primarily focused on regression
models in fields such as civil engineering and environmental
science, leaving a gap in their application to classification
tasks in cybersecurity. Furthermore, the performance of meta-
heuristic algorithms can vary significantly depending on the
specific machine learning model and dataset characteristics.

Given that no single meta-heuristic algorithm consistently
outperforms others across all tasks, there is a clear need
to investigate the efficacy of FPA in optimizing XGBoost
specifically for network attack classification. This study aims
to address this research gap by exploring the potential of FPA-
optimized XGBoost in the context of multi-class, imbalanced
network attack detection, potentially offering new insights into
improving the accuracy and robustness of intrusion detection
systems.

In our approach, we first identify the optimal XGBoost
models by optimizing the hyperparameters to maximise the
base learner’s performance on imbalanced datasets. The se-
lection of these optimal models as the base learners are
performed using hyperparameter tuning. Other than Flower
Pollination Algorithm, four hyperparameter tuning techniques
were investigated in this study: Random Search (RS), Bayesian
Optimization (BO), Genetic Algorithms (GA), and Cuckoo
Search Algorithms (CSA). Then, we integrate the hyperpa-
rameter tuning process with ensemble learning techniques to
create a robust and effective ensemble classifier.

To summarize, the paper’s contributions are as follows.
First, the integration of FPA for optimization of XGBoost
classifier in network security. Second, the paper shows that
the proposed homogeneous stacking ensemble model with hy-
perparameter tuning, specifically the FPA-XGBoost-Stacking
model, achieves better results than heterogeneous stacking
model [11] for multi-class imbalanced network attack clas-
sification. The homogeneous FPA-XGBoost-Stacking model
has proven effective by improving both overall detection
performance and class-specific metrics compared to a stan-
dalone XGBoost model. These findings pave the way for
addressing multi-class imbalanced classification issues using
ensemble learning without the need for resampling techniques,
with potential applications extending beyond network attack
detection.

The structure of this paper is as follows: Section II reviews

related work. Section III discusses XGBoost hyperparameters.
Sections IV and V cover hyperparameter tuning and ensemble
learning techniques. Section VI describes the datasets and
experimental setup. Sections VII and VIII present the results of
the optimized XGBoost models and ensemble models. Finally,
Section IX provides the conclusions.

II. RELATED WORKS

Imbalanced classification presents a significant challenge in
machine learning (ML), characterised by a notable difference
in the number of instances between classes. This imbalance can
lead to biased models that produce poor results for the minority
class. Ensemble learning, a technique that combines multiple
models to enhance performance, has been studied to tackle this
problem. Ensemble ML techniques involve the combination
of multiple base learners using a specific combination rule to
create improved predictive models. Base learners may include
a wide range of ML algorithms, such as decision trees, Naı̈ve
Bayes, K nearest neighbours, artificial neural networks, and
logistic regression. The ensemble topology can range from a
basic collaboration of individual learners combined through
a majority vote to more sophisticated mechanisms. Research
has indicated that incorporating multiple classification methods
enhances performance scores [25], [26].

The Geometric Structural Ensemble (GSE) [27], Hybrid
Data-Level Ensemble (HD-Ensemble) [28] and sBal_IH [6]
applied both resampling and ensemble approaches in their
works. The Geometric Structural Ensemble (GSE) learning
framework effectively tackles imbalanced classification issues
by leveraging geometric structures to partition and eliminate
redundant majority samples. GSE uses the Euclidean metric
to create hyper-spheres that contain minority samples, im-
proving training efficiency and interoperability. The framework
also incorporates relaxation techniques to improve generaliza-
tion [27]. The Hybrid Data-Level Ensemble (HD-Ensemble)
uses both undersampling on the margins and oversampling
to improve diversity and balance the distribution of data in
order to get the best ensemble properties [28]. The HD-
Ensemble effectively rebalances data distribution and enhances
performance in binary classification tasks. Kaixiang Yang
et al. [29] introduced a hybrid optimal ensemble classifier
framework that integrates density-based undersampling with
cost-sensitive techniques to address class imbalances. This
method employs a multi-objective optimisation algorithm to
choose informative samples and adjust the weights of misclas-
sified minority samples. The dual-ensemble class imbalance
learning method integrates resampling techniques with multi-
classifier models. It uses evolutionary algorithms to optimize
the combination of base classifiers, achieving better accuracy
and simpler ensemble structures. This method outperforms
other ensemble classification methods on human activity recog-
nition datasets [30]. A medical diagnosis system uses an
ensemble learning approach that combines SMOTE with cross-
validated committee filters and utilises ensemble support vector
machines (SVM). This approach utilises a simulated annealing
genetic algorithm to optimize the weight vector [31]. However,
most of these methods modify the initial distribution of classes
to achieve a more balanced dataset [30], [29], [27], [28].
This is done through techniques such as over-sampling or
under-sampling. These techniques can result in overfitting or

www.ijacsa.thesai.org 1381 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

the removal of valuable data, which may eventually impede
performance [6].

Without resampling, an ensemble method, sBal_IH, cre-
ates balanced splits of data based on instance hardness. This
approach trains base learners on varied characteristics of
the training data, significantly improving classification per-
formance [6]. Chih-Fong Tsai et al. [7] and Hongle Du et
al. [8] propose methods to solve imbalance class problems in
network security. One-class classification (OCC) techniques,
typically used for anomaly detection, are applied to two-class
imbalanced datasets. Ensemble learning with OCC classifiers,
both with and without feature selection, outperforms single
OCC classifiers, demonstrating effectiveness in high imbalance
ratio datasets [7]. An online ensemble learning algorithm for
imbalanced data streams employs cost-sensitive techniques to
dynamically adjust misclassification costs and sample weights.
This method improves classification performance in imbal-
anced data streams, as demonstrated in network intrusion
detection applications, reducing both false alarm and missing
alarm rates [8]. These advancements highlight the potential
of ensemble learning to address the challenges posed by
imbalanced datasets effectively. However, these studies only
applied to binary classification [6], [7], [8].

Recent research in network attack detection has explored
ensemble methods to address imbalanced datasets in multi-
class classification scenarios. Mansoor-ul-Haque et al. [9]
proposed a heterogeneous stacking ensemble for multi-class
network intrusion detection, utilizing resampling techniques
with KNN, SVM, and RF as base learners and XGBoost as
the meta-learner. Similarly, Thockchom et al. [11] developed
a heterogeneous stacking ensemble model for multi-class in-
trusion detection, integrating Gaussian Naive Bayes, Logistic
Regression, and Decision Tree as base classifiers with Stochas-
tic Gradient Descent as the meta-classifier. Rajadurai and
Gandhi [10] evaluated a stacked ensemble learning approach
on the NSL-KDD dataset with four attack categories, employ-
ing Random Forest and Gradient Boosting. The majority of
these approaches employ heterogeneous stacking ensembles.
However, instead of using a variety of base learners as in
[9], [10], [11], this study opts for using homogeneous learners
by using XGBoost algorithm. This decision is based on the
considering the ability of XGBoost in handling imbalanced
multi-class classification effectively [12].

Meta-heuristic algorithms, which are optimisation tech-
niques inspired by natural processes, have been increasingly
used for ML parameter optimisation. Meta-heuristic algorithms
have been successfully applied to optimize hyperparameters
in diverse domains, including sentiment analysis, image re-
construction, and landslide susceptibility mapping [32], [33].
Meta-heuristic algorithms such as particle swarm optimisation
(PSO), genetic algorithm (GA), and others have been shown
to effectively optimize hyperparameters, leading to improved
model performance across various ML tasks [32], [34], [33].
Meta-heuristics can outperform traditional methods like grid
search and random search in terms of accuracy and compu-
tational efficiency [32], [34], [33]. The integration of meta-
heuristics with ML models has led to significant improvements
in predictive performance and robustness [35], [34], [33].

The integration of XGBoost and FPA algorithm for hy-
perparameter tuning has rarely been investigated. Flower Pol-

lination Algorithm (FPA) has been used to optimize the
regression XGBoost models in civil engineering [36], [37] and
environmental science [38]. The existing models have mainly
focused on building regression models. Studies indicate that no
single meta-heuristic algorithm consistently outperforms others
across all tasks. The performance can vary depending on the
specific ML model and the nature of the dataset [34]. Hence,
the current work attempts to fill these gaps in the literature
by employing FPA in optimizing XGBoost for network attack
classification.

III. XGBOOST HYPERPARAMETERS

A. Overview of XGBoost

XGBoost (Extreme Gradient Boosting) is a powerful and
widely-used machine learning algorithm under the Gradient
Boosting framework. It combines multiple weak learners (de-
cision trees) to create a strong learner by iteratively training on
the residuals of previous trees, minimising the loss function,
and enhancing overall performance. Known for its speed and
efficiency, XGBoost is popular for various ML tasks, including
classification and regression.

The XGBoost algorithm can be expressed using the fol-
lowing equation:

ŷi =
∑
k=1

fk(xi), fk ∈ F (1)

where: ŷi is the predicted value for the i-th instance, K is
the total number of trees (iterations), fk is the k-th tree (weak
learner), xi is the input feature vector for the i-th instance, and
F is the space of possible trees (weak learners).

The objective function of XGBoost consists of two parts:
the loss function and the regularization term.

Obj(θ) =
n∑

i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) (2)

Where Obj(θ) is the objective function to be minimized, n
is the total number of instances, l(yi, ŷi) is the loss function,
such as squared error or log loss, and Ω(fk) is the regulariza-
tion term for the k-th tree, which penalizes the complexity of
the model.

The gain function in XGBoost determines the optimal split
point for a decision tree node by measuring the improvement in
the loss function after splitting the node into two child nodes.
The split with the highest gain is selected as the best split for
the current node. The split with the highest gain is chosen as
the best for the current node, and the process is recursively
repeated for the child nodes until a stopping criterion is met,
such as maximum depth or minimum number of instances in
a leaf.

B. Hyperparameters

The performance of an XGBoost model can be improved
by tuning various hyperparameters. Below are several critical
hyperparameters and their influence on the model’s perfor-
mance:

www.ijacsa.thesai.org 1382 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

1) Number of estimators: The number of estimators refers
to the number of decision trees (also known as weak learners
or base learners) that are built and combined to create the
final ensemble model. A hyperparameter determines the total
number of trees to be trained in the XGBoost model. Each
estimator is a decision tree that is trained on a subset of the
training data and contributes to the final prediction.

2) Learning Rate (eta): The learning rate determines the
step size at which the model’s weights are updated. A lower
learning rate leads to slower convergence but can help reduce
overfitting.

ŷ
(t)
i = ŷ

(t−1)
i + η · ft(xi) (3)

where ŷ
(t)
i is the prediction for the i-th instance at iteration

t, ŷ(t−1)
i is the prediction for the i-th instance at the previous

iteration t− 1, η is the learning rate, and ft(xi) is the output
of the t-th tree for the i-th instance.

3) Maximum depth (max depth): The maximum depth of
a tree controls the complexity and the ability of the model to
capture interactions among features. Increasing the maximum
depth can lead to overfitting while decreasing it can result in
underfitting. A deeper tree can capture more complex patterns,
but it may also overfit the training data.

4) Minimum child weight (min child weight): It defines
the minimum sum of instance weights (hessian) needed in a
child node. A higher value prevents overfitting by avoiding the
creation of too many child nodes with low instance weights.

∑
i∈IL

Hi ≥ min_child_weight (4)

where IL is the set of instances in the left child node, and
Hi is Hessian (second-order gradient) for instance i.

5) Subsample: Subsample is the fraction of observations
to be randomly sampled for each tree. A value less than 1
introduces randomness and helps in reducing overfitting.

6) Colsample bytree: It is the subsample ratio of columns
(features) when constructing each tree. A value less than 1
introduces randomness and helps in reducing overfitting by
considering only a subset of features for each tree.

7) Gamma: Gamma is the minimum loss reduction re-
quired to partition the leaf node of the tree further. Increasing
gamma makes the model more conservative and can help
reduce overfitting.

Tuning these hyperparameters can significantly impact the
performance of an XGBoost model. The optimal values depend
on the specific dataset and problem at hand. It is common
to use techniques like grid search or random search to find
the best combination of hyperparameters that maximize the
model’s performance on a validation set. Given the compu-
tational constraints and the exponential growth in possible
parameter combinations, this investigation concentrates on a
carefully selected subset of hyperparameters. The study em-
phasizes the optimization of four key parameters: the quantity
of estimators, the rate of learning, the maximum depth of

trees, and the minimum weight required for child nodes. These
specific hyperparameters were chosen due to their substantial
influence on both the model’s efficacy and its capacity to
generalize. Moreover, these parameters play a crucial role in
determining the model’s ability to learn from the data and
in balancing the trade-off between bias and variance in its
predictions.

IV. HYPERPARAMETER TUNING

Hyperparameter tuning is a critical step in optimising
the performance of ML models. Bayesian optimisation and
Genetic Algorithm, have shown promising results in tuning
support vector machines (SVM) and random forests (RF) [35],
[33]. In this study, other than two commonly used hyper-
parameter tuning techniques: Random Search and Bayesian
Optimization, we also applied three metaheuristics algorithms:
Flower Pollination Algorithm (FPA), Cuckoo Search Algo-
rithm (CSA), and Genetic Algorithm (GA), to tune the hy-
perparameters discussed in Section III-B.

A. Objective Function

In optimisation, an objective function is a mathematical
function that needs to be minimised or maximised to find
the optimal solution to a problem. In this study, the objective
function is the weighted F1-score, a common metric for im-
balanced classification problems. We focuses on the weighted
F1-score rather than the macro-average F1-score because the
weighted F1-score accounts for the imbalance in the dataset.
It reflects the classifier’s performance across all classes by
considering the actual data distribution [39]. In contrast, the
macro-average F1-score treats all classes equally [39], without
accounting for class imbalance, which can be misleading for
imbalanced datasets. Therefore, this study prioritises improv-
ing the weighted F1-score performance.

The F1-score (weighted) is calculated (see Eq. 5) as
follows:

F1weighted =

∑n
i=1 2×

precisioni×recalli
precisioni+recalli

× wi∑n
i=1 wi

(5)

where: n is the number of classes, precisioni is the
precision for class i, recalli is the recall for class i, and wi is
the weight for class i, which is usually the number of instances
in class i.

By using the weighted F1-score as the objective function,
the hyperparameter optimisation ensures the resulting XG-
Boost model is optimized to perform well across all classes,
considering the class imbalance in the dataset.

B. Random Search (RS)

Random search (RS) is a simple but effective method used
for optimisation. In ML, random search is commonly used
for hyperparameter tuning, which aims to find the best set
of hyperparameters to maximize a model’s performance [40].
With a set budget, random search randomly samples hyper-
parameters and assesses the model’s performance for each
hyperparameter combination. Unlike more complex methods

www.ijacsa.thesai.org 1383 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

such as grid search or Bayesian optimisation, random search
involves randomly sampling points in the parameter space and
evaluating the objective function at these points [32]. It is easy
to implement and does not require any prior knowledge about
the problem’s structure.

C. Bayesian Optimisation (BO)

Bayesian optimisation (BO) is a highly effective and effi-
cient method for hyperparameter tuning in ML [41], [32]. It
consistently outperforms traditional methods and is applicable
across a wide range of models. Advanced techniques and prac-
tical tools enhance its utility, making it a preferred choice for
optimizing complex ML algorithms. It leverages probabilistic
models to make informed decisions about where to evaluate
the objective function next, aiming to find the global optimum
with as few evaluations as possible. It is efficient in high-
dimensional spaces and works well with expensive-to-evaluate
functions.

D. Flower Polination Algorithm (FPA)

The Flower Pollination Algorithm (FPA) is a nature-
inspired optimisation technique that mimics the pollination
process of flowering plants. Introduced by Xin-She Yang [42],
it leverages the principles of flower constancy and pollina-
tion to solve complex optimisation problems. The FPA is
an attractive choice for optimisation due to its simplicity
and ease of implementation, having only one main control
parameter, which makes tuning straightforward and less sen-
sitive to settings [42]. FPA effectively balances exploration
and exploitation through global pollination (Lévy flights) for
exploration and local pollination for exploitation. It has been
successfully applied to various optimisation problems, includ-
ing continuous, discrete, and multi-objective cases [43].

E. Genetic Algorithm (GAs)

Genetic Algorithms (GAs) are evolutionary algorithms
inspired by natural selection and genetics. Introduced by John
Holland in the 1970s, GAs solve optimisation problems by
evolving a population of candidate solutions through selection,
crossover, and mutation operators [44]. They have since been
widely applied across various domains. GAs are effective
for solving optimisation problems [45]. They can explore a
wide range of solutions and escape local optima due to the
stochastic nature of the operators. GAs handle complex, non-
linear problems without needing gradient information and are
flexible, easily adaptable to various domains with appropriate
representation schemes and operators.

F. Cuckoo Search Algorithm (CSA)

The Cuckoo Search Algorithm (CSA) is a nature-inspired
optimisation technique introduced by Xin-She Yang and Suash
Deb in 2009 [46]. It mimics the brood parasitism behaviour
of some cuckoo species, which lay their eggs in the nests of
other birds. Host birds may discard these eggs or abandon their
nests, a concept CSA uses to search for optimal solutions in a
problem space. The CSA is simple to implement and balances
exploration and exploitation effectively through Lévy flights
[46]. It has demonstrated strong performance in various op-
timisation problems and has been successfully applied across
different domains.

V. ENSEMBLE COMBINATION TECHNIQUES

Rather than relying on a single model, combining several
models, known as the ensemble technique, leads to more
accurate classification predictions [47]. This method aims to
enhance classification performance by integrating multiple
models and has been widely adopted in numerous studies.
Ensemble learning involves using the output of base classifiers
as input for a new classifier. In this research, the stacking and
voting ensemble learning approach were employed.

Stacking, introduced by Wolpert in 1992 [48], is an en-
semble technique that minimises generalisation error in ML.
It commonly involves two layers: multiple base classifiers are
trained in the first layer (level 0), and their predictions are fed
into a meta-classifier in the second layer (level 1) for further
training. The effectiveness of stacking depends on the selection
of both base and meta-classifiers, better prediction results from
the base classifiers improving overall predictions [49]. The
meta-classifier combines these predictions to make the final
decision, often using a simple model [47].

There are two types of voting techniques: hard voting
and soft voting. Hard voting is an ensemble method where
the predicted outcomes from different models are averaged
based on the majority. Each model makes a prediction, and
the instances are classified into the most frequently predicted
class. In contrast, soft voting relies on the probabilities output
by the base classifiers. It calculates the average probabilities
for each class across the models and assigns the instance to the
class with the highest average probability [50]. For example,
if class 1 has a higher average probability than class 2, the
instance is classified as class 1.

A. Optimized XGBoost Ensemble

This section details the generation of optimized XGBoost
ensemble models, divided into two main phases as shown
in Fig. 1. The first phase involves hyperparameter tuning to
identify the best configurations for the XGBoost models. The
second phase applies ensemble learning techniques, specifi-
cally stacking and voting, to enhance performance.

Training 
Data

XGBoost

Hyperparameter 
Tunning

RS BO

CSA FPA

GA

Top 3 models for 
each tunning 

technique

Top 4 models for 
each tunning 

technique

Top 5 models for 
each tunning 

technique

Undergo Ensemble 
Approaches

Stacking

Soft Voting

Hard Voting

Evaluation 

Results 

Build 
models 

TopP models for each 
tunning technique

Phase 1 Phase 2

Fig. 1. The Framework for designing optimized XGBoost ensembles.

1) Phase 1 Hyperparameter tuning: Hyperparameter tun-
ing is crucial for optimising ML models to achieve peak
performance. In this research, it was used to refine XGBoost
models for multi-class imbalanced classification in network
attack detection. Initially, a broad range of hyperparameter

www.ijacsa.thesai.org 1384 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

combinations was set, as detailed in Section VI-B. This en-
sured a thorough search for optimal settings. XGBoost models
were tuned using five techniques: RS, BO, CSA, FPA, and
GA. Each aimed to identify the top five models with the
best hyperparameters for maximising the weighted F1-score,
crucial for handling the imbalanced dataset. This process
produced 25 optimized models, five from each technique. To
ensure robustness and generalisability, stratified k-fold cross-
validation was employed, splitting the training dataset into
three subsets. This approach mitigated overfitting and provided
reliable performance metrics. After tuning, the top five models
from each technique were evaluated based on their weighted
F1-scores, as shown in Table I.

2) Phase 2 Ensemble learning: After obtaining 25 opti-
mized XGBoost models, the subsets of these models were
combined through stacking and voting (soft and hard) en-
semble techniques. Models from each hyperparameter tuning
technique were grouped by performance into top three, top
four, top five, and top-performing categories. This combina-
tion resulted in 18 optimized stacking ensemble models, 18
optimized soft voting ensemble models, and 18 optimized hard
voting ensemble models.

The top n category includes the first n optimized XG-
Boost models from each hyperparameter tuning technique that
achieved the highest weighted F1-scores. The top-performing
category selects the best model from each tuning technique.
For example in the FPA-Stacking ensemble models as shown
in Fig. 2, FPA-Stacking 3 uses FPA-XGBoost 1, FPA-XGBoost
2, and FPA-XGBoost 3 as the base classifiers. This approach is
similarly applied to the soft and hard voting ensemble models.

TopP-Stacking ensemble model utilises the top opti-
mized XGBoost models from each hyperparameter tuning
technique. For instance, TopP-Stacking3 combines the top-
performing individual optimized XGBoost models: CSA-
XGBoost 1 (TopP1), GA-XGBoost 1 (TopP2), and FPA-
XGBoost 1 (TopP3) as the base classifiers for the stacking en-
semble model. This approach is similarly applied to the TopP-
SoftVoting and TopP-HardVoting ensemble models, where the
same top-performing classifiers are used as the base models.

VI. EXPERIMENT

The performance of these optimized stacking and voting
XGBoost ensemble models was evaluated on the testing dataset
to assess their generalisation capability and classification ac-
curacy for unseen data. The default XGBoost model was used
as the meta-classifier for all stacking ensembles.

A. Dataset Description

The dataset used in this experiment is the UNSW-NB15
dataset, which is publicly accessible from the University of
New South Wales (UNSW). This dataset consists of 257,673
records of network traffic, primarily categorized as either
normal or attack traffic. It includes a total of 43 features,
along with two label features [51]. The attack traffic is further
classified into nine different types based on their charac-
teristics: analysis, backdoor, DoS, exploits, fuzzers, generic,
reconnaissance, shellcode, and worms, as illustrated in Fig.
3. The dataset is stratified and split into a 70:30 ratio, with
70% used as the training set and 30% as the test set. As

shown in Fig. 3, attack classes such as “Analysis,” “Backdoor,”
“Reconnaissance,” “Shellcode,” and “Worms” constitute less
than 6% of the total instances, thus being identified as minority
classes in this study. This reflects the complexity of real-life
scenarios, where certain network attacks, despite their rarity,
are of significant concern.

B. Experimental Setup

The XGBoost models were implemented in a Python envi-
ronment. This model is capable of utilising GPU acceleration,
which enhances the efficiency of hyperparameter tuning. The
experiments compared the proposed approach with baseline
individual default XGBoost model which also serves as the
meta-classifier in each ensemble.

The MEALPY Python package [52] was utilised for hyper-
parameter tuning using metaheuristic algorithms. Due to the
extensive combinatorial optimisation search space, it is neces-
sary to establish a specific range for each parameter. For the
four critical parameters mentioned in Section III-B, the tuning
ranges are specified as follows: Number of estimators = [100,
200, 300, 400, 500, 600, 700, 800, 900, 1000], eta = [0.001,
0.01, 0.05, 0.1, 0.2, 0.3], minimum child weight = [1, 2, 3, 4,
5, 6], maximum depth = [3, 4, 5, 6, 7, 8, 9, 10, 11,12,13,14,15].
The other parameters are set as follows: booster= “gbtree”,
gamma = 0, subsample = 1, colsample_bytree =
1, reg_lambda = 1, tree_method=“hist”, and
random_state = 42 objective=“multi : softmax.

VII. HYPERPARAMETER TUNING RESULTS

Table I demonstrates the performance of the top five
XGBoost models from five different hyperparameter tuning
techniques, resulting in a total of 25 optimized models. The
primary focus is on their weighted F1-scores during training,
which are crucial for evaluating performance on imbalanced
datasets. All models demonstrate strong training performance,
with weighted F1-scores above 0.8180. The table organizes
the models according to their weighted F1-scores within each
hyperparameter tuning technique, facilitating comparison. For
example, RS-XGBoost 1 refers to the model with the highest
weighted F1-score from Random Search (RS) tuning, while
RS-XGBoost 5 denotes the model with the lowest weighted
F1-score among the top five from the same technique. This
arrangement allows for a clear comparison of the effectiveness
of each tuning method based on weighted F1-scores.

VIII. OPTIMIZED XGBOOST ENSEMBLE MODELS
RESULTS

A. Comparison of Optimized XGBoost-Stacking Models

Table II compares the performance of 18 stacking ensemble
models against a baseline individual XGBoost model. The
results show that all stacking ensemble models outperform
the individual XGBoost model with improvements in accuracy,
macro-average F1-score, and weighted F1-score. The weighted
F1-scores of the stacking models range from 0.8307 to 0.8367,
significantly higher than the individual XGBoost model’s
0.8161. This highlights the effectiveness of the stacking ensem-
ble approach in improving classification performance. Based
on Table II, the FPA-stacking ensemble models outperform
those using RS, BO, CSA, and GA-optimized models as

www.ijacsa.thesai.org 1385 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

Training Data

Undergo FPA hyperparameter tuning 

Top 3 FPA-XGBoost models with best hyperparameters

FPA-XGBoost 1: 
learning_rate = 0.0335, max_depth = 11, min_child_weight =2, n_estimator = 777

FPA-XGBoost 2: 
learning_rate = 0.1975, max_depth = 10, min_child_weight =1, n_estimator = 699

FPA-XGBoost 3: 
learning_rate = 0.2296, max_depth = 15, min_child_weight =1, n_estimator = 311

 

FPA-Stacking3

FPA-
XGBoost 1

FPA-
XGBoost 2

FPA-
XGBoost 3

Meta 
classifier

Test Data

predictions

XGBoost Build models

Final 
Prediction

Fig. 2. FPA-XGBoost-Stacking of three models.

2677
2329

16353
44525

24246
58871

93000
13987

1511
174

0 20000 40000 60000 80000 100000

Analysis
Backdoor

DoS
Exploits
Fuzzers
Generic
Normal

Reconnaissance
Shellcode

Worms

UNSW-NB15 Data Distribution

Fig. 3. UNSW-NB15 Data distribution.

base classifiers. They also surpass the TopP-stacking ensemble
models, which use the top-performing optimized classifiers as
base classifiers. Among the FPA-stacking ensemble models,
FPA-Stacking3 achieved the highest weighted F1-score of
0.8367, representing a 2.524% improvement over the indi-
vidual XGBoost model’s score of 0.8161. Beyond achieving
the highest weighted F1-score, FPA-Stacking3 also emerged
as the top-performing stacking ensemble model among all 18
models, with a macro-average F1-score of 0.6266 and the
highest accuracy of 0.8450.

B. Comparison of Optimized XGBoost-Voting Models

Tables III and IV show the results for 18 models of
soft voting and hard voting, respectively. The tables reveal
that all voting ensemble models showed slight improvements
over the individual XGBoost model, particularly in terms of
weighted F1-score. Soft voting models had weighted F1-scores
from 0.8197 to 0.8224, while hard voting models ranged
from 0.8197 to 0.8235, compared to 0.8161 for the individual
XGBoost model. This demonstrates the effectiveness of the
voting ensemble approach in enhancing classification perfor-
mance. Based on Table III, the TopP-SoftVoting ensemble
models outperform other soft voting ensembles that use RS,
BO, CSA, FPA, and GA-optimized models as base classifiers
in terms of weighted F1-score, with the CSA-SoftVoting5
ensemble model (0.8220) also emerging as a strong con-
tender. Among the TopP-SoftVoting models, TopP-SoftVoting3
stands out, achieving the highest weighted F1-score of 0.8224.

TABLE I. HYPERPARAMETERS AND WEIGHTED F1-SCORES FOR 25
OPTIMIZED CLASSIFIER MODELS

Model learning
rate

max
depth

min
depth

min
child
weight

Weighted
F1-

score
(Train)

RS-XGBoost 1 0.05 15 3 500 0.8196
RS-XGBoost 2 0.2 6 2 200 0.8196
RS-XGBoost 3 0.05 9 2 800 0.8193
RS-XGBoost 4 0.05 13 6 400 0.8192
RS-XGBoost 5 0.1 7 5 800 0.8189
BO-XGBoost 1 0.1 9 2 400 0.8194
BO-XGBoost 2 0.1 8 4 800 0.8194
BO-XGBoost 3 0.1 8 4 400 0.8187
BO-XGBoost 4 0.1 8 3 400 0.8186
BO-XGBoost 5 0.1 8 6 400 0.8181

CSA-XGBoost 1 0.0403 14 1 649 0.8201
CSA-XGBoost 2 0.0655 10 2 892 0.8198
CSA-XGBoost 3 0.0589 12 1 936 0.8198
CSA-XGBoost 4 0.1964 10 4 398 0.8196
CSA-XGBoost 5 0.0656 10 2 893 0.8195
FPA-XGBoost 1 0.0335 11 2 777 0.8198
FPA-XGBoost 2 0.1975 10 1 699 0.8197
FPA-XGBoost 3 0.2296 15 1 311 0.8195
FPA-XGBoost 4 0.2737 9 2 265 0.8195
FPA-XGBoost 5 0.2263 10 2 347 0.8194
GA-XGBoost 1 0.0898 12 2 727 0.8200
GA-XGBoost 2 0.0898 11 3 660 0.8200
GA-XGBoost 3 0.1335 12 2 393 0.8198
GA-XGBoost 4 0.898 11 2 660 0.8198
GA-XGBoost 5 0.0898 12 2 660 0.8198

This represents a 0.7720% improvement over the individual
XGBoost model’s score of 0.8161. Additionally, Table III
identifies FPA-XGBoost-SoftVoting3 as the ensemble model
with the highest macro-average F1-score of 0.6010, while
RS-XGBoost-SoftVoting3 stands out for achieving the highest
accuracy of 0.8356.

Table IV shows that all hard voting ensemble models
achieved a weighted F1-score above 0.8200, except for the
BO-HardVoting3 ensemble model, which recorded a weighted
F1-score of 0.8197. Among the 18 hard voting ensemble
models, the FPA-HardVoting4 model stands out with the
highest weighted F1-score of 0.8235, representing a 0.9068%

www.ijacsa.thesai.org 1386 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

TABLE II. ACCURACY AND F1-SCORES PERFORMANCE FOR STACKING
ENSEMBLES AND INDIVIDUAL CLASSIFIER MODELS

Algorithm Accuracy Macro-Average Weighted
F1-score F1-score

Individual XGBoost 0.8348 0.5945 0.8161
RS-XGBoost-Stacking3 0.8447 0.6205 0.8347
RS-XGBoost-Stacking4 0.8441 0.6194 0.8343
RS-XGBoost-Stacking5 0.8440 0.6197 0.8342
BO-XGBoost-Stacking3 0.8377 0.6146 0.8307
BO-XGBoost-Stacking4 0.8413 0.6151 0.8314
BO-XGBoost-Stacking5 0.8413 0.6151 0.8314

CSA-XGBoost-Stacking3 0.8430 0.6083 0.8314
CSA-XGBoost-Stacking4 0.8435 0.6062 0.8319
CSA-XGBoost-Stacking5 0.8433 0.6112 0.8325
FPA-XGBoost-Stacking3 0.8450 0.6266 0.8367
FPA-XGBoost-Stacking4 0.8441 0.6207 0.8355
FPA-XGBoost-Stacking5 0.8439 0.6228 0.8356
GA-XGBoost-Stacking3 0.8437 0.6153 0.8333
GA-XGBoost-Stacking4 0.8427 0.6147 0.8337
GA-XGBoost-Stacking5 0.8434 0.6115 0.8336

TopP-XGBoost-Stacking3 0.8436 0.6129 0.8343
TopP-XGBoost-Stacking4 0.8442 0.6120 0.8339
TopP-XGBoost-Stacking5 0.8444 0.6181 0.8339

TABLE III. ACCURACY AND F1-SCORES PERFORMANCE FOR SOFT
VOTING ENSEMBLES AND INDIVIDUAL CLASSIFIER MODELS

Algorithm Accuracy Macro-Average Weighted
F1-score F1-score

Individual XGBoost 0.8348 0.5945 0.8161
RS-XGBoost-SoftVoting3 0.8356 0.5988 0.8207
RS-XGBoost-SoftVoting4 0.8355 0.5960 0.8208
RS-XGBoost-SoftVoting5 0.8350 0.5932 0.8204
BO-XGBoost-SoftVoting3 0.8353 0.5936 0.8197
BO-XGBoost-SoftVoting4 0.8351 0.5964 0.8199
BO-XGBoost-SoftVoting5 0.8353 0.5967 0.8199

CSA-XGBoost-SoftVoting3 0.8326 0.5975 0.8218
CSA-XGBoost-SoftVoting4 0.8330 0.5959 0.8219
CSA-XGBoost-SoftVoting5 0.8330 0.5965 0.8220
FPA-XGBoost-SoftVoting3 0.8320 0.6010 0.8219
FPA-XGBoost-SoftVoting4 0.8325 0.5994 0.8218
FPA-XGBoost-SoftVoting5 0.8324 0.6002 0.8218
GA-XGBoost-SoftVoting3 0.8323 0.5978 0.8219
GA-XGBoost-SoftVoting4 0.8324 0.5983 0.8218
GA-XGBoost-SoftVoting5 0.8324 0.5979 0.8219

TopP-XGBoost-SoftVoting3 0.8336 0.5967 0.8224
TopP-XGBoost-SoftVoting4 0.8335 0.5958 0.8221
TopP-XGBoost-SoftVoting5 0.8337 0.5945 0.8218

improvement over the individual XGBoost model’s score
of 0.8161. Additionally, Table IV indicates that the FPA-
HardVoting3 model achieved the highest macro-average F1-
score of 0.6010, while the RS-HardVoting3 model achieved
the highest accuracy of 0.8356.

C. Per Class Comparison

We further perform a comparison of the proposed FPA-
XGBoost-Stacking, focusing on performance improvements
across classes achieved by the ensemble models compared
to an individual XGBoost model. Considering FPA-XGBoost
Stacking with three models performs the best, we compare the
performance of the FPA-XGBoost Stacking with an individual
XGBoost and another ensemble approach proposed by Thock-
chom et al. [11], This ensemble approach selected due to its
relevance to the methods used in this research. Thockchom et

TABLE IV. ACCURACY AND F1-SCORES PERFORMANCE FOR HARD
VOTING ENSEMBLES AND INDIVIDUAL CLASSIFIER MODELS

Algorithm Accuracy Macro-Average Weighted
F1-score F1-score

Individual XGBoost 0.8348 0.5945 0.8161
RS-XGBoost-HardVoting3 0.8356 0.6005 0.8209
RS-XGBoost-HardVoting4 0.8342 0.5971 0.8221
RS-XGBoost-HardVoting5 0.8353 0.5974 0.8210
BO-XGBoost-HardVoting3 0.8353 0.5931 0.8197
BO-XGBoost-HardVoting4 0.8352 0.5953 0.8211
BO-XGBoost-HardVoting5 0.8354 0.5930 0.8200

CSA-XGBoost-HardVoting3 0.8330 0.5986 0.8221
CSA-XGBoost-HardVoting4 0.8323 0.5962 0.8225
CSA-XGBoost-HardVoting5 0.8329 0.5979 0.8218
FPA-XGBoost-HardVoting3 0.8316 0.6010 0.8223

FPA-XGBoost-HardVoting4 0.8316 0.5990 0.8235
FPA-XGBoost-HardVoting5 0.8323 0.5991 0.8217
GA-XGBoost-HardVoting3 0.8320 0.5986 0.8217
GA-XGBoost-HardVoting4 0.8320 0.5993 0.8225
GA-XGBoost-HardVoting5 0.8320 0.5974 0.8216

TopP-XGBoost-HardVoting3 0.8333 0.5959 0.8223
TopP-XGBoost-HardVoting4 0.8325 0.5952 0.8226
TopP-XGBoost-HardVoting5 0.8339 0.5952 0.8221

al.’s [11] model is a heterogenous stacking ensemble involving
Gaussian Naive Bayes, Logistic Regression, and Decision Tree
as base classifiers, with Stochastic Gradient Descent as the
meta-classifier, using the base classifiers’ predictions as input.

TABLE V. F1-SCORES FOR DIFFERENT ATTACK CLASSES ACROSS
MODELS

Attack class Individual FPA Thockchom et al.
XGBoost -XGBoost [11]
(default) -Stacking

Analysis 0.1861 0.2229 ✓ 0.0023
Backdoor 0.1684 0.2085 ✓ 0.0336

DoS 0.2041 0.4149 ✓ 0.1663
Exploits 0.7420 0.7531 ✓ 0.7120
Fuzzers 0.6395 0.6706 ✓ 0.6041
Generic 0.9888 0.9894 * 0.9848
Normal 0.9296 0.9350 ✓ 0.9135

Reconnaissance 0.8384 0.8304 0.8114
Shellcode 0.6763 0.6723 0.6099

Worms 0.5714 0.5686 0.4296
Weighted 0.8161 0.8367 ✓ 0.7934
F1-score
Accuracy 0.8343 0.8450 ✓ 0.8111

(✓) Significant improvements, (*)Slight improvements

The results presented in Table V offer compelling evidence
for the effectiveness of our proposed FPA-XGBoost-Stacking
model in addressing the challenges of imbalanced network
attack detection. One of the most striking findings is the
model’s performance on underrepresented attack classes. For
instance, the F1-score for the DoS class improved dramatically
from 0.2041 to 0.4149, a 103.3% increase. This is particularly
significant given that DoS attacks comprise less than 2% of the
samples compared to the majority class. Similarly, substantial
improvements were observed for other rare attack types, with
the Analysis class showing a 19.8% increase and the Backdoor
class a 23.8% increase in F1-scores. The consistent improve-
ments across almost all attack classes are noteworthy. Six out
of ten classes showed significant enhancements, indicating that
our model’s performance boost is not limited to just a few
categories. This broad-spectrum improvement suggests that
the FPA-XGBoost-Stacking model has successfully captured

www.ijacsa.thesai.org 1387 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

a wide range of attack patterns and characteristics.

When comparing our model to both the individual XG-
Boost classifier and Thockchom et al.’s heterogeneous stacking
ensemble, the advantages of our approach become clear. The
overall weighted F1-score of 0.8367 represents a 2.52% im-
provement over individual XGBoost and a 5.46% improvement
over Thockchom et al.’s model. This demonstrates that our ho-
mogeneous stacking approach with XGBoost, combined with
FPA-based hyperparameter tuning, outperforms both simpler
and more complex heterogeneous models.

It is worth noting that there were slight decreases in perfor-
mance for the Reconnaissance, Shellcode, and Worms classes
compared to the individual XGBoost model. However, these
decreases were minimal, and our model still outperformed
Thockchom et al.’s approach in these categories. This suggests
that while our model excels in most areas, there may be
room for further optimization in detecting these specific attack
types. The improved accuracy (0.8450 compared to 0.8343 for
individual XGBoost and 0.8111 for Thockchom et al.’s model)
further corroborates the overall enhanced performance of our
approach. This indicates that our model not only improves the
detection of underrepresented classes but also maintains high
performance on more common attack types and normal traffic.

IX. CONCLUSION

The experimental results highlight the effectiveness of en-
semble learning techniques, particularly homogeneous stacking
and voting, in addressing imbalanced datasets for network
attack detection. Homogeneous stacking tends to produce more
stable and consistent results because all base models in the
ensemble use the same algorithm. In contrast, heterogeneous
ensembles might be more volatile. Different algorithms can
react very differently to changes in the data, potentially leading
to less stable overall predictions. Key findings reveal that com-
bining hyperparameter tuning, XGBoost, and homogeneous
stacking, enhances detection performance and class-specific
metrics compared to standalone classifiers. Our research has
also demonstrates that FPA effectively improves XGBoost’s
performance in the context of multi-class, imbalanced network
attack detection offering new insights into enhancing the
accuracy and robustness of intrusion detection systems. These
findings not only fill a gap in the literature but also provide
practical implications for developing more effective network
security solutions.

The FPA-XGBoost-Stacking model outperformed both in-
dividual XGBoost and Thockchom et al.’s ensemble model,
significantly improving F1-scores for six classes and slightly
improving one additional class. These results demonstrate
that homogeneous stacking with XGBoost achieves better
predictions than Thockchom et al.’s heterogeneous stacking.
Additionally, our approach effectively addresses class imbal-
ance without resorting to resampling techniques, avoiding
overfitting or information loss.

In summary, this research contributes significantly to the
field by introducing a novel ensemble learning approach that
effectively addresses imbalanced classification without resam-
pling. The combination of hyperparameter tuning, XGBoost,
and stacking shows superior performance, greatly improving
network attack detection and offering a robust solution for

similar challenges across various domains. This methodology
can be adapted to other areas with imbalanced multi-class
datasets, paving the way for future research and the broader
application of ensemble learning techniques, underscoring its
impact in developing effective classification models.

ACKNOWLEDGMENT

The author would like to acknowledge the support from
the Fundamental Research Grant Scheme (FRGS) under a
grant number of FRGS/1/2018/ICT02/UNIMAP/02/6 from the
Ministry of Higher Education Malaysia.

REFERENCES

[1] I. Lella, C. Ciobanu, E. Tsekmezoglou, M. Theocharidou, E. Magonara,
A. Malatras, R. Svetozarov Naydenov et al., “Enisa threat landscape
2023: July 2022 to june 2023,” 2023.

[2] K. M. Hasib, M. S. Iqbal, F. M. Shah, J. Al Mahmud, M. H. Popel,
M. I. H. Showrov, S. Ahmed, and O. Rahman, “A survey of methods for
managing the classification and solution of data imbalance problem,”
Journal of Computer Science, vol. 16, no. 11, p. 1546–1557, Nov. 2020.
[Online]. Available: http://dx.doi.org/10.3844/jcssp.2020.1546.1557

[3] R. Mohammed, J. Rawashdeh, and M. Abdullah, “Machine learning
with oversampling and undersampling techniques: Overview study
and experimental results,” in 2020 11th International Conference on
Information and Communication Systems (ICICS), 2020, pp. 243–248.

[4] D. Elreedy, A. F. Atiya, and F. Kamalov, “A theoretical distribution
analysis of synthetic minority oversampling technique (smote) for
imbalanced learning,” Machine Learning, vol. 113, no. 7, pp. 1–21,
2023.

[5] M. Kamaladevi, V. Venkataraman, and K. Sekar, “Tomek link undersam-
pling with stacked ensemble classifier for imbalanced data classifica-
tion,” Annals of the Romanian Society for Cell Biology, pp. 2182–2190,
2021.

[6] Chongomweru Halimu and Asem Kasem, “A novel ensemble method
for classification in imbalanced datasets using split balancing technique
based on instance hardness (sBal ih),” Neural Computing and Applica-
tions, pp. 1–22, Jan. 2021.

[7] Chih-Fong Tsai and Wei-Chao Lin, “Feature Selection and Ensemble
Learning Techniques in One-Class Classifiers: An Empirical Study of
Two-Class Imbalanced Datasets,” IEEE Access, vol. 9, pp. 13 717–
13 726, 2021.

[8] Hongle Du, Yan Zhang, Kee-Rae Gang, Lin Zhang, and Yeh-Cheng
Chen, “Online ensemble learning algorithm for imbalanced data
stream,” Appl. Soft Comput., vol. 107, p. 107378, Aug. 2021.

[9] M. Ali, M.-u. Haque, M. H. Durad, A. Usman, S. M. Mohsin,
H. Mujlid, and C. Maple, “Effective network intrusion detection
using stacking-based ensemble approach,” Int. J. Inf. Secur.,
vol. 22, no. 6, p. 1781–1798, jul 2023. [Online]. Available:
https://doi.org/10.1007/s10207-023-00718-7

[10] H. Rajadurai and U. D. Gandhi, “A stacked ensemble learning model
for intrusion detection in wireless network,” Neural Computing and
Applications, vol. 34, no. 18, pp. 15 387–15 395, Sep. 2022. [Online].
Available: https://link.springer.com/10.1007/s00521-020-04986-5

[11] N. Thockchom, M. M. Singh, and U. Nandi, “A novel ensemble
learning-based model for network intrusion detection,” Complex &
Intelligent Systems, vol. 9, no. 5, pp. 5693–5714, 2023.

[12] H. F. Soon, A. Amir, H. Nishizaki, N. A. H. Zahri, L. M. Kamarudin,
and S. N. Azemi, “Evaluating tree-based ensemble strategies for
imbalanced network attack classification,” International Journal of
Advanced Computer Science and Applications, vol. 15, no. 1, 2024.
[Online]. Available: http://dx.doi.org/10.14569/IJACSA.2024.01501111

[13] M. H. Kabir, M. S. Rajib, A. S. M. T. Rahman, M. M. Rahman,
and S. K. Dey, “Network intrusion detection using unsw-nb15 dataset:
stacking machine learning based approach,” in 2022 International
Conference on Advancement in Electrical and Electronic Engineering
(ICAEEE). IEEE, 2022, pp. 1–6.

www.ijacsa.thesai.org 1388 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

[14] V. Sidharth and C. Kavitha, “Network intrusion detection system using
stacking and boosting ensemble methods,” in 2021 Third International
Conference on Inventive Research in Computing Applications (ICIRCA).
IEEE, 2021, pp. 357–363.

[15] R. Zhao, Y. Mu, L. Zou, and X. Wen, “A hybrid intrusion detection
system based on feature selection and weighted stacking classifier,”
IEEE Access, vol. 10, pp. 71 414–71 426, 2022.

[16] T. Tao, Y. Liu, Y. Qiao, L. Gao, J. Lu, C. Zhang, and Y. Wang, “Wind
turbine blade icing diagnosis using hybrid features and stacked-xgboost
algorithm,” Renewable Energy, vol. 180, pp. 1004–1013, 2021.

[17] M. Zivkovic, L. Jovanovic, M. Ivanovic, N. Bacanin, I. Strumberger, and
P. M. Joseph, “Xgboost hyperparameters tuning by fitness-dependent
optimizer for network intrusion detection,” in Communication and
intelligent systems: Proceedings of ICCIS 2021. Springer, 2022, pp.
947–962.

[18] N. AlHosni, L. Jovanovic, M. Antonijevic, M. Bukumira, M. Zivkovic,
I. Strumberger, J. P. Mani, and N. Bacanin, “The xgboost model for net-
work intrusion detection boosted by enhanced sine cosine algorithm,” in
International Conference on Image Processing and Capsule Networks.
Springer, 2022, pp. 213–228.

[19] M. Zivkovic, M. Tair, K. Venkatachalam, N. Bacanin, Š. Hubálovskỳ,
and P. Trojovskỳ, “Novel hybrid firefly algorithm: An application to
enhance xgboost tuning for intrusion detection classification,” PeerJ
Computer Science, vol. 8, p. e956, 2022.

[20] X. Yong and Y. Gao, “Hybrid firefly and black hole algorithm designed
for xgboost tuning problem: An application for intrusion detection,”
IEEE Access, vol. 11, pp. 28 551–28 564, 2023.

[21] N. Bacanin, A. Petrovic, M. Antonijevic, M. Zivkovic, M. Sarac,
E. Tuba, and I. Strumberger, “Intrusion detection by xgboost model
tuned by improved social network search algorithm,” in International
Conference on Modelling and Development of Intelligent Systems.
Springer, 2022, pp. 104–121.

[22] M. Rashid, J. Kamruzzaman, T. Imam, S. Wibowo, and S. Gordon,
“A tree-based stacking ensemble technique with feature selection for
network intrusion detection,” Applied Intelligence, vol. 52, no. 9, pp.
9768–9781, 2022.

[23] X. Zheng, Y. Wang, L. Jia, D. Xiong, and J. Qiang, “Network intrusion
detection model based on chi-square test and stacking approach,” in
2020 7th International Conference on Information Science and Control
Engineering (ICISCE). IEEE, 2020, pp. 894–899.

[24] M. R. Ghazi and N. Raghava, “A scalable and stacked ensemble
approach to improve intrusion detection in clouds,” Information Tech-
nology and Control, vol. 52, no. 4, pp. 898–914, 2023.

[25] Hossein Ghaderi Zefrehi and H. Altınçay, “Imbalance learning using
heterogeneous ensembles,” Expert Syst. Appl., vol. 142, Mar. 2020.

[26] Roshani Choudhary and Sanyam Shukla, “A clustering based ensemble
of weighted kernelized extreme learning machine for class imbalance
learning,” Expert Syst. Appl., vol. 164, p. 114041, Feb. 2021.

[27] Zonghai Zhu, Zhe Wang, Dongdong Li, Yujin Zhu, and W. Du,
“Geometric Structural Ensemble Learning for Imbalanced Problems,”
IEEE Transactions on Cybernetics, vol. 50, pp. 1617–1629, Apr. 2020.

[28] Zhi Chen, Jiang Duan, Li Kang, and G. Qiu, “A hybrid data-level
ensemble to enable learning from highly imbalanced dataset,” Inf. Sci.,
vol. 554, pp. 157–176, Apr. 2021.

[29] Kaixiang Yang, Zhiwen Yu, Xin Wen, Wenming Cao, C. L. P. Chen, H.
Wong, and J. You, “Hybrid Classifier Ensemble for Imbalanced Data,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 31,
pp. 1387–1400, Apr. 2020.

[30] Yinan Guo, Yaoqi Chu, Botao Jiao, Jian-Bo Cheng, Zekuan Yu, Ning
Cui, and Lianbo Ma, “Evolutionary Dual-Ensemble Class Imbalance
Learning for Human Activity Recognition,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 6, pp. 728–739,
Aug. 2022.

[31] Na Liu, Xiaomei Li, Ershi Qi, Man Xu, Ling Li, and Bo Gao, “A Novel
Ensemble Learning Paradigm for Medical Diagnosis With Imbalanced
Data,” IEEE Access, vol. 8, pp. 171 263–171 280, 2020.

[32] Enas Elgeldawi, Awny Sayed, Ahmed R. Galal, and Alaa M. Zaki,
“Hyperparameter Tuning for Machine Learning Algorithms Used for
Arabic Sentiment Analysis,” Informatics, vol. 8, p. 79, Nov. 2021.

[33] Farkhanda Abbas, Feng Zhang, Muhammad Ismail, G. Khan, Javed
Iqbal, A. Alrefaei, and M. Albeshr, “Optimizing Machine Learning
Algorithms for Landslide Susceptibility Mapping along the Karakoram
Highway, Gilgit Baltistan, Pakistan: A Comparative Study of Baseline,
Bayesian, and Metaheuristic Hyperparameter Optimization Techniques,”
Sensors (Basel, Switzerland), vol. 23, Aug. 2023.

[34] Ismail Damilola Raji, H. Bello-Salau, I. J. Umoh, A. Onumanyi,
M. Adegboye, and Ahmed Tijani Salawudeen, “Simple Deterministic
Selection-Based Genetic Algorithm for Hyperparameter Tuning of Ma-
chine Learning Models,” Applied Sciences, Jan. 2022.

[35] Maryam Karimi Mamaghan, Mehrdad Mohammadi, P. Meyer, Amir
Mohammad Karimi-Mamaghan, and El-Ghazali Talbi, “Machine learn-
ing at the service of meta-heuristics for solving combinatorial opti-
mization problems: A state-of-the-art,” Eur. J. Oper. Res., vol. 296, pp.
393–422, Apr. 2021.

[36] N.-D. Hoang, V.-D. Tran, and X.-L. Tran, “Predicting compressive
strength of high-performance concrete using hybridization of nature-
inspired metaheuristic and gradient boosting machine,” Mathematics,
vol. 12, no. 8, p. 1267, 2024.

[37] B. Xi, Z. Huang, S. Al-Obaidi, and L. Ferrara, “Predicting ultra high-
performance concrete self-healing performance using hybrid models
based on metaheuristic optimization techniques,” Construction and
Building Materials, vol. 381, p. 131261, 2023.

[38] S. Zhao, Y. Xiang, L. Wu, X. Liu, J. Dong, F. Zhang, Z. Li, and Y. Cui,
“Simulation of diffuse solar radiation with tree-based evolutionary
hybrid models and satellite data,” Remote Sensing, vol. 15, no. 7, p.
1885, 2023.

[39] A. Rusli, A. Suryadibrata, S. B. Nusantara, and J. C. Young, “A
comparison of traditional machine learning approaches for supervised
feedback classification in bahasa indonesia,” IJNMT (International
Journal of New Media Technology), vol. 7, no. 1, pp. 28–32, 2020.

[40] Nurshazlyn M. Aszemi and P. Dominic, “Hyperparameter Optimization
in Convolutional Neural Network using Genetic Algorithms,” Interna-
tional Journal of Advanced Computer Science and Applications, 2019.

[41] A. K. Agrawal and G. Chakraborty, “On the use of acquisition function-
based Bayesian optimization method to efficiently tune SVM hyperpa-
rameters for structural damage detection,” Structural Control and Health
Monitoring, vol. 28, Jan. 2021.

[42] X.-S. Yang, “Flower pollination algorithm for global optimization,” in
Unconventional Computation and Natural Computation, J. Durand-Lose
and N. Jonoska, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 240–249.

[43] T.-T. Nguyen, J.-S. Pan, and T.-K. Dao, “An improved flower pollination
algorithm for optimizing layouts of nodes in wireless sensor network,”
IEEE Access, vol. 7, pp. 75 985–75 998, 2019.

[44] J. H. Holland, “Genetic algorithms,” Scientific American,
vol. 267, no. 1, pp. 66–73, 1992. [Online]. Available:
http://www.jstor.org/stable/24939139

[45] G. D’Angelo and F. Palmieri, “Gga: A modified genetic algorithm
with gradient-based local search for solving constrained optimization
problems,” Inf. Sci., vol. 547, pp. 136–162, 2021.

[46] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in 2009 World
Congress on Nature & Biologically Inspired Computing (NaBIC), 2009,
pp. 210–214.

[47] I. D. Mienye and Y. Sun, “A survey of ensemble learning: Concepts,
algorithms, applications, and prospects,” IEEE Access, vol. 10, pp.
99 129–99 149, 2022.

[48] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[49] L. Chao, Z. Wen-Hui, L. Ran, W. Jun-Yi, and L. Ji-Ming, “Research on
star/galaxy classification based on stacking ensemble learning,” Chinese
Astronomy and Astrophysics, vol. 44, no. 3, pp. 345–355, 2020.

[50] D. Burka, C. Puppe, L. Szepesváry, and A. Tasnádi, “Voting: A machine
learning approach,” European Journal of Operational Research, vol.
299, no. 3, pp. 1003–1017, 2022.

[51] N. Moustafa and J. Slay, “The evaluation of network anomaly detection
systems: Statistical analysis of the unsw-nb15 data set and the compar-
ison with the kdd99 data set,” Information Security Journal: A Global
Perspective, vol. 25, no. 1-3, pp. 18–31, 2016.

www.ijacsa.thesai.org 1389 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

[52] N. Van Thieu and S. Mirjalili, “Mealpy: An open-source library for
latest meta-heuristic algorithms in python,” Journal of Systems Archi-

tecture, 2023.

www.ijacsa.thesai.org 1390 | P a g e


