
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

Deep Learning and Web Applications Vulnerabilities
Detection: An Approach Based on Large Language

Models

Sidwendluian Romaric Nana, Didier Bassolé, Désiré Guel, Oumarou Sié
Laboratoire de Mathématiques et d’Informatique, Université Joseph KI-ZERBO,

Ouagadougou, Burkina Faso

Abstract—Web applications are part of the daily life of
Internet users, who find services in all sectors of activity.
Web applications have become the target of malicious users.
They exploit web application vulnerabilities to gain access to
unauthorized resources and sensitive data, with consequences
for users and businesses alike. The growing complexity of web
techniques makes traditional web vulnerability detection methods
less effective. These methods tend to generate false positives,
and their implementation requires cybersecurity expertise. As for
Machine Learning/Deep Learning-based web vulnerability detec-
tion techniques, they require large datasets for model training.
Unfortunately, the lack of data and its obsolescence make these
models inoperable. The emergence of large language models and
their success in natural language processing offers new prospects
for web vulnerability detection. Large language models can be
fine-tuned with little data to perform specific tasks. In this paper,
we propose an approach based on large language models for web
application vulnerability detection.

Keywords—Deep learning; web application; vulnerability; de-
tection; large language model

I. INTRODUCTION

Nowadays Information and Communication Technologies
have facilitated business practices in all sectors of activity
(finance, insurance, health, education, energy, etc.). Business
processes are automated through the creation of software to
improve the productivity of companies and administrations.
In February 2024, the number of Internet users worldwide
was estimated at over 5.4 billion1. Internet has become the
”crossroads” where all types of data are exchanged. This ever-
increasing accessibility to web resources by internet users
has led to the growth of online services via web or mobile
applications. All of which increases the attack surface for
malicious users exploiting web applications vulnerabilities.
From January to December 2022, more than 60 million attacks
were observed daily against web applications2.

Web applications are designed on a client-server architec-
ture. The server side generally includes an application server
and a database server. The client (a computer with a web
browser) sends an HTTP request to the application server,
which queries the database server with an SQL query. The
database server sends a response to the application server,

1https://www.wpbeginner.com/fr/research/internet-usage-statistics-and-
latest-trends/

2https://www.akamai.com/fr/resources/state-of-the-internet/slipping-
through-the-security-gaps-the-rise-of-application-and-api-attacks

which returns an HTTP response to the client. Fig. 1 gives
an overview of web application architecture [1].

Different parts of this architecture may be subject to vul-
nerabilities: web application programming, interaction between
client and server, server configuration, etc. In the literature,
several approaches have been developed to detect vulnerabili-
ties in applications and prevent web attacks:

• integrating a secure code approach into application
development;

• manual code review;

• vulnerability testing (white box, black box and hybrid
method);

• use of intrusion detection systems.

These approaches generally use a list of pre-written rules
and vulnerability databases. They require cybersecurity exper-
tise, are time-consuming and have a high False Positive Rate
(FPR). In a recent study on the detection of malicious URLs
[2], we showed the importance of using FPR as an evaluation
metric. Our approach enabled us to build models with an FPR
of 1.13%, compared with similar works that have a FPR of
between 8.15% and 12.03%.

Recent advances in Machine Learning (ML) and Deep
Learning (DL) especially offer interesting prospects for de-
tecting vulnerabilities in web applications. Where resources
are limited, the use of Large Language Models (LLMs) could
be an excellent alternative for obtaining better results with little
data. The main objective of this work is to present a review
of the different DL approaches used in the literature to detect
vulnerabilities in web applications, the difficulties encountered
by researchers and how LLMs can contribute to better results.

The rest of this paper is organized as follows: Section II
presents the background of study. In Section III, we define
some concepts used in the study. Section IV deals with related
works. In Section V, we present our approach for detecting
web applications vulnerabilities using LLMs. We conclude this
work in Section VI.

II. BACKGROUND STUDY

A vulnerability is a flaw or weakness in an application’s
design or implementation. A vulnerability exploited by an
attacker has consequences for the application, its owner and the

www.ijacsa.thesai.org 1391 | P a g e

https://www.wpbeginner.com/fr/research/internet-usage-statistics-and-latest-trends/
https://www.wpbeginner.com/fr/research/internet-usage-statistics-and-latest-trends/
https://www.akamai.com/fr/resources/state-of-the-internet/slipping-through-the-security-gaps-the-rise-of-application-and-api-attacks
https://www.akamai.com/fr/resources/state-of-the-internet/slipping-through-the-security-gaps-the-rise-of-application-and-api-attacks


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

Fig. 1. Overview of web architecture.

application’s users3. In this section we present web application
vulnerabilities, some countermeasures and DL approach in web
vulnerabilities detection.

A. Vulnerabilities in Web Applications

OWASP (Open Web Application Security Project) regu-
larly publishes the Top 10 web application security risks.
The OWASP Top 10 is a standard awareness document
for developers and web application security. It represents
a broad consensus about the most critical security risks to
web applications. The OWASP Top 10 for 20214 highlights
the consolidation of certain vulnerabilities, such asInjection,
Security Misconfiguration, and the emergence of others, such
as Broken Access Control, Insecure Design, Vulnerable or
Outdated Components.

Reference [3] classifies vulnerabilities into three main
categories such as:

• Improper input validation: relates to an incorrect val-
idation and sanitization of user input. Some examples
of web attacks caused by this category of vulnerability
are SQL injection and Cross-Site Scripting (XSS).

• Improper session management: relates to when the
web session is insecured. Web requests could not be
identified as malicious or not until these are linked
with a proper valid session identifier. Some examples
of web attacks caused by this category of vulnerability
are Cross-Site Request Forgery (CSRF) and session
highjacking.

• Improper authorization and authentication: involves a
logic flaw in the implementation of access control
rules and authentication functions. If web application
does not correctly manage authentication and autho-
rization procedures, broken access control is one of
the web attacks likely to occur.

Fig. 2 shows a summary of web vulnerability types [3].

B. Existing Countermeasures

Numerous approaches are proposed in the literature for
detecting and preventing vulnerabilities in web applications.
However, no single approach can detect all vulnerabilities
present in web applications. Existing approaches are comple-
mentary and can be integrated into all phases of the web

3https://owasp.org/www-community/vulnerabilities/
4https://owasp.org/www-project-top-ten/

Fig. 2. Type of web vulnerabilities.

application development cycle. Referring to research works
[1], [3], existing approaches include secure programming,
static, dynamic and hybrid analysis, black box testing, Intru-
sion Detection Systems (IDS). ML and DL techniques can be
integrated into the above-mentioned approaches.

1) Secure programming: A survey conducted in 2019
found that 82 percent of vulnerabilities were located in ap-
plication code and one in five vulnerabilities was high sever-
ity5. Secure programming is a set of best practice rules to
help programmers develop secure web applications. Secure
programming protects coding practices by coding properly,
checks input data, encode correctly the user input, its type
further by setting the query’s parameter, also by bringing stored
procedures to work [3]. Secure programming makes program-
mers aware of the security risks involved in writing code and
using libraries and components. In fact, in the OWASP Top
10 for 2021, Vulnerable and Outdated Components is ranked
6th, whereas this vulnerability was ranked 9th in the previ-
ous ranking (OWASP Top 10 for 2017). ASVS (Application
Security Verification Standard)6, ESAPI (Enterprise Security
API), SAMM (OWASP Software Assurance Maturity Model)7

are different standard proposed by OWASP project to allow
developers to code secure web applications.

2) Static analysis: Static analysis can be carried out at the
implementation phase of web application, where it looks for
vulnerabilities in source codes and trying to flag them without
executing applications [4]. In the literature, several research
works have focused on the detection of web application
vulnerabilities using static analysis [5], [6], [7], [8]. Overall,
static analysis-based tools detect web vulnerabilities despite
their trend to generate false positives. Time required to use
these tools increases with the size of the code to be scanned
[1].

3) Dynamic analysis: It is the opposite approach to static
analysis. Its aim is to identify security violations during web
application execution. It is a useful technique to prevent web
vulnerabilities. This technique incurs no false positives but is
less effective for large code coverage. Some existing studies
using Dynamic analysis [4], [9], [10], [11]

5https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
6https://www.owasp.org/index.php/ASVS
7https://www.owasp.org/index.php/SAMM

www.ijacsa.thesai.org 1392 | P a g e

https://owasp.org/www-community/vulnerabilities/
https://owasp.org/www-project-top-ten/
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/SAMM


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

Fig. 3. Web vulnerabilities countermeasures.

4) Black Box testing: This method does not require source
code information. It is done with no knowledge of the applica-
tion’s internals. This form of testing is carried out to evaluate
the functionality, security, performance, and other aspects of
an application. Details can be found in [12], [13]

5) Intrusion detection systems: An IDS is a mechanism
designed to detect abnormal or suspicious activity on an
analyzed target. It provides information on both successful
and unsuccessful intrusion attempts. The target can be a
host system (Host Intrusion Detection System (HIDS)) or
Network communications (Network Intrusion Detection Sys-
tem (NIDS)) or Web Application (Web Application Firewall
(WAF)). There are two main types of WAFs. Traditional WAFs
and ML/DL based WAFs. Details can be found in [14], [15]

Fig. 3 shows a summary of web vulnerabilities counter-
measures.

C. Deep Learning Approach in Web Vulnerabilities Detection

Alaoui et al. [1] conducted a Systematic Literature Review
on the detection of vulnerabilities and attacks on web appli-
cations using DL techniques. The literature review covered
63 primary studies or articles on DL-based web application
security published between 2010 and September 2021. The
authors reviewed articles on various aspects and carried out
a qualitative analysis of the results obtained. The qualitative
analysis of the selected studies shows that the research area of
DL-based web attack detection is yet to be properly explored,
and that interest in web vulnerability detection using DL
models is very recent. Since 2019, the number of papers
published in this research area has increased significantly.
Finally, authors noticed that CNN (Convolutional neural net-
work), LSTM (Long short-term memory), and DFFN (Deep
Feed Forward Network) are the most DL models used in the
reviewed studies.

Dawadi et al. [15] focused on using DL techniques to
improve performance of Web Application Firewall. Authors
proposed a WAF layered architecture based on LSTM for
DDoS (Distributed denial-of-service), SQL injection, and XSS
detection in the web-based service system. The model achieved
97.57% accuracy for DDoS detection and 89.34% accuracy for
XSS/SQL injection detection.

Alghazzawi et al. [16] conducted a Systematic Literature
Review on the detection SQL Injection using ML/DL tech-
niques. The literature review covered 36 articles published

between 2012 and 2021. A large proportion of the reviewed
studies (83%) used datasets collected from public repositories
and HTTP requests. The remaining 17% of the reviewed
studies used synthetic datasets created by the authors using
deep learning models that can be trained to learn the semantic
features of SQL attacks in order to generate new test cases
from user inputs.

Maurel et al. [17] explored static approaches to detect
XSS vulnerabilities using neural networks. Authors compared
two different code representations: word2vec based on NLP
(Natural Language Processing) and code2vec based on PLP
(Programming Language Processing); and generate models
using different neural network architectures for static analysis
detection in PHP and Node.js. Model performed better with
PLP approach (Accuracy 95.38%). As programs to be analyzed
were run on the server side, authors were faced with the
problem of data availability, so they opted for generated
datasets (source code). The code generator of the NIST SA-
MATE project8. Authors improved this generator by correcting
shortcomings and increasing the number of datasets generated
by taking into account the rules announced by OWASP.

Alaoui et al. [18] proposed an approach to detect XSS
attack. This approach based on LSTM Encoder-Decoder and
Word Embeddings. Authors experiment different free context
word embeddings (Word2vec, Glove, FastText) to transform
HTTP requests to numerical vectors that can be processed by
the classification models. Authors implement LSTM Encoder-
Decoder and CNN Encoder-Decoder models. Overall LSTM
Encoder-Decoder achieves the best classification results re-
gardless of the word embedding technique used: 99.08%
accuracy, 99,09% precision, and 99,08% Recall.

As stated above, research interest in web vulnerability
detection using DL techniques has been growing in recent
years. There are some interesting results in the literature.
However, they face a number of limits. Thanks to the various
systematic literature reviews, we can see that the majority of
articles are oriented towards binary classification. However,
it is important to evaluate how well DL models specifically
detect different types of web vulnerabilities. Added to this
is the availability of data. Indeed, the performance of DL
models can be improved by the availability of sufficient quality
data. Training a deep learning model requires large volumes of
data. Unfortunately, data relating to the security of enterprise
applications is sensitive and not always accessible to the
general public. Most of the datasets used in the literature are
available publicly. They are outdated and do not take into
account new vulnerabilities or recent attack techniques [1].
These datasets no longer reflect the complexity of modern web
applications. To address this shortcoming, several researchers
have experimented with the data generation approach to train
or test their models. But data is still synthetic, not real. It is
therefore important for companies to contribute to research
by making their application code and WAF logs available
to the public, even anonymously. Another challenge is code
representation. How to represent software programs so that
they can be used by a DL model? Li et al. [19] gives some
guide principle with VulDeePecker and proposed a framework
called SySeVR (Syntax-based, Semantics-based, and Vector

8https://www.nist.gov/itl/ssd/software-quality-group/samate

www.ijacsa.thesai.org 1393 | P a g e

https://www.nist.gov/itl/ssd/software-quality-group/samate


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

Representations) [20]. This framework focuses on obtaining
program representations that can contains syntax and seman-
tic relevant information to vulnerabilities. SySeVR has been
evaluated with dataset of open source C/C++ programs from
the NVD9 and from the SARD10. NLP and PLP approaches
have been explored in literature but it’s still an open question.

With reference to the limitations outlined above, we pro-
pose an approach based on LLMs. This approach will consist
in fine-tuning LLMs for web vulnerability detection. This can
be performed on small dataset. Indeed, the recent emergence of
LLMs offers interesting prospects for detecting vulnerabilities
in web applications. LLMs have been pre-trained on large
datasets and succeed in a variety of NLP tasks for which
they have not been specially trained [21]. In addition, LLMs
represent an excellent advance in natural language processing,
with a good representation of textual data. The proposed
approach therefore addresses some limitations mentioned by
Alaoui et al. in [1].

III. CONCEPTS

In this section, we define some important concepts in the
field of cybersecurity and artificial intelligence. This will help
us to have a good comprehension of our approach.

A. Vulnerability

A vulnerability is a weakness in a computer system that
allows an attacker to undermine the integrity of the system:
its normal operation, the confidentiality or integrity of the
data it contains. Vulnerabilities are the result of weaknesses in
the design, implementation or use of a hardware or software
component of the system.

Vulnerabilities can be intentional (backdoors) or accidental,
resulting from a lack of knowledge on the part of developers
of good security practices or due to the ever-increasing com-
plexity of modern technologies, which increasingly require the
adoption of new design and development methods in order to
limit the risk of adding vulnerabilities. These vulnerabilities
are generally corrected as they are discovered.

Once discovered, vulnerabilities can be the subject of
an identification called a CVE11(Common Vulnerabilities and
Exposures). These are published by the Massachusetts Insti-
tute of Technology Research Establishment (MITRE12) at the
request of researchers. This organization can also delegate its
identification powers to a company or research center. The
latter then becomes a CNA (CVE Numbering Authority)13.

The CVE lists are brief and do not include technical data
or information about risks, effects and patches. These details
are recorded in other databases, such as the US National
Vulnerability Database (NVD) or the CERT/CC Vulnerability
Notes Database14, etc.

9https://nvd.nist.gov/
10https://samate.nist.gov/SARD/
11https://www.cve.org/
12https://www.cve.mitre.org/
13https://www.orangecyberdefense.com/fr/insights/blog/gestion-des-

vulnerabilites/vulnerabilites-de-quoi-parle-t-on
14https://www.kb.cert.org/vuls/

B. Attack and Intrusion

An attack is any attempt to gain unauthorized access to a
computer, computer system or computer network with the aim
of causing damage. Computer attacks are aimed at disabling,
disrupting, destroying or controlling computer systems or at
modifying, blocking, deleting, manipulating or stealing data
contained in these systems15.

An intrusion is an internal malicious act, but of external
origin, resulting from an attack that has succeeded in exploiting
a vulnerability [22].

C. Large Language Models

LLMs are recent advances in deep learning models to work
on human languages. LLMs refer to large general-purpose
language models that can be pre-trained and then fine-tuned
for specific purposes. LLMs are trained to solve common
language problems, such as text classification, question an-
swering, document summarization, and text generation16. The
models can then be adapted to solve specific problems in
different fields using a relatively small size of field datasets
via fine-tuning. LLMs rely on substantively large datasets
to perform those functions. These datasets can include 100
million or more parameters, each of which represents a variable
that the language model uses to infer new content [23].
Understanding the importance of LLMs requires background
knowledge of Deep Neural Networks (DNNs), Transformers,
Attention mechanisms, etc. Indeed [24]:

• LLM is based on transformer architecture

• Attention mechanism allows LLMs to capture long-
range dependencies between words, hence the model
can understand context

• LLM generates text autoregressively based on previ-
ously generated tokens

Large Language Models have evolved rapidly. From 2018
to early 2024, hundreds of models have been created17. These
models can be differentiated into 4 generations as of now,
mainly separating model complexity, but also aspects such as
model parameters (embedding encoding, activation functions),
quantity and quality of input data, and additional fine-tuning
steps. Fig. 4 shows the evolutionary tree of modern LLMs [25].

There are many LLMs developed: GPT-3 and GPT-4 from
OpenAI18,BERT, PaLM 2 and T5 from Google19, RoBERTa
and LLaMA 2 from Meta20, etc. These are models that can
understand language and can generate text.

IV. RELATED WORKS

In this section, we review previous work on using Large
Language Models to detect software vulnerabilities.

15https://www.cyberuniversity.com/post/attaque-informatique-en-quoi-ca-
consiste

16https://guides.nyu.edu/data/llm
17https://admantium.com/blog/llm01 introduction to llms/
18https://openai.com/
19https://ai.google/
20https://www.ai.meta.com/

www.ijacsa.thesai.org 1394 | P a g e

https://nvd.nist.gov/
https://samate.nist.gov/SARD/
https://www.cve.org/
https://www.cve.mitre.org/
https://www.orangecyberdefense.com/fr/insights/blog/gestion-des-vulnerabilites/vulnerabilites-de-quoi-parle-t-on
https://www.orangecyberdefense.com/fr/insights/blog/gestion-des-vulnerabilites/vulnerabilites-de-quoi-parle-t-on
https://www.kb.cert.org/vuls/
https://www.cyberuniversity.com/post/attaque-informatique-en-quoi-ca-consiste
https://www.cyberuniversity.com/post/attaque-informatique-en-quoi-ca-consiste
https://guides.nyu.edu/data/llm
https://admantium.com/blog/llm01_introduction_to_llms/
https://openai.com/
https://ai.google/
https://www.ai.meta.com/


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

Fig. 4. The evolutionary tree of modern LLMs.

In 2021, Wu presented a literature review [26] on detection
of software vulnerability using NLP technology. This paper
that focused on static analysis, reviewed techniques to segment
source code, extract features and modeling training. BERT
[27], GPT [28] and their extended models have been presented
as best models in NLP fields. Code being a kind of text, it is
logic to think that these models can be used to detect software
vulnerability.

Szabó and Bilicki [29] proposed a new approach to web
application security using GPT language models for source
code inspection. After showing the increasing use of AI in
software development, authors formulated a categorization to
determine the nature of the sensitive data and the application’s
vulnerability in a source code and then developed a method
based on the GPT API. The targeted vulnerability in this study
is CWE-653: Improper Isolation or Compartmentalization. The
dataset used consisted of Angular projects collected from
GitHub. The model trained on GPT-4 with an accuracy of
88.76% confirms the hypothesis that LLMs have the ability to
analyse and interpret software source code. This study opens
up prospects for research into the detection of other types of
vulnerability using LLMs.

In 2021 Ranade et al. [30] developed CyBERT to represent
textual data from the cyber security domain. CyBERT is a
domain-specific BERT model. CyBERT is a BERT model
fine-tuned with Masked Language Modeling (MLM) and an
extended cybersecurity vocabulary. The model has been trained
with a large corpus of text from Cyber Threat Intelligence. This
model provides cyber security professionals the ability to per-
form tasks such as Named Entity Recognition (NER), multi-
label classification of attacks based on a textual description of
the vulnerability. CyBERT outperforms BERT-base model in
these tasks. This demonstrates that fine-tuning has enabled the
model to learn terms and concepts of cyber security, as well
as the relationships between them.

Ameri et al. [31] also proposed CyBERT. In this paper,
CyBERT stands for Cybersecurity Claim Classification by
Fine-Tuning the BERT Language Model. This classification
is based on sequences collected from the documentation of

industrial control system devices. The experimental study
carried out enabled the hyper-parameters to be optimised and
led to a good choice of model architecture. This study led
to the conclusion that fine-tuning a BERT model with 2
hidden dense layers and a classification layer achieves a greater
accuracy. The resulting CyBERT model with an accuracy of
0.954 outperforms other language models (GPT-2, ULMFiT,
ELMo+NN, ELMo+CNN, ELMo+BiLSTM, ELMo+LSTM)
as well as other neural networks (CNN, LSTM, BiLSTM).

In 2022, Aghaei et al. [32] developed SecureBERT, a
domain-specific language model for cybersecurity. Secure-
BERT is based on the architecture of RoBERTa (trained with
RoBERTa-base) with weight adjustments of pre-trained model.
SecureBERT has a good understanding of the semantics of
words and phrases. In addition to the pre-trained tokenizer,
authors have created a customized tokenizer specific to the
cyber security domain, which preserves generic vocabulary
while taking into account new tokens emerging from the cyber
security domain. SecureBERT has been evaluated on several
tasks such as cybersecurity masked word prediction, named
entity recognition and sentiment analysis. Evaluation on this
last task is proof that SecureBERT has a good understanding
of generic language. SecureBERT outperforms others models
(RoBERTa-base, RoBERTa-large, SciBERT).

Bokolo et al. [33] conducted a study on web attack de-
tection using DistilBERT, RNN and LSTM. Using a dataset
consisting of 33,000 http requests, several experiments were
carried out: classification of attacks using URL, the content of
the Body or the user data. RNN, with an accuracy of 94%,
outperformed others models.

Gallus et al. [34] conducted an experimental penetration
testing study on a web application. Thanks to its perfect
understanding of web technologies and security principles,
chatGPT was used as a penetration test guide. By following
the procedures described by chatGPT, the authors were able to
retrieve information about the targeted web application, such as
the version of WordPress and the theme used. This information
was used to discover vulnerabilities in the target application.
Using chatGPT’s instructions, the testers extracted the list of
the application’s user accounts as well as the administrator’s
account. This experiment shows that chatGPT can be used
as a guide when testing vulnerabilities in web applications.
However, malicious users, even with little technical knowledge,
could reproduce chatGPT’s instructions and perpetrate attacks
on web applications.

Sakaoglu Sinan [35] presented KARTAL: Web Application
Vulnerability Hunting Using Large Language Models; Novel
method for detecting logical vulnerabilities in web applications
with finetuned Large Language Models. The targeted vulner-
ability is Broken access control, more precisely:

• CWE-639 Authorization Bypass Through User-
Controlled Key

• CWE-209: Generation of Error Message Containing
Sensitive Information (Exposure of Sensitive Informa-
tion)

GPT-3.5 was used to generate the dataset, followed by
manual labelling for greater accuracy. A total of 1780 samples
were annotated, containing at least 200 samples of each class

www.ijacsa.thesai.org 1395 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

(benign, CWE-639, CWE-209). The pre-trained models MP-
Net, DistillRoBerTa and MiniLM were used for fine-tuning.
The best model (all-mpnet-base-v2) obtained an accuracy of
87.19%, F1-score of 0.82 and MCC (Matthew’s correlation
coefficient) of 0.7.

Hanif et al. [36] presented VulBERTa, a deep learning
approach to detect security vulnerabilities in C/C++ source
code at function-level granularity. This approach pre-trains a
RoBERTa model with a custom tokenisation pipline of source
code collected from open-source C/C++ projects. The pre-
trained model was fine-tuned for vulnerability detection with
alternatively a Multi-Layer Perceptron (VulBERTa-MLP) and
a Convolutional Neural Network (VulBERT-CNN). The model
outperforms existing approaches on binary and multi-class vul-
nerability classification across different datasets (Vuldeepecker
[19], Draper [37], REVEAL [38] and muVuldeepecker [39])
and benchmarks (CodeXGLUE [40] and D2A [41])

Kim et al. [42] developped VulDeBERT, a vulnerability
detection model for C/C++ source code by fine-tuning BERT
model. VulDeBERT analyses code, extracts well-represented
abstract code fragments and generates code gadgets that will
be embedded to feed BERT model. VulDeBERT focuses on
security vulnerabilities related to system function calls. it
outperforms VulDeePecker [19] in detecting two vulnerability
types (CWE-119 and CWE-399).

Table I summarizes related works, with an analysis of
strengths and weaknesses. Overall, the current state of the
literature shows interest in the detection of web application
vulnerabilities using LLMs. However, we note that there is
more research on adapting LLMs to the cybersecurity field
[30], [31], [32]. These work show that, thanks to fine-tuning,
LLMs are able to understand the semantics of words in a
text dealing with cybersecurity. LLMs have shown excellent
performance in NLP downstream tasks: cybersecurity NER,
English sentiment analysis, etc. In addition, we note that some
studies have used LLMs or deep neural networks to detect
software vulnerabilities in C/C++ source code, with difficulties
of generalization to other programming languages[36], [42].
However, a few studies have focused on detecting vulnerabil-
ities in web applications [29], [35]. Finally, we also note that
BERT and GPT remain the most widely used language models
for cybersecurity adaptation and vulnerability detection [43].
It will be more useful to experiment with other types of LLMs
and conduct a comparative study based on their architecture
in order to address the weaknesses of existing works.

V. METHODOLOGY

Detecting software vulnerabilities by using LLMs has pro-
duced interesting results, despite the difficulties of generalising
the models to other programming languages, particularly web
languages. In order to fully exploit the potential of LLMs
for detecting vulnerabilities in web applications, we propose a
three-stage approach:

• Exploration

• Experimentation

• Evaluation

The exploration consists of a literature review on the use
of LLMs in the field of cyber security, more specifically the

detection of vulnerabilities in web applications. The literature
review (summarised in the previous section) carried out using
scientific publications (articles, web articles, dissertations, etc.)
enabled us to identify the most widely used and best perform-
ing LLMs, types of data used and sources of data collection.
Although our literature review revealed a predominance of the
BERT and GPT models and their variants, our approach defines
criteria for choosing LLMs. These criteria are based on the
following points:

• Type of licence : open-source or closed-source

• LLM’s architecture: encoder-decoder, encoder-only,
decoder-only

• Publication’s year

• Performance of models evaluated on the same
datasets21

The Table II shows a short list of LLMs selected on the
basis of the above criteria.

Experimentation consists of defining the neural network
architecture and the network learning strategy, training the
model and optimising it to obtain better performance. The
experimentation stage is designed to be iterative, with the
hyper-parameters of models being adjusted and the perfor-
mance of models being continuously evaluated. Although the
performance of NLP tasks is improved by pre-training the
basic models, it is important to note that the process requires
enormous hardware resources (computing power) and large
corpus of text. The fine-tuning process, on the other hand, can
be carried out on small datasets and does not require a large
corpus of text [44]. In a context where hardware resources and
training data are limited, it is advisable to adopt a fine-tuning
strategy.

The evaluation stage enables a comparative analysis of the
approach with the results of the state of the art; to identify
the strengths and limitations of the proposed approach while
studying the applicability of the model in a real environment.

Fig. 5 summarises the methodology described above.

VI. CONCLUSION AND FUTURE WORKS

As the number of Internet users increases, web applications
are ubiquitous in all sectors of activity. Unfortunately, this pro-
liferation of web platforms is accompanied by major security
risks. Web applications are subject to numerous vulnerabilities
reported in several vulnerability databases. Many approaches
are proposed in the literature to detect these vulnerabilities. In
this paper, after an overview of different approaches, we focus
on DL techniques applicable to web vulnerability detection.
We presented difficulties and challenges of these approaches to
obtain better results and detect several types of vulnerabilities.
Finally, we presented the potential of Large Language Models
in the cybersecurity domain and proposed an approach for web
vulnerabilities detection.

Application of this approach, subdivided into three stages
(exploration, experimentation and evaluation), will enable re-
searchers to carry out experimental studies, starting with the

21https://admantium.com/blog/llm02 gen1 overview/

www.ijacsa.thesai.org 1396 | P a g e

https://admantium.com/blog/llm02_gen1_overview/


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

TABLE I. ANALYSIS OF STRENGTHS AND WEAKNESSES OF RELATED WORK

Paper Topic covered Models Strengths Weaknesses
[26] Literature review on vulnera-

bility detection using NLP
BERT, GPT Review of vulnerabilities detection using

neural network; Good description of models
Segmentation of code source and feature extrac-
tion; No critical analysis of models

[29] CWE-635 vulnerabilities de-
tection in Angular applica-
tions

GPT-3.5, GPT-4 via API call Classification of sensitive data; Determining
protection levels

Depend on prompt’s quality; No comparative
study with other LLMs; Results inspected man-
ually for evaluation

[30] Cybersecurity domain adapta-
tion

BERT + MLM Fine-tuning
with text in cybersecurity do-
main

Cybersecurity NER; recognizing a vulnera-
bility from a text description

May require high computational burden with the
size of extended vocabulary

[31] CyBERT: Cybersecurity
Claim Classification by Fine-
Tuning the BERT Language
Model

CyBERT (fine-tuned BERT),
GPT-2

Hyperparameters tuning; Comparaison with
other DL models

Require high computing resources (GPUs mem-
ory); Not easy to reproduce

[32] SecureBERT: A Domain-
Specific Language Model for
Cybersecurity

RoBERTa + Customized to-
kenization + Altering pre-
trained weights + Fine-tuning
with text in cybersecurity do-
main

Cybersecurity NER; English sentiment anal-
ysis

Require high computing resources (GPUs mem-
ory)

[35] CWE-639 and CWE-209 vul-
nerabilities detection

all-mpnet-base-v2, all-
distilroberta-v1, all-MiniLM-
L12-v2

Effectiveness of fine-tuning LLMs with small
size, Acceptable inference performance

Data depend on prompt’s quality; May require
high computational burden with the sequence
length; Only open-source LLMs are used in this
study

[36] VulBERTa: Detection of soft-
ware vulnerabilities in C/C++
source code

Pre-training (RoBERTa +
Custom tokenization) + Fine-
tuning

Well-described methodology Require high computing resources (GPUs mem-
ory), High false positive rate

[42] VulDeBERT: CWE-119 and
CWE-399 vulnerabilities de-
tection in C/C++ source code

BERT + Fine-tuning Improving methods to extract code gadgets;
Models outperform traditional DL models

Require high computing resources (GPUs mem-
ory); Specific on C/C++ programming languages;
Focus on two vulnerabilities

TABLE II. LIST OF SELECTED LLMS

Open source Closed source Encoder-Decoder Encoder-Only Decoder-Only Publication’s year
BERT x x 2019

RoBERTa x x 2019

T5 x x 2019

FLAN T5 x x 2022

GPT-3.5 x x 2022

XLNet x x 2020

BLOOM x x 2022

LLaMA x x 2023

PaLM x x 2022

MPNet x x 2020

Fig. 5. Overview of methodological framework.

constitution of the dataset, the choice of model architecture and
culminating in performance evaluation. In terms of research
perspectives, we will:

• Experiment with our LLM-based approach to detect-
ing web attacks from a public dataset.

• Implement a data collection strategy to get malicious
URLs from Burkinabe cyberspace in order to build a
local dataset.

• Use LLMs to detect malicious URLs from the local
dataset.

• Analyze and discuss results in terms of quality of the
dataset and the performance of LLMs models in web
attacks detection.

REFERENCES

[1] R. L. Alaoui and E. H. Nfaoui, ‘Deep Learning for Vulnerability and
Attack Detection on Web Applications: A Systematic Literature Review’,
Future Internet, vol. 14, no. 4, 2022, doi: 10.3390/fi14040118.

www.ijacsa.thesai.org 1397 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

[2] S. R. Nana, D. Bassolé, J. S. Dimitri Ouattara, and O. Sié, ‘Character-
ization of Malicious URLs Using Machine Learning and Feature Engi-
neering’, in Innovations and Interdisciplinary Solutions for Underserved
Areas, vol. 541, A. Seeam, V. Ramsurrun, S. Juddoo, and A. Phokeer,
Eds., in Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol. 541. , Cham:
Springer Nature Switzerland, 2024, pp. 15–32. doi: 10.1007/978-3-031-
51849-2 2.

[3] M. Noman, M. Iqbal, and A. Manzoor, ‘A Survey on Detection and
Prevention of Web Vulnerabilities’, International Journal of Advanced
Computer Science and Applications (IJACSA), vol. 11, no. 6, 2020, doi:
10.14569/IJACSA.2020.0110665.

[4] F. Faisal Fadlalla and H. T. Elshoush, ‘Input Validation Vulnerabilities
in Web Applications: Systematic Review, Classification, and Analysis of
the Current State-of-the-Art’, IEEE Access, vol. 11, pp. 40128–40161,
2023, doi: 10.1109/ACCESS.2023.3266385.

[5] Z. Zhioua, S. Short, and Y. Roudier, ‘Static Code Analysis for Software
Security Verification: Problems and Approaches’, in 2014 IEEE 38th In-
ternational Computer Software and Applications Conference Workshops,
Jul. 2014, pp. 102–109. doi: 10.1109/COMPSACW.2014.22.

[6] P. J. C. Nunes, J. Fonseca, and M. Vieira, ‘phpSAFE: A Security Analysis
Tool for OOP Web Application Plugins’, in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, Jun.
2015, pp. 299–306. doi: 10.1109/DSN.2015.16.

[7] P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M.
Vieira, ‘On Combining Diverse Static Analysis Tools for Web Security:
An Empirical Study’, in 2017 13th European Dependable Computing
Conference (EDCC), Geneva: IEEE, Sep. 2017, pp. 121–128. doi:
10.1109/EDCC.2017.16.

[8] M. Siavvas, E. Gelenbe, D. Kehagias, and D. Tzovaras, ‘Static Analysis-
Based Approaches for Secure Software Development: First International
ISCIS Security Workshop 2018, Euro-CYBERSEC 2018, London, UK,
February 26-27, 2018, Revised Selected Papers’, 2018, pp. 142–157. doi:
10.1007/978-3-319-95189-8 13.

[9] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, ‘jÄk: Using
Dynamic Analysis to Crawl and Test Modern Web Applications’, in
Research in Attacks, Intrusions, and Defenses, H. Bos, F. Monrose,
and G. Blanc, Eds., Cham: Springer International Publishing, 2015, pp.
295–316. doi: 10.1007/978-3-319-26362-5 14.

[10] A. Alhuzali, R. Gjomemo, B. Eshete, and V. N. Venkatakrishnan,
‘NAVEX: Precise and Scalable Exploit Generation for Dynamic Web Ap-
plications’, in the Proceedings of the 27th USENIX Security Symposium,
August 15–17, 2018, Baltimore, MD, USA. ISBN 978-1-939133-04-5

[11] J. Park, Y. Choo, and J. Lee, ‘A Hybrid Vulnerability Analysis Tool
Using a Risk Evaluation Technique’, Wireless Pers Commun, vol. 105,
no. 2, pp. 443–459, Mar. 2019, doi: 10.1007/s11277-018-5959-z.

[12] G. Pellegrino and D. Balzarotti, ‘Toward Black-Box Detection of Logic
Flaws in Web Applications’, in Proceedings 2014 Network and Dis-
tributed System Security Symposium, San Diego, CA: Internet Society,
2014. doi: 10.14722/ndss.2014.23021.

[13] M. S. Aliero, I. Ghani, K. N. Qureshi, and M. F. Rohani, ‘An algorithm
for detecting SQL injection vulnerability using black-box testing’, J
Ambient Intell Human Comput, vol. 11, no. 1, pp. 249–266, Jan. 2020,
doi: 10.1007/s12652-019-01235-z.

[14] Sawadogo, L.M., Bassolé, D., Koala, G., Sié, O. (2021). Intrusions
Detection and Classification Using Deep Learning Approach. In: Faye,
Y., Gueye, A., Gueye, B., Diongue, D., Nguer, E.H.M., Ba, M. (eds)
Research in Computer Science and Its Applications. CNRIA 2021.
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol 400. Springer, Cham. doi:
10.1007/978-3-030-90556-9 4.

[15] B. R. Dawadi, B. Adhikari, and D. K. Srivastava, ‘Deep Learn-
ing Technique-Enabled Web Application Firewall for the Detection of
Web Attacks’, Sensors, vol. 23, no. 4, Art. no. 4, Jan. 2023, doi:
10.3390/s23042073.

[16] M. Alghawazi, D. Alghazzawi, and S. Alarifi, ‘Detection of SQL
Injection Attack Using Machine Learning Techniques: A Systematic
Literature Review’, Journal of Cybersecurity and Privacy, vol. 2, no.
4, Art. no. 4, Dec. 2022, doi: 10.3390/jcp2040039.

[17] H. Maurel, S. Vidal, and T. Rezk, ‘Statically identifying XSS using

deep learning’, Science of Computer Programming, vol. 219, p. 102810,
Jul. 2022, doi: 10.1016/j.scico.2022.102810.

[18] R. Lamrani Alaoui and E. H. Nfaoui, ‘Cross Site Scripting Attack
Detection Approach Based on LSTM Encoder-Decoder and Word Em-
beddings’, International Journal of Intelligent Systems and Applications
in Engineering(IJISAE), vol. 11, pp. 277–282, Feb. 2023.

[19] Z. Li et al., ‘VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection’, in Proceedings 2018 Network and Distributed
System Security Symposium, San Diego, CA: Internet Society, 2018.
doi: 10.14722/ndss.2018.23158.

[20] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, ‘SySeVR: A
Framework for Using Deep Learning to Detect Software Vulnerabilities’,
IEEE Trans. Dependable and Secure Comput., vol. 19, no. 4, pp.
2244–2258, Jul. 2022, doi: 10.1109/TDSC.2021.3051525.

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
‘Language Models are Unsupervised Multitask Learners’, OpenAI,
2019. [Online]. Available: https://d4mucfpksywv.cloudfront.net/better-
language-models/language-models.pdf

[22] R. Akrout, E. Alata, M. Kaâniche, and V. Nicomette, ‘Identification de
vulnérabilités Web et génération de scénarios d’attaque’, Institut National
des Sciences Appliquées de Toulouse (INSA Toulouse), Thesis, 2012.
[Online]. Available: https://theses.hal.science/tel-00782565

[23] M. Goyal, S. Varshney and E. Rozsa, ‘What is generative AI, what are
foundation models, and why do they matter? - IBM Blog’. Accessed:
Apr. 22, 2024. [Online]. Available: https://www.ibm.com/blog/what-is-
generative-ai-what-are-foundation-models-and-why-do-they-matter/

[24] A. Tam, ‘What are Large Language Models’, MachineLearn-
ingMastery.com. Accessed: Apr. 16, 2024. [Online]. Available:
https://machinelearningmastery.com/what-are-large-language-models/

[25] J. Yang et al., ‘Harnessing the Power of LLMs in Practice:
A Survey on ChatGPT and Beyond’. arXiv, Apr. 27,
2023. doi: 10.48550/arXiv.2304.13712. [Online]. Available:
https://doi.org/10.1145/3649506

[26] J. Wu, ‘Literature review on vulnerability detection using
NLP technology’. arXiv, Apr. 22, 2021. [Online]. Available:
https://arxiv.org/abs/2104.11230.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding’, in
Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and
T. Solorio, Eds., Minneapolis, Minnesota: Association for Computational
Linguistics, Jun. 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

[28] A. Radford and K. Narasimhan, ‘Improving Language
Understanding by Generative Pre-Training’, 2018.[Online].
Available: https://www.semanticscholar.org/paper/Improving-Language-
Understanding-by-Generative-Radford-Narasimhan/

[29] Z. Szabó and V. Bilicki, ‘A New Approach to Web Application Security:
Utilizing GPT Language Models for Source Code Inspection’, Future
Internet, vol. 15, no. 10, Art. no. 10, Oct. 2023, doi: 10.3390/fi15100326.

[30] P. Ranade, A. Piplai, A. Joshi, and T. Finin, ‘CyBERT: Contextualized
Embeddings for the Cybersecurity Domain’, in 2021 IEEE International
Conference on Big Data (Big Data), Orlando, FL, USA: IEEE, Dec.
2021, pp. 3334–3342. doi: 10.1109/BigData52589.2021.9671824.

[31] K. Ameri, M. Hempel, H. Sharif, J. Lopez Jr., and K. Perumalla,
‘CyBERT: Cybersecurity Claim Classification by Fine-Tuning the BERT
Language Model’, Journal of Cybersecurity and Privacy, vol. 1, no. 4,
Art. no. 4, Dec. 2021, doi: 10.3390/jcp1040031.

[32] E. Aghaei, X. Niu, W. Shadid, and E. Al-Shaer, “Securebert: A domain-
specific language model for cybersecurity,” in Security and Privacy in
Communication Networks, F. Li, K. Liang, Z. Lin, and S. K. Katsikas,
Eds. Cham: Springer Nature Switzerland, 2023, pp. 39–56.

[33] B. G. Bokolo, L. Chen, and Q. Liu, ‘Detection of Web-Attack using
DistilBERT, RNN, and LSTM’, in 2023 11th International Symposium
on Digital Forensics and Security (ISDFS), May 2023, pp. 1–6. doi:
10.1109/ISDFS58141.2023.10131822.

[34] P. Gallus, M. Štěpánek, T. Ráčil, and P. Františ, ‘Generative Neural
Networks as a Tool for Web Applications Penetration Testing’, in 2023
Communication and Information Technologies (KIT), Oct. 2023, pp. 1–5.
doi: 10.1109/KIT59097.2023.10297109.

www.ijacsa.thesai.org 1398 | P a g e

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://theses.hal.science/tel-00782565
https://www.ibm.com/blog/what-is-generative-ai-what-are-foundation-models-and-why-do-they-matter/
https://www.ibm.com/blog/what-is-generative-ai-what-are-foundation-models-and-why-do-they-matter/
https://machinelearningmastery.com/what-are-large-language-models/
https://doi.org/10.1145/3649506
http://arxiv.org/abs/2104.11230
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 7, 2024

[35] S. Sakaoglu, “Kartal: Web application vulnerability hunting using
large language models novel method for detecting logical vulnerabili-
ties in web applications with finetuned large language models”, Mas-
ter thesis, 2023. [Online]. Available: https://urn.fi/URN:NBN:fi:aalto-
202308275121

[36] H. Hanif and S. Maffeis, ‘VulBERTa: Simplified Source Code Pre-
Training for Vulnerability Detection’, in 2022 International Joint
Conference on Neural Networks (IJCNN), Jul. 2022, pp. 1–8. doi:
10.1109/IJCNN55064.2022.9892280.

[37] R. L. Russell et al., ‘Automated Vulnerability Detection in Source Code
Using Deep Representation Learning’. arXiv, Nov. 27, 2018. [Online].
Available: https://arxiv.org/pdf/1807.04320

[38] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet?” IEEE Transactions
on Software Engineering, vol. 48, no. 9, pp. 3280–3296, 2022. doi:
10.1109/TSE.2021.3087402

[39] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, ‘µVulDeePecker: A Deep
Learning-Based System for Multiclass Vulnerability Detection’, IEEE
Transactions on Dependable and Secure Computing, vol. PP, pp. 1–1,
Sep. 2019, doi: 10.1109/TDSC.2019.2942930.

[40] S. Lu et al., ‘CodeXGLUE: A Machine Learning Benchmark

Dataset for Code Understanding and Generation’. arXiv, Mar.
16, 2021. doi: 10.48550/arXiv.2102.04664. [Online]. Available:
https://doi.org/10.48550/arXiv.2102.04664

[41] Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo,
A. Morari, and Z. Su, “D2a: A dataset built for ai-based vulnerability
detection methods using differential analysis,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). Los Alamitos, CA, USA, 2021, pp. 111–120.
doi: 10.1109/ICSE-SEIP52600.2021.00020

[42] S. Kim, J. Choi, M. E. Ahmed, S. Nepal, and H. Kim, ‘VulDeBERT: A
Vulnerability Detection System Using BERT’, in 2022 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW),
Oct. 2022, pp. 69–74. doi: 10.1109/ISSREW55968.2022.00042.

[43] F. N. Motlagh, M. Hajizadeh, M. Majd, P. Najafi, F. Cheng,
and C. Meinel, ‘Large Language Models in Cybersecurity:
State-of-the-Art’. arXiv, Jan. 30, 2024. [Online]. Available:
https://arxiv.org/abs/2402.00891

[44] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune bert for text
classification?” in Chinese Computational Linguistics, M. Sun, X. Huang,
H. Ji, Z. Liu, and Y. Liu, Eds. Cham: Springer International Publishing,
2019, pp. 194–206. https://doi.org/10.1007/978-3-030-32381-3 16

www.ijacsa.thesai.org 1399 | P a g e

https://urn.fi/URN:NBN:fi:aalto-202308275121
https://urn.fi/URN:NBN:fi:aalto-202308275121
https://arxiv.org/pdf/1807.04320
https://doi.org/10.48550/arXiv.2102.04664
https://arxiv.org/abs/2402.00891

	Introduction
	Background Study
	Vulnerabilities in Web Applications
	Existing Countermeasures
	Secure programming
	Static analysis
	Dynamic analysis
	Black Box testing
	Intrusion detection systems

	Deep Learning Approach in Web Vulnerabilities Detection

	Concepts
	Vulnerability
	Attack and Intrusion
	Large Language Models

	Related Works
	Methodology
	Conclusion and Future Works
	References

