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Abstract—Due to the efficiency and reliability of delivering
goods by ships, maritime transport has been the backbone of
global trade. In normal circumstances, a ship’s voyage is expected
to assure the safety of life at sea, efficient and safe navigation,
and protection of the maritime environment. However, ships
may demonstrate unexpected behavior due to certain situations,
such as machinery malfunction, unexpected bad weather, and
other emergencies, as well as involvement in illicit activities.
These situations pose threats to the safety and security of
maritime transport. The expansion of the threats makes manual
surveillance inefficient, which involves extensive labor and is
prone to oversight. Thus, automated surveillance systems are
required. This paper proposes a method to detect the unexpected
behavior of ships based on the Automatic Identification System
(AIS) data. The method exploits the geometrical features of AIS-
generated trajectories to identify unexpected trajectory, which
could be a deviation from the common routes, loitering, or
both deviating and loitering. It introduces novel formulas for
calculating trajectory redundancy and curvature features. The
DBSCAN clustering is applied based on the features to classify
trajectories as expected or unexpected. Unlike existing methods,
the proposed technique does not require trajectory-to-image
conversion or training of labeled datasets. The technique was
tested on real-world AIS data from the South China Sea, Western
Indonesia, Singapore, and Malaysian waters between July 2021
and February 2022. The experimental results demonstrate the
method’s feasibility in detecting deviating and loitering behaviors.
Evaluation on a labeled dataset shows superior performance
compared to existing loitering detection methods across multiple
metrics, with 99% accuracy and 100% precision in identifying
loitering trajectories. The proposed method aims to provide
maritime authorities and fleet owners with an efficient tool for
monitoring ship behaviors in real time regarding safety, security,
and economic concerns.
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I. INTRODUCTION

Global trade has been heavily reliant on maritime transport.
More than 80 percent of the worldwide merchandise trade
volume is delivered by ships, which are considered an eco-
nomical, energy-efficient, and reliable long-distance means of
transportation [1]. To ensure its economic and energy-efficient
advantages, the voyage of a ship needs to be carefully planned.

According to the Guideline of Voyage Planning mandated
by the International Maritime Organization (IMO), the voyage
of a ship is a deliberately planned event that should assure
the safety of life at sea, efficient and safe navigation, and
protection of the marine environment [2]. For the sake of

simplicity, this paper uses the term expected voyage to refer
to such a voyage that is compliant with the guideline.

In normal circumstances, any ship will not make any
maneuver that endangers people’s lives at sea. They will
navigate as efficiently as possible in a safe manner, which
means that they are to take the shortest and fastest route
whenever it is safe to do so. They will not deliberately
conduct any activity that causes pollution or damage to the
marine environment. Particularly for vessels of types of cargo
and tanker, constrained by strict regulations, economic, and
safety requirements, they should be the most likely to perform
the expected voyage. However, ships might not follow the
expected voyage due to certain situations, such as machinery
malfunction, unexpected bad weather, and other emergencies,
as well as involvement in illicit activities. These situations pose
threats to maritime security, and the threats are continuously
expanding, making automated surveillance systems critically
required in the maritime domain [3]. In addition, the 12-
month ship anomaly data provided by the Indonesian Coast
Guard consists of nearly 400 ships that demonstrate anomalous
behaviors such as loitering, deviation from common routes,
and AIS on/off1. Roughly 97% of the ships are of types cargo
and tanker, which are the core of the international maritime
transport. The anomalous behaviors were identified manually
by experts, which means the actual number of the anomalous
ships could be higher due to the possibility of oversight.
Thus, an automated means of monitoring and examining ship
voyages is necessary to confirm compliance with the expected
voyage and preserve the benefits of maritime transport.

Meanwhile, due to the worldwide adoption of the sea-
borne Automatic Identification System (AIS) on seagoing
vessels, AIS has emerged as a potential leading source of
ship voyage data. AIS shares navigational data among vessels,
terrestrial base stations, and/or satellites. The data consists
of static, dynamic, and voyage-related information. The static
information includes ship name, type, and MMSI. Ship posi-
tion, position timestamp, speed over ground (SOG), course
over ground (COG), heading, and navigational status are
the dynamic information, while destination, estimated time
of arrival, and draught are voyage-related. MMSI stands for
Maritime Mobile Service Identity, a unique nine-digit number
to uniquely identify a ship or a coast radio station [4]. AIS
device transmits messages containing the information every 2
to 10 seconds for ships moving faster than 3 knots and every
3 minutes when they are at anchor or moored and not moving
faster than 3 knots [5].

1The data were granted upon a formal request from the authors.
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The real-time feature of AIS has made it possible for
maritime stakeholders to utilize AIS as a monitoring tool.
The abundant availability and straightforward accessibility of
AIS data have facilitated researchers to develop methods for
analyzing ships’ tracks and trajectories to comprehend ship
behavior. The methods are designated for various tasks, such
as anomalous behavior detection [6], trajectory classification
[7][8][9], construction of port performance indicators [10][11],
and building real-time indicators of world seaborne trade [12].

In this paper, a method to detect ships that do not follow
the expected voyage is proposed. The method exploits the ge-
ometrical features of the AIS-generated trajectories to identify
unexpected trajectories, representing the routes of ships that
do not comply with the expected voyage. Specifically, the
unexpected trajectory could be a trajectory that deviates from
the common routes, a loitering trajectory, or a trajectory that
is both loitering and deviates from the common navigation
routes.

Existing studies take two approaches to classifying vessels’
trajectories based on AIS data: analyzing the spatiotemporal
characteristics of the AIS tracks and finding patterns by study-
ing the geometrical features of the AIS-generated trajectories.
Although tankers and cargo vessels are the core of international
maritime transport [13], few studies address these types of
ships for trajectory classification [9]. Most works put their
attention on the trajectory of fishing vessels, such as the works
of references [14] and [15]. Furthermore, the approaches that
examine the geometrical features of the AIS-generated vessels’
trajectories often involve the conversion of trajectory data
into digital images and rely on the trajectory classification on
manually labeled datasets [7], [16], [17].

This study takes the geometrical approach to classify ships
trajectories. The approach calculates the rate of redundancy
and curvature of all trajectories of interest. It proposes novel
formulas for the calculation. Next, a weighted DBSCAN
(Density-based Spatial Clustering of Application with Noise)
clustering [18] is applied to the trajectories to classify trajec-
tories that belong to the common voyages and those of the
unexpected trajectory. The proposed method does not involve
the conversion of trajectories into images and does not require
any labeled datasets.

The purpose of this work is to provide a straightforward
unexpected trajectory detection technique suitable to real-time
surveillance systems for a designated maritime area.

It is intended to contribute in two ways: 1) help maritime
authorities to efficiently identify unexpected behavior of ves-
sels within their surveillance area, and 2) support merchant
fleet owners with online monitoring tools to ensure that all of
their ships are following the known efficient and safe voyage
routes.

The remainder of this paper is organized as follows. Section
II reviews relevant literature. Then, the proposed method
is described in Section III followed by the presentation of
the experiment results and evaluation in Section IV. Finally,
Section V concludes this article and specifies the future tasks
to further improve this work.

II. RELATED WORKS

Luo et al. classify ship trajectories into five types: 1)
normal navigation trajectory, 2) anchoring or mooring tra-
jectory, 3) navigation trajectory with deviation, 4) trajectory
of missing AIS signal, and 5) irregular trajectory [9]. The
normal navigation trajectory is defined as the trajectory of
a ship traveling from the departure point to the destination
port without redundancy, deviation of course, or loss of AIS
transmission. In other words, any trajectories with redundancy,
deviation, or loss of AIS transmission are deemed as not
normal. Anchoring and mooring trajectories belonging to the
ship-stopping behavior are discussed comprehensively in the
work of Yan et al. [19]. In this paper, these stopping trajectories
are removed by employing the method proposed in reference
[11], [20], and only the trajectory between the start and end of
a ship voyage is processed to identify unexpected trajectory.
Navigation trajectory with deviation and trajectory of missing
AIS signal refers to the types of anomalies in maritime traffic
proposed by Lane et al. [21], whereas the irregular trajectory
corresponds to the loitering trajectory discussed in references
[16] and [22]. In this paper, any trajectories with loitering, or
deviation, or having both of them are determined as unexpected
trajectory.

Luo et al. employ an ensemble classifier, a combination of
Naive Bayes and Random Forest classifiers, to classify the five
types of vessel trajectories. The approach adopts the feature-
extraction submodule of the Tsfresh package to automatically
extract spatiotemporal features from vessel trajectories [23]. In
their experiment, they rely on a labeled dataset to conduct the
trajectory classification. However, their work does not provide
the information on how and by who the dataset was labeled.
In addition, each trajectory is given one label and grouped
into one type of trajectory. In the real world, a trajectory
may belong to more than one category, such as one that both
deviates from the common routes and loiters. Thus, in this
study, the unsupervised learning approach is selected, and each
input trajectory is classified into an expected trajectory or an
unexpected trajectory, where the unexpected trajectory may be
deviating or loitering, or exhibiting both behaviors. In other
words, this study does not involve the labor of dataset labeling
and does not force the classification into the provided labels.

A technique to specifically detect loitering trajectory was
proposed by Zhang et al. which introduce the concept of trajec-
tory redundancy [16]. The formula to calculate the redundancy
is as defined in Eq. 1. However, the method is designated
to classify the trajectories belonging to the types of vessels
that consider loitering a normal behavior in their nature of
operation. These types of vessels include fishing ships, Search
and Rescue (SAR) vessels, tug boats, survey ships, patrol
boats, and ships of military operations. The method does not
recognize loitering as an abnormal or unexpected behavior.

Identifying the gap, Wijaya and Nakamura proposed a loi-
tering detection method targeting vessels that do not normally
engage in loitering movement, such as tankers and cargo ships
[22]. They define loitering as a type of anomaly in maritime
traffic. The method exploits the spatiotemporal features of the
AIS tracks, such as speed, course change, heading change,
and the geodesic distance between two consecutive tracks. It
identifies the loitering trajectory along with its score, which de-
termines how severe the loitering is. The method’s implemen-
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tation in the maritime surveillance system will facilitate the
operators to sort the detected loitering vessels based on their
priority (loitering score). The evaluation experiment proves
that the method outperforms the loitering detection technique
proposed by Zhang et al. in all metrics (Table I). However, the
method is specifically designated to detect loitering trajectory
while the unexpected trajectory defined in this paper is not
only about loitering. It has a wider scope to include loitering
and deviating trakcs.

III. PROPOSED METHODS

This study defines unexpected trajectory as a trajectory
constructed with the AIS tracks of a ship voyage that does
not follow the IMO’s Guideline of Voyage Planning.

According to the guideline, the voyage of a ship should
assure: 1) the safety of life at sea, 2) efficient and safe
navigation, and 3) protection of the marine environment [2].

Considering the efficiency and safety of navigation, ships
should take the most straightforward, shortest, and fastest
route whenever it is safe to do so. This ensures efficiency
in both cost and time. Thus, any ship trajectory that is not
straightforward or demonstrates redundancy is considered an
unexpected trajectory. It could be a trajectory that deviates
from the common routes, a loitering trajectory, or a trajectory
that is both loitering and deviates from the common navigation
routes.

Zhang et al. introduce the concept of trajectory redun-
dancy(TR) as a formula for detecting loitering trajectories
from AIS tracks [16]. Eq. (1) represents the formula, where
TR is denoted by ψ, D is the length of ship trajectory, and
P is the perimeter of the minimum bounding rectangle of
ship trajectory. The larger ψ is the greater the possibility of
loitering, and the threshold is ψmin = 1.

Fig. 1 shows three different trajectories in the same size of
the spatial range (all have the same P ) with ψ < 1, ψ ≈ 1,
and ψ > 1.

ψ = D/P (1)

Since the TR calculates redundancy by comparing the
length of trajectory with the perimeter of the trajectory’s
bounding box, a redundant trajectory along the diagonal of
the bounding box may result in ψ < 1. In other words, it may
not be considered as redundant or loitering.

Thus, in this paper, the trajectory redundancy is calculated
by comparing the length of trajectory, denoted by D, with
the length of the diagonal of the trajectory’s bounding box,
denoted by L. Eq. 2 represents the comparison.

R = D/L (2)

However, this study considers that merely calculating the
redundancy of ship trajectory is not enough to detect unex-
pected trajectory of the ship’s voyage. Hence, a formula to
measure the curvature of vessel trajectory is proposed as in
Eq. 4.

Fig. 1. Three different trajectories with the equivalent TR (ψ) values. The
grey dashed lines represent the minimum bounding rectangle of each

trajectory, while the blue solid lines depict vessel trajectories: (a), (b), and
(c) are the trajectory with ψ < 1, ψ ≈ 1, and ψ > 1, respectively.

For every voyage’s trajectory M = {m0,m1,m2, . . . ,mn}
where 0 ≤ i ≤ n, T = {t0, t1, t2, . . . , tn} is the corresponding
timestamps of the trajectory M as to mi is the track position
at timestamp ti. In other words, m0 is the starting track,
and mn is the last track position of a ship’s voyage. The
trajectory curvature is defined as inversely proportional to the
average Cartesian distance from the starting track position m0

to each track position m1,m2,m3, . . . ,mn. Eq. 3 yields the
average Cartesian distance d, where d(m0,mi) is the Cartesian
distance between m0 and mi.

d =
1

(n+ 1)

n∑
i=1

d(m0,mi) (3)

C =
1

d
(4)

The variables used in Eq. 2 and 4 indicate that this
paper utilizes the geometrical features of vessels’ trajectories
to detect unexpected trajectories instead of exploiting the
spatiotemporal characteristics as in the existing work of Wijaya
and Nakamura [22].

The overall process of the unexpected trajectory detection
method proposed in this paper is conducted in three steps: 1)
AIS data preprocessing, 2) trajectory segmentation to split the
stopping and underway trajectories of every ship’s voyage, and
3) the implementation of Eq. 2 and 4 to detect unexpected
trajectories. This paper employs the AIS data preprocessing
and trajectory segmentation methods described in [20]. The
preprocessing removes all invalid data, while the segmenta-
tion separates the stopping and underway segments of each
trajectory representing a ship voyage. The validated underway
segments are the input for the unexpected trajectory detection
computation technique proposed in this paper.

Eq. 2 and 4 are applied to each underway segment of all
trajectories of the ships of interest to calculate the rate of
redundancy and curvature. Every ship’s trajectory represents a
ship’s voyage from one endpoint to another. The starting point
and the destination can be a port or a water area. For example, a
container’s voyage from Singapore port to the port of Jakarta,
a tanker’s voyage from the South China Sea to the Indian
Ocean, and a cargo coming from the Indian Ocean to Singapore
port. Due to the constraints of the geographical features, the
typical characteristics of the waters, and the weather patterns
between the two endpoints, voyages of the same ends should
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have at least one commonly traveled route, which has been
proven to be efficient and safe for a known period of time.
Normally, most ships are expected to follow the commonly
known route(s) rather than taking the risk of navigating the
unknown passage. However, under certain situations, a ship
may take an unexpected path indicated by her trajectory.

To identify the unexpected trajectory(s) of the ships’ trajec-
tories belonging to voyages between the same endpoints, this
paper applies the DBSCAN clustering algorithm to classify
the trajectories by using the rate of redundancy (Eq. 2) and the
trajectory curvature (Eq. 4) as the clustering features. Since the
rate of redundancy R is the main parameter to detect loitering,
and the curvature C is the extension, R is weighted twice the
weight of C in the implementation of DBSCAN.

The DBSCAN algorithm is selected because it can detect
noises, the ones whose features cannot be associated with any
clusters. The noises are labeled ’-1’, which means they do not
belong to any clusters. They are different and few in number.
When there is no noise detected, none of the data will be
labeled ’-1’. Thus, if the unexpected trajectory exists, it should
be classified as noise since it must have different features from
the common trajectories and be much fewer in number.

For every voyage’s trajectory M = {m0,m1,m2, . . . ,mn}
with timestamps T = {t0, t1, t2, . . . , tn}, W is defined as a
time window with an arbitrary duration k hours, where W ⊆ T
and the duration of W is less than the duration of T . The time
window W is sliding from the start to the end of T while
executing the calculation of the rate of redundancy R and the
curvature C. The calculation results are compared and each
maximum value of R and C is returned as in Eq. 5 and 6.

Rw =Max(R(t0,tk), R(t0+1,tk+1), . . . , R(tn−k,tn)) (5)

Cw =Max(C(t0,tk), C(t0+1,tk+1), . . . , C(tn−k,tn)) (6)

This process is to excerpt the segment of a voyage’s
trajectory with the maximum redundancy and curvature. To
further precisely locate the segment, multiple time windows
with different durations are applied. In this case, three time-
windows, W1 = 6 hours, W2 = 24 hours, and W3 = 48
hours, are determined. The maximum R and C of each time
window are compared to select the one final maximum R and
C as expressed in Eq. 7 and 8.

Rmax =Max(Rw1, Rw2, Rw3) (7)

Cmax =Max(Cw1, Cw2, Cw3) (8)

The calculation of R and C with the sliding time windows
is executed on every underway trajectory belonging to the
voyages of the same endpoints. The computation results in a
set of trajectory excerpts E = {e0, e1, e2, . . . , em} having the
Rmax and Cmax as their attributes, where m+1 is the number
of trajectories belonging to the voyages of the same origin and
destination. Thus, each trajectory excerpt ej , for 0 ≤ j ≤ m,

Start

AIS tracks of voyages between two endpoints

Preprocessing and Trajectory Segmentation

Trajectories of the underway segments

Calculation of the rate of redundancy R and
curvature C on each trajectory:

Calculate Rw1, Rw2, Rw3 & Cw1, Cw2, Cw3

Calculate Rmax & Cmax

A set of trajectory excerpts E

DBSCAN implementation to classify the set
of trajectory excerpts E

label = −1
Common
Trajectory

Unexpected Trajectory

Trajectory
Visualization

Stop

NO

YES

Fig. 2. The flowchart of the Unexpected Trajectory detection method.

can be expressed as a position on a two-dimensional space
ej(xj , yj), where x = Rmax and y = Cmax. Here, the
DBSCAN algorithm is implemented to classify the set of
trajectory excerpts E by taking Rmax and Cmax as the
clustering features. The Euclidean distances amongst the set of
E are calculated to determine the epsilon ε parameter of the
DBSCAN algorithm. Every trajectory excerpt ej with −1 label
is classified as an excerpt of an unexpected trajectory, while
the rest belong to the trajectories of the common routes. The
whole process of the unexpected trajectory detection workflow
is summarized in Fig. 2.

IV. EXPERIMENT AND EVALUATION

The proposed unexpected trajectory detection technique
is implemented on real-world historical AIS data of vessels
navigating through the southern part of the South China Sea,
western Indonesia, Singapore, and Malaysian waters. The area
is roughly 3,230,663.98 km2 depicted in Fig. 3. They were
recorded between 1st July 2021 and 28th February 2022 within
the area. The dataset is the same as the one used in [11].

A. AIS Data Preprocessing and Trajectory Segmentation

A one-month subset (1st - 31st July 2021) of the dataset is
cleaned with the following filters:
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Fig. 3. The area within the blue rectangle is the experiment’s area of interest.
Basemap © CARTO © OpenMapTiles © OpenStreetMap contributors.

1) length(MMSI) = 9,
2) −90 ≤ Latitude ≤ 90,
3) −180 ≤ Longitude ≤ 180, and
4) 70 ≤ vesselTypeCode ≤ 89

to retrieve all MMSIs of valid AIS messages of tankers and
cargo ships. The 70 ≤ vesselTypeCode ≤ 89 refers to the
vessels of types cargo and tanker [24].

The filtering collects 6,950 unique MMSIs, of which 4,182
MMSIs are used as the keys to fetch one-month historical
AIS data of 1st - 31st July 2021. It consists of 3,514,126 AIS
records. The remaining 2,768 MMSIs are the keys to retrieve
eight-month historical AIS data between 1st July 2021 and
28th February 2022 that contains 15,955,795 recorded AIS
transmissions. Thus, this experiment processes 19,469,921 AIS
messages in total.

Following the AIS data preprocessing, the trajectory seg-
mentation procedure is executed on the one-month and eight-
month AIS datasets to separate the stopping and underway
segments of each ship’s trajectory. This process adopts the
trajectory segmentation technique presented in [20]. This pa-
per’s unexpected trajectory detection algorithm takes only the
underway segments of each ship’s trajectory as the input. The
trajectories of the underway segments are grouped into four
types of voyages as follows:

1) Voyages between two different ports: the voyages
between the port of Jakarta and Singapore port, and
between Port Klang and Singapore.

2) Voyages between a port and sea area: the voyages
between Singapore port and the South China Sea.

3) Voyages between a sea area to another sea area: the
voyages between the South China Sea and the Indian
Ocean.

4) Voyages within a relatively wide area of the sea
without stopping at any ports: the voyages within
the western part of Indonesian archipelagic waters

(Natuna Sea and Java Sea).

B. Detecting the Unexpected Trajectory

Before calculating the trajectory redundancy R and cur-
vature C for the trajectories of the underway segments of
each voyage group, the two endpoints (origin and destination
point/area) of each voyage group need to be determined. The
polygon defining the area of the Singapore Port is publicly
available by the Maritime and Port Authority of Singapore
[25], while the geometrical boundaries of the port of Jakarta
and the Port Klang are defined in reference [11]. In the case
of sea area, this experiment uses the geographic boundaries
provided by MarineRegions.org [26].

For the first voyage group, the trajectories are filtered
to select those that start and end at either the Jakarta or
Singapore ports, and those that start and end either at Port
Klang or Singapore port. Further, this experiment selects only
the trajectories whose track interval ≤ 6 hours to avoid
processing truncated trajectories. This filter is applied to all
voyage groups. The rate of redundancy R and curvature C are
calculated within three time-windows W on every trajectory.
The time windows are W1 = 6 hours, W2 = 24 hours,
and W3 = 48 hours. This process returns a set of trajectory
excerpts E of which each excerpt has two attributes: Rmax

and Cmax. The DBSCAN clustering algorithm is applied to
the set of excerpts E. The result is visualized as depicted
in Fig. 4 and 5. The experiment produces two unexpected
trajectories from the voyages between Jakarta and Singapore
ports. The trajectory’s excerpt near Singapore Port, labeled
Ship-AL, belongs to a container ship with a gross tonnage of
66,280 tons and a dimension of 276 x 40 meters, while the
excerpt near the port of Jakarta is of a container ship measuring
161.85 x 25.6 meters.

The same processing procedure is applied to the remaining
three voyage groups. The results are visualized in Fig. 6, 7,
and 8.

This experiment confirms that DBSCAN clustering does
not forcibly classify the dataset into cluster and noise. When
noise does not exist, none would be labeled as one. It is
observable in the visualization of the trajectories between the
South China Sea and the Indian Ocean (Fig. 7). None of the
trajectories is classified as noise as all of them seem to follow
the common routes.

The implementation of the unexpected trajectory detection
algorithm reveals the same ship, labeled Ship-AL, shows un-
expected movement on the voyage between Jakarta and Singa-
pore port and the voyage within the Western part of Indonesian
archipelagic waters. When the unexpected trajectory algorithm
is applied to the ship trajectories individually, it confirms that
Ship-AL frequently demonstrates unexpected behaviors during
her voyages between July 1st, 2021 to February 28th, 2022.
Fig. 9 depicts Ship-AL’s trajectories with excerpts indicating
the unexpected behaviors. Ship-AL is a container ship of
Portuguese nationality measuring 66,280 tons of gross tonnage
and 275 x 40 (meters) in dimension. Considering the type and
size of the ship, her behavior is definitely not normal. Another
finding is the trajectory labeled Ship-MA in the voyage within
the Western Indonesian Archipelagic waters. The ship, a crude
oil tanker of 105,484 tons (deadweight), was loitering at sea for
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Fig. 4. The trajectories of voyages between Jakarta and Singapore Port. The
orange lines illustrate voyages with unexpected trajectory whose excerpts are
depicted by the magenta lines. The common trajectories of the voyages are
indicated with blue lines. The trajectory excerpt labeled Ship-AL belongs to

a container ship with a gross tonnage of 66,280 tons measuring 276 x 40
meters in length and width.

Basemap adopts geoBoundaries by D. Runfola et al. [27]

Fig. 5. The trajectories of voyages between Port Klang and Singapore Port.
The orange lines illustrate voyages with unexpected trajectory whose

excerpts are depicted by the magenta lines. The common trajectories are
drawn in blue lines.

Basemap adopts geoBoundaries by D. Runfola et al. [27]

155 hours. This type of ship, with a size of 243 x 42 (meters),
is not normally engaged in loitering movement [22], which is
normal for other types of vessels such as fishing boats, patrol
vessels, and SAR (Search and Rescue) ships[16].

Fig. 6. The trajectories of voyages between the South China Sea and
Singapore Port. The orange lines indicate voyages with unexpected

trajectory whose excerpts are colored magenta. The common trajectories are
drawn in blue lines.

Basemap adopts geoBoundaries by D. Runfola et al. [27]

Fig. 7. The trajectories of voyages between the South China Sea and the
Indian Ocean. The common trajectories are depicted with blue lines, while
the orange lines indicate the excerpt of the trajectories with the highest rate

of redundancy R and curvature C. In this case, the DBSCAN clustering
returns no trajectory excerpt with a −1 label, meaning that the dataset has
no unexpected trajectory. The visualization confirms that all voyages seem

to follow the common routes.
Basemap adopts geoBoundaries by D. Runfola et al. [27]

C. Evaluation

The experiment results prove the capability of the proposed
method to detect unexpected trajectories of vessels navigating
through the sea area of interest. To measure the efficacy of the
technique, an evaluation is conducted on the same dataset as
the evaluation section of reference [22]. The dataset consists of
137 labeled trajectories of vessels navigating through the West
Coast of North America. It comprises 24 loitering (anomalous)
and 113 normal trajectories. Since the unexpected trajectory
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TABLE I. EVALUATION METRICS COMPARISON WITH EXISTING METHODS

Method Accuracy Specificity Precision F-score Undetected∗∗ False Negative
TR 0.87 0.84 0.60 0.70 4 14

F (c) 0.95 1.0 0.78 0.88 0 7
F (c, h, d) 0.93 0.96 0.75 0.84 1 8

Integrated∗ 0.97 0.96 0.89 0.92 1 3
ProposedMethod 0.99 0.92 1.00 0.96 2 0
∗Weighted integration of F (c) and F (c, h, d).
∗∗The number of undetected loitering ships.

Fig. 8. The trajectories of voyages within the Western Indonesian
Archipelagic Waters. The blue lines indicate the common trajectories, while
those in orange are the unexpected trajectories whose excerpt is in magenta.
The ship with an unexpected trajectory labeled Ship-AL is also revealed in

the voyages between Jakarta and Singapore port. The trajectory labeled
Ship-MA is a crude oil tanker loitering for 155 hours.

Basemap adopts geoBoundaries by D. Runfola et al. [27]

could be a trajectory that deviates from the standard routes or
that of a loitering behavior, the dataset is valid for this evalua-
tion. The results are compared with the Trajectory Redundancy
(TR) calculation formula proposed by Zhang et al. [16] and the
loitering detection method of Wijaya and Nakamura [22]. Table
I presents the comparison. The proposed unexpected trajectory
detection technique outperforms all of the existing methods
with 0.99 accuracies, 0.92 specificities, 1.00 precision, and
0.96 F-score. The technique produces no false negatives and
merely two undetected loitering trajectories. The prediction
results are visualized in Fig. 10. The undetected loitering
trajectories possess loitering movements that last less than an
hour. It seems that the detection fails because the duration of
the loitering movement is too short.

The proposed unexpected trajectory detection technique
performs remarkably better in all measurement metrics com-
pared with the existing loitering detection methods. However,
the approaches with F (c) and F (c, h, d) formulas return
loitering scores. Each detected loitering trajectory is given a
loitering score that indicates the severity of the loitering move-
ment. The approach is intended to help maritime authorities to

Fig. 9. The trajectories of the Ship-AL between 1st July 2021 and 28th

February 2022 that are revealed in the Jakarta-Singapore voyages and the
voyages within the Western Indonesian Archipelagic Waters. It is a

Portuguese container ship measuring 66,280 tons of gross tonnage and 275 x
40 (meters) dimension.

Basemap adopts geoBoundaries by D. Runfola et al. [27]

achieve better efficiency in conducting maritime surveillance.
It does not only automatically detect loitering ships but also
suggests their priority so that the officer in charge can decide
which ship to handle first, second, and soon. On the other
hand, the unexpected trajectory detection approach proposed
in this paper is intended to provide a high-accuracy detection
tool without considering the priority of the detected vessels.
The result is binary, either normal or unexpected trajectory.

V. CONCLUSION

This paper presents a novel method for detecting un-
expected trajectories of vessels based on AIS tracks. The
proposed approach leverages the geometrical features of ship
trajectories, specifically the rate of redundancy and curvature.
It is to identify voyages that deviate from the expected
voyage. By applying DBSCAN clustering based on these
geometrical features, the method can effectively distinguish
between trajectories that follow the common routes and that
of the unexpected trajectory. The classification is accomplished
without relying on labeled training data or image conversion
techniques.

The experimental results demonstrate the efficacy of the
proposed method across various types of maritime voyages,
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Fig. 10. The purple-red lines indicate the prediction of loitering that matched the actual loitering trajectories (true negative), while the green lines represent the
undetected loiterings (false positive). The white lines illustrate the trajectories of the common routes. The prediction achieves 0.99 accuracy, 1.00 precision,

and 0.96 F-score with two false positives and zero false negatives.
Basemap adopts geoBoundaries by D. Runfola et al. [27]

including port-to-port, port-to-sea area, and open-water routes.
The technique successfully identified several instances of
unexpected behavior, including a container ship exhibiting
frequent unexpected trajectory and a large oil tanker engaged
in prolonged loitering. These findings highlight the method’s
potential to detect behaviors that may need further investiga-
tion by maritime authorities.

The Comparative evaluation against existing approaches
shows that the proposed method achieves superior performance
across multiple metrics, including accuracy, precision, and F-
score. This indicates that the technique offers a robust and
reliable means of identifying unexpected trajectory in maritime
traffic. The evaluation result confirms that the proposed method
is not region-dependent. The evaluation dataset is of the
West Coast of North America, while the experiment dataset
covers the archipelagos of Indonesia, Malaysia, and Singapore.
Despite the proven performance and versatility, the proposed
unexpected trajectory detection method possesses several lim-
itations. When it is applied to detect loitering movement, the
detection fails if the loitering duration is too short, such as

less than an hour. The method is also unable to determine the
magnitude of the detected unexpected trajectory, whether it
is a slight track deviation due to an instantaneous unplanned
maneuver to evade danger or a redundant deviation because of
a deliberately planned maneuver.

To further enhance and extend the proposed approach,
this study considers the following future works: 1) combining
both geometrical and spatiotemporal features to potentially
improve detection accuracy and provide a more nuanced
characterization of unexpected behaviors, 2) integrating the
unexpected trajectory detection method into real-time maritime
surveillance systems to evaluate its performance in operational
scenarios, and 3) investigating the potential of the approach to
detect other types of maritime anomalies.

In conclusion, this study offers a feasible approach for
maritime authorities and fleet operators to efficiently moni-
tor vessel voyages and identify potential security, safety, or
efficiency concerns. It is the answer to the need for automated
surveillance systems because of the increasing threats to mar-
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itime security. The technique could substantially contribute to
the overall safety and efficiency of maritime transportation.
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