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Abstract—Ceritical systems are increasingly being integrated
with machine learning (ML) models, which exposes them to a
range of adversarial attacks.The vulnerability of machine learn-
ing systems to hostile attacks has drawn a lot of attention in recent
years. When harmful input is added to the training set, it can lead
to poison attacks, which can seriously impair model performance
and threaten system security. Poison attacks pose a serious risk
since they involve the injection of malicious data into the training
set by adversaries, which influences the model’s performance
during inference. It’s necessary to identify these poison attacks in
order to preserve the reliability and security of machine learning
systems. A novel method based on transfer learning is proposed
to identify poisoning attacks in machine learning systems.The
methodology for generating poison data is initially created and
later implemented using transfer learning techniques. Here, the
poisonous data is detected using the pre-trained VGG16 model.
This method can also be used in distributed Machine learning
systems with scattered data and computation across several
nodes. Benchmark datasets are used to evaluate this strategy in
order to prove the effectiveness of proposed method.Some real-
time applications,advantages,limitations and future work are also
discussed here.
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I. INTRODUCTION

Nowadays, machine learning techniques have been used
across various domains such as healthcare, finance, and au-
tonomous systems. However, the applications of machine
learning models in real-world systems has also raised concerns
about their vulnerability to adversarial attacks [5]. Among
these attacks, poison attacks stand out as a particularly critical
threat, where adversaries inject subtle but malicious pertur-
bations into the training data to undermine the integrity and
performance of the models. Detecting and mitigating poison
attacks [20][23] in machine learning systems is a critical
challenge that requires innovative solutions to safeguard the
reliability and trustworthiness of deployed models. Traditional
defense mechanisms, such as input sanitization [30] and robust
training [10] have shown limited effectiveness against sophis-
ticated poison attacks that exploit vulnerabilities in the training
process.

Security is paramount in distributed settings [14] due to the
decentralized nature of data and computation. In distributed
systems, sensitive information is often spread across multiple
nodes or devices.So, various security threats such as unau-
thorized access, data breaches, and malicious attacks affects
the the confidentiality, integrity, and availability of data [3]

and resources in distributed environments.So,it is essential for
maintaining trust, protecting privacy, and upholding regulatory
compliance. Moreover, the interconnected nature of distributed
systems amplify the impact of security breaches, potentially
leading to widespread disruption and financial loss. Therefore,
implementing robust security measures is critical to safeguard-
ing distributed settings against emerging threats and preserving
the trust of users and stakeholders.

In this context, utilizing advanced techniques from the
fields of GAN’s and CNN’s holds great promise for enhancing
the security of distributed machine learning systems. GANs
[10] are a type of deep learning models that is made of
two neural networks, a generator and a discriminator, trained
simultaneously. GANSs is useful for generating realistic syn-
thetic data, which can be leveraged to augment the training
dataset and improve model robustness against poison attacks
in federated learning Systems [17]. On the other hand, CNNs
have emerged as a cornerstone in computer vision tasks,
owing to their capacity to learn hierarchical representations
of data automatically. CNNs excel at extracting discriminative
features from images, making them wellsuited for detecting
subtle patterns indicative of poison attacks. By combining
the generative power of GANs [31] with the discriminative
capabilities of CNNs, a comprehensive defense mechanism can
be developed for poison attack detection in distributed machine
learning systems.Poisoning attacks affect the wrong prediction
of system.It is very crucial in health care,self driving vehicles
and many other applications.So,in order to improve machine
learning systems’ ability to resist poison attacks.

This paper proposed an innovative approach that uses
GANSs to create threat model and VGG16 for transfer learning
techniques to identify poisonous and nonpoisonous data. Some
widely used datasets such as CIFAR10, CIFAR-100 are used
to illustrate the effectiveness of this method in detecting poison
attacks.

A. Research Motivation

The necessity for strong security measures has been high-
lighted by the incorporation of machine learning into critical
systems. An adversarial approach known as “poisoning” can
seriously impair model performance by contaminating the
training set. It is frequently not possible for traditional defense
measures to identify and prevent these highly trained attackers.
Since transfer learning may make use of pre-trained model
knowledge, it presents a viable path toward a more precise
and efficient defense against poison attacks. The goal of this
study is to investigate and validate the application of transfer
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learning to improve ML system security against these kinds of
attacks.

II. RELATED WORKS

Several studies have explored various techniques for de-
fending against poison attacks [3] [15] in machine learning
systems. Modern Deep learning techniques such as auto en-
coder [4] are also used to detect poisoning attacks. Early
approaches focused on input sanitization and outlier detection,
which proved insufficient against sophisticated adversaries [6].
Recent research has shifted towards more advanced defense
mechanisms leveraging techniques such as robust training,
model verification, and adversarial training.

Advanced advancements in adversarial attacks and defence
strategies in vision applications were covered by [1]. This
article discusses several kinds of adversarial attacks on realtime
applications. This paper formulates many types of attacks,
including white box, black box, and real-world attacks. This
survey also mentions a few defensive techniques, including
randomised smoothing, regularisation schemes for ReLU net-
works, ensemble generative cleaning with a feedback loop, and
the usage of variational auto-encoders (VAEs). This study also
discusses how detecting attacks in language models and vision
is becoming a tedious tasks.

Chen, Xiaolin, et al. [8] discussed a data poisoning
framework based on Gan against anomaly detection.Here,
the poisoning model is based on a generative adversarial
network.Perturbations are added for poisoning some inputs.
They also developed a a serverside algorithm based on a deep
autoencoder in order to defend against such attacks. When
the number of labelled datasets increases, its performance
decreases slowly.

Psychogyios, Konstantinos [17] discussed generating im-
ages using GAN. Here, label flipping attacks are generated
and tested based on an aggregation algorithm. This method
is also examined in the FL system using secure aggregation
methods. Accuracy issues still pose a major challenge in this
area. This paper also suggested adding additional datasets and
hyperparameters to improve accuracy.

The primary machine learning (ML) concerns for an Al
system are the data, model, training, testing, and validation
procedures. However, Al also uses a number of knowledge-
based techniques, which presents particular security challenges
[19] both in the testing and training stages. Although this
assumption isn’t always accurate, machine learning approaches
operate under an assumption that their environment is benign.
One of these security issues is the potential for training
data manipulation and the exploitation of model sensitivity to
reduce the effectiveness of ML classification and regression
[27].

Convolutional Neural Networks are extensively used in the
computer vision field for the detection of poisoning attacks due
to their ability to extract toxic characteristics from images [1]
Here, pre-trained CNN models are refined on poisoned data
using transfer learning approaches, and the result is highly
effective poisonous data detection. Tolpegin et al. [21] used
the CIFAR-10 and Fashion MNIST datasets to investigate label
flipping based attacks within a distributed system. They used
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TABLE I. SUMMARIZING EXISTING RECENT SURVEYS

Literature Methods used Challenges
Jonnalagadda CNN method of poisoning us- | Data leakage issue
et al.(2024) ing MNIST
Lahe, AD et | Different stages of ML | Not efficient to detect attacks
al.(2023) pipelining and their | in real-time scenarios
vulnerabilities
Bovenzi et | Shallow autoencoder, deep | Less effectiveness of counter-
al.(2022) autoencoder, and ensemble- measures against Data Poison-
based encoder for anomaly | ing Attacks in real-time.
detection
Anisetti et | Random Forest method Label flipping degrading the
al.(2022) performance of plain random
forests
Raghavan et | Real-Time Poisoning attacks | Method works on neural net-
al.(2022) detection using Model Verifi- works only
cation in deep computer vi-
sion
Altoub et | convex polytope method Ensemble method can be used
al.(2022) to improve transferability
Liu, I-Hsien, et | Data Washing and IDA Algo- | Not suitable for detecting poi-
al.(2022) rithm for detecting poisoned | soning attacks on non-DNN
datasets models

these datasets to evaluate different labelflipping scenarios. In
Federated Systems, these techniques yield better results.

Table I summarizes the approaches used in a few recent
articles along with the difficulties they faced. While these
approaches have made significant strides in mitigating poison
attacks, there remains a need for more robust and comprehen-
sive defense mechanisms.

III. POISONING ATTACK MODEL
A. Generation of Threats

In order to identify impure images, a threat model is
simulated. Generative networks are used here to develop such
threat model creation. It is created by injecting poisons into
different types of labelled images with the help of Generative
Adversarial Networks.

1) Training circumstance: Here, the primary goal is to
classify the poisonous and nonpoisonous images using CI-
FAR10 datasets. A certain amount of data was trained by
several clients. Assume a global CNN is trained in a distributed
fashion, with each client having access to a subset of the entire
dataset. Clients have access to images for every class, and each
local data distribution roughly resembles the distribution of the
whole dataset.

B. Attacker’s Goal

The main goal of attacker is to add malicious behaviour
to training datasets. Here, the attacker targets on specific
labels which causes manipulation of global model’s predic-
tion.GAN is used to misclassify poisonous and nonpoisonous
images.Attacker also focusses on degrading the accuracy of
global model by adding poison to local datasets. Hence, it
creates GAN generated images and assigns some labels to
them.The model is trained locally utilising poisoned samples
once the resultant images have been combined with each
malicious node dataset.

www.ijacsa.thesai.org

1452 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Stage 1 Stage 2 Stage 3 Stage 4
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Birdand Dog  yajn; ing set the poisoned dataset
images

Fig. 1. Steps of image poisoning.

C. The Capability of the Adversary

The global aggregation mechanism used by the server is
unknown to the attacker.It can only influence learning by
means of poisoned model updates. Here, the datasets of the
benign customers are unknown to the attacker. But we assume
that they are aware that all of the classes accessible in the fed-
erated system are also contain the poisoned dataset. Adversary
can only increase the compromised client’s private collection
by adding more generated images, rather than altering it.
Finally, it is assumed that the attacker cannot directly access
or modify the weights of the local model or affect the local
training method.

IV. PROPOSED METHODS

In this paper, Generative Adversarial Networks and transfer
learning approaches are used inorder to detect poisoning at-
tacks in machine learning systems. Fig. 1 illustrates the stages
of poisoning image.

A. Generating Poisons

To generate poisons in the training data, the GAN approach
is employed as an improved technique. By training a generative
model to produce images that are perceptually similar to real
data, but can trick the classifier into making false predictions,
poisoning with a GAN is accomplished. It first retrieves the
global parameters from the parameter server in order to update
the local model. It then employs a GAN, which consists of
a discriminator and a generator, to generate samples of target
labels through local training. The generator’s goal is to mislead
the discriminator into assuming that the generated samples are
obtained from the target; the discriminator’s role is to identify
if the samples are fake and to classify the genuine samples
as precisely as possible.The downloaded model acts as the
discriminator, while the attacker defines the generator. Once
the current round of GAN training is finished, the attacker
will intentionally mislabeled the samples that the generator
generates. The binary cross entropy loss function and the Adam
optimizer are used in the compilation of the generators. Fig.
2 describes The Attack-Poison GAN algorithm.
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A i GAN-based poisoning tailored for binary i ion tasks

Tnput: Clean Dataset. (D) - Dataset of clean images.

Target Model: (M) - Binary classification model to be poiscned.

GAN Architecture Parameters: (8, 8y) - Parameters of the generator and discriminator networks.
(num, pochsbatch,ize) - Nimiber of epachs and batch size for GAN training

Training H

Output:Poisoned Dataset: (Dygr.q) - Dataset containing both clezn and poisoned images.

Procedure:
Initialize GAN:
a. Initialize the generator ( G ) and discriminator ( D ) with random weights using parameters
(Bg)and(Bp)
Train GAN:

b. For(t=12,..num epochs):
i Sample a batch of noise vectors (2.2, .., 2, ) from a prior distribution.
i Generate fake images (), %}, ..., Xp) using the generator: (] = G(z;; 85)).
iii. Sample a batch of real images (x;,Xs, ..., Xm ) from the clean dataset.
iv. Update the dizseri (D)by the loss:
1

Insli)n ;i [10gD ) +108(1 - D(G(zi)))]l

v. Update the genmtn_( (G ) by maximizing the adversarial lozs:

1
[r%gx “nd log(1- D(G(;)))l
=
Generate Poisoned Images:
¢ Ifthe generator is trained successfully
i Sample noise vectors (z), 25, ..., 2, )from the prior distribution.
i Generate poisoned images (x},x5, ..., Xp) using the generator: (x{ = G(z{: 8)).
d. Else:
i Print error message indicating unsuccessful training.
Inject Poisoned Tmages:
e. Ifpoisoned images are generated successfully:
i Integrate the poisoned images (x},x'2, ..., x'n) into the clean dataset
(Dpoisoned = Delean U, x5, ..., X)),
f Else
i Print error message indicating unsuccessful poisoning.

Fig. 2. Attack-Poison GAN algorithm.

In the context of Generative Adversarial Networks (GANS),
both the generator and discriminator have specific loss func-
tions that drive their training process. These loss functions
are fundamental in guiding each network to improve its
performance in the adversarial setup. The objective of the
generator in a GAN is to generate synthetic data that resembles
the real data well enough to fool the discriminator. The loss
function for the generator typically aims to minimize the
discrepancy between the generated data distribution and the
real data distribution.Binary CrossEntropy Loss and Minimax
Loss are used as loss function: Minimax Loss reflects the
original adversarial nature of GANs where the generator aims
to minimize the probability that the discriminator correctly
classifies generated data as fake.

Binary Cross-Entropy Loss can be expressed as:

Lgen = —E, pz)[log D(G(2))] )

where

z is the random noise vector input to the generator

G(z) is the generated output

D(G(2)) is the discriminator’s output probability on the gener-
ated data.

Minimax Loss can be expressed as
Lgen = log(1 — D(G(2))) @)

where

Lygen represents the generator loss function

log is the logarithm function.

D is the discriminator network.

G(z) is the generated output from the generator G.

z is the random noise vector input to the generator G.

B. Convolutional Layers [22]

An image’s features are extracted and learned using a con-
volutional layer [2]. An image passes through or slides through
a convolutional filter or kernel based on its size or stride.
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Fig. 3. CNN Architecture[28].

Using the kernel’s sliding movement as a feature detector, the
convolutional layer maps out the features in the image. The
convolutional layer maps features from the image using the
kernel, a feature detector, and its sliding action. Translational
invariance is present in these convolutional filters.Multiple
feature learning is possible with more filters. RGB colour
images have three channels as well as a depth component. The
network breaks these features with the help of the convolution
layer. Deeper convolutional layers improve feature detection
from a low to a high level, which helps in image detection.

C. Pooling Layer

By reducing the dimensionality of the image without losing
its features, the pooling layer compresses the picture layer’s
dimensions. As a result, overfitting is minimised.Maxpooling,
which includes extracting the largest value from a kernel
window, is a technique used by CNNs [18].

D. Fully Connected Layer

In the fully linked layer, all neurons are linked to all
other neurons. This layer is in control of classification and
prediction. The neural network’s weights are then modified
using back propagation in accordance with the results of a
comparison between these predictions and the labels. In the
model, a pooling layer is placed after each convolutional layer.
Two completely linked layers that come after these layers
and meet the output predictions. Three convolutional layers
and two fully linked layers constitute the model. Three input
channels and sixteen output channels make up the first con-
volutional layer. The second convolutional layer has 16 input
channels and 32 output channels, while the third convolutional
layer has 32 input channels and 64 output channels.The 3x3
kernel size is the default. There are 500 output channels and
4*4*64 input channels in the first completely connected layer.
The second completely connected layer receives these 500
output channels, which are divided into 10 output channels
apiece. Add 0.25 dropout to lessen overfitting.The ADAM
optimizer is used, and the learning rate is set to 0.0001.
The flattening method and the Relu activation function aid in
avoiding the vanishing gradient problem. The CNN workflow
is shown in Fig. 3.

E. Transfer Learning with VGGI16

When setting up the models for dogs and birds classifi-
cation using transfer learning with VGG16 [9], we begin by
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Fig. 4. VGG16 Architecture[9].

leveraging the pre-trained VGG16 [29] model.This pre-trained
model is highly effective at extracting meaningful features
from images. By utilizing VGG16 [13] as a base, it has
gained knowledge from learning to recognize a wide range
of objects and features in images. To ensure that the features
learned by VGG16 are preserved and effectively utilized for
our classification task, we freeze the convolutional layers of
the model. Freezing these layers prevents their weights from
being updated during training, preserving the representations
learned from ImageNet. This step is crucial for preventing
the model from overfitting to the relatively small CIFAR-10
dataset and allows us to leverage the generalization power
of the pre-trained model. In the next step,custom classifier
layers are build on top of VGG16’s frozen convolutional basis.
These extra layers are in control of modifying the high-level
characteristics that VGG16 extracted for the particular purpose
of differentiating between dog and bird images. To transform
the 3D feature maps the convolutional layers produced into
a 1D feature vector, Flatten layer is added. One or more
Dense layers process the flattened representation by applying
nonlinear transformations to further process the features. The
basic architecture of VGG16 is shown in Fig. 4.

In order to avoid overfitting, dropout layers are frequently
placed in between Dense layers and randomly remove a portion
of the input units during training. The final layer of the model
is an output layer with softmax activation, which produces
class probabilities for the categories of interest—in this case,
dogs and birds. By compiling the model with appropriate
loss and optimization functions,prepare it for training on the
dataset. This typically involves using categorical crossentropy
loss as the loss function and the Adam optimizer for gradient
descent. Before training the model, it’s beneficial to inspect
the architecture of the model using the summary method.This
method gives you information about the model’s general
structure and the number of trainable parameters. This step
helps ensure that the model is configured correctly and ready
for training.

Federated systems [24][25] are vulnerable to attacks due to
their attacking nature. Malicious clients frequently appear with
the intention of interfering with the federated system’s training
process by directly or indirectly altering the model’s weights
using data.In such scenario, a malevolent client might add new
data or modify the already existing data to suit their needs.At
such times, adversaries damage machine learning systems by
inserting fake data points or altering already-existing data. One
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or more opposing nodes within the federated framework may
seek to disrupt the federated process in order to carry out
model performance collapse or pattern injection. In order to
predict this, various experiments helps to look into the effects
of the dataset generation based on GAN [8] for the synthesis
of attacks known as data poisoning, which can lead to the
degradation of a FL model [26]. In order to increase accuracy
of detection, the proposed transfer learning method is used.
Assume that one attacker is in control of every wild node and
can process all of their datasets simultaneously. First, targeted
label attack model is generated in which a GAN is trained
on a single class, poisoned bird and dog images in this case
using CIFAR-10 datasets, and then generate samples of that
class. After that the created samples are given the label “Clean”
and sent to the malicious clients. As a result, both the benign
dataset and the contaminated samples make up the enhanced
dataset that each malicious client possesses. The attacks are
detected using VGG16.

V. EXPERIMENTAL EVALUATION
A. Dataset

CIFAR-10 [11] [16]and CIFAR-100 image datasets are
used for experimental evaluation. CIFAR-10 images has over
60,000 colour, low-resolution images in a 32 by 32 format.
The photos are separated into ten sections, with roughly 6000
images in each class. Here, GAN is used to create poisoned
images of dogs and birds. Subsequently, the contaminated
dataset used as a training set for the development of an image
classification algorithm. Then,VGG16 is used to extract the
characteristics from the manipulated images. Train the model
using its features, then assess the model’s performance.The
dataset undergone preprocessing procedures to get it ready
for training and evaluation. Normalization: By dividing each
pixel value by 255.0, the image pixel values were scaled
to the range [0, 1]. This ensures that the input data falls
within a similar numerical range, which can help improve the
convergence of optimization algorithms during training. Data
Augmentation: To boost the models’ capacity for generalisa-
tion and to broaden the dataset. This techniques were applied
to the training images.The steps contain rotation, width shift,
height shift, and horizontal flipping. Data augmentation helps
prevent overfitting by providing the model with variations of
the training data. Resizing: The poisoned images generated by
the GANs were resized to match the dimensions of the CIFAR-
10 images, which are 32x32 pixels in size. This resizing step
ensures that the poisoned images are compatible with the input
size expected by the classification models.

B. Experimental Procedures

Here,both CIFAR-10 datasets and CIFAR-100 datasets are
for the proposed work. There are several key steps to build and
evaluate models for classifying and detecting poisonous images
incorporating transfer learning with VGG16 and addressing the
presence of poisoned images. Firstly, it loads the CIFAR-10
dataset, a collection of 60,000 labeled images in 10 classes, and
normalizes the pixel values to a range between 0 and 1. This
dataset serves as the foundation for training and evaluating
the models. Next,by utilizing Generative Adversarial Networks
(GANS) to generate poisoned images. It defines and compiles
two GAN architectures, one for generating images of dogs
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Fig. 5. Confusion matrix using CIFAR-10 datasets.

and the other for birds. These GANs are trained to produce
synthetic images that may potentially disrupt the performance
of the subsequent classification models. After the generation of
the poisoned images, the algorithm uses VGG16, a pre-trained
convolutional neural network (CNN) known for its efficiency
in image identification applications, to build up the models
for the classification of dogs and birds via transfer learning.
The convolutional layers of the VGG16 model are frozen to
preserve their learnt features, and the model is loaded without
its top classification layers.

After that, further layers of custom classifiers are added
to the model to modify it for the particular goal of classi-
fying among dogs and birds. The combined dataset—which
is divided into training and validation sets—contains both
original and polluted images. This data is used to train the
models. To enhance model generalisation, data augmentation
methods including rotation, width/height shift, and horizontal
flip are utilised in addition to the training set. Finally,model
is able to detect poisoned images by predicting labels for all
images, including both original and poisoned ones. It calculates
the percentage of poisoned images correctly identified by
each model, shedding light on their robustness in the face
of adversarial attacks. This comprehensive evaluation process
ensures a thorough understanding of the models’ performance
and their resilience to potential threats posed by poisoned
data.The models’ performance is assessed on the validation
sets, and the training process is monitored over several epochs.
To assess the models’ effectiveness,the confusion matrix is
shown in Fig. 5. Here,there are two classes such as classO
and class1. ClassO represents images of dogs and the images
of bird comes under classl. The model effectiveness can be
evaluated by plotting the training and validation loss curves
as well as the accuracy curves are plotted which are shown in
Fig. 6 and Fig. 7.

C. Experimental Results

The summary of the performance of a classification model
on a set of test data is described on the classification report
which is shown in Fig. 8.

Inorder to effectively improve F1 score, CIFAR-100 image
datasets are also used.CIFAR-100 offers a wider range of
classes and images, making it appropriate for a wider range
of challenging and complex recognition tasks. The CIFAR-
100 dataset is a collection of 60,000 32x32 color images
in 100 classes, with 600 images per class. It serves as a
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Fig. 6. Model loss curve using CIFAR-10 datasets. . .
Fig. 9. Loss curve using CIFAR-100 datasets.
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Fig. 7. Accuracy curve using CIFAR-10 datasets. Epochs Epochs

Fig. 10. Accuracy curve using CIFAR-100 datasets.

benchmark dataset for image classification tasks, particularly

Confusion Matrix for Class 0 Confusion Matrix for Class 1
for multiclass classification.Initially load such datasets,then
normalized and resize, and select a subset of classes (select } w0 ano0
classes O (apple) and (aquarium fish) for poisoning. Creates a g 2 £2 £ 2z T
Generative Adversarial Network to generate poisoned images s000 6000

for selected classes,trains two separate models (one for each
class) using transfer learning, evaluates the models’ perfor-
mance by plotting the training loss and accuracy which is
shown in Fig. 9 and Fig. 10. It also generates confusion
matrices shown in Fig. 11, and assessing its performance on ‘ ‘
both original and poisoned data using classification report for I e e
both classes which is shown in Fig. 12.
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Fig. 11. Confusion matrix using CIFAR100 datasets.
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Fig. 8. Classification report using CIFAR-10 datasets. Fig. 12. Classification report using CIFAR100 datasets.
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Fig. 13. No. of Poisoned indices in multiple clients.

Federated settings can be implemented using Keras having
20 clients and the no.of poisoned points can be detected which
is shown in the Fig. 13. This novel approach can be applied
in distributed ML systems also.

VI. DISCUSSION

The results indicate that the proposed method using transfer
learning and a pre-trained VGG16 model is effective in detect-
ing poisoned images in the CIFAR-10 and CIFAR-100 dataset.
Both models (for classes 0 and 1) showed high training and
validation accuracy, along with strong precision, recall, and F1
scores.

VII. REAL WORLD APPLICATIONS

The proposed framework for poison attack detection in
distributed machine learning systems offers tangible benefits
across diverse sectors, as corroborated by existing research
findings. In the cybersecurity domain, where data integrity
is paramount, advanced detection mechanisms are imperative.
By integrating the framework into intrusion detection systems,
organizations can fortify their capabilities against malicious
activities.

Autonomous vehicles, reliant on machine learning algo-
rithms for safe navigation, stand to gain significantly from
the framework’s implementation. The potential risks posed by
poison attacks targeting distributed learning systems within
autonomous vehicles. By deploying the framework, automotive
manufacturers and transportation authorities can augment their
vehicles’” defenses against adversarial manipulation, bolstering
passenger safety and public trust, as evidenced by studies
conducted by [7].

In healthcare, where accurate diagnoses are critical, safe-
guarding distributed machine learning systems is essential.
Poison attacks on these systems can compromise patient
confidentiality and introduce diagnostic errors. By adopting
the framework, healthcare providers can fortify their defenses
against adversarial threats, ensuring the integrity of medical
data and the reliability of clinical decision-making processes.
Financial institutions face significant risks from poison at-
tacks targeting distributed machine learning systems used in
fraud detection and algorithmic trading. The author in [8],
underscore the potential impact of adversarial manipulation on
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financial markets and investor confidence. By integrating the
framework into their security protocols, financial institutions
can mitigate these risks, protect customer assets, and uphold
the integrity of financial transactions.

The main advantages of using this method include:

1) Enhanced detection accuracy: SecureTransfer improves
the accuracy of poison attack detection by using pre-trained
models that recognise tiny abnormalities in the training set.

2) Scalability: SecureTransfer is a scalable solution for
diverse machine learning applications because it utilises trans-
fer learning, which enables it to be applied across several
datasets and domains without requiring a significant amount
of retraining.

3) Efficiency: By using pre-trained models, the method
saves time and resources by reducing the computational over-
head often involved with anomaly recognition.

4) Robustness: By offering an extra line of defence against
complex poison attacks, SecureTransfer strengthens the re-
silience of machine learning systems and guarantees depend-
able model performance.

5) Adaptability: The technique can be applied in a variety
of contexts since it can be tailored to various data kinds and
attack circumstances.

VIII. LIMITATIONS AND FUTURE WORK

While SecureTransfer demonstrates promising results, it is
essential to acknowledge certain limitations. The reliance on
pre-trained models may not always guarantee optimal perfor-
mance, especially when the target task significantly deviates
from the original training context. Additionally, the approach’s
effectiveness may vary based on the nature and sophistication
of the poison attack, necessitating ongoing research to refine
the model.

Furthermore, the flexibility and adaptability of transfer
learning enable the integration of additional defense mecha-
nisms to mitigate the impact of poison attacks [12] on ML
systems. Future research directions may explore the com-
bination of transfer learning with other anomaly detection
techniques and investigate the robustness of the proposed
method against sophisticated poisoning strategies.The findings
and methodologies can inspire further studies into the applica-
tion of transfer learning for other types of adversarial attacks.
Future research could explore the integration of SecureTransfer
with other ML security techniques to develop comprehensive,
multilayered defense strategies.It will also focus on improving
the scalability and applicability of SecureTransfer to a broader
range of ML tasks.

IX. CONCLUSION

In conclusion, the use of transfer learning methods for
poison attack detection in machine learning systems presents
a promising approach to enhance the security and robust-
ness of ML models. Through the integration of pre-trained
models such as VGG16, the proposed method leverages the
knowledge learned from large-scale datasets to detect anoma-
lies introduced by poisoned data.The experimental results
demonstrate the effectiveness of the transfer learning-based
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approach in accurately identifying poisoned instances across
different datasets and scenarios. By combining the feature
extraction capabilities of pre-trained models, the proposed
method achieves high detection accuracy while maintaining
computational efficiency.

Overall, the findings suggest that transfer learning-based

approaches hold significant potential for enhancing the security
and reliability of ML systems in real-world applications,paving
the way for more resilient defense mechanisms against adver-
sarial attacks.
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