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Abstract—Federated Learning (FL) has received a lot of 

attention lately when it comes to protecting data privacy, 

especially in industries with sensitive data like healthcare, 

banking, and the Internet of Things (IoT). However, although FL 

protects privacy by not sharing raw data, the information 

transfer during its model update process can still potentially leak 

user privacy. Differential Privacy (DP), as an advanced privacy 

protection technology, introduces random noise during data 

queries or model updates, further enhancing the privacy 

protection capability of Federated Learning. This paper delves 

into the theory, technology, development, and future research 

recommendations of Differential Privacy Federated Learning 

(DP-FL). Firstly, the article introduces the basic concepts of 

Federated Learning, including synchronous and asynchronous 

optimization algorithms, and explains the fundamentals of 

Differential Privacy, including centralized and local DP 

mechanisms. Then, the paper discusses in detail the application 

of DP in Federated Learning under different gradient clipping 

strategies, including fixed clipping and adaptive clipping 

methods, and explores the application of user-level and sample-

level DP in Federated Learning. Finally, the paper discusses 

future research directions for DP-FL, emphasizing advancements 

in asynchronous DP-FL and personalized DP-FL. 

Keywords—Federated learning; differential privacy; privacy 

protection; gradient clipping 

I. INTRODUCTION 

Concerns over data security and privacy, particularly in the 
context of the Internet of Things (IoT), healthcare, and finance, 
have led to a surge in the adoption of federated learning (FL) 
technologies in recent years. For instance, FL can be used for 
disease monitoring [1], financial analysis [2], and IoT data 
sharing [3] FL enables the training of models using data from 
multiple participants without sharing sensitive data, thus 
obtaining a broader and more representative data perspective. 
Despite its significant advantages in protecting data privacy, 
FL involves the transmission and sharing of data and model 
parameters between participants, which raises concerns about 
the security and integrity of communications. If the 
communication channels are not protected or are vulnerable to 
man-in-the-middle attacks, it can lead to issues such as data 
leakage, tampering, or forgery. In fact, even if attackers cannot 
directly access the datasets, user privacy can still be threatened. 
By analyzing model parameter updates, attackers can infer 
information about the original data [4], a type of attack known 
as an inference attack. Attackers can also introduce false labels 
or tags into the training set, a technique called as "data 
poisoning" [5], which lowers the accuracy of the model's 
predictions by making it learn the wrong patterns. It is vital to 

safeguard privacy and fend against these attacks in FL as a 
result. 

In this paper, we introduce various techniques proposed to 
address privacy issues in Federated Learning. Specifically, we 
focus on Differential Privacy (DP), which has become the de 
facto standard for protecting user privacy in statistical 
computations. These techniques can be categorized into three 
types: 

  Data Privacy Protection: The goal is to protect raw data 
from being leaked or illegally accessed. Key techniques 
include Differential Privacy, which reduces the risk of 
data identification by adding random noise to data 
queries or statistical processes; Data privacy is 
preserved during computations thanks to homomorphic 
encryption, which enables calculations on secret 
information without the need to decrypt it; and Data 
Masking techniques, which prevent identification by 
altering the structure or form of the data. 

 Model Privacy Protection: This aims to protect trained 
models from reverse engineering or illegal analysis. 
Techniques include Model Compression and Model 
Distillation. Model Compression reduces the 
complexity and number of parameters in a model, 
thereby lowering the risk of model leakage. Model 
Distillation involves transferring the knowledge of a 
large model to a smaller, simpler model, reducing the 
amount of data that needs protection. Additionally, 
Model Watermarking techniques embed specific 
markers in the model to track and protect its usage. 

  Communication Privacy Protection: This focuses on 
securing data transmission during the communication 
process in Federated Learning. To guarantee the safety 
and confidentiality of data during transmission, it 
mainly uses secure communication protocols and 
encryption technologies, such as Secure Sockets 
Layer/Transport Layer Security (SSL/TLS). 
Additionally, Trusted Execution Environments (TEEs) 
allow for secure data aggregation and model updates 
without revealing individual inputs. 

1) Data privacy protection: Secure Multi-Party 

Computation ( SMC ) [6][7] enables multiple parties ( also 

known as entities ) to collaboratively compute any function on 

secret data without revealing any other secret information 

besides the function's output. The concept of SMC was 

introduced by the academic community in the 1980s, along 
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with various feasible design methods for MPC protocols for 

any function. These design methods form the basic framework 

for most subsequent MPC protocols. SMC ensures that the 

inputs are neither disclosed to each other nor to a central 

server, thus doing away with the requirement for a reliable 

third party. 

A unique type of encryption called homomorphic 
encryption (HE) [8] [9] permits certain actions to be carried out 
on encrypted data while maintaining the data's encryption. The 
plaintext and the outcome of applying the identical procedures 
directly to the original plaintext data are consistent when the 
encrypted result is decrypted. HE has now evolved to support 
floating-point operations with the fourth generation FHE 
schemes. The primary feature of the fourth generation FHE 
schemes is their support for floating-point homomorphic 
operations. In 2017, Cheon et al. introduced the CKKS scheme 
in ASIACRYPT 2017, which for the first time handled 
floating-point numbers in FHE [10]. Although the CKKS 
scheme is simpler and offers improved performance, making it 
a strong privacy protection tool, its computational complexity 
makes using HE in FL practically inefficient, particularly in 
cases where the training dataset exceeds the capacity of the 
computer's memory. 

Differential Privacy (DP ) [11][12] is an advanced privacy 
protection technique that allows for the analysis and release of 
datasets without compromising individual privacy. DP 
accomplishes this by balancing the trade-off between data 
utility and individual privacy by injecting controlled noise into 
the data analysis process. Although the first definition of DP 
appeared in 2006, it has only recently gained attention for 
practical applications. Accuracy is the primary obstacle to the 
practical application of DP; accuracy is frequently diminished 
when privacy protection is increased. Investigators attempt to 
resolve this issue by integrating DP with other techniques to 
ensure its usability or by attempting to reconcile privacy and 
accuracy. 

2) Model privacy protection: Knowledge Distillation 

( KD ) [13][14][15] does not transmit model updates but 

instead, if the local model size is greater than the public 

dataset, communicates local model predictions among several 

clients on a shared public dataset, saving communication costs. 

In its initial form, information is passed on by simulating the 

output of the teacher model on the same set of data. 

Subsequent research revealed the function copying might 

guide student model training in addition to imitating outcomes 

[16]. These days, Federated Learning (FL) frequently uses KD 

as a standard technique [18][19]. It is possible to apply 

alternative solutions in an adaptable manner to different 

scenarios while still imitating the global model and the local 

preceding model. In order to minimize shared bits, Li and 

Wang [14] investigated Federated Knowledge Distillation by 

averaging logits for each sample. Gong et al. To solve 

telecommunication inefficiencies, [16] suggested a one-shot 

learning paradigm for one-way distillation. Knowledge was 

extracted from anticipated soft labels and subsequent results 

by Wu et al. [17]. Compared to device selection-based and 

model compression-based approaches, KD-based systems 

share fewer bits in each interaction cycle and do not require a 

trade-off between model accuracy and the number of 

participating devices. While significantly reducing 

communication overhead. 

Model Watermarking is a technique used to protect the 
intellectual property of deep learning models. With the 
widespread application of machine learning models across 
various domains, ensuring that these models are not illegally 
copied, redistributed, or used without authorization becomes 
crucial. Model watermarking embeds specific identification 
information into the model, allowing the original owner to 
track and prove ownership if the model is misappropriated. 
Watermark embedding methods include directly modifying 
model parameters or creating specific trigger datasets that 
cause the model to exhibit abnormal prediction behavior when 
processing these data. Watermark verification can be done 
through white-box (direct access to model parameters) or 
black-box (simply via the input-output interface of the model) 
techniques to confirm the watermark's existence [56]. With 
ongoing research, various watermarking methods have 
emerged, including parameter-based watermarks, trigger data 
point-based watermarks, and leveraging the backdoor 
characteristics of neural networks for watermarking [57]. 

3) Communication Privacy Protection: Trusted Execution 

Environment (TEE) [20] is a secure computing environment 

that provides an isolated execution space to protect code and 

data from external software and hardware attacks or 

unauthorized access. To protect sensitive operations and 

guarantee the security and integrity of code executed and data 

processed inside TEE, TEE typically makes use of hardware-

supported security capabilities. The concept of TEE originated 

in smartphones and embedded systems to protect sensitive 

information such as payments and personal data. For instance, 

ARM TrustZone technology is an early TEE implementation 

that divides the system into secure and normal worlds using 

hardware support. As open-source software and hardware 

continue to advance, the RISC-V architecture has garnered 

significant attention due to its flexibility and openness. TEE 

implementations on the RISC-V architecture, such as the 

Keystone framework [21], provide a customizable TEE 

solution allowing developers to tailor TEE characteristics and 

functionalities based on specific requirements. 

The remainder of the document is arranged as follows. The 

fundamentals of synchronous, asynchronous FL, and 

differential privacy are covered in Section II, which also 

presents the theory of federated learning and differential 

privacy. In Section III, we summarize the relevant knowledge 

of differentially private FL, including the tailoring of gradients 

and the differential privacy at the user and customer levels. 

We discuss and make suggestions for future research in 

Section IV. In section V, we give our conclusions. 
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II. FEDERATED LEARNING AND DIFFERENTIAL PRIVACY-

RELATED THEORIES 

A. Federated Learning 

Based on the different update strategies in federated 
learning, the two types of federated learning that we may 
distinguish are synchronous and asynchronous. In synchronous 
federated learning, all participants (or clients) must wait for 
each other to complete their local computations before sending 
updates to the central server. The global model is then 
produced by the central server integrating these updates. This 
approach ensures that all participants use the same or similar 
data for training in each round, but it can lead to inefficiencies 
as it requires waiting for the slowest participant (i.e., the 
straggler). In contrast, asynchronous federated learning is 
characterized by its asynchronous update process. The central 
server can receive and immediately integrate updates from any 
participant that is ready, without waiting for all participants to 
complete. This design improves system efficiency and 
scalability; however, it also introduces new challenges, such as 
handling data inconsistency and model update delays. 

1) Synchronous federated learning optimization algorithm: 

Data privacy protection is federated learning's primary goal. 

and security, improve model training efficiency and address 

the problem of data silos. Stated differently, its goal is to 

optimize data use across many devices to improve user 

experience while maintaining the highest level of security and 

confidentiality for user data. Nowadays, deep learning has 

made extensive use of optimization based on the stochastic 

gradient descent (SGD) algorithm. and can also be applied in 

simple federated learning scenarios. The system architecture 

diagram of Synchronous federated learning is shown in Fig. 1. 

Each client in FedSGD [22] separately computes the loss 
function's gradient using its dataset, and then transmits that 
gradient to a main server [23]. Next, the central server 
combines these gradients (sometimes by averaging them) and 
updates the global model parameters. All clients receive the 
revised model parameters back, and they use these new values 
to continue computing their local gradients. The model is 
iterated through till it merges. 
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Fig. 1. Schematic diagram of the system architecture of synchronous 

federated learning. 

Building on this, the federated averaging algorithm 
(FedAvg) was introduced in [24], which combines local 
stochastic gradient descent computations on clients with model 
averaging on the server. Local model updates are carried out by 
clients, and the modified values from every client are averaged 
by the central server, taking into account the quantity of local 
updates completed. Each client can independently update its 
model parameters multiple times before sending the updated 
parameters to the central server for weighted averaging. The 
specific formula is represented as follows: 
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In this case, nk is the number of local datasets for the k-th 
user, and k is the k-th user. Early algorithms in federated 
learning were easy to grasp in notes, but lacked theoretical 
assurances in practical applications, necessitating extensive 
experimentation and validation for different environments and 
sample scenarios [25]. To address non-iid scenarios, where 
data distributions among clients are uneven, the FedProx 
algorithm was proposed. Unlike FedAvg, FedProx adds a 
regularization term to the client-side loss function (while 
considering the central model) to prevent overfitting during 
local iterations. Subsequently, [26] introduced a control 
algorithm for situations where local iteration and edge 
computing resources are limited in federated learning. By 
finding the ideal ratio between local updates and global 
parameter aggregation, this technique maximizes client 
participation in central aggregation by figuring out how 
frequently local iterations should occur. Addressing the issue 
of varying computational capabilities among multiple clients 
[27], the FedNova algorithm was proposed, assuming 
heterogeneous client computing resources (i.e., different 
capacities for local iterations). In study [28], personalized 
weighting of model parameters per layer on the central server 
was achieved through a hypernetwork. This strategy entails 
relearning the model parameters for every client at each layer 
and minimizing the loss by calculating the disparity between 
each client's model and the central model from the previous 
round. Subsequently, to reduce communication costs, layers 
with significant locally retained weights were excluded from 
federated participation. 

2) Asynchronous federated learning optimization 

algorithm: Widespread 5G network rollout and quick 

hardware development are improving the connectivity and 

computing abilities of heterogeneous devices, such as edge 

and IoT gadgets and opening up new application areas [29]. 

Federated learning is gradually integrating functionalities 

learned from other devices to improve model quality. 

However, when federated learning is applied on resource-
constrained devices using classical learning methods, several 
disadvantages become apparent. Due to the presence of 
heterogeneous devices, the aggregation server needs to wait for 
updates from different devices, which may unexpectedly go 
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offline due to instability. Faster devices in federated learning 
training rounds have to wait for slower devices to finish 
calculations, resulting in low resource utilization due to device 
performance differences (device heterogeneity) and uneven 
data distributions (data heterogeneity). 

The inefficiency of current node selection algorithms often 
leads to the involvement of few capable devices. Security and 
privacy vulnerabilities are also concerns. Security risks like 
data poisoning and backdoor access might affect traditional 
federated learning techniques. Privacy concerns also surface 
because of possible data leaks that occur during training. 

Asynchronous federated learning (AFL) offers an answer to 
these problems. A novel federated learning mechanism called 
Fed2A was proposed in [30], designed specifically for 
asynchronous and adaptive modes. Fed2A uses three adaptive 
methods and a two-phase asynchronous learning approach to 
support AFL successfully. Specifically, one of the core 
formulas of Fed2A for global model aggregation is as follows: 
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This formula illustrates how Fed2A considers the 
heterogeneity of time and information during global model 
aggregation. Here, Wt+1 represents the global model at global 
round t+1, L is the number of layers in the DNN being trained, 
K is the total number of participating clients, Wlk is the local 
model parameters of client k at layer l, alk is the aggregation 
weight of client k at layer l, g is a function used to compute the 
aggregation weight. This function considers the generation 
time tk of the client's local model, the parameters Wlk of the 
current global model at layer l, and the current global model 
reception time t. 

Regarding the three key challenges of federated learning—
edge heterogeneity, non-iid data distribution, and 
communication resource constraints proposed a mechanism 
called Grouped Asynchronous Federated Learning (FedGA) 
[31]. They introduced the Magic-Mirror Method (MMM) 
scheduling strategy within groups to optimize the completion 
time of model updates in a single round. By designing 
scheduling algorithms that determine the order of model 
uploads and downloads, the system achieves computing-at-the-
edge while communicating, enhancing adaptability to 
heterogeneous edges. 

Regarding federated learning (FL) in wireless network 
scenarios, article [32] proposes an asynchronous FL framework. 
It addresses the slow startup issue (stragglers) inherent in 
traditional synchronous FL by implementing periodic 
aggregation to enhance training efficiency. The article 
describes the process of global model aggregation as follows: 
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The formula indicates that the global model wt+1 at global 
round t+1 is obtained by aggregating the current global model 

wt with the aggregated local model updates ∑k∈Π(t). The 

collection of devices slated to submit model changes at global 

round t is denoted by Π(t) in this instance, |Sk| is the size of 
device k local training dataset, |S| is the total size of training 

datasets across all devices, and △wk(t) denotes the model 

update completed by device k in its local round t. 

To address asynchronous update issues, the article 
introduces an age-aware aggregation weight design, formulated 
as follows: 
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In this formula, αk(t) represents the aggregation weight of 
device k at global round t. ALUk(t) denotes the age of device k's 
local model update, which is the number of iterations since it 
last received the global model. Δ is a constant used to adjust 
the influence of age on the weight. 

MAPA-S and MAPA-C are two conceptually justified 
multi-stage adaptive privacy algorithms that were created by 
the authors of [33] for use in asynchronous federated learning 
(AFL) scenarios. By utilizing fading clipping thresholds during 
model convergence to lessen unnecessary noise and enhance 
learning performance, these algorithms aim to increase the 
ratio of protecting privacy to model efficacy. 

The multi-stage adaptive clipping threshold adjusts the 
clipping threshold adaptively during training using a decaying 
clipping threshold θc . This approach reduces noise, where θc is 
a decay factor of the initial clipping threshold c. These 
algorithms enhance model utility while preserving privacy by 
adjusting clipping thresholds and learning rates. Through 
adaptive tweaking of these parameters at different training 
phases, MAPA-S and MAPA-C can more accurately balance 
privacy protection with functionality. 
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The gamma (γ) is the learning rate, and T denotes the total 

number of global iterations. Δσ,k and Δσ,τc represent parameters 
related to the model and data. θG is the decay ratio of the 
clipping threshold, and Γ is the upper bound of the loss 
function. The initial learning rate and the number of iterations 
in the initial stage are determined using these calculations and 
are updated in each new stage based on the current model and 
data conditions. 

B. Differential Privacy 

The primary goal of differential privacy is to allow the 
study of overall properties of a dataset without revealing 
individual information. Put differently, differential privacy 
entails introducing noise into original datasets or statistical 
queries. Sacrificing some data accuracy to provide strict 
privacy protection for user data. This ensures that attackers 
cannot determine whether specific individual effects are 
present in the dataset. 

1) Centralized differential privacy: A centralized 

differential privacy paradigm, differential privacy [36] was 
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first introduced by Dwork et al. in 2006 [34]. The article 

defines that differential privacy requires a trusted central 

authority, allowing users to send their data directly to the data 

center without any modifications. The data received from 

users is stored on a central server. The central authority, 

however, has little faith in outsiders or data analysts. 

Therefore, the central authority uses differential privacy to 

obscure the source dataset before answering statistical 

inquiries for analysis from outside parties. Centralized 

differential privacy is the term used to describe this kind of 

differential privacy implementation. 

In general, differential privacy uses strict mathematical 
definitions to limit this probability gap, as defined in Definition 
1: 

Definition 1 (ε-differential privacy): A randomized 
mechanism M satisfies ε-differential privacy (ε > 0) if and only 
if for any adjacent input datasets S and S' and for any possible 
output value set R,the following holds: 

[ ( ) ] [ ( )Pr M S R e Pr M S R   „
  

Definition 2 (ε, δ)-differential privacy): A randomized 
mechanism M satisfies (ε, δ)-differential privacy (ε > 0, δ > 0) 
if and only if for any adjacent input datasets S and S' and for 
any possible the following holds:output value set R. 

[ ( ) ] [ ( ) ]Pr M S R e Pr M S R    „  

Subsequently, in [35], the authors proposed the Laplace 
mechanism, a widely recognized differential privacy technique. 
Through the introduction of random noise into numerical 
statistical results, this method safeguards individual privacy. A 
zero-centered Laplace distribution is used to sample the noise. 
A precise scale parameter selection is necessary for the Laplace 
distribution in order to guarantee adherence to the stringent 
requirements of differential privacy. This scale parameter is 
closely related to the sensitivity of the statistical query, which 
represents the maximum possible change in query results in the 
worst-case scenario. As a result, the Laplace mechanism takes 
the query's sensitivity into account while determining the right 
amount of noise, enabling the publication of approximate 
statistical data without disclosing personal information. 

Definition 3 (Sensitivity of a Statistical Function): For any 

numerical statistical function f : DN→R the sensitivity is as 

follows: 

 ,
Δ : max | ( ) ( ) |

NS S D
f f S f S


 

      

2) Local differential privacy: By doing away with the 

need for a certified server, local differential privacy, or LDP, 

is a decentralized enhancement over hierarchical approaches. 

In this approach, a randomized method is used to locally 

randomize each data item that is disseminated among N user 

interfaces. The information that has been collected is then 

safely sent via an encrypted link to the server. The server 

compiles the information and applies the appropriate 

adjustment algorithm to produce objective estimations of 

statistical quantities. The local randomization process at the 

client side ensures that every data item received by the server 

is unique, hence the LDP model does not rely on the server 

being trusted. 

Definition 4 (ε-LDP): If and only if the following true for 

any feasible output value y and any pairings of input values V 

and V′, then the randomization method M fulfills ε-LDP 

(ε > 0): 

[ ( ) ] [ ( ) ]Pr M V y e Pr M V y   „
     

Definition 5 (ε,δ)-LDP: A randomized mechanism M 

satisfies (ε,δ)-LDP (ε > 0,δ > 0) if and only if for any 

input value pairs V and V′ and for any possible output value 

y, the following holds: 

[ ( ) ] [ ( ) ]Pr M V y e Pr M V y    „
      

The Harmony system was presented by the authors in [37]. 
It is a useful, precise, and effective system that is mainly 
intended for gathering and evaluating data from users of smart 
devices while meeting LDP requirements. Multidimensional 
data with both numerical and category qualities might benefit 
from harmony. In addition to sophisticated machine learning 
tasks like linear regression, logistic regression, and SVM 
classification, it provides fundamental statistics like mean and 
frequency estimates. Additionally, the authors discuss the 
limitations of existing LDP solutions and propose improvement 
methods such as mini-batch gradient descent and 
dimensionality reduction techniques to enhance the 
performance of machine learning models under LDP 
constraints. The article concludes by exploring potential 
applications of Harmony in practical settings and identifying 
future research directions, including its deployment in real-
world scenarios like diagnostic information reporting 
applications for Samsung smartphones. 

In traditional Local Differential Privacy (LDP) techniques, 
the privacy budget ε is typically allocated to related attributes 
or processed through sampling methods for high-dimensional 
data. However, these methods have some limitations. First, 
allocating the privacy budget evenly to all attributes reduces 
the density of useful information, thereby affecting the utility 
of the data. Second, attributes in high-dimensional data often 
have correlations, and existing models do not fully utilize these 
correlations to optimize the balance between privacy protection 
and data utility. 

The authors of [38] suggested Univariate Dominance Local 
Differential Privacy (UDLDP), a novel LDP model, to solve 
these problems. Through the quantification of attribute 
correlations, the UDLDP model optimizes the allocation of the 
privacy budget. Specifically, instead of just spreading the 
budget uniformly, the UDLDP model permits a more precise 
distribution of the privacy budget on each associated 
characteristic via a correlation-bounded perturbation method. 
This effectively gets around the drawbacks of conventional 
techniques. To further enhance sampling, a widely used 
bandwidth reduction method in sensor networks and the 
Internet of Things, this research extends the correlation-
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bounded perturbation mechanism. The research further 
improves the correlation-bounded perturbation mechanism 
with sampling by finding the optimal sampling probability 
distribution method with regard to of data utility. 

3) Rényi differential privacy: A notion of privacy based on 

Rényi divergence is called Rényi Differential Privacy (RDP). 

Rényi divergence is a tool for measuring the difference 

between two probability distributions and can be viewed as a 

generalization of Kullback-Leibler divergence. RDP defines a 

new measure of privacy loss using Rényi divergence, 

providing a more flexible and fine-grained way to quantify 

privacy loss. 

Definition 6: Given two adjacent datasets D and D′ , 

which differ by one data point, and a random mechanism M 

that outputs distributions P and Q, respectively. If for all α>1, 

the mechanism M satisfies the following inequality, it is said to 
satisfy (𝛼, 𝜖)-Rényi differential privacy: 

1 ( )
( ) log

1 ( )
x Q

P x
D P Q

Q x








  
   

    

E ò

  

Here, Dα(P||Q) represents the α-order Rényi divergence 

between distributions P and Q. This measure captures privacy 
loss more precisely by considering higher-order moments of 
the distributions, providing tighter bounds compared to 
traditional differential privacy measures. 

In order to train deep neural networks to address non-
convex optimization problems while ensuring privacy, [39] 
first presented a revolutionary algorithmic technique. The 
authors developed an improved Stochastic Gradient Descent 
(SGD) algorithm that incorporates privacy protection at each 
step by using gradient clipping and noise addition to control 
the dependence on individual data points during training. 
Additionally, the paper introduced a novel privacy loss 
estimation method called Moments Accountant, which offers 
tighter privacy guarantees than traditional differential privacy 
analyses. This method provides a more accurate estimation of 
the algorithm's privacy cost by tracking higher-order moments 
of privacy loss. 

Based on the method of tracking higher-order moments of 
privacy loss, Ilya Mironov et al. proposed an extended 
framework for Differential Privacy (DP) based on Rényi 
divergence in study [40], known as Rényi Differential Privacy 
(RDP). RDP aims to improve existing differential privacy 
techniques by providing a more granular measure of privacy 
loss. The core of RDP is quantifying slight changes in the 
output distribution of randomized algorithms. Compared to 
traditional differential privacy, RDP offers more precise 
privacy loss estimation by considering higher-order moments 
of the distribution. This measure allows for more detailed 
analysis of the algorithm's output while protecting privacy. 

Additionally, in study [41], the authors focused on studying 
the Sampling Gaussian Mechanism (SGM), a widely used 
technique in machine learning that combines data subsampling 
and Gaussian noise addition to provide privacy protection. 
They proposed a numerically stable procedure to accurately 

compute the RDP of SGM. The researchers demonstrated that 
SGM satisfies (α,ϵ)-RDP under specific conditions and 
provided an almost tight closed-form bound. This work fills 
previous research gaps and unifies the understanding of SGM's 
privacy properties. The authors provided deep insights into 
understanding and applying RDP, especially in analyzing and 
designing privacy-preserving machine learning algorithms. By 
accurately computing the RDP of SGM, this research advances 
theoretical development and offers practical tools and guidance 
for privacy protection in real-world applications. 

In "Hypothesis Testing Interpretations and Rényi 
Differential Privacy," the authors proposed a new perspective 
by interpreting differential privacy through statistical 
hypothesis testing. Within this framework, differential privacy 
ensures that no test can simultaneously have high significance 
(low Type I error rate) and high power (low Type II error rate). 
Additionally, the authors provided improved conversion rules 
from RDP to (ϵ,δ)-DP and explored the relationship with 
Gaussian Differential Privacy (GDP). Finally, they proposed a 
sufficient and necessary condition to ensure that a quasi-
convex divergence is k-generated. By requiring divergences to 
be defined using a 2-generated function F, this aids in the 
construction of divergences that support the interpretation of 
the hypothesis test. 

III. DIFFERENTIAL PRIVACY FOR FEDERATED LEARNING 

A. Federated Learning with Differential Privacy with 

Different Gradient Clipping 

Several participants can train models on their local data 
using the central server in traditional Federated Learning (FL), 
eliminating the requirement to centralize the data on a single 
server. However, during the transmission of model parameters, 
if communication is not encrypted or if there are 
vulnerabilities, it may be susceptible to eavesdropping or 
tampering. An untrusted central server could infer sensitive 
information by analyzing model updates and gradient 
information. Differential Privacy (DP) effectively addresses 
these issues by adding noise to gradients to prevent such 
information leaks. However, in study [42], it was first proposed 
to use a fixed gradient clipping approach. 

On one hand, the amount of noise added in fixed gradient 
clipping differential privacy remains constant throughout the 
training process. This could lead to excessive negative impacts 
on model performance due to noise in the later stages of model 
training, thus affecting the model's usability. On the other 
hand, a fixed clipping threshold may not be suitable for all 
datasets or training scenarios. Different data distributions and 
models may require different clipping strategies to achieve 
optimal privacy protection. 

1) Federated learning with fixed gradient clipping 

differential privacy: To address the shortcomings of fixed 

clipping, the authors in study [43] attempted to solve the 

issues of parameter privacy protection and high 

communication costs by combining distinguished differential 

privacy with gradient trimming in two stages. The trained 

model's gradients are pruned in the first stage of the proposed 

IsmDP-FL, and the key variables that are chosen are then 
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given differential privacy. To finish the federated learning 

manage, gradient trimming is carried out in the subsequent 

phase while the data is being sent to the server for 

consolidation. The final result is then sent back to the client. 

Comparing the IsmDP-FL algorithm to other approaches, 

experimental results showed that it achieves higher model 

accuracy while maintaining high communication efficiency 

and model privacy. 

In study [44], the authors proposed a layer pruning method 
based on gradient correlation to further reduce communication 
overhead. Instead of uniformly clipping the parameters of all 
layers, the CLFLDP model uses a layer selection method based 
on model correlation metrics to choose layers with higher 
correlation to the global model for upload, excluding those 
with lower correlation. By using a Top-k gradient reduction 
strategy, the model further decreases the total amount of 
parameters uploaded inside the chosen layers; only the 
parameters with the highest gradient values are chosen and 
uploaded to the server. 

2) Federated learning with adaptive gradient clipping 

differential privacy: In study [45], the AdaCliP algorithm is 

introduced, with its core innovation being an adaptive clipping 

mechanism that dynamically adjusts the clipping threshold 

based on the gradient characteristics of each coordinate. This 

approach not only reduces unnecessary noise addition but also 

enhances the model's sensitivity to data during training, 

thereby improving model accuracy without sacrificing 

privacy. The implementation of AdaCliP is based on precise 

control of gradients during the stochastic gradient descent 

(SGD) process. By introducing dynamic estimates of the mean 

and standard deviation, the algorithm can adaptively adjust 

gradient clipping and noise addition at each iteration. 

Moreover, the convergence analysis provided in the paper 

offers a solid theoretical foundation for the algorithm's 

performance. 

The authors of study [46] suggest an adaptive clipping 
technique that modifies the clipping threshold to roughly 
represent a particular quantile in the updates' norm distribution. 
This adaptive clipping is implemented using an online gradient 
descent algorithm by designing a loss function ℓγ(C;X) for a 
random variable X and quantile γ to estimate and update the 
clipping threshold C. The form of the loss function ensures that 
the expected value of its derivative reflects the relationship 
between C and the quantile of X, allowing C to approach the 
true quantile of X via gradient descent. This approach not only 
closely tracks the quantile of update norms but is also 
compatible with techniques like compression and secure 
aggregation in federated learning, all while consuming minimal 
privacy budget. 

In study [47], the authors propose a novel adaptive 
differential privacy method that shifts focus away from 
gradients to determine the amount of noise injected based on 
the importance of features. Less noise is injected for important 
features, whereas more noise is added for less important ones. 
The paper introduces two adaptive methods: Sensitivity-Based 
Method: This method evaluates the importance of features by 

computing changes in model accuracy after adding noise. After 
updating local parameters, the client computes and stores the 
model accuracy as a reference. The weights associated with 
each input characteristic are then increased by noise and the 
accuracy of the new model is computed. Feature importance is 
determined by comparing the accuracy before and after noise 
addition. Variance-Based Method: This approach assumes that 
weights associated with more important features undergo 
greater changes during training. A value that is equal to the 
influence on output is generated by computing the variance of 
the weights attached to each input neuron. Following the 
determination of the significance of each feature, the 
differential privacy parameters are tuned to balance privacy 
protection and model performance by adding more noise to less 
significant characteristics and less noise to key ones. 

B. User-level and Sample-level Differential Privacy 

Federated Learning 

1) User-level differential privacy federated learning: A 

privacy-preserving method used in federated learning to 

safeguard participants' privacy inside the framework is called 

user-level differential privacy. In this configuration, several 

users work together to train a machine-learning model while 

maintaining the privacy of their personal information. In user-

level differential privacy for federated learning, all user data is 

usually protected, which means that all sample gathering on a 

user's device is protected [48]. This is significant because, 

even if an attacker manages to access the data of every other 

user, they will still be unable to deduce each individual user's 

data from the combined findings. 

To protect all data of each user, user-level differential 
privacy in federated learning requires adding noise to the 
model updates computed locally by each user, in order to 
satisfy user-level differential privacy requirements. This means 
that after local training, noise is added to the gradients or 
model parameter updates of the entire dataset. 

In study [49], Mcmahan et al. first proposed DP-FedAvg 
and DP-FedSGD, where sampling is performed on the client 
side, and noise addition occurs centrally. Sensitivity 
computation is based on the sampling rate and the federated 
weights of each client. In the same period, another article [50] 
distinguished itself from DP-FedAvg by having client-side 
model uploads trimmed at the central server. The algorithm in 
this paper achieves client-level differential privacy protection 
through the aggregation of distorted updates using random sub-
sampling and Gaussian mechanisms. The algorithm's secret is 
to strike a balance between model performance and privacy 
protection. According to experimental findings, CDPFL can 
provide client-level differential privacy with a minimum loss in 
model performance provided there are enough clients involved. 

In the paper [51], the authors focus on the scenario where 
model parameters in federated learning may be analyzed by 
malicious servers. They propose a User-Level Differential 
Privacy (UDP) algorithm aimed at enhancing privacy 
protection in FL. The primary goal of the UDP technique is to 
obfuscate the relationship between model parameters and users' 
original data by introducing fake noise to the shared model 
prior to uploading it to the server. By adjusting the variance of 
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the noise, the algorithm can provide different levels of privacy 
protection for each mobile terminal, meeting the (ϵi, δi)-LDP 
privacy protection standard. Here, ϵi and δi are privacy 
parameters associated with the i-th mobile terminal, and by 
adjusting the variance σi2 of the noise, the level of privacy 
protection can be controlled. According to the analysis in the 
paper, the specific formula for computing the noise variance is 
as follows: 

Δ 1

2 ln(1/ )
i

iiqT



 

ò
  

Here, ∆ℓ represents the sensitivity of the local training 
process, q is the random sampling rate, T denotes the quantity 
of communication cycles, εi denotes the privacy protection 
parameter, and δi stands for the failure probability. 

User-level differential privacy in federated learning ensures 
privacy protection at the user level in FL. User-level DP 
focuses on protecting all data of each user or agent, rather than 
individual data instances. For example, in scenarios such as 
banks jointly training fraud detection models, user-level DP 
can protect individual records from any bank from being 
identified. In scenarios like learning facial recognition models 
on smartphone apps, user-level DP can protect the privacy of 
each user as a unit. However, existing user-level DP methods, 
such as DP-FedAvg based on Gaussian mechanism, often 
sacrifice model utility because they require trimming of model 
updates for each agent before uploading, and adding Gaussian 
noise proportional to the trimming threshold. This can lead to 
decreased model performance. 

To address these issues, in [52], the authors analyzed the 
reasons behind the significant decrease in model accuracy 
when ensuring user-level DP using existing methods. They 
proposed two techniques: Two methods are Local Update 
Sparsification (LUS) and Local Update Regularization (BLUR). 
Through the addition of regularization terms to the agents' local 
objective function, BLUR constrains the L2 standard for local 
changes. While LUS further reduces the norm of updates by 
zeroing out values that have minimal impact on local model 
performance before trimming. Both techniques aim to enhance 
model utility without compromising privacy. 

2) Sample-level differential privacy federated learning: 

Differential privacy at the sample level Federated learning is a 

machine learning paradigm that safeguards the privacy of 

individual data while enabling several users to work together 

on model training. The core of this paradigm ensures that each 

participant's data remains private even in distributed data 

environments, preventing data leakage to other participants or 

potential attackers. 

In traditional federated learning, although data does not 
need to be centrally stored or processed, there remains a risk of 
privacy leakage. Attackers could potentially infer information 
about individual clients by analyzing shared model updates or 
gradient information among clients. To address this issue, 
researchers have proposed sample-level differential privacy 
federated learning, aiming to provide privacy protection for 
each data record of every client. 

The research in [53] further advances research in this field. 
The authors introduce the concept of federated ε-differential 
privacy, a novel privacy protection measure based on the 
Gaussian differential privacy framework. It focuses on the 
record level, protecting each client's unique data record from 
other clients' attacks by offering privacy protection. The 
PriFedSync framework proposed in the paper is a generic 
private federated learning framework capable of 
accommodating various existing federated learning algorithms 
and demonstrating its effectiveness in achieving federated ε-
differential privacy. The paper also conducts experiments in 
computer vision tasks, demonstrating that while ensuring 
privacy, the model can still maintain high predictive 
performance. This indicates the potential of sample-level 
differential privacy federated learning in practical applications, 
especially in fields such as healthcare and finance where data 
privacy requirements are stringent. 

In study [54], the authors propose a novel sample-level 
differential privacy federated learning method—DP-
SCAFFOLD, aiming to address both data heterogeneity and 
privacy protection issues. This method integrates differential 
privacy constraints into the popular SCAFFOLD algorithm to 
achieve sample-level privacy protection for participating users. 
In scenarios without trusted intermediaries, users communicate 
with "honest but curious" servers. This approach not only 
targets privacy protection from third-party observations of the 
final model but also ensures that "honest but curious" servers 
themselves cannot accurately reconstruct user data in the 
absence of a trusted intermediary. The paper provides in-depth 
analysis of the convergence of the DP-SCAFFOLD algorithm, 
demonstrating its convergence under convex and non-convex 
objectives. Additionally, using Rényi differential privacy (RDP) 
tools, the authors formally describe the privacy-utility trade-
offs of DP-FedAvg and DP-SCAFFOLD algorithms at 
different privacy protection levels. Results show that DP-
SCAFFOLD exhibits superiority over DP-FedAvg especially 
in scenarios with a large number of local updates or high data 
heterogeneity. 

In study [55], the authors address the model evaluation 
issue in federated learning (FL) by proposing a novel algorithm 
to compute the AUC metric while ensuring the privacy of 
labels. AUC is a critical metric for assessing the performance 
of classification models, and its computation process can 
potentially expose sensitive information within the dataset. To 
mitigate this issue, the algorithm in the paper employs 
differential privacy techniques, particularly the Laplace 
mechanism, to inject appropriate noise into intermediate results 
during the computation process. 

Pr[ ( ) ] Pr[ ( ) ]M D S e M D S     ò

       

Here, 𝑀 represents the random mechanism, 𝐷 and 𝐷′ are 

two adjacent datasets differing in a single sample's label. S is a 
subset of the output results, 𝜖 is the privacy budget used to 
quantify the strength of privacy protection, and 𝛿 is a small 
non-negative value used for handling boundary cases. 
Specifically, the definition of label differential privacy 
proposed in the paper emphasizes sensitivity to changes in 
individual sample labels. 
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In the setting of federated learning (FL), each client 
independently predicts and computes statistics on their data, 
then sends the noisy statistics to the server. Without directly 
accessing the original labels, the server aggregates these noisy 
statistics to compute the AUC. This method guarantees the 
correctness of the model evaluation while simultaneously 
safeguarding the confidentiality of customer data. 

IV. DISCUSSION AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

In this section, we will first discuss some key issues, and 
then introduce our recommendations for future research. 

We first discuss the following key issues: Differential 
Privacy with Federated Learning (DPFL) is moving towards a 
more efficient and personalized direction, which helps to 
achieve a better balance between protecting privacy and 
maintaining model performance. We believe that future 
research should continue to explore more advanced adaptive 
privacy protection mechanisms. At the same time, we find that 
user-level and sample-level differential privacy each have their 
advantages. Researchers should choose the appropriate type 
based on specific application scenarios and privacy needs and 
can explore a hybrid privacy protection strategy that combines 
the two. Asynchronous DPFL has potential in dealing with the 
heterogeneity of devices in practical scenarios, but still needs 
to address the challenges of model convergence and privacy 
protection, which provides an important direction for our future 
research. We emphasize that developing personalized privacy 
protection strategies is crucial for improving the practicality of 
DPFL, and future research should focus on how to meet the 
differentiated privacy needs of individuals while protecting 
overall privacy. Finally, different application scenarios have 
different needs for privacy and utility, and future research 
should further explore the best balance point for different 
application scenarios. 

Differential privacy federated learning combines the 
advantages of data privacy protection and distributed machine 
learning, making it a current hotspot in research. Most current 
research focuses on synchronous updating federated learning 
frameworks, but in practical applications, the computing and 
communication resources among participants are 
asynchronous, posing numerous unresolved challenges in this 
field. Existing federated learning frameworks often assume 
synchronous model updates across all participants, which is 
impractical in real-world scenarios. Current privacy protection 
strategies are typically one-size-fits-all and fail to fully 
consider personalized privacy needs among different 
participants. Validation of differential privacy federated 
learning in real-world applications and its cross-domain 
applications remain relatively limited. 

In order to support the asynchronous computing and 
communication resources among participants, future research 
should concentrate on developing effective asynchronous 
communication protocols. This approach ensures model 
convergence and performance while maximizing the utilization 
of each participant's computing resources. Furthermore, future 
studies can explore asynchronous federated learning 
differential privacy and personalized federated learning to 
further advance this field. While current federated learning 

frameworks assume synchronous updates, the reality of 
varying computing and communication resources among 
participants necessitates efficient asynchronous communication 
protocols. Customized privacy protection strategies can also be 
explored to cater to the different privacy needs and sensitivities 
among participants, thereby enhancing the flexibility and 
adaptability of federated learning. 

Moreover, applying differential privacy federated learning 
to more practical domains such as healthcare, finance, and the 
Internet of Things (IoT) will validate its effectiveness and 
potential in different application scenarios. By identifying and 
addressing new challenges through practical applications, 
continuous improvement and maturation of the technology can 
be achieved. 

These future studies will help overcome the limitations of 
current research, enhancing the effectiveness and adaptability 
of differential privacy federated learning in practical 
applications. Research on asynchronous federated learning 
differential privacy will make model training more efficient, 
personalized privacy protection strategies will meet the specific 
needs of different participants, and cross-domain applications 
and validations will drive the application and development of 
the technology in more practical scenarios. These studies will 
provide new perspectives for theoretical development and offer 
a more solid foundation for practical applications 

V. CONCLUSION 

Federated Learning (FL) as an innovative distributed 
machine learning technique has shown enormous potential in 
protecting data privacy and security. However, FL still faces 
numerous privacy and security challenges in practical 
applications. This paper provides a detailed review of 
Differential Privacy Federated Learning (DPFL). After 
outlining the basic concepts of differential privacy and 
federated learning, we categorize their integration. 
Subsequently, we discuss DPFL using different gradient 
clipping strategies, including fixed clipping and adaptive 
clipping methods, to enhance the protection capability and 
efficiency of differential privacy. Additionally, we explore the 
differences between user-level and sample-level differential 
privacy in federated learning. This paper aims to assist 
researchers in identifying and developing optimal algorithms 
for DPFL, while also pointing out future research directions. 
These include designing asynchronous communication 
protocols, exploring personalized privacy protection strategies, 
and expanding the application of DPFL to broader practical 
scenarios. Through these studies, we hope to overcome the 
limitations of current research, enhance the effectiveness and 
adaptability of DPFL in practical applications, and provide a 
solid theoretical and practical foundation for efficient 
distributed learning while preserving user privacy. 
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