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Abstract—Medical image classification is crucial for diagnosis 

and treatment, benefiting significantly from advancements in 

artificial intelligence. The paper reviews recent progress in the 

field, focusing on three levels of solutions: basic, specific, and 

applied. It highlights advances in traditional methods using deep 

learning models like Convolutional Neural Networks and Vision 

Transformers, as well as state-of-the-art approaches with Vision-

Language Models. These models tackle the issue of limited labeled 

data, and enhance and explain predictive results through 

Explainable Artificial Intelligence. 
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I. INTRODUCTION 

Medical Image Classification (MIC), a crucial integration of 
Artificial Intelligence (AI) and Computer Vision (CV), is 
revolutionizing image-based disease diagnosis. By categorizing 
medical images into specific disease classes, MIC enhances 
diagnostic accuracy and efficiency. Utilizing various imaging 
modalities like X-rays, CT scans, MRI, and ultrasound, MIC 
systems cater to specific clinical needs. Incorporating state-of-
the-art technologies, MIC optimizes classification accuracy, 
leading to precise diagnoses and improved patient care. 

1) The importance of MIC: The ability to interpret medical 

images accurately and efficiently is crucial for timely and 

effective patient care. However, manual image analysis can be 

time-consuming and prone to human error. MIC, leveraging AI 

and CV, offers automated analysis and classification of medical 

images, leading to several benefits: 

a) Improved diagnostic accuracy: MIC systems can 

detect subtle patterns and features at the pixel level that may be 

missed by human observers, leading to more accurate 

diagnoses. 

b) Reduced workload for physicians: Automating image 

analysis frees up valuable time for physicians, allowing them to 

focus on patient interaction and complex decision-making. 

c) Enhanced efficiency: MIC systems can process large 

volumes of images quickly, leading to faster diagnoses and 

treatment decisions. 

d) Improved patient outcomes: Ultimately, the improved 

accuracy and efficiency of MIC contribute to better patient 

outcomes and overall healthcare quality. 

2) Challenges and the need for transparency: While MIC 

offers immense potential, challenges remain. Hospital 

overload, physician burnout, and the risk of misdiagnosis 

necessitate robust and reliable MIC systems. Transparency and 

explainability are crucial for building trust among stakeholders. 

Explainable AI (XAI) addresses this need by providing insights 

into the decision-making process of MIC models, allowing 

physicians to understand the rationale behind classifications 

and make informed decisions. 

3) Advancements in MIC: Recent advancements in MIC 

have significantly enhanced its capabilities. Large-scale 

Medical Vision-Language Models (Med-VLMs) trained on 

extensive datasets of image-caption pairs enable a deeper 

understanding of visual information, leading to more accurate 

and generalizable models. Additionally, novel network 

architectures like transformers and multi-task learning 

approaches have further improved performance and efficiency. 

Few-shot and zero-shot learning have also made significant 

contributions to MIC. Few-shot learning allows models to 

classify images with minimal labeled examples, beneficial in 

fields where obtaining large labeled datasets is challenging. 

Zero-shot learning enables models to classify images from 

unseen classes by leveraging knowledge transfer from related 

tasks. Combined with Explainable AI (XAI) techniques, these 

approaches not only explain results and increase model 

reliability but also optimize outcomes, enhancing system 

accuracy and performance. This comprehensive understanding 

and improved reliability facilitate their integration into clinical 

practice with high confidence and precision, ultimately leading 

to better patient outcomes and more efficient healthcare 

processes. 

4) Exploring MIC across three levels of solution: To fully 

grasp the current state of MIC, this paper delves into three 

distinct levels: 

a) Level 1: Basic Models: This level examines the 

fundamental theoretical models including MIC, including 

learning models, basic network architectures, and XAI 

techniques. 

b) Level 2: Task-Specific Models: This level explores 

specific theoretical models and network architectures tailored 

to particular MIC tasks, such as single-task and multi-task 

classification. 

c) Level 3: Applications: This level surveys prominent 

applications of MIC within the medical community, 

highlighting recent research trends and real-world 

implementations. 

5) Contributions and structure: This article makes several 

key contributions: 
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a) Comprehensive review: It provides a thorough and 

systematic review of recent advancements in MIC, offering 

valuable insights for researchers and practitioners. 

b) Highlighting key developments: It identifies and 

discusses significant breakthroughs, including VLMs, 

transformer-based architectures, multitask models, and 

progress in XAI, which not only explain prediction results but 

also enhance the performance of MIC. Notably, recent 

advancements in zero-shot learning and few-shot learning 

address data scarcity in the medical field and mitigate model 

overfitting. 

c) Addressing challenges and proposing solutions: It 

explores challenges in MIC and proposes effective solutions to 

improve classification algorithms and systems. 

d) Exploring current issues: It delves into pressing 

problems surrounding recent advancements in MIC, providing 

a deeper understanding of the evolving research landscape. 

The remainder of the paper is structured as follows (Fig. 1): 
Section II overviews of recent advancements across three levels. 
Sections III to V detail each level. Section VI addresses 
challenges and proposes solutions. Section VII concludes and 
highlights future research directions. TABLE I.  lists the 
abbreviations used. 

By comprehensively exploring recent advancements in MIC, 
this article aims to contribute to the development of more 
effective and reliable classification systems, ultimately 
improving patient care and outcomes. 

This comprehensive survey demonstrates the multi-faceted 
nature of medical image classification across various levels of 
solutions, providing researchers and practitioners with a holistic 
view of the field's current state and future directions. By 
synthesizing recent advancements in MIC across fundamental 
models, task-specific architectures, and real-world applications, 
this article not only addresses current challenges but also 
contributes significantly to the ongoing research in the field, 
offering valuable insights for future developments. 

 

Fig. 1. Overview of paper organization. 

TABLE I.  LIST OF COMMON ABBREVIATIONS 

Abbreviation Full Form 

AI Artificial Intelligence 

CAD Computer-Aided Diagnosis 

CNN Convolutional Neural Network 

CV Computer Vision 

DL Deep Learning 

DNN Deep Neural Network 

FSL Few-shot learning 

Med-VLM Medical Visual-Language Model 

MIC Medical Image Classification 

MTL Multitask Learning 

ML Machine Learning 

NLP Natural Language Processing 

SOTA State-of-the-Art 

VLM Vision-Language Model 

XAI eXplainable Artificial Intelligence 

ZSL Zero-shot learning 

II. OVERVIEW OF RECENT ADVANCES IN MIC ACROSS 

THREE LEVELS OF CLASSIFICATION SYSTEMS 

This section explores the evolving landscape of MIC through 
a standard three-level classification system framework. Each 
level serves a distinct purpose, building upon the foundations of 
the preceding one. TABLE II. provides a comprehensive 
overview of recent advancements in MIC across these three 
levels, highlighting their functionalities and advantages. This 
structured approach facilitates a deeper understanding of the 
current SOTA and the interconnected nature of progress within 
the field. 

The proposed methods in this survey address key challenges 
in MIC: 

 Med-VLMs leverage visual and textual data to mitigate 
limited labeled data issues, enhancing model robustness 
and generalizability. 

 Few-shot and zero-shot learning techniques enable 
classification of rare conditions with minimal training 
examples. 

 Transformer-based architectures and CNN hybrids 
capture both local and global features, improving 
complex medical image comprehension. 

 XAI integration enhances interpretability, fostering trust 
and adoption in clinical settings. 

These approaches represent targeted solutions to specific 
MIC challenges, demonstrating the field's adaptability to clinical 
needs. By addressing data scarcity, rare condition classification, 
feature extraction, and interpretability, these methods contribute 
to advancing AI-driven medical image analysis. 
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III. LEVEL 1 OF MIC (FUNDAMENTAL MODELS) 

Level 1 includes learning models, fundamental network 
architectures and backbone DNN, and XAI. This level plays an 
essential role in developing systems at the subsequent levels. 

A. Learning Model 

1) Unimodal learning in MIC: The evolution of learning 

models has significantly impacted the field of MIC, offering 

solutions to challenges like manual data labeling and limited 

generalization capacity. TABLE III.  provides a concise 

comparison of various unimodal learning models commonly 

employed in MIC, highlighting their key characteristics and 

suitability for different scenarios. Selecting an optimal learning 

model for MIC tasks (see Table III) requires careful 

consideration of data availability, labeling costs, privacy 

requirements, and performance expectations. While supervised 

learning is powerful when labeled data is abundant, data 

annotation limitations and privacy concerns necessitate 

exploring alternative paradigms. Semi-supervised, weakly- 

supervised, active learning, meta-learning, federated learning, 

and self-supervised learning offer promising avenues to address 

these challenges, fostering the development of more efficient 

and generalizable MIC systems. Leveraging these diverse 

approaches allows researchers and practitioners can unlock the 

full potential of MIC, ultimately leading to improved patient 

care and clinical outcomes. 

2) Multimodal learning with med-VLMs in MIC: Bridging 

the semantic gap between visual and textual information is 

crucial for effective MIC. VLMs integrate Computer Vision 

and Natural Language Processing, enabling a comprehensive 

understanding of medical data. This section explores the role of 

clinical and paraclinical data in Medical-VLMs (Med-VLMs) 

and surveys SOTA Med-VLMs for MIC. 

a) Clinical and paraclinical data in Med-VLMs: To 

better understand the distinct roles and characteristics of 

clinical and paraclinical data within Med-VLMs, TABLE I. It 

provides a comparative analysis. 

Clinical data provides valuable context for interpreting 
paraclinical images, while paraclinical data offers objective 
visualizations of potential abnormalities. Med-VLMs leverage 
both data types to enhance diagnostic accuracy and provide a 
holistic understanding of patient health. 

b) State-of-the-Art (SOTA) Med-VLMs in MIC: Several 

advanced Med-VLMs have demonstrated remarkable 

performance in MIC tasks, utilizing sophisticated techniques 

such as transformer architectures, attention mechanisms, and 

pre-training on large datasets. TABLE V. summarizes SOTA 

Med-VLMs for MIC. 

TABLE II.  OVERVIEW OF THE THREE-LEVEL SOLUTION FRAMEWORK FOR MEDICAL IMAGE CLASSIFICATION 

Level Content Specific solutions Explaination 

1 

Learning 

model 

 Unimodal learning: Supervised learning, unsupervised learning, 
semi-supervised learning, weakly supervised learning, active learning, meta-

learning, federated learning, self-supervised learning. 

 Med-VLMs: BiomedCLIP [1], XrayGPT [2], M-FLAG [3], and 
MedBLIP [4]. 

 Some remarkable methods: 
o Few-shot learning: BioViL-T [5], PM2 [6], and DeViDe [7]. 

o Zero-shot learning: MedCLIP [8], CheXZero [9], and MedKLIP 
[10]. 

The evolution of learning models from 

unimodal to multimodal, exemplified by 
the emergence of Med-VLM, represents 

a significant advancement in the field. 

Few-shot and zero-shot learning models 

further enhance the ability to classify 

medical images with minimal or no 

labeled data, making them effective for 
rare and novel diseases. 

Architectures 
of fundamental 

networks and 

backbone DNN 

 CNN: VGGNet [11], GoogleNet [12], ResNet [13], and EfficienNet 

[14]. 

 GNN: Graph Convolution Networks (GCN) [15], and GAT [16]. 

 Transformer: ViT [17], DeiT [18], TransUnet [19], TransUnet+ 
[20], and TransUnet++ [21]. 

Evolution of fundamental network 

architectures in image classification, 

including CNNs, GNNs, and Vision 

Transformers, as well as their respective 

backbone DNNs. 

XAI 

 For CNN: LIME [22], SHAP [23], CAM-based (CAM [24], 
GradCAM [25], and GradCAM++ [26]). 

 For Transformer: ProtoPFormer[27], X-Pruner [28], and GradCam 

for Vision Transformer [29]. 

XAI is applied for CNN Architecture and 

Vision Transformer 

2 

Specific DNN 

architectures 

and Med-VLM 
for single task 

(classification) 

 CNN: Unet [30], Unet ++ [31], SNAPSHOT ENSEMBLE [32], and 

PTRN [33].  

 GNN: CCF-GNN [34] and GazeGNN [35]. 

 Transformer: SEViT [36] and MedViT [37].  

 Med-VLM: BERTHop [38], KAD [39], CLIPath [40], and 

ConVIRT [41]. 

Specialized network architectures have 

achieved high performance in MIC. 

 
 

Med-VLMs for MIC. 

Specific DNN 
architectures 

and Med-VLM 

for multitask 
(classification 

and 

segmentation) 

 CNN: Mask-RCNN-X101 [42] and Cerberus [43]. 

 GNN: MNC-Net [44] and AMTI-GCN [45]. 

 Transformer: TransMT-Net [46] and CNN-VisT-MLP-Mixer [47]. 

 Med-VLM: GLoRIA [48], ASG [49], MeDSLIP [50], SAT [51], 

CONCH [52], and ECAMP [53]. 

MIC is advancing with multi-tasking. 

Classifying disease segments often excels 

over whole image analysis. The advent of 
Med-VLMs for multi-tasking enhances 

precision and depth of analyses. 

3 
Specific 

applications 

 Breast Cancer [54] [55], tuberculosis [56], eye disease diagnosis 

[57][58], skin cancer diagnosis [59] [60], bone disease [61] - [63], other 

pathological [64] [65] 

 Cancer, brain, tumor, lesion, lung, breast, eye, etc. 

Surveying prominent applications 

significant to the medical community.  

Recent research trends in MIC (2020 - 
2024) and cancer statistics for 2024 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

269 | P a g e  

www.ijacsa.thesai.org 

TABLE III.  COMPARISON OF LEARNING MODELS IN MIC 

Learning model 

 
Data Availability Labeling cost Operating principles Balance Applications 

Supervised 

Learning 
Labeled data required High 

Learns input-output mapping 

from labeled data 

High performance with 

sufficient labeled data 

Tumor detection, organ 

segmentation, classification 

Unsupervised 

Learning 
Unlabeled data only Low 

Finds patterns and structures in 

data without explicit 
supervision 

Lower performance, 

useful for discovering 
underlying structures 

Clustering similar images, 

anomaly detection 

Semi-supervised 

Learning 

Labeled and unlabeled 

data 
Moderate 

Utilizes a combination of 

labeled and unlabeled data to 
improve model performance 

Higher performance than 

unsupervised learning 
with less labeling effort 

Classification with limited 

labeled data 

Weakly 

Supervised 

Learning 

Weak supervision 

(coarse or image-level 

labels) 

Moderate to 
low 

Learns from partially labeled or 
noisy data 

Scalability with 
reasonable performance 

Image-level diagnosis tasks 

Self-supervised 

Learning 
Unlabeled data Low 

Generates supervisory signals 

from the input data itself 

Balances model 

performance with 

labeling effort by 
leveraging unlabeled data 

Efficient use of unlabeled 
data to pre-train models for 

downstream tasks 

Active Learning 

Small initial labeled 

dataset, actively selects 
informative samples 

Initially high, 

decreases 
over time 

Actively selects the most 

informative samples to be 
labeled 

Balances model 

performance with 
labeling effort 

Reducing labeling effort by 

prioritizing informative 
images 

Meta-Learning 
Diverse set of tasks for 

meta-training 

High initially, 

potentially 

low for 
downstream 

tasks 

Learns to learn from different 

tasks, improving adaptation to 
new tasks with limited data 

Balances adaptation to 
new tasks with reduced 

need for extensive 

labeled data 

Efficient adaptation to new 

imaging modalities or 
diseases 

Federated 

Learning 

Decentralized data 

across multiple 
devices/institutions 

Varies 
depending on 

data 

distribution 

Collaboratively trains a global 

model while keeping data 
localized 

Balances model 

performance with data 
privacy and availability 

Collaborative model 
training across institutions 

without sharing sensitive 

data 
 

To summary, Med-VLMs show significant potential for 
advancing MIC by effectively integrating clinical and 
paraclinical data. Key takeaways from the surveyed models 
include the effectiveness of transfer learning, model 
optimization techniques, integration of medical knowledge, and 
the development of multi-task models. These advancements 
pave the way for more accurate, efficient, and comprehensive 
diagnostic support tools in healthcare. 

3) Some remarkable methods 

a) Few-shot learning in MIC: In the medical imaging 

domain, few-shot learning (FSL) techniques are crucial due to 

the scarcity of labeled data and the dynamic nature of disease 

patterns. FSL enables accurate classification and diagnosis 

from a limited number of training samples, leveraging meta-

learning and transfer-learning principles. 

Core Principles: 

Meta-learning: Models are trained on diverse medical 
imaging tasks to learn a shared representation that can be quickly 
adapted to new tasks with few examples, optimizing for rapid 
adaptation to new data. 

Transfer learning: Pre-trained models on large medical 
datasets are fine-tuned on smaller, specific datasets to improve 
performance on the target task, such as disease classification or 
anomaly detection. 

Relevant Med-VLM Models: 

 BioViL-T [5] is a self-supervised learning approach that 
leverages temporal information within longitudinal 
medical reports and images to enhance performance on 
medical vision-language tasks. It utilizes a hybrid CNN-
Transformer architecture for encoding visual data and a 

text model pretrained with contrastive and masked 
language modeling objectives. This approach enables 
BioViL-T to learn robust representations of medical 
concepts by capturing both visual and temporal 
relationships present in longitudinal data. The model's 
strength lies in its ability to transfer knowledge from 
diverse sources, leading to improved performance in 
few-shot settings. 

 PM2 [6] introduces a novel multi-modal prompting 
paradigm for few-shot medical image classification. Its 
key strength lies in leveraging a pre-trained CLIP model 
and learnable prompt vectors to effectively bridge visual 
and textual modalities. This approach enables PM2 to 
achieve impressive performance in few-shot settings, 
surpassing existing methods on various medical image 
classification benchmarks. 

 DeViDe [7] is a novel transformer-based approach that 
leverages open radiology image descriptions to align 
diverse medical knowledge sources, handling the 
complexity of associating images with multiple 
descriptions in multi-label scenarios. It guides medical 
image-language pretraining using structured medical 
knowledge, enabling more meaningful image and 
language representations for improved performance in 
downstream tasks like medical image classification and 
captioning. 

Advantages: 

 Data Efficiency: Reduces the need for large amounts of 
labeled data, making it feasible to develop models with 
limited resources. 
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 Flexibility: Can quickly adapt to new tasks with minimal 
data, which is crucial in dynamic environments like 
medical imaging. 

Disadvantages: 

 Performance: May be less effective compared to models 
trained on large, fully labelled datasets. 

 Complexity: Requires careful design of task sets for 
training to ensure generalizability and robustness. 

b) Zero-shot learning in MIC: Zero-shot learning (ZSL) 

enables the classification of unseen classes by leveraging 

semantic relationships between known and unknown classes. 

ZSL's core principle is to use auxiliary information, such as 

textual descriptions, to bridge the gap between seen and unseen 

classes, thereby expanding AI systems' diagnostic capabilities. 

Core Principles: 

 Semantic Embeddings: Align visual features with 
semantic representations (e.g., word embeddings) to 
infer the class of unseen instances by creating a shared 
space where both visual and semantic data coexist. 

 Knowledge Transfer: Utilize knowledge from known 
classes to predict the properties of unknown classes 
based on their semantic descriptions, effectively 
transferring learned information across domains. 

Common Models: 

 MedCLIP [8] uses contrastive learning from unpaired 
medical image-text data to improve representation 
learning and zero-shot prediction, achieving strong 
performance even with limited data. 

 CheXZero [9] is a deep learning model specifically for 
chest X-ray classification, utilizing pre-trained CNNs 
and fine-tuning on labelled data to achieve high accuracy 
in identifying thoracic diseases. 

 MedKLIP [10] leverages medical knowledge during 
language-image pre-training in radiology, enhancing its 
ability to handle unseen diseases in zero-shot tasks and 
maintaining strong performance even after fine-tuning. 

These models represent significant advancements in medical 
image classification, demonstrating impressive results and 
addressing the unique challenges posed by healthcare data. 

Advantages: 

 Scalability: Enables classification of novel classes 
without prior training examples, making it highly 
scalable and versatile. 

 Flexibility: Expands the diagnostic capabilities of AI 
systems to include rare and novel diseases, which are 
often not well-represented in training datasets. 

Disadvantages: 

 Accuracy: Performance may be lower compared to 
models trained specifically on the classes of interest, 
particularly for highly dissimilar unseen classes. 

 Dependency on Semantic Descriptions: Requires 
accurate and rich semantic information to function 
effectively, which can be a limitation if such data is not 
available. 

Overall, few-shot and zero-shot learning models address the 
challenge of limited labeled data in medical image classification. 
FSL adapts quickly to new tasks with minimal training samples, 
while ZSL uses semantic relationships to diagnose rare and 
novel diseases. Each approach has unique advantages and 
limitations that must be considered when designing MIC 
systems. Understanding these principles is crucial for 
developing effective and reliable MIC models. 

B. Architectures of Fundamental Networks and Backbone 

DNN 

MIC has significantly shifted from traditional machine 
learning methods to deep learning approaches. This review 
focuses on fundamental DL architectures commonly used in 
MIC, including Convolutional Neural Networks (CNNs), Graph 
Neural Networks (GNNs), and Transformers. These 
architectures have shown remarkable efficacy in automatically 
learning hierarchical feature representations and achieving state-
of-the-art performance in various MIC tasks. 

1) Convolutional Neural Networks (CNNs): CNNs have 

become the cornerstone of MIC due to their ability to 

automatically learn hierarchical feature representations. 

Inspired by the human visual cortex (Fig. 2 [66]), CNNs excel 

at capturing local features within images, making them ideal for 

tasks like disease detection, organ segmentation, and anomaly 

identification. This section explores the core components of 

CNNs and their contributions to feature extraction and 

classification, followed by a review of popular CNN 

architectures and their advancements in MIC. 

a) Core components of CNNs: TABLE VI. summarizes 

the core components of a CNN and their functions in feature 

extraction and class prediction. 

These components work synergistically to enable CNNs to 
learn intricate features from medical images, leading to accurate 
classification. 
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TABLE IV.  COMPARISON OF CLINICAL AND PARACLINICAL DATA 

Feature Clinical Data Paraclinical Data 

Source Direct interaction with healthcare professionals Direct interaction with healthcare professionals 

Nature Text-based (medical history, symptoms, physical exam findings) Image-based (internal body structures) 

Role Subjective assessment of patient condition Objective visualization of abnormalities 

Usage in VLMs Provides context and complements image interpretation Serves as primary input for image analysis and classification 

TABLE V.  PROMINENT MED-VLMS IN MIC 

Med-VLMs Principle 
Encoders and 

fusion method 

Pre-trained 

objectives 

Implementation 

Details 

Performance 

Metrics 
Key Contributions 

BiomedCLIP 

[1] 

Adapts CLIP 

for biomedical 
domains  

Language encoder: 

PubMedBERT 

Vision encoder: ViT 
Fusion method: late 

fusion 

Cross-modal 
global 

contrastive 

learning 

Toilored batch size 
and patch dropout 

strategy for 

efficiency. 

Pcam: 73.41, 

LC25000 (lung): 
65.23, LC25000 

(colon): 92.98, 

TCGA-TIL: 67.04, 
RSNA: 78.95 

Superior zero-shot and few-

shot classification. 

Outperfrms SOTA models on 
diverse iomedical dataset, 

robust image encoder. 

XrayGPT [2] 

Summarizes 
chest X-rays 

by aligning 

MedClip with 
Vicuna. 

Language encoder: 

Vicuma 

Vision encoder: 
MedCLIP 

Fusion method: early 

fusion 

Hybrid: 
Image-report 

matching and 

mixed 
objectives 

Fine-tuned Vicuna 
on curated reports 

Interactive 

summaries from 

radiology reports 

Integration of medical 
knowledge through interactive 

summaries, enhancing the 

interpretability and usability 
of diagnostic results. 

M-FLAG [3] 

Frozen 

language 

model, 
orthogonality 

loss for 

harmonized 
latent space. 

Language encoder: 
CXR-BERT (frozen) 

Vision encoder: 

ResNet50 
Fusion method: late 

fusion 

Hybrid: 
Image-text 

contrastive 

learning and 
language 

generative  

Potential for 

classification, 

segmentation, object 
detection 

Outperforms existing 

MedVLP 

approaches, 78% 
parameter reduction 

Model optimization and 

efficiency, achieving high 

performance with reduced 
parameters. 

MedBLIP [4] 

Bootstraps 

VLP from 3D 

medical 

images and 

texts 

Language encoder: 

BioMedLM 
Vision encoder: ViT-

G14 (EVA-CLIP) 

Fusion method: late 
fusion 

Global and 
local 

contrastive 

learning 

Combines pre-

trained vision and 

language models 

SOTA zero-shot 

classification of 

Alzheimer’s disease 

Efficient 3D medical image 

processing facilitates 

classifying complex 

conditions with minimal 

labeled data. 

b) Popular CNN architectures: A Historical Perspective: 

The evolution of CNN architectures has been driven by 

continuous innovation in addressing challenges and improving 

performance. TABLE VII. highlights key milestones: 

CNN architectures offer unique advantages and have 
demonstrably excelled in image classification tasks. Their 
capacity to learn intricate features and generalize to new data 
underscores their value in advancing image analysis and related 
research fields. Ongoing research promises further innovations 
in CNN architecture and training methodologies, leading to 
increasingly accurate and efficient image classification systems. 
This progress holds particular significance for the medical 
domain, where precise image classification can directly impact 
diagnosis and patient care. 

2) Graph Neural Networks (GNNs): leveraging 

relationships in image data 

GNNs offer a unique approach to image classification by 
representing images as graphs and exploiting the relationships 
between pixels or image regions. This allows GNNs to capture 
contextual information and learn more robust representations 
compared to traditional CNNs. 

a) GNN variants and their advantages: Two prominent 

Graph Neural Network (GNN) variants demonstrate 

considerable potential in image classification: Graph 

Convolutional Networks (GCNs) and Graph Attention 

Networks (GATs). 

 

Fig. 2. Illustration of convolutional neural networks (CNNs) inspired by 

biological visual mechanisms [66]. 
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TABLE VI.  CNN COMPONENTS AND THEIR ROLES IN MIC 

Component Function Role in MIC 

Convolutional 

Layer 

Applies filters to extract 

local features (edges, 

textures) 

Hierarchical feature 

extraction, capturing 

spatial relationships. 

Activation 

Function 
(e.g., ReLU) 

Introduces non-linearity 

for learning complex 
patterns. 

Enables complex decision 

boundaries for accurate 
classification. 

Pooling Layer 

(e.g., Max 

Pooling) 

Down-samples feature 

maps to reduce 
dimensionality and 

improve invariance. 

Improves robustness to 

image variations and 
reduces computational 

cost. 

Fully-

Connected 
Layer 

Integrates local features 

into global patterns for 
image understanding. 

Combines learned features 

for final class prediction. 

Softmax 

Layer 

Converts outputs into 

probability distribution 
over predicted classes. 

Provides class probabilities 

for determining the most 
likely class. 

TABLE VII.  POPULAR CNN ARCHITECTURES AND THEIR ADVANCEMENTS 

Architecture 

(Year) 
Advancement Key Technique 

VGGNet 

(2014, [11]) 

Achieved SOTA 
performance with 

increased depth 

Small 3x3 filters for deeper 

networks 

GoogleNet 

(2014, [12]) 

Further reduced error 

rates with efficient 
architecture 

Inception modules, 1x1 

convolutions, global average 
pooling 

ResNet 

(2015, [13]) 

Enabled training of very 

deep networks 

Residual blocks with skip 

connections to address 
vanishing gradients 

EfficientNet 
(2019, [14]) 

SOTA accuracy with 
fewer parameters 

Compound scaling for 

optimal efficiency and 

performance 

 GCNs [15], by generalizing the convolution operation to 
graph data, effectively capture the local graph structure 
and relationships between nodes. This capability allows 
GCNs to leverage the inherent structural information 
within images for improved classification. 

 GATs [16], on the other hand, introduce an attention 
mechanism to GNNs. This mechanism enables GATs to 
focus on relevant features within the graph, leading to 
improved feature extraction and ultimately, enhanced 
prediction accuracy. By selectively attending to 
important features, GATs can make more informed 
decisions during image classification. 

b) Benefits of GNNs for Image Classification 

 Modeling complex relationships: GNNs excel at 
capturing intricate dependencies between image 
elements, leading to better understanding of image 
context. 

 Improved feature extraction: By considering 
relationships between nodes, GNNs can extract more 
informative and discriminative features for 
classification. 

 Enhanced robustness: GNNs are less susceptible to noise 
and variations in image data due to their focus on 
structural information. 

c) Summary: GNNs offer a valuable complementary 

approach to CNNs for image classification, particularly when 

dealing with data where relationships between elements are 

crucial. Their ability to leverage graph structures and learn 

contextual representations opens new avenues for improving 

accuracy and robustness in image classification tasks. 

3) Transformers: Expanding Horizons in Image 

Classification 

Transformers, initially designed for NLP, have emerged as 
powerful contenders in image classification. Unlike CNNs, 
transformers leverage self-attention mechanisms to capture 
global context and long-range dependencies within images, 
leading to richer feature representations. 

a) Contributions of transformers to image classification 

 Feature extraction: Vision transformers (ViTs [17]) split 
images into patches, embed them into vectors, and 
incorporate positional information. Self-attention 
mechanisms then assess the importance of each patch in 
relation to others, enabling the capture of global context 
and intricate features. 

 Class prediction: A classification head on top of the final 
transformer encoder layer predicts the image class based 
on the learned global context. Parallel processing of 
patches enhances computational efficiency compared to 
sequential CNNs. 

b) Evolution of transformer architectures 

 Vision Transformer (ViT [17]): Introduced the 
transformer architecture to image classification, 
achieving impressive performance with patch-based 
processing and self-attention. 

 Data-efficient image Transformers (DeiT [18]): 
Improved efficiency through knowledge distillation and 
efficient training strategies, achieving comparable results 
with fewer resources. 

 Specialized variants (e.g., TransUnet [19], TransUnet+ 
[20], and TransUnet++ [21]): Combine transformers 
with U-Net architectures for enhanced feature extraction 
and accurate segmentation in medical imaging tasks. 

c) Addressing challenges: Techniques like dropout, 

regularization, and efficient optimization algorithms mitigate 

overfitting and manage computational complexity in 

transformers. 

In summation, the choice of architecture depends on the 
specific task and dataset characteristics. CNNs excel at local 
feature extraction, GNNs leverage relationships within data, and 
transformers capture global context and long-range 
dependencies. Understanding these strengths and weaknesses 
empowers researchers to select the most appropriate architecture 
for their MIC tasks. 

C. Explainable Artificial Intelligence (XAI) in MIC 

XAI techniques are crucial for fostering trust and 
understanding in MIC systems. Despite achieving human-level 
accuracy, the integration of automated MIC into clinical practice 
has been limited due to the lack of explanations for algorithmic 
decisions. XAI methodologies provide insights into the rationale 
behind the classification results of DL models, such as CNNs 
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and Transformers, used in MIC tasks. By addressing the 'how' 
and 'why' behind predictive outcomes, XAI enhances the 
transparency and interpretability of MIC systems, contributing 
to their improved performance and acceptance in clinical 
settings. 

1) XAI methods in CNNs and transformers: The field of 

XAI has witnessed significant advancements, particularly in the 

domain of MIC. This progress is evident in the evolution of 

XAI methods, transitioning from those primarily designed for 

CNNs to novel techniques tailored for Transformer 

architectures. The following tables provide a comparative 

analysis of recent advancements in XAI methods applied to 

CNNs (TABLE VIII. ), Transformers (TABLE IX. ) within the 

MIC domain, along with techniques used to enhance system 

performance (TABLE X. ). 

TABLE VIII.  XAI METHODS FOR CNNS IN MIC 

Method Principle How/Why Explanation Methodological Approach System Performance Impact 

LIME [22] 

Approximates complex 
models with simpler 

interpretable ones (e.g., linear 

regression) 

Explains "how" by analyzing feature 

perturbation impact 

Fits a simpler interpretable 

model to perturbed samples 
around an instance 

Enhances local interpretability 

but may not capture global 
model behavior 

SHAP [23] 
Assigns feature contributions 
based on game theory 

principles. 

Explains "how" and "why" by 
quantifying feature importance and 

interactions 

Computes average feature 
contribution across all 

possible feature subsets 

Provides global and local 
explanations, valuable for 

understanding complex models 

CAM [24] 

Visualizes image regions 

contributing most to a specific 

class. 

Explains "why" by highlighting 

relevant regions 

Combines feature maps and 

gradients to create a saliency 

map 

Helps localize important 

features but lacks fine-grained 

details 

Grad-CAM 
[25] 

Improves CAM by 

incorporating gradient 

weights. 

Explains "why" through visualization 

and "how" through contribution values 

on saliency maps 

Computes gradients of class 

score with respect to feature 
maps for saliency map 

creation 

Offers better localization and is 
widely used 

Grad-
CAM++ [26] 

Refines Grad-CAM by 

addressing negative values and 

weight stability. 

Explains "why" by enhancing 
visualization quality and "how" 

through weighted combination of 

positive and negative partial 
derivatives 

Introduces Shapley values to 
estimate pixel contributions 

Provides improved visual 
explanations and robustness 

TABLE IX.  XAI METHODS FOR TRANSFORMERS IN MIC 

Method Principle How/Why Explanation Methodological Approach System Performance Impact 

ProtoPFormer 
[27] 

Interpretable image 

recognition using global 

and local prototypes 

Explains "how" by utilizing 

prototypes to capture target features 
and "why" by addressing the need for 

improved interpretability in ViTs 

Employs prototype-based XAI 

technique to enhance ViT 

interpretability 

Achieves superior performance 

and visualization results 

compared to SOTA baselines 

X-Pruner [28] 
Explainable pruning 
framework for ViTs 

Explains "how" by measuring each 

unit's contribution to class prediction 
using an explainability-aware mask 

Adaptively searches layer-wise 

threshold based on explainability-
aware mask values 

Outperforms SOTA black-box 

methods with reduced 
computational costs and slight 

performance degradation 

Grad-CAM 
for ViTs [29] 

Visualization of VT 
decision-making 

Explains "why" by revealing focus 
areas during ViT decision-making 

Generates class activation maps 
for ViTs 

Can enhance ViT model fine-

tuning but requires further 

improvement 

TABLE X.  XAI TECHNIQUES FOR ENHANCING SYSTEM PERFORMANCE 

Technique Description Impact on System Performance 

Explainable Pruning 
Pruning techniques like X-Pruner that utilize XAI to guide the removal 

of less important model components. 
Reduces computational cost and model complexity while 
maintaining or improving performance. 

Attention 

Visualization 

Visualizing attention mechanisms in Transformers to understand which 

parts of the input the model focuses on. 

Provides insights for model improvement and 

debugging. 

Feature Importance 

Analysis 

Techniques like SHAP that quantify the importance of individual 

features for model predictions. 

Helps identify key features and potential biases, leading 

to improved model design and feature engineering. 

Adversarial 

Training 

Training models with adversarial examples to improve robustness and 

generalizability. XAI methods can be used to analyze the impact of 

adversarial attacks and guide the development of defense strategies. 

Enhances model robustness and performance against 

adversarial attacks. 
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2) Discussion: The tables above illustrate the diverse range 

of XAI methods available for both CNNs and Transformers in 

MIC. While CNN-based methods like LIME, SHAP, and Grad-

CAM variants have been widely explored, the emergence of 

Transformers has led to the development of novel techniques 

like ProtoPFormer and X-Pruner. These methods offer unique 

advantages in terms of interpretability and performance 

improvement. 

a) Key Observations 

 Focus on Visual Explanations: Many XAI methods, 
particularly those applied to CNNs, emphasize visual 
explanations through saliency maps and other 
visualization techniques. This is crucial in MIC, where 
understanding the model's focus on specific image 
regions is essential for building trust and ensuring 
reliable diagnoses. 

 Evolution from Local to Global Explanations: XAI 
methods have progressed from providing local 
explanations for individual predictions (e.g., LIME) to 
offering global interpretations of model behavior (e.g., 
SHAP). This allows for a more comprehensive 
understanding of the decision-making process. 

 Integration with Model Optimization: Techniques like 
X-Pruner demonstrate the potential of integrating XAI 
with model optimization strategies like pruning. This 
allows for the development of more efficient and 
interpretable models. 

b) Future directions 

 Developing XAI methods specifically tailored for 
Transformer architectures: While existing techniques 
like Grad-CAM have been adapted for ViTs, further 
research is needed to explore methods that fully leverage 
the unique characteristics of Transformers. 

 Combining XAI with other AI advancements: 
Integrating XAI with areas like federated learning and 
continual learning can lead to more robust and adaptable 
medical image classification systems. 

 Standardization and Benchmarking: Establishing 
standardized evaluation metrics and benchmarks for XAI 
methods will facilitate fair comparisons and accelerate 
progress in the field. 

c) Enhancing performance and accuracy in MIC with 

XAI: XAI techniques significantly improve the performance 

and accuracy of MIC systems by providing transparency and 

facilitating error detection and correction. These techniques 

help identify and rectify model shortcomings, leading to more 

reliable and effective MIC systems. 

CNN-based XAI Techniques: 

 LIME create interpretable models for individual 
predictions, helping to identify and correct 
misclassifications by highlighting important features. 

 SHAP provide a unified measure of feature importance, 
allowing for precise identification of influential features 
and potential sources of errors. 

 CAM-based Methods: These methods generate visual 
explanations by highlighting regions in the input image 
that influence the model's predictions, making it easier to 
spot and address inaccuracies. 

Transformer-based XAI Techniques: 

 ProtoPFormer uses prototypical parts to explain 
predictions, aiding in the identification of errors by 
comparing new instances with learned prototypes. 

 X-Pruner prunes less important parts of the model, 
enhancing interpretability and helping to pinpoint and fix 
model weaknesses. 

 GradCam for Vision Transformer adapts GradCAM for 
transformers, providing visual explanations that help in 
diagnosing and correcting errors in transformer-based 
MIC models. 

Impact on MIC: 

 Error Detection: XAI techniques make it easier to 
identify misclassifications and understand why they 
occur, enabling targeted corrections. 

 Model Improvement: By revealing which features and 
regions are most influential, XAI helps refine model 
training and architecture, leading to better performance. 

 Trust and Reliability: Enhanced transparency builds trust 
among clinicians, ensuring that MIC systems are more 
likely to be adopted and relied upon in clinical settings. 

Some recent XAI techniques: 

Recent studies have shown that using XAI methods such as 
Integrated Gradients can significantly enhance the performance 
of classification systems. 

 A notable study by Apicella et al. (2023, [67]) 
investigated the application of Integrated Gradients, a 
technique from XAI, to enhance the performance of 
classification models. The study focused on three distinct 
datasets: Fashion-MNIST, CIFAR10, and STL10. 
Integrated Gradients were employed to identify and 
quantify the importance of input features contributing to 
the model's predictions. By analyzing these feature 
attributions, the researchers were able to pinpoint which 
features had the most significant impact on the model's 
output. The insights gained from Integrated Gradients 
were then used to refine the model. This involved 
adjusting the model parameters and structure to better 
capture the critical features identified by the XAI 
method. The study demonstrated that through this 
process of feature importance analysis and subsequent 
model optimization, the classification performance 
improved significantly across all tested datasets. This 
approach not only enhanced accuracy but also provided 
a deeper understanding of the model's decision-making 
process. 
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 Additionally, another study by Apicella et al. (2023, 
[68]) introduced an innovative method that also 
leveraged Integrated Gradients to boost classification 
system performance. This study proposed a soft masking 
scheme, wherein the explanations generated by 
Integrated Gradients were used to create masks that 
highlight important features while downplaying less 
relevant ones. The soft masking approach involved 
applying these masks during the training phase of the 
machine learning model. By focusing the model's 
attention on the most influential features as determined 
by Integrated Gradients, the training process became 
more efficient and effective. The experimental results 
from this study showed a marked improvement in model 
accuracy across the same datasets: Fashion-MNIST, 
CIFAR10, and STL10. The use of soft masks helped in 
reducing noise and enhancing the signal of critical 
features, thereby leading to better generalization and 
performance of the classification system. 

All in all: XAI explanations enhance both models 
understanding and classification performance. 

Summary of Level 1 Findings: 

 Learning models have evolved from traditional 
supervised learning to advanced techniques like Med-
VLMs, few-shot, and zero-shot learning, addressing data 
scarcity in medical imaging. 

 Network architectures have progressed from CNNs to 
Transformers, with hybrid models showing promise in 
capturing both local and global features. 

 XAI methods have become crucial for enhancing model 
interpretability and trust in clinical settings, with 
techniques like Grad-CAM and SHAP leading the way. 

 The integration of these advancements has led to more 
robust, efficient, and interpretable models for medical 
image classification 

IV. LEVEL 2 OF MIC (TASK-SPECIFIC MODELS) 

Expanding on initial network architectures, the second level 
focuses on specialized architectures for MIC. It takes a 
comprehensive approach, combining classification with 
segmentation through multitask learning models. This broad 
view deepens understanding of MIC network architectures, 
paving the way for specific applications. 

A. Recent Advances in Level 2 for Single Task 

1) Specific DNN architectures for single task 

(classification): This review assesses recent advancements in 

DNN architectures for single-task classification in medical 

image analysis. It evaluates specialized architectures across 

CNNs, GNNs, and Transformers, considering methodology, 

datasets, effectiveness, advantages, and limitations. The 

comparative analysis, summarized in Table XITABLE XI. , 

highlights key developments and their implications for MIC, 

offering a comprehensive overview of the current state-of-the-

art in the field. 

Key insights: 

a) Adaptability and efficiency: Unet and Unet++ 

demonstrate adaptability to new tasks and improved 

segmentation accuracy, though at the cost of increased 

parameters. 

b) Innovative approaches: Snapshot Ensemble and 

GazeGNN introduce novel methods like GradCAM and eye-

gaze data utilization, showcasing the potential of combining 

different data types and analytical techniques. 

c) Challenges in complexity and data requirements: 

While architectures like PTRN and CCF-GNN show promise 

in specific tasks, they highlight the ongoing challenges of 

computational demands and the need for extensive training 

data. 

d) Future directions: The evolution from CNN-based 

architectures to incorporating GNN and Transformer models 

indicates a shift towards more complex, yet potentially more 

effective methods for medical image classification. However, 

issues such as interpretability, computational efficiency, and 

data availability remain critical areas for future research. 

This summary underscores the dynamic nature of deep 
learning research in medical image classification, emphasizing 
the need for continued innovation and exploration of new 
methodologies. 

2) Med-VLMs for MIC: The recent rise of Med-VLMs has 

greatly influenced MIC. These models utilize NLP and CV to 

analyze medical images and text reports, enhancing diagnostic 

accuracy and efficiency. Table XII summarizes key Med-

VLMs in MIC, highlighting their performance in zero-shot and 

few-shot learning scenarios: 

Advancements and Impact 

Med-VLMs demonstrate remarkable progress in MIC, 
particularly in scenarios with limited labeled data. 

a) Zero-shot learning: Models like KAD showcase the 

ability to classify images of unseen pathologies without explicit 

training, highlighting the potential for real-world clinical 

applications. 

b) Few-shot learning: CLIPath and ConVIRT achieve 

SOTA performance with minimal labeled data, reducing the 

burden of data annotation in clinical settings. 

Future Directions 

The field of Med-VLMs is rapidly evolving, with ongoing 
research exploring: 

a) Multi-modal learning: Integrating diverse data 

modalities (e.g., images, text, genomics) for a more 

comprehensive understanding of diseases. 

b) Explainability and interpretability: Enhancing 

transparency and trust in model predictions. 

c) Domain adaptation: Adapting models to diverse 

clinical settings and populations. 
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Summary 

Med-VLMs revolutionize MIC, promising improved 
diagnosis, treatment planning, and patient care. With ongoing 
research, they have the potential to transform healthcare, 
enabling more accurate, efficient, and personalized medicine. 

B. Recent Advances in Level 2 for Multitask (Classification 

and Segmentation) 

Multitask learning (MTL) is vital in MIC tasks, overcoming 
individual model limitations and boosting overall performance. 
A recent comprehensive study highlighted the substantial 
progress made in medical image segmentation using DNNs, 
leading to more accurate and efficient diagnostic processes [69]. 
By optimizing image segmentation and classification together, 
MTL provides numerous advantages: 

a) Mitigating data scarcity: MTL leverages knowledge 

transfer across related tasks, enabling models to learn from 

complementary data sources and improve performance on the 

target task, even with limited data availability. 

b) Optimizing resource utilization: By sharing feature 

representations across tasks, MTL optimizes the use of 

computational resources, leading to more efficient model 

architectures and reduced computational overhead. 

c) Learning robust shared representations: MTL 

encourages the learning of shared features that are beneficial 

for both segmentation and classification tasks. These shared 

representations capture task-agnostic information, leading to 

improved generalization and performance across multiple MIC 

tasks. 

MTL in MIC tasks effectively tackles challenges like data 
scarcity, resource constraints, and the necessity for robust, 
generalizable models. By leveraging synergies between related 
tasks, MTL enhances MIC systems' performance and efficiency, 
leading to better clinical decision-making and patient outcomes. 

3) Typical architecture for multitasking in MIC: 

Researchers have investigated different MTL configurations 

like feature extraction, fine-tuning, and hybrids to match 

diverse medical imaging contexts and data availability. TABLE 

XIII. Surveys the latest notable DNN architectures using 

multitasking to boost MIC performance. 

In summary, these MTL-based architectures demonstrate 
significant advancements in addressing data scarcity, improving 
resource efficiency, and leveraging shared representations to 
enhance medical image classification performance across 
various modalities and disease domains. 

TABLE XI.  SUMMARY OF KEY ARCHITECTURES FOR SINGLE TASK (MIC) 

Works Method Data Effectiveness Advantanges Limitations 

Unet 

(2015, [30]) 

Supervised learning 

with encoder-
decoder architecture 

PhC-U373: 30 images 

DIC-HeLa: 35 images 

High IOU scores (92% 

for PhC-U373, 77.5% for 
DIC-HeLa) 

Accurate segmentation 

with limited data; adaptable 
to new tasks 

Limited in extracting 
long-range information; 

lacks explanation for 

predictions 

Unet++ 

(2018, [31]) 

Supervised learning 

with redesigned skip 
paths 

Cell nuclei, colon polyp, liver, 

lung nodule images  

Cell nulei: 92.63, colon 
polyp: 33.45, liver: 

82.90, lung nodule: 77.21 

Improved IoU over Unet 

Reduces semantic gap; 

improves accuracy and 
speed 

Increases parameter 

count; lacks explanation 
for predictions 

Snapshot 

Ensemble  

(2021, [32]) 

Supervised learning 

with EfficientNet-

B0, GradCAM 

Malaria Dataset: 27558 

erythrocyte images with equal 

cases of parasitized and 
uninfected cells. 

Source: CMC hospital in 

Bangladesh 

High F1 score (99.37%) 
and AUC (99.57%) 

Timely and accurate 

malaria diagnosis; uses 

GradCAM for explanations 

Focused only on P. 

falciparum; not other 

species 

PTRN 

(2022, [33]) 

Supervised learning 

with DenseNet-201 

CheXpert: 224,316 digital 

CXRs; 
CheXphoto: 10,507 CXR  

CheXpert: 0.896 
CheXphoto-Monitor: 

0.880 
CheXphoto-Film: 0.802 

meanAUC: 0.850 

Reduces cost of collecting 
natural data; eliminates 

negative impacts of 

projective transformation 

Higher computation 

costs; untuned 
hyperparameters 

CCF-GNN 
(2023, [34]) 

Supervised learning 
with GNN 

TCGA-GBMLGG, BRACS, 

Bladder Cancer, ExtCRC 

images 

High AUC (0.912 for 

TCGA-GBMLGG) and 

accuracy 

Effectively analyzes 

pathology images; 
represents cancer-relevant 

cell communities 

Requires extensive 

training data; longer 

processing time 

GazeGNN 

(2023, [35]) 

Supervised learning 

with GNN 

 

Chest X-ray: 1083 images 
High accuracy (0.832) 

and AUC (0.923) 

Captures complex 

relationships via graph 

learning without pre-

generated VAMs 

Needs eye-tracking 

devices for gaze data 
collection 

SEViT 

(2022, [36])  

Supervised learning 

with Transformer 

Chest X-ray: 7000 chest X-ray 
images (Normal or 

Tuberculosis) 

Fundoscopy (APTOS2019): 
diabetic retinopathy (DR) 3662 

retina images (5 classes) 

High accuracy (94.64% 
for Chest X-ray) and 

AUC 

Detects adversarial samples 
by assessing prediction 

consistency 

Full white-box settings 
not evaluated in natural 

image contexts 

MedViT 

(2023, [37]) 

Supervised learning 
with hybrid CNN-

Transformer. 

MedMNIST-2D: 12 biomedical 
datasets (CT, X-ray, 

Ultrasound, and OCT images) 

Average accuracy of 

0.851 and AUC of 0.942 

Reduces computational 
complexity; high 

generalization ability 

Lacks precise 
hyperparameter tuning; 

employs two CNNs. 
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TABLE XII.  PERFORMANCE OF MED-VLMS IN MIC 

Model Modality 
Zero-shot 

Learning 

Few-Shot 

Learning 
Encoders and fusion method Pre-trained objective Key Features 

BERTHop 
[38] 

Chest X-

ray 

AUC: 98.12% None Language encoder: BlueBERT 

Vision encoder: PixelHop++ 

Fusion method: Early fusion 

Hybrid: matching and 

masking (masked 

language modelling) 

Combines PixelHop++ and 

BlueBERT for effective 

visual-language fusion. 

KAD [39] Chest X-
ray 

Outperforms 
expert 

radiologists on 

multiple 
pathologies 

Excels with 
few-shot 

annotations 

Language encoder: 
PubMedBERT 

Vision encoder: ResNet-50, 

ViT-16 
Fusion method: Late fusion 

Cross-modal global 
contrastive learning and 

hybrid with additional 

classification objective 

Leverages medical 
knowledge graphs for 

improved zero-shot 

performance and auto-
diagnosis. 

CLIPath 

[40] 

Pathology Strong 

transferability 

Efficient 

adaptation 
with limited 

data 

Language encoder: BERT 

Vision encoder: ResNet-50 or 
ViT 

Fusion method: Early fusion 

Contrastive learning Fine-tunes CLIP using 

Residual Feature 
Connection for pathology 

image classification 

ConVIRT 
[41] 

Chest X-
ray 

Competitive 
performance 

SOTA with 
few-shot 

annotations 

Language encoder: BERT 
Vision encoder: ResNet50 

Fusion method: No fusion 

Global contrastive 
learning 

SOTA with few-shot 
annotations 

TABLE XIII.  SUMMARY OF KEY ARCHITECTURES FOR MULTITASK LEARNING (MIC) 

Works Method Data Effectiveness Advantages Limitations 

Mask-

RCNN-

X101 
(2021, 

[42]) 

Supervised 
learning, Mask-

RCNN-X101 

architecture 

934 radiographs 
(667 benign, 

267 malignant 

bone tumors) 

Classification of bone tumors: 80.2% 

accuracy, 62.9% sensitivity, and 88.2% 
specificity. 

Bounding box placements: IoU of 0.52 

Segmentation: mean Dice score 0.60. 

 

Assists in diagnostic 

workflow by accurately 
placing bounding boxes, 

segmenting, and 

classifying primary bone 
tumors 

Selection bias, inability to 

predict other diseases, 

fixed image resolution, 
lack of bone metastases 

and density information 

Cerberus 

(2023, 

[43]) 

Supervised 
learning, shared 

encoder (ResNet34) 

and independent 
decoders (U-Net) 

Gland: (1602 

GlaS + 3209 
CRAG + 46346 

generated), 

Lumen: 56358, 
Nuclei: 495179 

 

Segmentation: Nuclei 0.774, 0.560; Gland 

0.908, 0.640; Lumen 0.666, 0.525; 
Classification: mAP 0.948, mF1 0.883 

 

Simultaneously predicts 

multiple tasks without 

compromising 
performance, publishes 

processed TCGA dataset 

 

Performance 

enhancement in new tasks 

yet to be explored 

MNC-Net 

(2023, 
[44]) 

Supervised 
learning, graph 

encoder and cluster-

layer 

Parkinson's 

Progression 
Markers 

Initiative 

(PPMI) MRI 

data 

ACC 95.50%, F1 95.49%, Prec 97.00%, 

Rec 94.42% 

Early diagnosis of 

Parkinson's disease using 
clinical scores and brain 

regions, manages brain 

network complexity 

effectively 

Limited to node-level 
tasks, does not capture all 

Parkinson's-related 

information 

AMTI-
GCN 

(2024, 

[45]) 

Supervised 

learning, 
interpretation, 

feature sharing, and 

task-specific 
modules 

AD-NC, AD-

MCI, NC-MCI, 

MCIn-MCIp 
(186-393 

samples) 

NC-MCI: ACC 70.1, SEN 69.3, SPE 70.8, 

AUC 70.6, ADAS-Cog CC 0.477, MMSE 

CC 0.498; MCIn-MCIp: ACC 71.9, SEN 
73.2, SPE 71.1, AUC 72.5, ADAS-Cog CC 

0.485, MMSE CC 0.522 

Addresses limitations in 
binary Alzheimer's 

diagnosis and ignores task 

correlation 

Did not explore potential 

correlations between 

ADAS-Cog, MMSE, and 
other factors like 

education level 

TransMT-

Net (2023, 

[46]) 

Active learning, 

hybrid CNN-
Transformer 

architecture 

Polyp: 1,645 
images 

Seg.: DSC 77.76%, IoU 67.40%, 95% HD 

21.62 mm  

Class: Acc 96.94%, Pre 96.56%, Rec 

96.52%, F1 96.54%;  

Effectively addresses 

lesion classification and 
segmentation in GI tract 

endoscopic images 

Slightly higher 

computational 
complexity, inferior 

segmentation 

performance with 70% 
training set, varied 

processing speed 

CNN-

VisT-MLP-
Mixer 

(2024, 

[47]) 

Supervised 

learning, hybrid 
CNN-ViT 

architecture and 

MLP-Mixer 

BUSI: 789, 
UDIAT: 163 

 

Seg: BUSI (Acc 94.04, DC 83.42, IoU 

72.56, Sen 80.10); UDIAT (Acc 97.88, DC 
81.52, IoU 70.32, Sen 90.32);  

Class: Acc 86.00, Prec 86.11, Rec 86.02, 

F1 85.93, Sen 89.42, Spec 85.26 

Effectively captures local 

and high-level features in 
breast ultrasound images, 

enhances feature 

integration 

Inability to monitor 

tumor's surrounding 

environment during 
diagnosis 

 

4) Med-VLMs for multitask (classification and 

segmentation): Recent advancements in Med-VLMs have 

significantly improved the accuracy and efficiency of MIC by 

leveraging the power of multimodal AI. These models excel at 

handling multitask challenges, such as simultaneous 

classification and segmentation, leading to a more 

comprehensive understanding of medical images. Table XIV 

summarizes key Med-VLMs and their contributions to MIC. 

These Med-VLMs demonstrate several key advancements in 

MIC: 

a) Enhanced medical knowledge: Models like MedKLIP 

incorporate medical knowledge bases and text extraction 

techniques to improve understanding of medical images. 

b) Improved representation learning: Techniques like 

attention mechanisms and contrastive learning enable models 

like GLoRIA and CONCH to learn more robust and efficient 

representations of medical images. 
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c) Anatomical structure guidance: ASG (IRA) and 

MeDSLIP leverage anatomical information to improve 

interpretability and clinical relevance, leading to more accurate 

classifications. 

d) Multitask capabilities: Many of these models excel at 

both classification and segmentation tasks, providing a more 

comprehensive analysis of medical images. 

e) Zero-Shot and few-shot learning: Several models, 

including GLoRIA and SAT, demonstrate strong performance 

even with limited labeled data, making them valuable in 

scenarios with scarce data resources. 

Significantly, Med-VLMs are revolutionizing MIC by 
leveraging the power of multimodal AI and multitask learning. 
These models offer enhanced diagnostic precision, efficiency, 
and interpretability, ultimately leading to improved patient care 
and outcomes. As research in this area continues, we can expect 
even more powerful and versatile Med-VLMs to emerge, further 
transforming the field of medical imaging and healthcare as a 
whole. 

TABLE XIV.  COMPARISON OF MED-VLMS FOR MULTITASK MEDICAL IMAGE ANALYSIS 

Model Encoders and fusion method Pre-trained objective Key innovations Strengths 

GLoRIA 

[48] 

Language encoder: BioClinicalBERT 

Vision encoder: ResNet-50 

Fusion method: late fusion 

Global and local contrastive 

learning 

Multimodal global-local 

approach, attention-weighted 

image regions 

Data efficiency, zero-shot 

capabilities, excels in limited-

label settings 

ASG 

(IRA) 

[49] 

Language encoder: BioClinicalBERT 

Vision encoder: ResNet-50 and ViT-B/16 

Fusion method: late fusion 

Contrastive learning and 

image tag recognition 

Anatomical structure guidance, 

image-report alignment 

Improved interpretability and 

clinical relevance, enhanced 

representation learning 

MeDSLIP 
[50] 

Language encoder: BioClinicalBERT 
Vision encoder: ResNet-50 

Fusion method: late fusion 

Hybrid: Prototypical 
contrastive learning and 

intra-image contrastive 

learning 

Dual-stream architecture for 
disentangling anatomical and 

pathological information 

Precise vision-language 
associations, improved 

performance in medical image 

captioning and report generation 

SAT 

[51] 

Language encoder: BioClinicalBERT 

Vision encoder: ResNet-50 

Fusion method: late fusion 

Contrastive learning Semantic-aware transformer for 

integrating semantic information 

Effective representation 

learning, excels in data/no-data 

recognition tasks 

CONCH 
[52] 

Language encoder: GPT-style 
Transformer 

Vision encoder: ViT-Base 

Fusion method: early fusion 

Hybrid: Contrastive learning 
and captioning objective 

Contrastive learning from 
captions for histopathology 

images 

SOTA performance in histology 
image classification, 

segmentation, and retrieval tasks 

ECAMP 

[53] 

Language encoder: BERT 

Vision encoder: ViT-B/16 

Fusion method: early fusion (multi-scale 
context fusion) 

Hybrid: masked image 

modeling, masked language 

modeling, and context-
guided super-resolution 

Entity-centered context-aware 

pre-training, multi-scale context 

fusion 

Enhanced text-image interplay, 

improved performance in 

downstream medical imaging 
tasks 

 

V. RECENT ADVANCES IN LEVEL 3 OF MIC (SPECIFIC 

APPLICATIONS) 

A. Medical Image Data 

1) Medical imaging modalities: Medical imaging plays a 

critical role in modern healthcare, offering non-invasive 

visualization of the human body for diagnosis and treatment 

planning. Various modalities, including X-ray, CT, MRI, 

ultrasound, PET, and SPECT, provide unique insights into 

different organs and tissues (Fig. 3 [70]; Fig. 4 [71] illustrates 

the diverse applications of these modalities across various 

anatomical structures. 

The Medical Segmentation Decathlon dataset [72] 
exemplifies this diversity, encompassing 2,633 3D images 
spanning ten different organs (Fig. 5). Each modality possesses 
distinct characteristics, advantages, and limitations, 
necessitating careful selection based on the specific clinical 
scenario. Understanding these nuances is crucial for optimal 
utilization of medical imaging technology. A concise 
comparison of imaging techniques reveals their unique 
advantages and limitations is presented in Table XV. 

 

Fig. 3. Illustration of the diverse imaging techniques [70]. 

 

Fig. 4. An overview of the organs and corresponding medical imaging 

modalities [71]. 
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Fig. 5. An illustration of the Medical Segmentation decathlon's ten distinct 

tasks [72]. 

2) Public databases in medical imaging research: The 

growth of public medical image databases has been crucial in 

advancing disease classification research. Noteworthy 

databases include: 

 ChestX-ray141: Over 100,000 chest X-ray images. 

 MURA2: More than 40,000 X-ray images of bones and 
joints. 

 NIH Clinical Center’s dataset: 3  A diverse range of 
modalities. 

 ISIC 4: Skin image collection for lesion detection. 

 DeepLesion5: Nearly 10,600 CT scans. 

 CheXpert:6 Over 224,000 chest radiographs. 

 MIMIC-CXR7: over 377,000 chest radiographs 

Platforms like the World Health Data Hub of the WHO8, 
Medical ImageNet 9 , Kaggle 10 , and PaperswithCode 11 , offer 
extensive resources for machine learning research in medical 
imaging, showcasing the collaborative and open nature of 
contemporary scientific inquiry. 

3) Advanced techniques in medical imaging research: 

Innovative computational techniques such as augmentation, 

transfer learning, Generative Adversarial Networks (GANs), 

and Federated Learning are pushing the boundaries of medical 

imaging research. These methods improve model performance, 

generate new data, and enable decentralized learning, thus 

enhancing the robustness and diversity of medical imaging 

applications. 

4) Summary: Medical imaging is a cornerstone of modern 

medical diagnostics, with each modality serving specific 

purposes based on clinical needs. The advent of AI and machine 

learning, alongside the proliferation of public datasets, is 

revolutionizing medical imaging research, promising more 

accurate disease detection and personalized medicine. The 

future of medical imaging lies in harnessing these technological 

advancements to improve healthcare outcomes. 

General comment 

 Ionizing radiation (X-ray and CT) can be harmful, 
especially for pregnant women. 

 MRI offers the highest detail without radiation but is 
expensive and not suitable for everyone. 

 Ultrasound is safe and widely available but offers less 
detail. 

 PET and SPECT provide functional information but 
involve radioactive materials. 

B. Advancements in Medical Imaging Diagnosis: From CAD 

to AI-CAD 

AI integration has profoundly transformed various domains, 
notably evident in medical diagnostic imaging. This shift marks 
a significant departure from conventional Computer-Aided 
Diagnosis (CAD) to AI-driven CAD systems, ushering in a new 
era of diagnostic capabilities, 

The evolution began in the 1960s with CAD systems aiming 
to automate diagnostic processes. A significant milestone was 
the FDA's approval of a mammography CAD device by R2 
Technology, Inc., in 1998, marking the start of the "CAD era." 
Endorsement for reimbursement by the Centers for Medicare 
and Medicaid Services in 2002 further accelerated CAD's 
adoption across modalities like chest radiographs and CT scans. 

CAD systems encompass three categories based on their role 
in image interpretation: second-reader, concurrent-reader, and 
first-reader types (Fig. 6 [73]). Notably, interactive CAD falls 
under the first-reader type. The evolution of CAD architecture 
has transitioned from sequential interpretation (seen in second-
reader CAD Fig. 6(a)) to simultaneous interpretation 
(concurrent-reader CAD Fig. 6(b)), streamlining the diagnostic 
process by integrating CAD results from the outset. The advent 
of first-reader CAD (Fig. 6(c)) presents a novel approach where 
CAD autonomously conducts initial interpretation, guiding the 
physician's analysis solely on CAD-marked images, showing 
promise for mass screenings like mammography. 

                                                           
1 https://nihcc.app.box.com/v/ChestXray-NIHCC 
2 https://stanfordmlgroup.github.io/competitions/mura/ 
3 https://clinicalcenter.nih.gov/ 
4 https://isdis.org/ 
5 https://camelyon17.grand-challenge.org/ 
6 https://aimi.stanford.edu/chexpert-chest-x-rays 

7 https://physionet.org/content/mimic-cxr/2.0.0/ 
8 https://www.who.int/data/ 
9 https://aimi.stanford.edu/medical-imagenet 
10 https://www.kaggle.com/datasets 
11 https://paperswithcode.com/datasets 
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TABLE XV.  COMPARISON OF MEDICAL IMAGING MODALITIES IN MIC 

Technique Description Pros Cons Safety and Image Detail 

X-ray 
Examines bones, detects fractures, tumors, 

and infections. 

Quick, painless, cost-

effective, immediate results, 
widely available. 

Limited soft tissue contrast, 
ionizing radiation exposure. 

Not suitable for detailed 

organ visualization. 

Radiation risk: Moderate.  

Image detail: Low. Best for 
bone visualization. 

CT 
Detailed cross-sectional images of the body. 
Examines organs, blood vessels, and detects 

abnormalities. 

High-resolution images, fast 

acquisition time, useful for 
diagnosing trauma, 

differentiates tissue 

densities. 

Ionizing radiation exposure. 

Limited soft tissue contrast 
compared to MRI. Not 

suitable for pregnant women 

due to radiation risks. 

Radiation risk: High. Image 
detail: High. Excellent for 

visualizing organs and bone. 

MRI 

Detailed images of internal structures. 

Assesses brain, spinal cord, joints, and 

organs. 

Superior soft tissue contrast, 

no ionizing radiation. 
Multiplanar imaging, detects 

subtle abnormalities. 

Expensive, long scan times, 

contraindicated for patients 
with certain metallic 

implants. 

Radiation risk: None. Image 

detail: Very High. Best for 
soft tissue and organ 

visualization. 

Ultrasound 

Uses sound waves to produce real-time 

images. Examines abdomen, pelvis, heart, and 

monitors fetal development. 

Real-time imaging, non-

invasive, safe, portable, 

widely available, no ionizing 
radiation. 

Operator-dependent, limited 

penetration in obese patients, 

less detailed images 

compared to other 

modalities. 

Radiation risk: None. Image 

detail: Moderate. Best for 

real-time imaging and 
pregnancy monitoring. 

PET 

Visualizes metabolic processes. Detects 

cancer, assesses treatment response, evaluates 

brain disorders. 

Provides functional 

information, detects diseases 
early, helps in personalized 

medicine. 

Expensive, limited spatial 

resolution, radioactive 

material involved. 

Radiation risk: Low. Image 

detail: Moderate. Best for 
visualizing metabolic 

activity. 

SPECT 

Detects gamma rays emitted by a tracer. 

Assesses blood flow, detects myocardial 
infarctions, and evaluates brain disorders. 

Non-invasive, provides 

functional information, good 
spatial resolution. 

Longer acquisition time than 
PET, lower sensitivity than 

PET, radioactive material 

involved. 

Radiation risk: Low. Image 
detail: Moderate. Best for 

visualizing blood flow and 

brain function. 

 

 

Fig. 6. Categorization of CAD systems in medical imaging interpretation: a) 

Second-reader, b) Concurrent-reader, and c) First-reader types [73]. 

Despite CAD's acknowledged utility, persistent challenges 
include high development costs, elevated false-positive rates 
leading to increased recalls and biopsies, and limited clinical 
efficacy. These challenges are well-documented in clinical 
studies, emphasizing the need for AI-driven solutions. 

The recent introduction of AI-CAD, primarily employing 
deep learning methodologies, signifies a significant 
advancement. Deep learning algorithms have proven effective 
in reducing interpretation time and improving diagnostic 
accuracy, as demonstrated by studies like Kyono et al., which 
explored deep learning's potential to ease radiologists' workload 
in mammography screenings. AI-CAD's reliance on deep 
learning adopts a data-driven approach, benefiting from 

extensive datasets to enhance performance. Fig. 7 illustrates the 
superior performance of deep learning-based AI-CAD 
compared to traditional CAD systems, particularly with 
increasing data volume. 

 

Fig. 7. Development processes: a) Conventional CAD vs. b) Deep learning-

based AI-CAD [73]. 

In conclusion, the shift from CAD to AI-CAD represents a 
significant advancement in medical imaging diagnosis, offering 
increased accuracy, efficiency, and versatility. As AI matures, 
its integration has the potential to revolutionize healthcare 
delivery, providing clinicians with sophisticated diagnostic tools 
for precise and timely patient care. 

Remarkable Applications of AI-CAD 

 Breast Cancer: AI-CAD systems have demonstrated 
significant potential in breast cancer screening and 
mammography interpretation. Systems like cmAssist 
[54] can reduce false-positive markings by up to 69%, 
minimizing unnecessary follow-up procedures and 
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patient anxiety. Deep learning models have shown 
accuracy comparable to experienced radiologists, with 
some hybrid models outperforming human experts. The 
AI-STREAM study [55] aims to generate real-world 
evidence on the benefits and drawbacks of AI-based 
computer-aided detection/diagnosis (CADe/x) for breast 
cancer screening. 

 Tuberculosis Detection: AI-based CAD systems can 
assist in community-based active case finding for 
tuberculosis, especially in areas with limited access to 
experienced physicians. Okada et al. [56] demonstrated 
the applicability of AI-CAD for pulmonary tuberculosis 
in community-based active case findings, showing 
performance levels nearing human experts. This 
approach holds promise in triaging and screening 
tuberculosis, with significant implications for addressing 
healthcare professional shortages in low- and middle-
income countries. Such advancements contribute to the 
World Health Organization's goal of "Ending 
tuberculosis" by 2030. 

 Eye Disease Diagnosis: Google's deep learning analysis 
[57] achieved a detection sensitivity of about 98% in 
diagnosing eye diseases. AI analysis of fundus 
photographs [58] can assist in diagnosing not only eye 
diseases but also systemic conditions like heart disease, 
surpassing human capabilities. 

 Skin Cancer Diagnosis: AI demonstrates accuracy 
equivalent to or higher than dermatologists in diagnosing 
skin cancer, utilizing deep learning on large datasets of 
skin lesions. Studies have shown AI achieving diagnostic 
accuracy comparable to dermatologists [59] and even 
outperforming them in differentiating melanoma [60]. 

 Bone diseases: The use of AI, particularly deep learning, 
is gaining traction in the medical community for 
diagnosing and treating bone diseases. Recent 
applications focus on segmentation and classification of 
bone tumors and lesions in medical images. For instance, 
Zhan et al. [61] developed SEAGNET, a novel 
framework for segmenting malignant bone tumors. 
Yildiz Potter et al. [62] explored a multi-task learning 
approach for automated bone tumor segmentation and 
classification. Additionally, Ye et al. [63] investigated an 
ensemble multi-task deep learning framework for the 
detection, segmentation, and classification of bone 
tumors and infections using multi-parametric MRI. 
These studies highlight the potential of deep learning to 
significantly improve the accuracy and efficiency of 
diagnosing and treating bone diseases. 

 Other Pathological Applications: AI has demonstrated 
superior performance in detecting lymph node metastasis 
of breast cancer [64] and detecting diabetes from fundus 
photographs [65] with high sensitivity and specificity. 
These applications underscore AI's potential in 
enhancing the accuracy and efficiency of medical 
imaging diagnosis, ultimately improving patient 
outcomes and healthcare delivery. 

Overall, AI-CAD systems have shown remarkable potential 
in various medical imaging applications, from breast cancer 
screening to tuberculosis detection, eye disease diagnosis, skin 
cancer diagnosis, and other pathological conditions. By 
leveraging the power of deep learning and large datasets, these 
systems can augment and enhance human expertise, leading to 
improved diagnostic accuracy, efficiency, and accessibility in 
healthcare. 

C. Recent Research Trends in Medical Image Classification 

and Cancer Statistics (2020-2024) 

Recent statistics from representative journals using 
keywords related to medical image classification cover the latest 
advancements from 2020 to 2024. In addition, the 2024 Cancer 
Statistics [74] indicate a 33% decrease in cancer deaths in the 
U.S. since 1991, attributed to reduced smoking, earlier 
detection, and improved treatments. However, the incidence of 
six major cancers continues to rise, with colorectal cancer 
becoming a leading cause of death among men under 50. Efforts 
like the Persistent Poverty Initiative aim to mitigate cancer 
outcomes' impact of poverty, emphasizing the need for 
increased investment in prevention and disparity reduction. 

The document concludes with a projection of the top ten 
cancer types for new cases and deaths in the United States for 
2024, underscoring the ongoing challenge and importance of 
advancements in medical imaging diagnosis. 

VI. CHALLENGES AND ADVANCEMENTS IN MIC 

While MIC has experienced significant progress, challenges 
remain in data limitations, algorithm development, and 
healthcare integration. This section explores these challenges 
and proposes innovative solutions to advance the field. 

TABLE XVI.  FIVE-YEAR STATISTICS OF MEDICAL IMAGE CLASSIFICATION 

RESEARCH IN FOUR REPRESENTATIVE JOURNALS (2020-2024) 

 Classes Springer Sciencedirect IEEE PubMed 

1 cancer 4064 3474 748 291 

2 brain 3599 2984 523 112 

3 tumor 2440 2789 436 103 

4 lesion 2378 3035 286 81 

5 lung 2374 2102 433 98 

6 Breast 2019 1815 309 110 

7 eye 1979 1602 144 39 

8 COVID 1894 1460 343 107 

9 skin 1865 1647 241 71 

10 Heart 1547 1489 121 19 

11 AIDS 964 738 30 3 

12 liver 898 971 61 25 

13 bone 847 938 83 32 

14 cardiac 722 898 30 14 

15 prostate 581 638 25 14 

16 kidney 541 696 32 20 

17 tuberculosis 471 321 49 4 

18 colorectal 442 494 35 22 

19 Malaria 178 115 25 6 
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Fig. 8. Projected top ten cancer types for new cases and deaths in the United 

States for 2024, by gender [74]. 

A. Challenges and Solutions in MIC 

1) Medical image data: 

a) Limited labeled data: Transfer learning has shown 

promise in addressing the scarcity of labeled data. Kim et al. 

[75] provide a comprehensive review of transfer learning 

methods for MIC. Additionally, FSL, ZSL, and Med-VLM 

have been explored as potential solutions, as mentioned in 

previous sections. Fig. 8 shows the projected top ten cancer 

types for new cases and deaths in the United States. 

b) Inter-class similarity and imbalanced datasets: Islam 

et al. [76] introduced CosSIF, a cosine similarity-based image 

filtering method for synthetic medical image datasets to 

improve accuracy when dealing with high inter-class similarity. 

For imbalanced datasets, Huynh et al. [77] propose a semi-

supervised learning approach for MIC. 

c) Large image sizes and domain shift: Sreenivasulu and 

Varadarajan [78] present an efficient lossless ROI image 

compression technique to address computational challenges 

posed by large image dimensions. Guan and Liu [79] provide a 

survey on domain adaptation methods for medical image 

analysis, highlighting techniques to improve model 

generalizability across different datasets and populations. 

2) Clinical data: 

a) Data privacy, security, and accessibility: Kaissis et al. 

[80] discuss secure, privacy-preserving, and federated machine 

learning approaches in medical imaging, addressing crucial 

aspects of protecting patient data while improving access to 

clinical data. 

3) Practical application challenges 

a) Model interpretability: Alam et al. [81] explore LRP 

and Grad-CAM visualization techniques to interpret multi-

label-multi-class pathology prediction using chest radiography, 

enhancing model interpretability. 

b) Model validation: Ramezan et al. [82] evaluate 

sampling and cross-validation tuning strategies for regional-

scale machine learning classification, ensuring model 

performance and generalizability. 

c) Regulatory approval: Joshi and Bhandari [83] provide 

an updated landscape of FDA-approved AI/ML-enabled 

medical devices, offering insights into navigating regulatory 

requirements. 

Future Directions and Research Opportunities: 

This review highlights various challenges in medical image 
classification and presents potential solutions based on recent 
research. However, it's important to note that these solutions 
require further validation in specific clinical contexts. To 
advance the field, researchers should consider: 

 Conducting comparative studies of different approaches 
to address each challenge. 

 Validating the proposed solutions in diverse clinical 
settings and with larger datasets. 

 Investigating the integration of multiple solutions to 
address complex, real-world scenarios in medical image 
classification. 

 Exploring the ethical implications and potential biases of 
AI systems in healthcare. 

B. Key Advancements in MIC Techniques 

a) Transformers vs. CNNs: Evidence suggests 

Transformers like ViT and DeiT demonstrate promising results 

compared to traditional CNNs, especially in capturing global 

context and long-range dependencies. 

b) Synergy of transformers and CNNs: Hybrid models 

like MedViT and TransMT-Net leverage the strengths of both 

architectures, achieving superior performance in classification 

and segmentation tasks. 

c) Med-VLMs for multitask MIC: Integrating Med-VLMs 

into multitask learning frameworks improves performance by 

effectively aligning visual and textual information. 

d) AI for tumor classification: AI models demonstrate 

impressive accuracy in distinguishing between benign and 

malignant tumors, with potential to augment clinical decision-

making. 

e) FSL addresses the challenge of limited labeled data by 

enabling models to generalize effectively from a small number 

of examples. Researchs have demonstrated that FSL can 

achieve high accuracy in tasks such as tumor detection with 

minimal data, highlighting its potential in clinical applications. 

f) ZSL tackles the issue of classifying unseen categories 

by leveraging semantic relationships. ZSL has shown 

promising results in identifying rare diseases and novel medical 

conditions, significantly aiding in early diagnosis and treatment 

planning. 

g) XAI techniques enhance the interpretability and 

trustworthiness of MIC systems, making them more acceptable 

in clinical practice. Additionally, XAI contributes to optimizing 

model performance and accuracy by providing insights that 

allow for iterative model adjustments. 
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C. Summary 

Addressing data challenges, refining algorithms, and 
ensuring responsible implementation are crucial for advancing 
MIC. The integration of Transformers, CNNs, Med-VLMs, and 
XAI techniques holds immense potential for improving 
healthcare delivery and patient outcomes. With the increasing 
focus on explainability and trustworthiness in AI models, further 
breakthroughs in MIC and its transformative impact on 
healthcare can be anticipated. 

VII. CONCLUSION AND FUTURE DIRECTIONS 

The paper outlines the development of medical image 
classification through three solution levels: basic, specific, and 
applied. It discusses traditional high-performance deep learning 
models and highlights the promising vision-language models 
that can explain predictions. The paper also emphasizes the 
potential of multimodal models combining clinical and 
paraclinical data for disease diagnosis and treatment. It notes the 
research community's growing interest in early prediction to 
reduce risks and the role of Explainable Artificial Intelligence in 
improving predictive results. The application of AI in Computer 
Vision for medical purposes consistently surpasses expectations, 
indicating a future focus on integrating AI advancements into 
diagnostic and treatment-related problems using multimodal 
data. 
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