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Abstract—Esophageal cancer (EC) is a severe and commonly 

increasing disease due to the uncontrolled growth in the 

esophagus. It is the sixth leading cause of cancer-related deaths 

worldwide. The traditional methods for the diagnosis of EC are 

not only time-consuming but also suffer from inconsistencies due 

to human factors such as experience and fatigue. This paper 

proposes a deep learning (DL) approach for the detection of EC 

from endoscopic images to improve efficiency and accuracy. The 

study utilizes an endoscopic image dataset of 2000 images evenly 

split into cancerous and non-cancerous cases. After image 

preprocessing and augmentation, these images are fed into the 

proposed Inception ResNet V2 model. The extracted features 

were processed by the final classification layers and produced 

class probabilities. The simulation results revealed that the 

suggested model attained 98.50% of accuracy, 97.50% of 

precision, 98.75% of recall and 98.00% of F1 score after fine-

tuning. These results underscore the model's capability to 

accurately identify EC, minimizing false positives and enhancing 

diagnostic reliability. The proposed DL framework for 

automated EC detection, promising advancements in clinical 

workflows and patient care. 

Keywords—Deep learning; esophagus cancer; transfer 

learning; endoscopic images; inception ResNet V2; fine tuning 

I. INTRODUCTION 

Cancer involves a range of illnesses caused by the 
uncontrolled growth of cells, which can impact any part of the 
body. Over the past century, the number of new cancer cases 
diagnosed within a specific period of time and mortality rates 
have significantly increased worldwide. This rise can be 
attributed to several factors, including changes in lifestyle, an 
aging population, genetic tendencies, and environmental 
influences such as pollution and dietary habits. Among the 
many types of cancer, EC is the 6th leading cause of cancer-
related deaths worldwide, highlighting its severity and 
significant impact on public health [1]. In less developed 
regions the impact of EC is significantly greater, where 80% of 
cases arise.  About 70% of these cases are diagnosed in males, 
with new diagnosis and mortality rates being two to five times 
greater in men compared to women, increasing with age. The 
frequency of EC is rising due to factors such as population 
growth and increased life expectancy. Risk factors like 

smoking and excessive alcohol consumption also play a role in 
the increase of EC, as depicted in Fig. 1 [2]. It begins within 
the mucosal layer of the esophagus and gradually extends 
outwards, making early identification more challenging. As a 
result, individuals might postpone seeking medical help until 
the cancer has reached an advanced stage. Therefore, it's 
crucial to raise awareness about risk factors and encourage 
early screening, particularly for individuals with specific 
demographics, lifestyle habits, or medical conditions [3]. 

EC can be broadly divided into 4 categories based on the 
type of cells from which the cancer originates as shown in Fig. 
2. Squamous cell carcinoma (SCC) develops from the thin, flat 
cells lining the esophagus, with risk factors including smoking, 
excessive alcohol consumption, and specific dietary factors. 
Adenocarcinoma develops from glandular cells located in the 
lower part of the esophagus, close to the junction with the 
stomach. Risk factors for this type of cancer include obesity 
and smoking. Sarcomas, which develops from connective 
tissues such as muscle or cartilage in the esophagus, are rare 
and consist of only a small fraction of EC cases. Lymphoma, a 
cancer of the lymphatic system, can occur in the esophagus but 
is rare compared to other types of EC. 

The TNM (Tumor, Node, Metastasis) staging system is 
employed in clinical practice to examine the extent of EC. It 
categorizes tumors on the basis of three factors: Tumor (T), 
assessing the size and invasion of the primary tumor; Node 
(N), indicating lymph node involvement; and Metastasis (M), 
evaluating distant organ spread [4]. Combining T, N, and M 
categories allows clinicians to stage EC (I-IV), assisting 
treatment decisions and providing prediction data. 
Conventional EC detection and classification involve manual 
inspection of endoscopic images by trained professionals, 
which is time-consuming and subjective. This approach results 
in variability in diagnoses and missed detections. Human 
interpretation can be influenced by factors like observer 
experience, tiredness, and personal opinion, affecting 
diagnostic accuracy and consistency. Thus, there's a demand 
for more objective and streamlined approaches to detect and 
classify EC, enhancing diagnostic accuracy, enabling early 
intervention, and improving patient outcomes [5]. 
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Fig. 1. Esophagus cancer. 

 
Fig. 2. Types of esophagus cancer: (a) Squamous cell carcinoma, (b) Adenocarcinoma (c) Sarcoma and (d) Lymphoma. 

Deep learning, a subset of machine learning (ML) has 
shown impressive performances in extracting complex patterns 
and features from large datasets. This has resulted in notable 
progress in tasks like recognizing, classifying, and segmenting 
images. In medical imaging, such as endoscopic images for EC 
detection and classification, DL has shown immense potential. 
These algorithms can efficiently analyze vast amounts of 
medical images, accurately identifying diseases that are hidden. 
For example, DL models can distinguish between normal and 
abnormal tissue, detect early signs of cancerous lesions, and 
even predict disease progression based on imaging data [6]. 
Moreover, DL algorithms can be integrated into clinical 
workflows to help healthcare professionals in making more 
accurate and timely diagnoses. Automating the analysis of 
medical images can help lessen the burden on endoscopists and 
radiologists, enabling them to concentrate on cases requiring 
more complex interpretation. However, the use of DL in 
medical image analysis shows certain challenges including the 
need for large, high-quality labeled datasets, robust validation 
methods, and interpretability of model predictions. Addressing 
these challenges is crucial to ensure the reliability and safety of 
AI-assisted medical diagnosis and treatment. In this study, an 
effective DL approach for detecting the EC from endoscopic 
images is proposed. The method uses an Inception ResNet V2 
model to categorize the endoscopic images accurately as “EC” 
or “No_EC”. The work proposed offers the following key 
contributions: 

 To develop a DL-based model for the detection and 
classification of EC form endoscopic images. 

 To improve the diagnosis of EC from endoscopic 
images and obtain an optimum accuracy. 

 To compare and analyze the performance of the method 
suggested with the existing methods. 

The paper proceeds as follows: Section II reviews previous 
methods relevant to the current study. Section III outlines the 
proposed approach. Section IV presents the experimental 
results and their interpretation. Finally, Section V provides the 
study's conclusion. 

II. LITERATURE REVIEW 

Chin et al. (2024) [7] aimed to develop a diagnostic system 
using DL to differentiate EC from non-contrast CT images of 
chests. They studied 398 people with EC and 255 healthy 
individuals without esophageal tumors. They employed a 
technique called nnU-Net for segmenting the esophagus and 
used a decision tree (DT) to determine the presence or absence 
of cancer. Their DL-based method demonstrated strong 
diagnostic performance, achieving 0.900 of sensitivity, 0.882 
of accuracy, 0.880 of specificity, 0.890 of AUC and an 0.891 
of F-score. Similarly, the study faced certain limitations, 
including difficulty in identifying all early-stage cancers and 
also the number of patients involved in this study is limited. 

Li et al. (2024) [8] presented a deep-learning approach for 
segmenting EEC lesions. They utilized the YOHO framework, 
as it depends only on a single image from each patient to 
ensure complete patient privacy. This "one-image-one-
network" learning strategy avoided the generalization issues by 
training the network exclusively on the input image itself, 
without using data from other patients. The YOHO framework 
was evaluated on an EEC dataset, attaining a mean Dice score 
of 0.888. 

Yasaka et al. (2023) [9] studied the efficacy of a DL model 
in detecting EC on contrast-enhanced CT images. Their study 
comprised 252 patients with EC and 25 patients with No EC. 
They developed a DL model using data from patients with EC 
for training and validation. Then, they applied the developed 
model to a test dataset containing patients with and without 
EC, achieving AUCs of 0.98 and 0.95 for image-based and 
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patient-based analyses, respectively. Also, the study shown 
certain limitations, including a training dataset of relatively 
small size and the restriction to patients with EC visible on CT 
images. 

In their study, Fang et al. (2022) [10] used a semantic 
segmentation method to predict and label early-stage EC. They 
utilized a combination of ResNet and U-Net as the fundamental 
artificial neural network (ANN) architecture to extract the 
feature maps used in classifying and predicting the cancer’s 
location. A total of 90 narrow-band images (NBI) and 75 
white-light images (WLI) were used. The research found that, 
on average, it took 111 ms to make predictions for each image 
in the test set. NBI showed 84.724% of high accuracy rate 
compared to WLI, which achieved 82.377%. These findings 
indicate that the proposed method is suitable for EC detection. 

In their study, Tsai et al. (2022) [11] introduced a new 
method that integrate hyperspectral imaging (HSI) through 
band selection. They transformed WLIs into NBIs and 
developed a single-shot multi-box detector (SSD) model to 
predict the location and stage of EC, using a total of 1780 EC 
images. The outcomes shows that the mean average precision 
(mAP) for WLIs was 80%, for HSI images was 84% and for 
NBIs was 85%. 

In their research, Zhang et al. (2022) [12] proposed an 
automated DL system for detecting esophageal cancer on 
barium esophagram. They employed five datasets derived from 
barium esophagram to progressively train, validate, and test the 
DLS. The method was evaluated and achieved a specificity, 
accuracy and sensitivity of 88.7%, 90.3% and 92.5%, 
respectively, in detecting EC. The study notes some 
limitations, such as the data collected only from a single 
medical center and the use of high-quality barium esophagram 
images for both testing and training purposes. 

Mohammed (2022) [13] aimed to create a computer system 
utilizing modern image processing techniques and algorithms 
for the early identification of EC. The study employed the 
Fuzzy C-Means (FCM) algorithm for segmentation and 
clustering, and utilized a convolutional neural network (CNN) 
algorithm for detection. When tested on 100 color 
esophagogastroduodenoscopy (EGD) images, the proposed 
system achieved an accuracy of 95%. Observations indicated 
that combining these two algorithms enhanced the detection of 
EC. 

Gong et al. (2022) [14] conducted a study where they 
developed a DL model capable of diagnosing ECs, non-
neoplasms, and precursor lesions using endoscopic images. A 
total of 5163 (WLIs) were used to train and test the model. 
They utilized a no-code DL tool to build the model. It achieved 
an internal test accuracy of 95.6%, with precision at 78.0%, F1 
Score at 85.2%, and recall at 93.9%. Furthermore, the external 
test accuracy reached 93.9%. However, a limitation of the 
study was that the established model's diagnostic performance 
was comparatively lower in comparison to other classes. 

Chen et al. (2021) [15] introduced an EC detection model 
based on DL. They employed the Faster RCNN method, 
incorporating a technique called online hard example mining 
(OHEM), for detecting objects in EC images. The experiment 

included 1525 gastrointestinal CT images collected from 420 
patients. The improved Faster RCNN's performance was 
examined by evaluating its mAP, F-1 measure and detection 
time. The experimental results indicated that the improved 
Faster RCNN outperformed the other two networks. The 
proposed method achieved a mAP of 92.15%, an F-1 measure 
of 95.17%, and a detection time per CT of only 5.3 seconds. 

Takeuchi et al. (2021) [16] proposed a system based on AI 
for diagnosing EC from CT images, employing a group of 458 
patients with primary EC in their study. A DL based image 
recognition model VGG16, was fine-tuned specifically for 
detecting EC. The CNN's diagnostic accuracy was examined 
using a test dataset comprising 46 cancerous images from CT 
scans and 100 non-cancerous images. The CNN-based system 
demonstrated an F-value of 0.742, a diagnostic accuracy of 
84.2%, a specificity of 90.0% and a sensitivity of 71.7%. The 
study's limitations include insufficient datasets, which limits 
the model's performance. 

Tsai et al. (2021) [17] employed an HSI and a DL model to 
determine the stage of EC and mark their positions. The study 
generated spectral data from the images using a special 
algorithm developed for this purpose. An SSD system was 
used in DL methods for the diagnosis and classification of EC. 
The prediction model for EC was evaluated using WLI and 
NBI images. The accuracy in detecting EC was 88% for WLI 
and 91% for NBI. Additionally, the algorithm required 19 
seconds for result prediction. 

Sui et al. (2021) [18] aimed to develop a DL model using 
the thickness of esophagus for detecting EC from unenhanced 
CT images. They identified 141 patients with EC and 273 
without EC for the model training. A CNN model was created 
by collecting unenhanced CT images for diagnosing EC. 
Specifically, in this study, CNN utilized a VB-Net 
segmentation model, designed to separate the esophagus in 
images, measure the thickness of the mucosal layer of the 
esophagus and identify any lesions in the esophagus. The 
model's results demonstrated an average specificity of 74.33%, 
an average sensitivity of 77.67% and an average accuracy of 
76%. The study’s limitation highlighted that the developed DL 
model depended only on the thickness of the mucosal layer of 
the esophagus and couldn’t identify the texture and other 
radiomic features. 

There are several gaps in current research related to the 
detection and segmentation of esophageal tumors from 
unenhanced CT images. Firstly, it's challenging to identify 
these images and tumors specifically around the 
esophagogastric junction. Secondly, the detection performance 
is said to be weak when dealing with low-quality images. 
Additionally, the model's performance can heavily depend on 
the size of the learning rate used during training. Moreover, if 
the initial weight vector of a neuron is too distant from the 
input vector, it can lead to a decrease in the performance. Also, 
there's a poor prediction performance when generating depth 
maps. Tumors at different stages vary significantly in its shape, 
volume, and complexity, which affects the accuracy of 
automated segmentation. Finally, the use of limited and biased 
datasets during training may have limited the overall 
performance of DL-based models. 
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III. MATERIALS AND METHODS 

Detecting EC from endoscopic images is crucial for 
medical diagnosis. In this study, a DL model incorporating an 
Inception ResNet V2 is utilized for the precise detection and 
classification of EC. An outline of the work suggested is 
illustrated in Fig. 3. The model takes endoscopic images from 
the dataset as input. These images undergo further 
preprocessing and augmentation. Subsequently, the 
preprocessed images are given as an input to the pretrained 
Inception ResNet V2 model to identify the features and 
classifies the images into two categories: “EC” or “No_EC”. 

A. Dataset Description 

The dataset for detecting EC from endoscopic images was 
obtained from the Kaggle repository [19]. It comprises 2000 
endoscopic images, with 1000 images depicting EC and 1000 
images showing no EC. These images are stored in "jpg" 
format, ensuring ease of access and compatibility. Fig. 4 
displays sample images from the endoscopic image dataset. 

B. Data Preprocessing and Augmentation 

In the proposed framework for detecting EC from 
endoscopic images, preprocessing plays a crucial role in 
improving image quality by reducing noise and improving the 
contrast. This involves resizing the images and normalization. 
To enhance training efficiency, OpenCV was employed to 
standardize all images to 224x224 pixels. Data augmentation 
increases dataset sizes by applying random alterations to 
existing images. Techniques such as rotation, flipping, 
shearing, and zooming create varied versions of the original 
images enhancing the model’s ability to generalize and 
recognize cancerous patterns under different conditions [20]. 

Following data augmentation, the dataset is split into training 
and testing sets with a ratio of 80:20. 

C. Proposed Methodology 

1) Convolutional Neural Network (CNN): A CNN 

network is a DL model designed specifically for processing 

and analyzing visual data. It comprises various layers, such as 

pooling layers, convolutional layers and fully connected 

layers. The CNNs architecture is illustrated in Fig. 5. In this 

architecture, features from input images are extracted by the 

convolutional layers by applying filters or kernels across the 

image. These layers capture patterns such as textures edges 

and shapes. The feature maps produced from convolutional 

layers are subsequently down-sampled by pooling layers, 

which lowers the spatial dimensions of the data without losing 

important information. Finally, the fully connected layers 

process the features extracted and carry out regression or 

classification tasks. CNNs are efficient at recognizing objects 

in images due to their ability to share parameters and connect 

nearby pixels. This helps them learn patterns at different 

levels, like shapes and textures. Consequently, CNNs are 

valuable for tasks such as object detection, image 

classification and segmentation [21]. 

2) Inception ResNet V2: Inception ResNet V2 is a deep 

CNN architecture that merges the principles of the Inception 

and ResNet models [22]. This hybrid model is employed for 

detecting EC. The basic architecture of the Inception ResNet 

V2 model, is shown in Fig. 6, which includes the inception 

modules, convolutional layers and residual connections. 

 

Fig. 3. Block diagram of the proposed methodology. 

 
Fig. 4. Sample endoscopic images of (a) Esophagus cancer (b) Normal. 
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Fig. 5. Basic block diagram of CNN. 

 
Fig. 6. Basic architecture of inception ResNet V2 model. 

The endoscopic images are given as input to the Inception 
ResNet V2 model, functioning as a feature extractor. This 
allows the model to capture the features from the input image, 
including textures, shapes, and patterns associated with EC. 
The inception modules within the architecture conduct parallel 
convolutions at different scales, facilitating the model in 
capturing multi-scale features. The residual connections within 
each block facilitates gradient propagation. By combining the 
advantages of inception modules and ResNet's skip 

connections, Inception-ResNet V2 achieves high accuracy and 
computational efficiency in deep network training.  In the 
proposed fine-tuned model, a pre-trained Inception ResNet V2 
functions as a feature extractor, extracting significant features 
from the input endoscopic images. These features extracted are 
subsequently fed into dense layers comprising fully connected 
neural network layers for classification. The proposed 
framework architecture is depicted in Fig. 7. 
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Fig. 7. Proposed model architecture.

The initial dense layer comprises 512 units and employs the 
ReLU activation function, introducing non-linear 
characteristics to the model, enables to learn more complex 
patterns and relationships within the data. To reduce the issue 
related to overfitting, a dropout layer with a dropout rate of 0.3 
is applied after the initial dense layer. Following, another dense 
layer with 512 units and ReLU activation, similar to that of the 
previous layer, captures high-level representations and patterns 
from the data, while a dropout of 0.3 is applied again to prevent 
overfitting. At last, the output layer of the model consists of a 
single neuron with sigmoid activation. This configuration is 
well-suited for binary classification, effectively distinguishing 
between endoscopic images depicting “EC’’ or “No_EC”. 

Fine-tuning is a specific approach within the TL where the 
pretrained model's parameters are fine-tuned using the new 
dataset as shown in Fig. 8 [23]. 

In endoscopic image-based EC detection, fine-tuning 
involves in adapting a pretrained deep learning model, such as 
Inception-ResNet V2, that has previously been trained on a 

large dataset. During fine-tuning, the initial layers of the 
pretrained model, which capture general features are kept fixed 
or "frozen" to preserve the knowledge gained during the 
original training. This ensures that the model retains its ability 
to recognize basic patterns and structures. Next, the model is 
trained on the new dataset of endoscopic images depicting EC. 
This model adjusts the weight of the latter layers to extract 
features specific to the EC detection. These later layers, 
starting from the 600th layer onwards in this case, are 
responsible for capturing more specific features relevant to the 
new task or dataset. Applying a low learning rate during fine-
tuning allows the later layers of the model to adapt slowly to 
the new dataset. As the training progresses, the model learns to 
extract task-specific features from the endoscopic images, such 
as shapes, textures, and patterns associated with EC for 
accurate predictions. Finally, the dense layers at the end of the 
model are used for classification, detecting whether the 
endoscopic images depict EC or not. Table I provides a 
summary of the proposed model, both before and after fine-
tuning. 

 
Fig. 8. Block diagram of fine-tuning. 
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TABLE I.  SUMMRY OF THE DESIGNED MODEL 

 Before Fine-tuning After Fine-tuning 

Total Parameters 74,261,217 74,261,217 

Trainable Parameters 19,924,481 46,509,569 

Non-Trainable Parameters 54,336,736 27,751,648 
 

The algorithm for the proposed model is outlined below: 

Algorithm 

Input: Endoscopic image dataset, labels determine Esophagus 

cancer or No_Esophagus cancer. 

Output: Predictions of whether the input image contains esophagus 

cancer or not 

Begin: 

Load and preprocess data: 

1. Collect dataset: S= {(𝑀𝑖 , 𝑛𝑖), where 𝑀𝑖  is an endoscopic 

image and 𝑛𝑖∈ {0,1} 𝑛𝑖i∈ {0,1} (1: No_EC, 0: EC).  

2. Preprocess: 

 Resize: 𝑀𝑖→𝑀𝑖
′∈𝑅224×224 

 Normalize: 𝑀𝑖
′ →

𝑀𝑖
′−𝜇

𝜎
 

 Data Augmentation: 𝑀𝑖
′ → {𝑀𝑖

′′} (Shear, Zoom, 

Flipp, Rotation) 

Define Base Models: 

1. Load Inception ResNet V2  

2. Input: 224 × 224 × 3 

            Dense (512, activation=’relu’) 

           Dropout (0.3) 

          Dense (512, activation=’relu’) 

         Dropout (0.3) 

        Dense (1, activation=’sigmoid’) 
3. Weight Initialization: Random initialization for new layers. 

Fine tune the Model: 

1. Compile Modified Model: 

model. Compile (loss=’binary_crossentropy’, 

optimizer=’Adam’) 

2. Fine-tuning from the 600th Layer Onwards: 

      for l≥600, layer. trainable=True 

     for 𝑙<600, layer. trainable=False 

3. Train the Model with Fine-tuning Hyperparameters: 

     Base_learning_rate= 𝜂 

    Lower_layer_learning_rate= 
𝜂

10
 

   Optimizer_higher_layers= Adam(learning_rate= 𝜂) 

   Optimizer_higher_layers= Adam(learning_rate= 
𝜂

10
) 

history = model.fit (train_data, epochs=num_epochs, 

validation_data= (val_data, val_labels)) 

4. Update the Lower Layers: 

Model Evaluation: 

1. Evaluate:  

           metrics=M.evaluate( 𝑋𝑡𝑒𝑠𝑡  , 𝑦𝑡𝑒𝑠𝑡 ), where metrics 

include accuracy, precision, recall and f1- score. 

2. Adjust Hyperparameters: 

if test_accuracy < desired_accuracy: adjust 

hyperparameters and retrain 

 

Save the Model 

End 

D. Hardware and Software Setup 

The method proposed for detecting EC from endoscopic 
images is implemented and evaluated on the Google 
Colaboratory platform. Two different learning rates, 0.0001 
and 0.00001, are selected for the training process. The Adam 
optimizer is chosen for its effectiveness in optimizing DL 
models by adapting the learning rate during training. 
Additionally, the binary crossentropy loss function is employed 
which is commonly used for the binary classification 
distinguishing “EC” and “No EC”. A batch size of 8 samples 
per iteration is utilized during training such that the model 
processes eight images at a time before updating its 
parameters. The training process is conducted over 10 and 20 
epochs, with each epoch representing one complete pass 
through the entire training dataset. The hyperparameters of 
deep neural networks are determined empirically and have a 
notable impact on the learning process, as detailed in Table II. 

TABLE II.  HYPERPARAMETERS 

Parameters Value 

Image Size 224*224 

Batch Size 8 

Optimizer Adam 

Learning rate 0.0001, 0.00001 

Number of epochs 10,20 

Activation function Relu, Sigmoid 

Loss Binary crossentropy 

Class mode Binary 

IV. RESULTS AND DISCUSSION 

A. Evaluation Metrics 

Evaluation metrics offer a quantitative assessment of 
performance of the model, facilitating a structured and a 
comprehensive evaluation of its effectiveness. Table III shows 
several key evaluation criteria from the proposed study. 

Table IV shows the classification report of the proposed 
models for EC detection from endoscopic images, revealing 
significant performance improvements after fine-tuning. 
Initially, the model achieved 94.49% accuracy, which is 
increased to 98.50% after fine-tuning. Precision improved from 
95.99% to 97.50%, while recall rise from 96.24% to 98.75%. 
The F1-score also increased substantially from 94.99% to 
98.00%. These enhancements demonstrate that fine-tuning the 
model led to a more accurate and precise classification 
performance, effectively identifying positive instances while 
minimizing false positives. 
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TABLE III.  EVALUATION METRICS 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)                                                                       (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑁)                                                                                                        (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑃)                                                                                                  (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2[(𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)]                                           (4) 

𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑇𝑁 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

TABLE IV.  CLASSIFICATION REPORT OF PROPOSED METHOD 

Metrics Before Fine-tuning After Fine-tuning 

Accuracy 94.49 % 98.50 % 

Precision 95.99 % 97.50 % 

Recall 96.24 % 98.75 % 

F1-score 94.99 % 98.00 % 

Plots, such as accuracy and loss plots, are utilized in EC 
detection using endoscopic images to visualize the 
performance of ML models during training. The accuracy plot 
displays how well the model performs in terms of correctly 
predicting the target variable over each epoch of training. 
Conversely, the loss plot illustrates the value of the loss 
function across each epoch, representing how well the 
predictions of the model match with the actual target values. 
As training progresses, the accuracy tends to increase while the 
loss decreases, indicating that the model is learning to make 
more accurate predictions. 

Fig. 9 illustrates the accuracy plot and loss plot of the 
model before fine-tuning. Initially, in Epoch 1, the proposed 
model attained an accuracy of around 83.36% on the training 
dataset and 91.87% on validation dataset, indicating a good 
performance at the start of training. With each epoch, the 
accuracy gradually improves. By the final epoch (Epoch 10), 
the accuracy increases to approximately 96.02% on the training 
dataset and 96.25% on the validation dataset. Regarding loss of 
the model, it begins with a relatively high value of 0.7302 in 
the initial epoch and progressively decreases over subsequent 
epochs. By the final epoch, the loss reduces to 0.1039, 

indicating that the model’s predictions become more accurate 
as training progresses. 

Fig. 10 illustrates the accuracy plot and loss plot of the 
model after fine-tuning. Initially, in Epoch 1, the proposed 
model attained an accuracy of about 90.39% on the training 
dataset and 96.25% on the validation dataset. As training 
progressed, the accuracy is improved, reaching approximately 
98.83% on the training dataset and 99.06% on the validation 
dataset at Epoch 30. Regarding the loss, the initial epoch 
(Epoch 10) showed high loss around 0.2356, indicating initial 
errors in prediction. However, as training continued, the loss 
slowly decreased, reaching approximately 0.0304 by the final 
epoch (Epoch 30). This decrease indicates that the model’s 
predictive accuracy results in more precise classification as 
“EC” or “No EC”. 

A randomly selected image from the dataset is subjected to 
classification using the proposed model, accurately identifying 
it as either “EC” or “No EC.” This successful classification, 
depicted in Fig. 11, underscores the model’s effectiveness and 
reliability in accurately identifying and categorizing images 
within the dataset. Table V presents a comparison of the 
accuracy between the proposed and current techniques. 

 
Fig. 9. (a) Accuracy plot and (b) Loss plot of the model before fine-tuning. 
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Fig. 10. (a) Accuracy plot and (b) Loss plot of the model after fine-tuning. 

 
Fig. 11. Sample classification outputs. 

TABLE V.  COMPARISON BETWEEN THE PROPOSED METHOD AND EXISTING METHODS 

SL. No: Author Methodology Accuracy (%) 

1. Chong Lin et al. [7] nnU-Net 88.20 

2. Fang et al. [10] U-Net & ResNet 84.724 (NBI), 82.377 (WLI) 

3. Zhang et al. [12] Two-stage DLS 90.3 

4. Mohammed [13] FCM & CNN 95 

5. Gong et al. [14] DL 95.6 

6. Chen et al. [15] Faster RCNN 93.53 

7. Takeuchi et al. [16] VGG16 CNN 84.2 

8. Proposed Methodology Inception ResNet V2 with Fine tuning 98.50 

 

The following table presents the comparison of the 
proposed method for EC diagnosis from endoscopic images 
with existing approaches. The proposed methodology which 
uses Inception ResNet V2 with fine-tuning, achieved the 
highest accuracy at 98.50%. This outperforms the performance 
of other methods, such as nnU-Net by Chong Lin et al. with 
88.20% accuracy, U-Net & ResNet by Fang et al. with 
84.724% (NBI) and 82.377% (WLI), and the two-stage DLS 
by Zhang et al. with 90.3%.  Other notable methods include 

FCM & CNN by Mohammed at 95%, DL by Gong et al. at 
95.6%, Faster RCNN by Chen et al. at 93.53%, and VGG16 
CNN by Takeuchi et al. at 84.2%. The results indicate that the 
proposed method significantly outperforms existing 
approaches, highlighting its potential effectiveness in 
accurately diagnosing esophageal cancer from endoscopic 
images. Fig. 12 shows the graphical representation of the 
comparison of the proposed and existing approaches. 
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Fig. 12. Accuracy comparison of existing and proposed methods. 

V. CONCLUSION 

The early identification of EC is essential in enhancing 
treatment effectiveness and improving patient outcomes. This 
study proposes an effective DL method for detecting EC from 
endoscopic images. The methodology employed a deep CNN 
architecture, specifically the Inception ResNet V2 model. 
Preprocessed images are fed into the Inception ResNet V2 
model, which serves as a feature extractor. TL was used to 
enhance the model for EC diagnosis. Through fine-tuning, the 
model successfully classified images depicting EC or not. The 
results show the efficacy of the suggested model showing 
significant improvements in the model exhibiting 98.50% of 
accuracy, 97.50% of precision, 98.75% of recall and 98.00% of 
F1 score. These improvements show that the model can 
accurately identify positive instances while minimizing the 
false positives which is crucial for the cancer diagnosis. Thus, 
the study presents a robust DL approach for EC detection from 
endoscopic images, providing exciting opportunities for 
enhancing treatment efficiency. One of the major limitations of 
the proposed work is its computational complexity. 
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