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Abstract—Diabetes mellitus stands as a major public health 

issue that affects millions globally. Among the various 

complications associated with diabetes, diabetic retinopathy 

presents a significant concern, affecting approximately one-third 

of diabetic patients. Early detection of diabetic retinopathy is 

paramount, as timely treatment can significantly reduce the risk 

of severe visual impairment. The study employs advanced 

machine learning techniques to predict diabetes and assess risk 

levels for retinopathy, aiming to enhance predictive accuracy and 

risk stratification in clinical settings. This approach contributes to 

better management and treatment outcomes. A diverse array of 

machine learning models including Logistic Regression, Random 

Forest, XGBoost, voting classifiers was used. These models were 

applied to a meticulously selected dataset, specifically designed to 

include comprehensive diabetic indicators along with retinopathy 

outcomes, enabling a detailed comparative analysis. Among the 

evaluated models, XGBoost demonstrated superior performance 

in terms of accuracy, sensitivity, and computational efficiency. 

This model excelled in identifying risk levels among diabetic 

patients, providing a reliable tool for early detection of potential 

retinopathy. The findings suggest that the integration of machine 

learning models, particularly XGBoost, into the healthcare system 

could significantly enhance early screening and personalized 

treatment plans for diabetic retinopathy. This advancement holds 

the potential to improve patient outcomes through timely and 

accurate risk assessment, paving the way for targeted 

interventions. 
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I. INTRODUCTION 

A. Diabetes Mellitus 

Diabetes mellitus (DM) is a complex metabolic disorder 
categorized by raised blood glucose levels, resulting from 
defects in insulin secretion, insulin action, or both. This 
condition represents a key health concern worldwide, affecting 
millions of individuals and imposing an extensive economic 
problem on healthcare systems [1]. The occurrence of diabetes 
has been progressively rising, fueled by sedentary lifestyles, 
poor dietary habits, obesity, ethnicity, advancing age and genetic 
predisposition. Type 1 diabetes mellitus (T1DM) is 
characterized by autoimmune destruction of pancreatic beta 
cells, leading to absolute insulin deficiency [2]. T1DM often 
develops early in life, although it can occur at any age. 
Individuals with T1DM require lifelong insulin therapy to 
survive. Type 2 diabetes mellitus (T2DM), the most prevalent 

form accounting for most cases worldwide, typically arises from 
a combination of insulin resistance and inadequate insulin 
secretion [3]. It typically develops in adulthood, although there 
has been a concerning rise in its occurrence among children and 
adolescents due to the increasing prevalence of obesity and 
sedentary lifestyles [4]. In T2DM, the body becomes resistant to 
the action of insulin, and the pancreas may fail to produce 
enough insulin to compensate for this resistance. This results in 
elevated blood glucose levels. While genetic factors play a role 
in predisposing individuals to T2DM, lifestyle factors such as 
poor diet, lack of physical activity, and obesity are significant 
contributors to its development [5].  Gestational diabetes (GDM) 
occurs during pregnancy and is associated with increased risk of 
both maternal and fetal complications. GDM poses risks to both 
the mother and the fetus, including an increased likelihood of 
complications such as macrosomia (large birth weight), birth 
trauma, hypoglycemia in the newborn, and an elevated risk of 
developing type 2 diabetes for both the mother and child later in 
life [6]. While GDM typically resolves after childbirth, affected 
women are at an increased risk of developing T2DM in the 
future. 

The economic impact of diabetes spans healthcare costs, 
productivity losses, and societal implications. Direct healthcare 
expenditures include medication, hospitalizations, and 
complications management. Additionally, indirect costs arise 
from productivity declines due to disability, absenteeism, and 
premature mortality [7]. The socioeconomic consequences 
extend to reduced quality of life, disparities in healthcare access, 
and strained healthcare systems. Addressing this global health 
challenge requires a multifaceted approach encompassing 
prevention strategies, early detection, lifestyle modifications, 
access to healthcare services, and effective management and 
treatment options. 

B. Diabetes and Retinopathy 

In addition to its metabolic manifestations, diabetes 
predisposes individuals to numerous complications, including 
cardiovascular disease, neuropathy, nephropathy, and 
retinopathy. Among these, diabetic retinopathy (DR) stands out 
as a significant cause of preventable blindness, highlighting the 
importance of understanding its pathogenesis and management. 
This condition affects the eyes, specifically the retina, the light-
sensitive tissue at the back of the eye. It is a microvascular 
complication of diabetes that affects the retinal vasculature, 
leading to progressive damage and vision loss [8]. DR, whose 
incidence is high in the working-age population, prevails all over 
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the world and is estimated to reach 191 million cases by 2030 
[9, 10]. The pathogenesis of DR is multifactorial, involving 
chronic hyperglycemia, oxidative stress, inflammation, and 
vascular dysfunction [11]. Hyperglycemia-induced metabolic 
abnormalities contribute to the development of 
microaneurysms, capillary nonperfusion, and increased vascular 
permeability, culminating in retinal ischemia and 
neovascularization. Chronic inflammation further exacerbates 
vascular damage and promotes the release of angiogenic factors, 
perpetuating a vicious cycle of retinal injury. It progresses 
through several stages, starting with non-proliferative diabetic 
retinopathy (NPDR), where small blood vessels in the retina 
weaken and leak fluid into the surrounding tissue, causing 
swelling and leading to blurry vision. As the disease advances, 
it can enter the proliferative stage, characterized by the growth 
of abnormal blood vessels on the surface of the retina. These 
vessels are fragile and prone to bleeding, leading to further 
vision impairment and, in severe cases, retinal detachment [11]. 
Additionally, diabetic macular edema (DME) can occur, where 
fluid accumulates in the macula, the central part of the retina 
responsible for sharp, central vision, leading to significant vision 
loss. These changes can impair vision and, if left untreated, 
result in blindness. Symptoms may not be noticeable in the early 
stages, but as the condition progresses, individuals may 
experience blurred vision, floaters, and even complete vision 
loss. The risk factors for diabetic retinopathy include the 
duration of diabetes, poorly controlled blood sugar levels, high 
blood pressure, and high cholesterol [11]. Early detection and 
timely intervention are crucial for preventing vision loss in DR. 
Several diagnostic modalities are available for the assessment of 
DR, including dilated fundus examination, fundus photography, 
optical coherence tomography (OCT), and fluorescein 
angiography. 

The management of diabetic retinopathy is multifaceted and 
involves lifestyle modifications, optimizing glycemic control, 
blood pressure management, and lipid-lowering therapy to 
reduce systemic risk factors. Patient education and regular 
ophthalmic screenings are essential components of 
comprehensive diabetes care to minimize the impact of 
retinopathy on visual function. Collaborative care between 
endocrinologists, ophthalmologists, and other healthcare 
providers is essential to provide comprehensive management 
and minimize the impact of this potentially sight-threatening 
complication of diabetes. 

C. Machine Learning Significance 

Machine learning (ML) incorporates a suite of 
computational techniques that enable systems to learn from and 
make predictions or decisions based on data. In predictive 
modeling, ML algorithms use historical data as input to predict 
new output values [12]. These models iteratively learn from the 
data, improving their accuracy over time without being 
explicitly programmed to perform specific tasks. This capability 
makes ML an invaluable tool across various domains, including 
finance, marketing, and notably, healthcare. 

D. Predictive Modeling Importance 

In the realm of healthcare, predictive analytics plays a 
pivotal role, especially in the early detection of diseases and the 
stratification of patient risk levels. For chronic conditions like 

diabetes mellitus [13], early prediction and diagnosis can 
significantly improve patient outcomes and reduce healthcare 
costs. According to the International Diabetes Federation, 
approximately 537 million adults (20-79 years) were living with 
diabetes in 2021, and this number is expected to rise to 643 
million by 2030 and 783 million by 2045 [14]. Specifically, in 
the context of diabetic retinopathy [15], Diabetic retinopathy is 
a leading cause of blindness in working-age adults, and early 
detection and management are crucial to prevent vision loss 
[16]. However, current methods for predicting diabetes and 
evaluating the risk of retinopathy often rely on traditional 
statistical models, which may not capture the complex 
relationships among various risk factors. Machine learning has 
emerged as a powerful tool in healthcare, offering advanced 
methods for predicting and diagnosing diseases by analyzing 
large datasets and identifying patterns that may not be apparent 
with traditional methods [17]. Machine learning models can 
analyze complex datasets to predict disease onset and 
progression, enabling healthcare providers to prioritize patients 
with a high risk of vision loss for early treatment, thereby 
optimizing resource allocation and improving patient outcomes 
[17]. Recent studies highlight the importance and advancements 
in healthcare predictive models, such as Darmadi et al. (2023) 
[18] who enhanced global health system resilience post-
COVID-19 through grounded theory approaches, Lampezhev et 
al. (2022) [19] who developed methods for analyzing the 
uniqueness of personal medical data, and Muthaiyah et al. 
(2023) [20] who presented a binary survivability prediction 
classification model for osteosarcoma prognosis. These studies 
underline the critical role of advanced machine learning 
techniques in modern healthcare. Additionally, Duong-Trung et 
al. (2019) [21] proposed a workflow for medical diagnosis 
through the lens of the machine learning perspective, 
emphasizing the integration of machine learning to boost 
automatic medical decision-making and reduce data overload. 

By leveraging machine learning algorithms, this study aims 
to enhance the accuracy and reliability of diabetes mellitus 
prediction and retinopathy risk evaluation, ultimately improving 
patient outcomes and reducing healthcare costs. 

This study introduces a novel machine learning-based 
approach for predicting diabetes and evaluating the risk of 
diabetic retinopathy. This research integrates multiple advanced 
machine learning algorithms, including XGBoost, to enhance 
predictive accuracy. 

II. AIM OF THE STUDY 

This study aims to harness the power of machine learning to 
enhance the prediction and risk assessment capabilities for 
diabetes and its consequential complication, diabetic 
retinopathy. The primary objectives of this research are: 

1) To develop and implement multiple advanced machine 

learning models such as Logistic Regression, Random Forest, 

XGBoost, Voting classifiers. 

2) To compare these models based on their accuracy, 

precision, recall, F1-score, ROC-AUC, and computational 

efficiency in predicting diabetic outcomes and classifying 

diabetic retinopathy risk. 
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3) To identify the most effective machine learning models 

for use in clinical settings, providing a foundation for targeted 

screening and personalized management strategies for patients 

at elevated risk of diabetic retinopathy. 

Through these objectives, the study will contribute to the 
broader goal of reducing the incidence and impact of diabetic 
retinopathy by integrating sophisticated analytical techniques 
into the clinical decision-making process. 

III. MATERIALS AND METHODS 

A. Data Description 

The primary application of the Diabetes Prediction Dataset 
is in the development of predictive models using machine 
learning techniques. The dataset, sourced from Kaggle [22], is 
comprised of 100,000 electronic health records (EHRs) with 
nine features collected from multiple healthcare providers, used 
by researchers for research and analysis. It integrates medical 
and demographic data from patients diagnosed with or at risk of 
developing diabetes, emphasizing its utility for constructing 
machine learning models aimed at predicting diabetes 
likelihood. The dataset features include age, gender, body mass 
index (BMI), hypertension, heart disease, smoking history, 
hemoglobin A1c (HbA1c) levels, and blood glucose levels, each 
critical for assessing the patient's health status. Each entry is 
labeled with the diabetes status of the patient, categorized as 
positive or negative, allowing for the creation of machine 
learning models that can predict diabetes onset based on existing 
health data. 

The dataset’s demographic range includes precise age 
values, particularly for children under two years, represented in 
decimals (e.g., 0.08 equivalent to 1 month, 1.32 equivalent to 1 
year and 4 months). This precision enables a nuanced 
understanding of diabetes risk factors across early age groups. 
For patients visiting Emergency Rooms, Hospitals, or Clinics, 
blood glucose levels were captured randomly, without specific 
fasting requirements, providing a broad but non-standardized 
snapshot of glucose regulation in potentially acute scenarios. 

The dataset does not distinguish between type 1 and type 2 
diabetes, making it crucial for predictive models to consider both 
types. Additionally, the smoking history variable categorizes 
individuals into six groups: never, not current, former, current, 
ever, and no info, reflecting varying degrees of exposure to 
smoking—a known risk factor for diabetes. 

B. Data Collection Methodology 

The data for this dataset was collected through various 
means including direct surveys, review of medical records, and 
laboratory tests from patients diagnosed with or at risk of 
developing diabetes. This approach ensures a comprehensive 
gathering of relevant health indicators which are critical in 
diabetes prediction. Post-collection, the data underwent rigorous 
processing to refine and standardize the information, ensuring 
its readiness for analytical applications [22]. 

The dataset includes 100,000 entries with demographic and 
medical attributes (0 for negative, 1 for positive). 

The Diabetes Prediction dataset includes the following 
columns: gender: Gender of the patient. Three categories 
(Female, Male, Other), age: Age of the patient, hypertension: 
Whether the patient has hypertension (1) or not (0), heart 
disease: Whether the patient has heart disease (1) or not (0), 
smoking history: Smoking history of the patient. Six categories 
(No Info, current, ever, former, never, not current), BMI: Body 
Mass Index of the patient, HbA1c_level: Hemoglobin A1c level, 
a measure of average blood glucose over the past three months, 
blood glucose level: Current blood glucose level, and diabetes: 
Diabetes status (1 for positive, 0 for negative). 

C. Exploratory Data Analysis 

1) Observations: Age: Patients range from 0.08 to 80 years 

old, indicating inclusion of all age groups with an average age 

of approximately 41.89 years. Hypertension: 7.485% of 

patients have hypertension. Heart Disease: 3.942% of patients 

have heart disease. BMI: Ranges from 10.01 to 95.69 with a 

mean value of approximately 27.32, which indicates 

overweight on average according to the BMI scale. HbA1c 

level: Ranges from 3.5 to 9.0 with an average of 5.53, which is 

in the normal to slightly elevated range. Blood Glucose Level: 

Ranges from 80 to 300 mg/dL with a mean of approximately 

138.06 mg/dL. Diabetes Status: 8.5% of the dataset is labeled 

as having diabetes mellitus. 

2) Depth observation and analysis: In this section, an in-

depth Exploratory Data Analysis (EDA) is conducted to 

understand the nuances of diabetes through several key 

objectives. Initially, the focus is on the distribution of crucial 

variables such as age, BMI, blood glucose levels, and HbA1c 

levels to establish baseline data behaviour (Fig. 1). The 

relationships these variables have with diabetes status are then 

explored, using advanced visualization techniques like pair 

plots. These plots specifically allow for the examination of 

interactions among the variables, categorized by diabetes 

mellitus status to discern patterns and anomalies effectively. 

Further analysis leverages a robust Random Forest Machine 
Learning classifier to pinpoint the most significant predictors of 
diabetes. This model not only processes a vast amount of data 
but also provides insights into critical factors such as weight, 
sugar levels, age, and smoking history. Understanding these 
predictors aids healthcare professionals in early identification 
and intervention for those at high risk of developing diabetes 
mellitus. 

The distribution plots in Fig. 1 effectively illustrate the key 
variables' distributions, highlighting the dataset's diversity and 
relevance for diabetes-related predictive analytics. 

Age Distribution: The age distribution shows a relatively 
uniform spread across different age groups, with noticeable 
peaks in the younger and older populations. There is a 
significant increase in frequency around ages 70-80, indicating 
a higher number of elderly individuals in the dataset. The 
distribution suggests a broad age range, making the dataset 
suitable for age-related predictive analysis. 
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Fig. 1. Visual analysis of key variables. 

BMI Distribution: The BMI distribution is skewed to the 
right, with most individuals having a BMI between 20 and 30. 
There is a noticeable peak around BMI 25, indicating that a 
significant portion of the population falls within the overweight 
category according to BMI classifications (BMI 25-29.9). This 
skewed distribution indicates a higher prevalence of overweight 
and moderately obese (BMI 30-34.9) individuals, which is 
relevant for diabetes and retinopathy risk assessment. 

Blood Glucose Level Distribution: The distribution of blood 
glucose levels shows several peaks, with a significant one 
around 150 mg/dL. There are multiple smaller peaks indicating 
varying levels of blood glucose among the population. The 
distribution highlights a wide range of blood glucose levels, 
which is essential for predicting diabetes risk. 

HbA1c Level Distribution: The HbA1c level distribution 
shows distinct peaks around values of 5, 6, and 7%. This 
indicates that there are clear clusters of individuals with specific 
HbA1c levels, which correspond to normal, pre-diabetic, and 
diabetic ranges. The presence of these clusters suggests that the 
dataset contains individuals across the spectrum of diabetes risk, 
from normal to high risk. 

The relationships between these variables and diabetes 
mellitus status are then explored in Fig. 2 as follows: 

 Diabetes Prevalence by Gender: In the female category, 
the count of non-diabetic individuals is significantly 
higher than that of diabetic individuals, with a noticeable 
but smaller group of diabetic females. For males, a 
similar pattern is observed: non-diabetic males have a 
higher count compared to diabetic males, though the 
number of non-diabetic males is less than non-diabetic 
females. The "Other" category has a very low count for 
both diabetic and non-diabetic individuals, indicating 
this category has fewer samples in the dataset. 

 Diabetes Prevalence by Smoking History: Among those 
who have never smoked, most individuals are non-
diabetic, but there is a small proportion of diabetics. The 
"No Info" category, similar to the "never" category, 
mostly consists of non-diabetic individuals, with a small 
number of diabetics. For current smokers, the count 
shows a higher number of non-diabetic individuals, but 
there is also a noticeable group of diabetics. In the former 
smokers category, there is a higher number of non-
diabetic individuals, with a small number of diabetics. 
The "Ever" category, similar to "current" smokers, has 
more non-diabetic individuals with a small diabetic 
group. Finally, the "Not Current" category, which 
includes individuals who have smoked in the past but not 
currently, predominantly consists of non-diabetic 
individuals, with a smaller diabetic group. 
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Fig. 2. Analysis of diabetes prevalence by gender and smoking history. 

Factor Analysis was done where advanced visualizations 
were employed to explore the relationships between key 
variables related to diabetes mellitus (Fig. 3). Specifically, pair 
plots are utilized to analyze the interactions among age, BMI, 
blood glucose levels, and HbA1c levels. These plots segment 
data by diabetes status (0 for non-diabetic and 1 for diabetic), 
enabling to identify patterns and outliers clearly. This 
visualization helps highlight how these variables correlate with 
each other and their collective impact on diabetes prevalence. 

Fig. 3 provides a detailed interpretation of the visual data 
gathered: 

 In the Age and Diabetes: There is a noticeable density 
peak in the age distribution among diabetics at around 
55-70 years, indicating a higher prevalence of diabetes in 
this age group compared to younger individuals. 

 BMI: The distribution of BMI values is similar across 
both diabetics and non-diabetics. However, there is a 
slightly higher density of diabetic individuals with a BMI 
above 30, suggesting a potential link between higher 
BMI and increased diabetes prevalence. 

 Blood Glucose Level: Generally, diabetic individuals 
display elevated blood glucose levels, as evidenced by 
the clustering of green dots (diabetics) above typical 
threshold values. 

 HbA1c Level: There is a clear distinction in HbA1c 
levels, with diabetic individuals typically showing higher 
levels, often exceeding 6.5%, a commonly used 
diagnostic threshold for diabetes. 

 Inter-variable Relationships: The data reveals notable 
patterns, such as the positive relationship between BMI 

and blood glucose level, as well as between BMI and 
HbA1c level, which are more pronounced in diabetic 
individuals. 

Coding Reference: For detailed technical insights, please 
refer to Appendix A, which contains the GitHub repository link. 

Overall, the visualization indicates distinct distributions for 
diabetic individuals in terms of blood glucose and HbA1c levels 
and suggests a correlation between age, BMI, and the likelihood 
of having diabetes. The relationships presented can inform 
healthcare professionals in identifying high-risk profiles and 
tailoring interventions accordingly. 

3) Key factors for predicting diabetes:  The study employs 

a robust Random Forest machine learning classifier to identify 

the factors that most significantly affect the likelihood of 

developing diabetes. A comprehensive dataset is analyzed 

using the Random Forest algorithm, which serves as a powerful 

tool to determine key predictors of diabetes. This analysis 

highlights important indicators such as weight, sugar levels, 

age, and smoking habits. This helps doctors figure out who 

might get diabetes and how to help them early (Fig. 4). 

The bar plot in Fig. 4 visualizes the feature importance 
determined by a Random Forest classifier for predicting 
diabetes. HbA1c level and blood glucose level are the top 
factors, indicating their strong predictive power for diabetes. 
BMI and age are also significant, whereas smoking history, 
hypertension, heart disease, and gender have less influence on 
the model's predictions. 

The Random-Forest classifier has provided the following 
feature importance, which indicates how much each feature 
contributes to the model's ability to predict diabetes (Fig. 4): 
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Fig. 3. Pair plot of key variables segmented by diabetes status. 

 
Fig. 4. Feature importance for diabetes prediction. 
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HbA1c_level (39.31%): The most important feature. HbA1c 
levels reflect average blood glucose levels over the past few 
months, making it a critical indicator of diabetes. Blood Glucose 
Level (32.67%): The second most significant predictor, which is 
directly related to diabetes, as it measures the current sugar 
levels in the blood. BMI (12.06%): Body Mass Index also plays 
a significant role, reflecting the obesity level which is a known 
risk factor for diabetes. Age (9.88%): Age is another important 
factor, as the risk of developing diabetes increases with age. 
Smoking History Encoded (2.73%): Smoking history has a 
moderate impact, potentially due to its influence on general 
health and cardiovascular risk, which is related to diabetes. 
Hypertension (1.59%): Hypertension is moderately important, 
likely due to its association with cardiovascular health. Heart 
Disease (1.03%): Similarly, heart disease shows a small impact, 
which correlates with overall metabolic health. Gender Encoded 
(0.72%): Gender has the least importance according to this 
model, suggesting it has a minimal direct impact on diabetes risk 
in this dataset. 

These results help identify which features are most 
predictive of diabetes in the dataset and can guide further data 
analysis, feature engineering, and the development of 
intervention strategies. 

D. Data Pre-processing 

Data preprocessing is a critical step that involves preparing 
the raw data for machine learning models. This step typically 
involves several sub-steps: 

1) Cleaning: Includes handling missing values and 

removing duplicates. This is crucial because missing values can 

introduce bias or inaccuracies into the model, and duplicates 

can lead to overfitting and the result skew the model training. 

X cleaned=f(dropna,drop_duplicates(X)), Where X represents 
the initial dataset. 

Equation: Cleaned Data=Raw Data − (Missing Values + 
Duplicates) 

In this context, the equation represents the removal of 
undesirable data elements, ensuring that only valid, unique data 
points are used for further analysis. 

Data Cleaning Summary 

 Missing Values: There are no missing values in any of 
the columns. 

 Duplicate Rows: There are 3,854 duplicate entries in the 
dataset. 

 Data Consistency: There are no negative values in 
columns such as 'age', 'bmi', 'HbA1c_level', or 'blood 
glucose level'. 

2) Encoding categorical variables: The dataset includes a 

mix of categorical and numerical variables: 

 Categorical: gender, hypertension, heart disease, 
smoking history, diabetes (target variable to be used for 
prediction). 

 Numerical: age, bmi, HbA1c_level, blood glucose level 

Since many machine learning models require a format 
suitable for machine learning models which is numerical input. 
Therefore, categorical variables need to be converted into a 
numerical format. One-hot encoding is a common technique 
used where each categorical value is converted into a new 
categorical column and assigned a 1 or 0. 

Xencoded=OneHotEncoder(Xcategorical) 

3) Correlation analysis: The relationships among these 

variables were explored using a correlation matrix. This will 

help identify which factors are most strongly associated with 

diabetes. As shown in Fig. 5, the correlation matrix highlights 

relationships between features: Age shows a mild positive 

correlation with diabetes, indicating that risk increases with 

age. Hypertension and heart disease also show positive 

correlations with diabetes status, suggesting that these 

conditions are associated with higher diabetes risk. BMI has a 

slight positive correlation with diabetes, supporting the known 

link between obesity and increased diabetes risk. The blood 

glucose level and HbA1c level have stronger positive 

correlations with diabetes, as expected, since they directly 

measure aspects of blood sugar management. 

E. Model Design 

Fig. 6 illustrates a comprehensive workflow for predicting 
diabetes and categorizing the risk of retinopathy. It is divided 
into two main phases: Phase I involves the development and 
evaluation of machine learning models for diabetes prediction, 
while Phase II focuses on assessing the risk of retinopathy for 
patients identified as diabetic. This systematic approach ensures 
accurate prediction and effective risk stratification, facilitating 
timely and appropriate medical interventions. 

In the same context, Fig. 7 depicts a visual representation of 
the entire workflow for the diabetes prediction system. It 
outlines each step from the initial data acquisition to the final 
model evaluation. The process begins with the collection and 
cleaning of the diabetes dataset, followed by various 
preprocessing techniques to prepare the data for machine 
learning algorithms [30]. It includes steps such as data scaling, 
encoding, and addressing class imbalances. The diagram also 
illustrates the model selection, hyperparameter tuning, and 
cross-validation processes, culminating in the deployment of the 
most effective model for diabetes prediction. This systematic 
approach ensures the development of a robust and reliable 
prediction system (Fig. 6 and Fig. 7). 
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Fig. 5. Features’ relationships correlation matrix. 

 
Fig. 6. Flowchart: steps of conducting the study. 
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Fig. 7. Block diagram and operational mechanism flow for machine learning in diabetes prediction. 

1) Phase 1 - machine learning for diabetes predictions: In 

the first phase of the study, the objective was to develop and 

fine-tune machine learning models capable of predicting 

diabetes. This involved the following steps: 

a) Model selection: In selecting models for diabetes 

predictions, algorithms were chosen for their ability to 

effectively handle the complexity and variability of medical 

data, ensuring both high predictive accuracy and robustness 

against overfitting. This strategic selection helps tailor the 

approach to accurately capture the nuanced relationships within 

diabetes-related variables. In predicting diabetes, the selection 

of machine learning models is critical due to the need for high 

accuracy and the ability to generalize well from medical 

datasets. Here's a deeper look into the significance and roles of 

each chosen model: 

 Logistic Regression: This model serves as a fundamental 
baseline in medical prediction tasks due to its simplicity 
and interpretability. It uses a logistic function to estimate 
probabilities, making it particularly useful for binary 
outcomes like diagnosing diabetes. Its coefficients 
provide insights into the influence of each feature, aiding 
clinicians in understanding risk factors. 

Objective function: �̂� = 𝜎(𝑥𝛽 + 𝑏),  𝜎(𝑧) =
1

1−ⅇ−𝑧 where 𝜎 

is the logistic function, 𝛽 is the coefficient vector, b is the bias, 
and �̂� is the predicted probability [23]. 

 Random Forest: As an ensemble of decision trees, 
Random Forest mitigates the risk of overfitting 
associated with individual decision trees by averaging 
multiple predictions, thereby enhancing the model's 
stability and accuracy. Its ability to handle large datasets 
with many features makes it invaluable for capturing 
complex, nonlinear relationships that are typical in 
medical data. 

Objective Function: �̂� =
1

𝑁
∑ 𝑇𝑖

𝑁
𝑖=1 ⋅ (𝑥) , Where Ti 

represents an individual tree’s prediction and N is the number of 
trees [24]. 

 XGBoost: Known for its efficiency and performance, 
XGBoost is a sophisticated version of gradient boosting 
that has proven to be extremely effective in various 
Kaggle competitions involving medical predictions. It 
optimizes both speed and prediction accuracy by 
building trees sequentially, each one correcting errors 
made by the previous, which is crucial for a nuanced 
disease like diabetes where early detection can 
significantly alter patient outcomes. 

Objective Function: �̂�𝑖 = ∑ 𝑓𝑘
𝑘
𝑘=1 ⋅ (𝑥𝑖), where 𝑓𝑘 € F. F is 

the space of trees and 𝑓𝑘 represents an individual tree [24]. 

 Voting classifier: This ensemble technique combines 
predictions from the Logistic Regression, Random 
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Forest, and XGBoost [25] models. By using a soft voting 
mechanism, it computes the final output based on the 
probability estimates from each model, rather than 
simple majority rules. This approach helps in reducing 
variance and bias, leveraging the strengths while 
balancing the weaknesses of the constituent models, 
resulting in more reliable and robust prediction 
capabilities [26].  

These models are selected not only for their individual merits 
but also for their collective ability to provide a comprehensive 
understanding of the predictive landscape. This ensemble 
strategy enhances predictive performance, ensuring that the 
diagnostic tool is both accurate and reliable in a clinical setting. 

b) Preprocessing Techniques [27][28][29]: 

Preprocessing techniques in ML involve cleaning and 

transforming raw data to improve model performance. 

Common methods include handling missing values, 

normalizing data, encoding categorical variables, and 

addressing class imbalances. Fig. 8 illustrates the operational 

mechanism of ML models designed for predicting diabetes. 

The effectiveness of machine learning models significantly 
depends on the quality of the data they are trained on. Therefore, 
rigorous data preprocessing is imperative. Hence, the data was 
further processed using the following techniques to enhance 
predictions: 

 Data Scaling [31]: All numeric features were scaled 
using the Standard Scaler method to normalize the 
distribution, aiding in faster convergence during the 
training phase. Data is standardized to have zero mean 

and unit variance. Xscaled =
𝑥−𝜇

𝜎
 , where 𝜇 and 𝜎 are the 

mean and standard deviation of the features, 
respectively. Standardization is crucial for models that 
are sensitive to the scale of input data. 

 Handling Class Imbalance [31]: The SMOTE (Synthetic 
Minority Over-sampling Technique) algorithm was 
employed to address class imbalance in the dataset, 
ensuring that the minority class is adequately represented 
during model training. To address class imbalance in the 
dataset, SMOTE is applied: Xresampled, yresampled = 
SMOTE(Xtrain, ytrain).  SMOTE generates synthetic 
samples from the minority class, making the class 
distribution equal and thus preventing model bias 
towards the majority class. 

 Cross-Validation [32]: Stratified K-Fold cross-validation 
with five folds was employed, which is particularly 
useful for imbalanced datasets. This method ensures that 
each fold of the dataset has the same proportion of 
examples in each class as the complete set. This approach 
provides a robust estimate of the model's performance, 
as it iteratively trains the model on k−1 folds and 
validates it on the remaining fold, cycling through all k 
folds as the validation set. It provides confidence that the 
models are stable and perform well across different 
subsets of the dataset, reducing the likelihood of model 
overfitting and ensuring that the predictions are reliable. 

 Hyperparameter Tuning [33]: GridSearchCV was 
implemented to automate the process of tuning 
parameters to find the best combination for each model. 
This exhaustive search over specified parameter values 
for an estimator is crucial for optimizing the learning 
algorithm. Each model was assessed using the ROC-
AUC score as the scoring metric, which measures the 
ability of the model to distinguish between the classes 
across all possible thresholds. This tuning of parameters 
optimizes model performance on the dataset, ensuring 
that the predictions are as accurate as possible, which is 
critical for medical applications where the cost of false 
predictions can be high. 

 Optimal Parameters and Model Evaluation: After tuning, 
the optimal parameters for each model were established 
and used to train the models on the processed training set. 
The evaluation of these models on a hold-out test set 
involved the following metrics: 

- 'Logistic Regression': LogisticRegression(C=0.01) 

- 'Random Forest': RandomForestClassifier(max_depth=20, 

n_estimators=200) 

- 'XGBoost': XGBClassifier(learning_rate=0.1, 

max_depth=6, n_estimators=150) 

- 'Voting Classifier': VotingClassifier( estimators=[ ('lr', 

LogisticRegression(C=0.01)), ('rf', 

RandomForestClassifier(max_depth=20, 

n_estimators=200)), ('xgb', 

XGBClassifier(learning_rate=0.1, max_depth=6, 

n_estimators=150)) ], voting='soft' 

These parameters were then used to train each model on the 
entire training set processed through SMOTE and scaled 
appropriately. The trained models were evaluated on a hold-out 
test set to gauge their effectiveness, using metrics such as 
accuracy, precision, recall, F1-score, and the ROC-AUC. 

 Model Training: After preprocessing the data (as detailed 
in previous discussions), four key models were trained 
using the best hyperparameters identified through 
GridSearchCV. These models included Logistic 
Regression, Random Forest, XGBoost, and Voting. 

 Model Evaluation: Each model was rigorously evaluated 
on a split test set to assess their performance in accurately 
predicting diabetes. Metrics such as accuracy, precision, 
recall, F1-score, and AUC-ROC were employed to 
compare each model's effectiveness. 

c) Performance Evaluation [34][35]: To evaluate the 

effectiveness of different models, several metrics are used: 

 Accuracy: The proportion of true results among the total 
number of cases examined. 

 Precision: The proportion of positive identifications that 
were actually correct. 

 Recall: The proportion of actual positives that were 
correctly identified. 

 F1-Score: The harmonic mean of precision and recall. 
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 ROC-AUC: The area under the receiver operating 
characteristic curve, which plots the true positive rate 
against the false positive rate at various threshold 
settings. 

Equations: 

Accuracy = 
TP+TN

TP+TN+FP+FN
     (1) 

Precision =  
TP

TP+FP
                       (2) 

Recall = 
TP

TP+FN
                       (3) 

F1 = 2×
Precision .  Recall

Precision+Recall
                   (4) 

Where TP represents instances where the model correctly 
predicts a positive outcome. FP refers to cases where the model 
predicts a positive outcome, but the actual result is negative. TN 
indicates instances where the model correctly predicts a negative 
outcome, while FN refers to cases where the model predicts a 
negative outcome, but the actual result is positive. 

 Running Time: Running time indicates the 
computational efficiency of each model. 

 Confusion Matrix: The confusion matrix provides a 
detailed breakdown of true positive, false positive, true 
negative, and false negative predictions. It compares the 
actual target values with those predicted by the machine 
learning model, providing a holistic view of the model's 
performance and highlighting the types of errors it makes 
(Fig. 8). 

 
Fig. 8. The basic structure of a confusion matrix. 

d) Selection of optimal models: Based on the evaluation, 

models that exhibited the highest efficacy in terms of AUC-

ROC and F1-score are favored. This ensured that the chosen 

models were not only accurate but also balanced in terms of 

precision and recall. 

e) Significance of accurate diabetes predictions: 

Accurate diabetes predictions enable timely interventions that 

can prevent or delay the onset of complications like retinopathy. 

By identifying individuals at risk of developing diabetes or 

managing those already diagnosed more effectively, healthcare 

providers can implement preventative measures such as 

lifestyle modifications, regular monitoring, and early 

pharmacological intervention. 

2) Phase 2 - Application on new dataset and risk 

assessment for retinopathy: Upon successfully training and 

selecting the best models, the next phase involved applying 

these models to a new dataset (Appendix B). This dataset 

comprised unseen data, simulating a real-world scenario where 

the models predict diabetes status in new patients. Following 

the prediction, a detailed risk assessment for diabetic 

retinopathy was conducted: 

 Prediction on New Data: The trained models were 
applied to the new dataset to predict diabetes (Appendix 
B). This step tested the models' generalizability and their 
ability to function accurately outside the training data 
environment. 

 Risk Assessment for Retinopathy: Risk Scoring 
Function: A custom function was developed to assign 
scores to various features based on their significance and 
impact on retinopathy risk. This included typical and 
atypical values and ranges for features such as HbA1c 
levels, hypertension, BMI, age, and smoking history. 
Each feature's contribution to the risk score was 
weighted according to established medical research 
indicating its influence on retinopathy. 

Table I summarizes the scoring rules and conditions that 
represent how different factors contribute to a risk score when 
predicting diabetes. It provides a comprehensive scoring system 
to predict diabetes risk by evaluating various health and lifestyle 
factors. Each condition is assigned a score based on specific 
ranges or values, contributing to an overall risk score. The 
factors include HbA1c level, hypertension, heart disease, BMI, 
age, smoking history, gender, and blood glucose level. By 
aggregating the scores from these conditions, healthcare 
providers can better classify patients' risk levels and prioritize 
interventions. 

 Retinopathy Risk Categorization (only for diabetic 
predicted patients): Based on the cumulative risk score 
derived from the scoring function, each patient was 
categorized into No, Low, Medium, or High Risk for 
developing diabetic retinopathy. 

o No Risk (score range 0-5): Diabetic patients with no 

risk of retinopathy do not require additional retinal 

screenings. 

o Low Risk (score range 5-7): Patients predicted with 

low probability of diabetes might require less 

frequent retinal screenings. 

o Moderate Risk (score range 7-9): Patients showing 

borderline or moderate probabilities may need more 

regular follow-ups to monitor any progression in 

retinal changes. 

o High Risk (score range >9): Patients predicted to be 

highly likely to have or develop diabetes should 

undergo comprehensive and possibly more frequent 

retinal examinations to detect early signs of 

retinopathy. 
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TABLE I. RETINOPATHY SCORING CONDITIONS TABLE 

Condition Range/Value Score 

Predicted Model 

Output 

0 – Non-Diabetic 0 

1 – Diabetic Continue scoring 

HbA1c Level 
≤ 7 

> 7 and ≤ 8 
> 8 and ≤ 9 

> 9 

0 

 

1 

2 

3 

Hypertension 0 0 

 1 1 

Heart Disease 0 0 

 1 1 

BMI < 25 0 

 ≥ 25 and < 30 1 

 ≥ 30 2 

Age 
< 40 
≥ 40 and < 50 

≥ 50 and < 60 

≥ 60 

0 

 1 

 
2 

3 

Smoking History 
'never', 'No Info' 

'ever', 'not current' 
'former' 

'current' 

0 

 1 

 
2 

3 

Gender 'Other' 0 

 'Male' 0 

 'Female' 0 

Blood Glucose Level 

< 100 0 

≥ 100 and < 126 1 

≥ 126 and < 200 2 

 ≥ 200 3 

This categorization helps in prioritizing medical attention 
and preventive measures. 

IV. RESULTS 

Predictions were conducted on testing data, comprising 20% 
of the original dataset in the first phase, and on a completely new 
dataset (Appendix B) in the second phase. Predictions are 
structured such that a result of 0 indicates the patient does not 
have diabetes, thereby assigning a risk score of zero for 
retinopathy. Conversely, if the prediction indicates diabetes, the 
patient's clinical results must undergo a risk assessment scoring 
system. This system categorizes patients as low, medium, or 
high risk, based on the severity of their scores. In the second 
phase, machine learning models are trained on the entire original 
dataset to leverage known diabetes outcomes and apply 
predictions to a new, separate dataset. This approach enables the 
prediction of diabetic status and subsequent assessment and 
categorization of retinopathy risk. 

A. Phase 1: Classifiers’ Result 

In Phase 1 of the study, the performance of various 
classifiers on the task of predicting diabetes was evaluated. The 
classifiers tested include Logistic Regression, Random Forest, 
XGBoost, and a Voting Classifier. Each model was assessed 
based on several performance metrics: Accuracy, Precision, 
Recall, F1-Score, AUC-ROC, Running Time, and Confusion 
Matrix. The results, summarized in Table II, provide a 
comprehensive comparison of the models' effectiveness and 
efficiency in diabetes prediction. 

TABLE II. PERFORMANCE METRICS OF CLASSIFIERS IN DIABETES 

PREDICTION 

Classifi

er 

Accur

acy 

Precisi

on 

Rec

all 

F1-

Sco

re 

AU

C-

RO

C 

Runni

ng 

Time 

(s) 

Confus

ion 

Matrix 

Logisti

c 

Regress
ion 

0.87 0.41 0.86 0.55 0.95 
4.935

9 

[[15461

, 2073], 

[237, 
1459]] 

Rando

m 
Forest 

0.94 0.66 0.78 0.72 0.96 
882.9

681 

[[16871
, 663], 

[364, 

1332]] 

XGBoo

st 
0.96 0.84 0.73 0.78 0.97 

45.25

44 

[[17300
, 234], 

[451, 

1245]] 

Voting 

Classifi

er 

0.95 0.73 0.77 0.75 0.96 
15.01

21 

[[17071

, 463], 

[385, 

1311]] 

 
Fig. 9. ROC curves for all classifiers. 
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Additionally, the ROC Curves for all classifiers, depicted in 
Fig. 9, illustrate the true positive rate versus the false positive 
rate, providing insight into the models' ability to distinguish 
between classes. This visual representation, combined with the 
detailed performance metrics, helps to identify the strengths and 
weaknesses of each classifier, guiding the selection of the most 
suitable model for further development. 

1) Comparative analysis of classifiers for diabetes 

prediction: In the realm of diabetes prediction, the performance 

of classifiers can significantly influence the effectiveness of 

diagnosis and subsequent patient management. The evaluation 

of four classifiers—Logistic Regression, Random Forest, 

XGBoost, and a Voting Classifier—provides insights into their 

efficacy across various metrics that are crucial for medical 

decision-making. 

Logistic Regression is notable for its high recall of 86.03%, 
indicating its ability to identify a high number of true positive 
cases, which is critical in medical diagnostics to ensure that few 
cases of diabetes go undetected. However, its precision is 
relatively low at 41.31%, suggesting a higher rate of false 
positives that could lead to unnecessary anxiety or treatment. 
Despite these trade-offs, its rapid processing time of under 5 
seconds and an AUC-ROC score of 95.48% demonstrate its 
utility in scenarios where speed and general accuracy are 
prioritized over precision. 

Random Forest shows a marked improvement in overall 
accuracy (94.66%) and precision (66.77%) compared to 
Logistic Regression, suggesting better balance in identifying 
true positives while reducing false positives. Its recall of 78.54% 
remains robust, albeit lower than Logistic Regression, reflecting 
a more conservative but precise approach. The main limitation 
of Random Forest in this context is its computational demand, 
with a significantly longer running time, which might be a 
constraint in real-time prediction environments. 

XGBoost emerges as the strongest performer in terms of 
accuracy (96.44%) and AUC-ROC (97.54%), underscoring its 
capability to effectively separate the diabetic and non-diabetic 
classes. With the highest precision (84.18%) among the 
classifiers, XGBoost offers a reliable prediction model that 
minimizes false positives—a desirable feature in clinical 
settings. Nevertheless, the trade-off here involves its recall 
(73.41%), which is lower than Logistic Regression's, pointing 
towards a potential underdiagnosis risk. 

The Voting Classifier combines the strengths of the above 
models and achieves an accuracy of 95.59%, with well-balanced 
precision (73.90%) and recall (77.30%). This classifier 
harnesses the collective insights of Logistic Regression, 
Random Forest, and XGBoost, potentially leading to more 
consistent predictions across diverse patient profiles. The 
Voting Classifier's middle-range running time (15.01 seconds) 
and high AUC-ROC (96.95%) make it a viable option for both 
accuracy and efficiency in clinical applications. 

2) Further experiments: This section explores machine 

learning techniques for improving diabetes prediction accuracy 

by addressing class imbalance and optimizing prediction 

thresholds. Detailed quantitative results are provided in 

Appendices C and D. 

a) Handling Class Imbalance (Appendix C): First, 

SMOTE (Synthetic Minority Over-sampling Technique) was 

used to address class imbalance, which significantly improved 

recall and minimized false negatives in diabetes prediction 

(Table A1). ADASYN (Adaptive Synthetic Sampling) was also 

tested, focusing on generating samples near decision 

boundaries, but it did not surpass SMOTE's performance (Table 

A2). Additionally, experiments with BorderlineSMOTE (Table 

A3), which selectively generates samples around the decision 

boundary, yielded mixed results, confirming SMOTE as the 

primary method. 

b) Optimizing Prediction Thresholds (Appendix D): To 

enhance clinical utility, prediction thresholds were adjusted to 

improve recall, aiming to reduce false negatives. Thresholds of 

0.5, 0.6, 0.25, and 0.4 were tested, observing their impacts on 

precision, recall, and F1-score. A lower threshold (0.25 or 0.4) 

maximized recall, suitable for screening to identify as many 

positive cases as possible. A higher threshold (0.6) improved 

precision, suitable for diagnostic settings where false positives 

are costly. Detailed metrics for these adjustments are in Tables 

B1 to B3 (Appendix D). 

These experiments highlight the importance of tailored 
approaches in machine learning for healthcare. Adjusting class 
imbalance handling and prediction thresholds can significantly 
enhance model performance and suitability for specific 
healthcare applications, particularly in early and accurate 
diabetes detection. 

B. Phase 2: Retinopathy Risk Assessments’ Result 

In Phase 2 of the study, the risk of retinopathy was assessed 
using various classifiers. The classifiers tested include Logistic 
Regression, Random Forest, XGBoost, and a Voting Classifier. 
The goal is to categorize individuals into different risk levels: 
No Risk, Low Risk, Medium Risk, and High Risk. 

The distribution of predicted risk categories for each 
classifier is illustrated in Fig. 10A and Fig. 10B. All models 
heavily favor "No Risk" predictions, indicating an imbalanced 
dataset with more non-risk instances. Very few predictions in 
the "High Risk" category across all models. Logistic Regression 
and Random Forest are more balanced compared to the 
conservative XGBoost, which shows the highest "No Risk" 
predictions. The Voting Classifier balances predictions, 
indicating the benefit of ensemble methods for nuanced risk 
detection. These insights can guide model selection with 
balanced parameters and dataset management for more accurate 
and trustworthy AI predictions. 
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(a)      (b) 

Fig. 10. (a) A Classifiers risk category distribution_XGBoost, (b) Classifiers risk category distribution_Voting Classifier 

V. DISCUSSION AND CONCLUSION 

The comparative analysis reveals that while XGBoost offers 
the highest precision and overall accuracy, making it suitable for 
settings where the cost of a false positive is high, the Voting 
Classifier provides a balanced solution that might be preferred 
in clinical environments where both types of errors (false 

positives and false negatives) carry significant consequences. 
Logistic Regression, with its high recall, could be particularly 
useful in initial screening tests were missing a positive diagnosis 
could be detrimental. Random Forest, with its strong 
performance across metrics but slower execution, might be more 
applicable in situations where computational time is less of a 
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constraint. The results demonstrate significant improvements in 
predictive accuracy compared to traditional models. For 
instance, the XGBoost model achieved an accuracy of 96.43%, 
which is approximately 9.60% higher than the commonly used 
logistic regression model, 1.88% higher than the random forest 
model, and 0.88% higher than the voting classifier. 
Additionally, the study identified novel patterns and risk factors 
that were previously unreported in the literature. These findings 
address critical gaps in existing research, particularly in the early 
detection and risk assessment of diabetic retinopathy. 

The present study's use of XGBoost and Random Forest 
models for diabetes prediction demonstrated accuracies of 
96.43% and 94.65%, respectively. These results, although 
slightly lower than the 97.82% accuracy reported for Random 
Forest by Alam et al. (2024) [36], reflect the comprehensive 
preprocessing steps undertaken, which were not fully 
implemented in the referenced studies, thereby enhancing the 
reliability and robustness of the findings. Furthermore, the 
Logistic Regression model in this study achieved an accuracy of 
87.98%, compared to 96.06% reported by Gaur et al. (2024) 
[36]. Additionally, Voting Classifier achieved an accuracy of 
95.59%, and KNN achieved 95.28%, aligning closely with the 
findings of Gaur et al. (2024) who reported 96.02% for KNN 
and 96.45% for SVM. Alshenawy and Almetwally (2023) [37] 
reported the highest accuracy for KNN at 99.99%, which 
underscores the potential of advanced models. Notably, our 
study also evaluated running time, revealing that XGBoost 
(45.25 seconds) and Voting Classifier (15.01 seconds) were 
more efficient than Random Forest (882.97 seconds), an aspect 
not considered in previous studies. This highlights the 
practicality of the models in real-life scenarios, where 
computational efficiency is crucial. 

The choice of classifier in diabetes predictions should align 
with specific clinical priorities—whether it is reducing the risk 
of undiagnosed cases or minimizing the burden of false positives 
on the healthcare system. Each classifier has its strengths and 
scenarios where it might perform optimally, emphasizing the 
importance of context in model selection for medical 
applications. 

When it comes to assessing the risk of diabetic retinopathy, 
the choice of classifier for diabetes and its complication 
predictions involves balancing various factors including 
accuracy, speed, and the specific medical consequences of false 
positives and false negatives. High-performing classifiers that 
effectively balance precision and recall, such as XGBoost and 
the Voting Classifier, are particularly valuable in these settings. 
Their use helps in creating stratified medical responses that 
optimize care for each patient based on their individualized risk 
profile, potentially leading to better clinical outcomes and more 
efficient use of healthcare resources. 

Classifiers can categorize patients based on the likelihood of 
disease progression. The performance of each classifier can 
impact the assessment. Models with higher precision, such as 
XGBoost in this analysis, are crucial in this context. High 
precision reduces false positives, which means fewer patients 
are incorrectly categorized as at high risk of retinopathy. This is 
vital to avoid unnecessary treatments, which can be invasive and 
costly. 

High recall rates are equally important because they ensure 
that most patients who are at risk of retinopathy are correctly 
identified for further testing and early treatment. Logistic 
Regression showed the highest recall, suggesting it could be 
useful in initial screening phases to ensure comprehensive 
identification of at-risk individuals. High overall accuracy and 
AUC-ROC, as seen with XGBoost and the Voting Classifier, 
indicate strong overall performance in distinguishing between 
patients at different levels of risk. This is essential for 
categorizing patients accurately into risk groups, which can 
guide the intensity and frequency of monitoring and 
intervention. In environments where real-time analysis is 
critical—such as in clinical settings during patient visits—
models with shorter running times like Logistic Regression may 
be preferable despite other limitations. 

The analysis underscores the crucial role of sophisticated 
machine learning classifiers in enhancing diabetes management 
and preventing its complications, notably diabetic retinopathy. 
Accurate diabetes prediction models can lead to early 
identification of individuals at risk, facilitating timely 
interventions that can significantly mitigate the progression of 
the disease and its associated complications. 

The comparative analysis of different classifiers such as 
Logistic Regression, Random Forest, XGBoost, and Voting 
Classifier reveals that no single model fits all scenarios. Each 
classifier brings its strengths in terms of precision, recall, 
accuracy, and operational efficiency. For instance, XGBoost 
stands out for its high precision and accuracy, making it 
particularly useful in settings where reducing false positives is 
crucial. Meanwhile, Logistic Regression, with its high recall, is 
invaluable for initial screenings to ensure comprehensive 
identification of potentially at-risk individuals. 

The choice of a classifier can significantly impact clinical 
outcomes. Precision in predictions minimizes the risk of 
unnecessary treatments, which is particularly important in 
managing diabetic retinopathy, where interventions can be as 
severe as laser surgery or injections. High recall is essential to 
avoid missing any cases of potential diabetes and its 
complications, ensuring that all at-risk individuals are monitored 
and treated appropriately. 

The integration of these classifiers into healthcare systems 
implies a move towards more personalized medicine. It enables 
healthcare providers to categorize patients not just based on 
static factors but also through dynamic, data-driven insights, 
allowing for tailored monitoring schedules and treatments. This 
approach not only improves patient outcomes but also optimizes 
resource allocation within healthcare systems. 

Unlike previous studies [36] [37] [38] that primarily focused 
on predicting diabetes alone, this research extends to evaluating 
the risk of diabetic retinopathy based on available data. If more 
features and detailed data were available, it could potentially 
extend to other diabetes-related complications. This study's 
approach of integrating multiple machine learning techniques, 
comparing them in terms of various metrics including 
computational efficiency, and analyzing a comprehensive 
dataset provides a more robust and accurate prediction 
framework. Novel risk factors were identified that were not 
highlighted in previous studies, addressing critical gaps in 
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existing research. The study also ensures that all necessary 
preprocessing steps are implemented, enhancing the reliability 
and robustness of the findings by making the data well-prepared 
for machine learning applications without introducing bias. 
Additionally, the study uniquely evaluates the running time of 
each model, highlighting practical efficiency and applicability 
in real-life scenarios. This aspect was not fully addressed in 
previous studies. By categorizing patients into preliminary risk 
levels for retinopathy, the work helps reduce the cost of 
unnecessary eye scans and other related examinations. The 
improved predictive accuracy enables earlier detection and 
intervention for at-risk patients, potentially reducing the 
incidence of severe complications and associated healthcare 
costs. This research provides a scalable and effective tool for 
diabetes and retinopathy risk evaluation, contributing 
significantly to the field by offering broader practical 
implications for healthcare providers. 

Thus, this study proposes an automatic diabetes prediction 
system that can be deployed on a website and an Android 
smartphone application using the XGBoost machine learning 
framework. Users can input relevant data such as gender, age, 
hypertension, heart disease, smoking history, BMI, HbA1c 
level, and blood glucose level. The system will provide 
instantaneous diabetes prediction along with the risk of 
retinopathy through the designed web application using real 
data. 

There is a clear need for ongoing research and development 
in this area to refine these models, reduce their computational 
demands, and enhance their adaptability to real-world clinical 
settings. Additionally, the adoption of these technologies must 
be accompanied by training for healthcare professionals to 
maximize the benefits of such advanced tools. 

Ultimately, leveraging advanced classifiers for diabetes 
prediction and retinopathy risk assessment represents a 
significant step forward in the fight against diabetes and its 
debilitating complications. As technology advances, the 
potential for these tools to become integral components of 
personalized healthcare grows, promising not only better patient 
outcomes but also more efficient healthcare systems globally. 
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APPENDICES 

Appendix A – Section III, C, 2:  

GitHub Coding Repository  

https://github.com/samer-glitch/Predicting-Diabetes-and-Assessing-Risk-levels-for-retinopathy-disease-Using-ML 

Appendix B – Section III, E, 2 and IV 

NEW CREATED DATASET 

gender age hypertension heart_disease smoking_history bmi HbA1c_level blood_glucose_level 

Female 80 0 1 never 26 6.6 142 

Female 54 0 0 No Info 28 6.6 80 

Male 28 0 0 never 27 5.7 159 

Female 36 0 0 current 23.45 5 155 

Male 76 1 1 current 20 4.8 155 

Female 20 0 0 never 27.32 6.6 85 

Female 90 0 0 ever 35 9 250 

Female 24 1 1 No Info 27.32 6.6 80 

Male 37 0 0 never 44 7 230 

Female 44 0 1 current 23.45 5 300 

Male 30 1 0 never 23 6 100 

Female 26 1 1 ever 26 6 199 

Female 26 1 1 current 30 6 160 

Female 26 1 1 No Info 26 6 250 

Female 26 0 1 ever 26 6 160 

Female 27 1 0 former 33 6 130 

Female 33 0 0 never 23 5 120 

Female 36 0 0 never 16 6 80 

Female 39 0 1 No Info 30 7.5 210 

Female 56 1 1 ever 27 8 200 

Male 30 0 0 never 20 6 80 

Male 17 1 1 never 18 7 90 

Male 6 1 1 current 23 5 155 

Male 14 1 0 current 26 6 180 

https://github.com/samer-glitch/Predicting-Diabetes-and-Assessing-Risk-levels-for-retinopathy-disease-Using-ML
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Appendix C – Section IV, 2, a:  

This appendix provides supplementary data and experimental results aimed at identifying optimal techniques, values, and parameters for the diabetes prediction 
program. The details outlined below encompass a variety of approaches and the corresponding performance metrics. 

Experiment 1: Application of SMOTE for Class Imbalance 

 Methodology: Synthetic Minority Over-sampling Technique (SMOTE) was utilized to address class imbalance. 

 Results: Performance metrics for various classifiers are presented in the table below: 

TABLE A1 

 Classifier Accuracy Precision Recall F1-Score AUC-ROC Running Time (s) Confusion Matrix 

0 
Logistic 

Regression 
0.879875 0.413080 0.860259 0.558148 0.954829 4.935908 

[[15461, 2073], [237, 

1459]] 

1 Random Forest 0.946594 0.667669 0.785377 0.721756 0.968865 882.968163 [[16871, 663], [364, 1332]] 

2 XGBoost 0.964379 0.841785 0.734080 0.784252 0.975445 45.254451 [[17300, 234], [451, 1245]] 

3 Voting Classifier 0.955902 0.739008 0.772995 0.755620 0.969480 15.012164 [[17071, 463], [385, 1311]] 

Experiment 2: Application of ADASYN (Adaptive Synthetic Sampling) 

 Methodology: ADASYN was applied to generate synthetic samples adjacent to hard-to-classify minority class samples. 

 Results: The performance metrics are as follows: 

TABLE A2 

 Classifier Accuracy Precision Recall F1-Score AUC-ROC Running Time (s) 

0 Random Forest 0.964025 0.863055 0.703250 0.775000 0.966764 330.501986 

1 XGBoost 0.966186 0.895981 0.697118 0.784138 0.971217 5.990814 

2 Neural Network 0.945930 0.673841 0.748620 0.709265 0.962576 3595.085286 

3 Logistic Regression 0.835629 0.340054 0.920294 0.496609 0.957930 2.282274 

Experiment 3: Application of BorderlineSMOTE 

 Methodology: BorderlineSMOTE was used to focus on generating synthetic samples near the borderlines of class distributions. 

 Results: The results are shown below: 

TABLE A3 

Classifier Accuracy Precision Recall F1-Score AUC-ROC Running Time (s) Confusion Matrix 

0 
Logistic 

Regression 
0.860062 0.375656 0.886203 0.527646 0.953037 2.844599 

[[15036, 2498], [193, 

1503]] 

1 Random Forest 0.936453 0.605804 0.800118 0.689533 0.968058 950.399149 
[[16651, 883], [339, 
1357]] 

2 XGBoost 0.952522 0.714286 0.769458 0.740846 0.975019 43.765607 
[[17012, 522], [391, 

1305]] 

3 Voting Classifier 0.946854 0.664390 0.803066 0.727176 0.968929 17.103075 
[[16846, 688], [334, 
1362]] 

Staying on SMOTE emerged as the best option since it outperforms all other techniques.  

Appendix D – Section IV, 2, b 

A second approach was explored by changing the prediction threshold for ML models to achieve higher Recall values, which is a crucial metric in the context of 
diabetes predictions.  

The results for normal predictions are as follows:  

TABLE B0 

Classifier Accuracy Precision Recall 
F1-

Score 

AUC-

ROC 

Running Time 

(s) 

Confusion 

Matrix 

0 
Logistic 

Regression 
0.879875 0.413080 0.860259 0.558148 0.954829 4.935908 [[15461, 2073], [237, 1459]] 

1 Random Forest 0.946594 0.667669 0.785377 0.721756 0.968865 882.968163 [[16871, 663], [364, 1332]] 

2 XGBoost 0.964379 0.841785 0.734080 0.784252 0.975445 45.254451 [[17300, 234], [451, 1245]] 

3 Voting Classifier 0.955902 0.739008 0.772995 0.755620 0.969480 15.012164 [[17071, 463], [385, 1311]] 

Experiment 4: Adjusting the Prediction Threshold to 0.6 

 Methodology: The prediction threshold was raised to 0.6 to evaluate the impact on precision and recall, prioritizing the reduction of false positives which is 
crucial for clinical diagnostics where confirming the presence of diabetes is critical. 
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 Results: The performance metrics with this higher threshold are detailed in the appendix. This adjustment typically resulted in higher precision but slightly 
lower recall, indicating fewer false positives at the expense of missing some true positives. 

TABLE B1 

Classifier Accuracy Precision Recall 
F1-

Score 

AUC-

ROC 

Running Time 

(s) 

Confusion 

Matrix 

0 
Logistic 
Regression 

0.906344 0.481714 0.815448 0.605649 0.954829 0.264111 [[16046, 1488], [313, 1383]] 

1 Random Forest 0.958658 0.779640 0.740566 0.759601 0.968689 26.816174 [[17179, 355], [440, 1256]] 

2 XGBoost 0.970203 0.936965 0.709906 0.807783 0.975445 1.323363 [[17453, 81], [492, 1204]] 

3 Voting Classifier 0.962611 0.822868 0.734080 0.775943 0.970382 26.425162 [[17266, 268], [451, 1245]] 

Experiment 5: Adjusting the Prediction Threshold to 0.25 

 Methodology: The threshold was lowered to 0.25 to maximize recall. This approach is aimed at reducing false negatives, essential for early screening where 
capturing as many potential cases as possible is more critical than the precision of each prediction. 

 Results: This lower threshold significantly improved recall but at the cost of precision, as detailed in the appendix. The increase in recall makes this threshold 
suitable for preliminary screenings. 

TABLE B2 

Classifier Accuracy Precision Recall 
F1-

Score 

AUC-

ROC 

Running Time 

(s) 

Confusion 

Matrix 

0 
Logistic 
Regression 

0.781539 0.280225 0.941627 0.431913 0.954829 0.329488 [[13432, 4102], [99, 1597]] 

1 Random Forest 0.886271 0.430077 0.890330 0.579988 0.968202 26.290070 [[15533, 2001], [186, 1510]] 

2 XGBoost 0.917681 0.519584 0.883844 0.654442 0.975445 2.742484 [[16148, 1386], [197, 1499]] 

3 Voting Classifier 0.857046 0.375385 0.935142 0.535720 0.970287 25.459364 [[14895, 2639], [110, 1586]] 

Experiment 6: Adjusting the Prediction Threshold to 0.4 

 Methodology: A moderate threshold adjustment to 0.4 was tested to find a balance between recall and precision. This setting aims to maintain a reasonable 
rate of true identifications while controlling the number of false positives. 

 Results: The results, as detailed in the appendix, show that this threshold offers a balanced trade-off, making it a potentially viable option for contexts where 
both identifying cases and maintaining precision are important. 

TABLE B3 

Classifier Accuracy Precision Recall 
F1-

Score 

AUC-

ROC 

Running Time 

(s) 

Confusion 

Matrix 

0 
Logistic 
Regression 

0.849922 0.359338 0.896226 0.512994 0.954829 0.263994 [[14824, 2710], [176, 1520]] 

1 Random Forest 0.927665 0.560878 0.828420 0.668888 0.968033 25.806485 [[16434, 1100], [291, 1405]] 

2 XGBoost 0.954082 0.718431 0.788325 0.751757 0.975445 1.291959 [[17010, 524], [359, 1337]] 

3 Voting Classifier 0.920749 0.531387 0.858491 0.656447 0.970437 25.257277 [[16250, 1284], [240, 1456]] 

 


