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Abstract—In today's cyber environment, modern botnets and 

malware are increasingly employing domain generation 

mechanisms to circumvent conventional detection solutions 

reliant on blacklisting or statistical methods for malicious 

domains. These outdated methods prove inadequate against 

algorithmically generated domain names, presenting significant 

challenges for cyber security. Domain Generation Algorithms 

(DGAs) have become essential tools for many malware families, 

allowing them to create numerous DGA domain names to 

establish communication with C&C servers. Consequently, 

detecting such malware has become a formidable task in cyber 

security. Traditional approaches to domain name detection rely 

heavily on manual feature engineering and statistical analysis, 

with classifiers designed to differentiate between legitimate and 

DGA domain names. In this study, we propose a novel approach 

to classify and detect algorithmically generated domain names. 

The deep learning architectures, including LSTM, RNN and 

GRU are trained and evaluated for their effectiveness in 

distinguishing between legitimate and malicious domain names. 

The performance of each model is evaluated using standard 

metrics such as precision, recall, and F1-score. The findings of 

this research have significant implications for cyber security 

defense strategies. Our experimental findings illustrate that the 

proposed model outperforms current state-of-the-art methods in 

both DGA domain name classification and detection. Our 

proposed model achieved 99% accuracy for DGA classification. 

By integrating additional feature extraction and knowledge-

based methods our proposed model surpasses existing models. 

The experimental outcomes suggest that our proposed model 

gated recurrent unit can achieve 99% accuracy, a 94% recall 

rate, and a 98% F1-score for the detection and classification of 

DGA-generated domain names. 

Keywords—Botnet; cyber security; Domain Generation 

Algorithms (DGAs); gated recurrent unit; Domain Name System 

(DNS) 

I. INTRODUCTION 

With rapid advancement in the information technology and 
development of mobile Internet, there is increase in the Internet 
connected devices, detecting malicious domain names is of 
great importance for network security. The rapid evolution of 
the Internet has revolutionized daily life with unprecedented 
convenience, yet it also presents a formidable threat to network 
security. A constant stream of malicious attacks continues to 
emerge, with botnet-based attacks standing out as a major 
concern [1]. Botnets consist of a chain of malware-infected 
hosts, where a central machine commands these compromised 
hosts remotely via a C&C server to carry out malicious 
activities. Utilizing the Domain Generation Algorithm (DGA), 

botnets exploit algorithmic characteristics to generate pseudo-
random strings and dynamically select connected hosts, 
significantly enhancing their stealth and resilience [2]. 
Consequently, detecting DGA domain names with high 
accuracy and minimal cost is crucial for safeguarding network 
security. 

Conventional methods for detecting domain names 
primarily rely on extracting artificial features from Domain 
Name Server (DNS) traffic or statistical characteristics of 
domain name language. Machine learning is then applied to 
analyze these features for the classification and identification 
of domain names [4]. However, accurately identifying the 
appropriate type of DGA is a challenging task. Each DGA 
family typically represents a cluster of similar algorithms, and 
various types of DGAs exhibit distinct DNS traffic patterns and 
statistical characteristics of domain names. Consequently, 
detection strategies that hinge on artificial feature extraction 
are costly and lack adaptability, rendering them inadequate for 
handling the intricacies of DGA types [5]. Therefore, the 
development of a DGA detection model using deep learning 
has garnered research attention as an enhanced detection 
approach compared to traditional methods. 

Developing cyber security solutions remains a formidable 
challenge. Traditional signature-based detection systems rely 
on human involvement in continuously oversee and revise 
signatures, making them ineffective against emerging forms of 
cyber threats and emerging malware. Recent advances in 
optimization and parallel/distributed computing technologies 
have enabled the efficient training of large-scale datasets. Deep 
learning, a subset of artificial intelligence, has significantly 
improved performance across various domains [6]. 
Architectures like LSTM, RNN and GRU have demonstrated 
superior performance in cyber security applications compared 
to classical machine learning algorithms. 

Real-time approaches for detecting Domain Generation 
Algorithms (DGAs) aim to classify domains as either benign or 
generated by a DGA [7]. Retrospective methods have shown 
poor performance in this regard. Early detection techniques 
likely employed machine learning methods. Classical 
approaches to machine learning-based DGA detection heavily 
emphasize feature engineering, which results in performance of 
these methods are dependent on domain specific features [8]. 
Recently the deep learning architectures have been considered 
for DGA classification and detection, these methods perform 
better over the traditional ML algorithms, which circumvent 
feature engineering and shows significant performance 
improvement [12]. 
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In this paper, our intent is to evaluate the effectiveness of 
deep learning models for algorithmically generated domain 
detection. We suggest a deep learning technique called gated 
recurrent unit for DGA classification and detection. Initially 
this model performs the binary classification, which gives the 
probability of being benign or DGA generated. Further it 
detects whether the domains are legitimate or DGA generated, 
if the domain name is generated by a DGA then it will 
categorize the domain into respective DGA family it belongs. 

The structure of this paper is as follows. Section II 
examines algorithmically generated domain names and reviews 
related work on DGA domain detection. Section III provides 
an explanation of the domain generation algorithm. Section IV 
covers the theoretical background of deep learning methods. 
Section V outlines the overall procedure for DGA domain 
classification and detection, while Section VI describes the 
dataset used. Section VII evaluates the detection performance 
of the proposed deep learning models through experimentation. 
Results and discussion is given in Section VIII. Finally, 
Section IX presents the conclusions drawn from the study. 

II. RELATED WORK 

In recent years, many malware families have shifted their 
approach to communicating with remote servers. To 
distinguish DGA-generated domains from normal ones, 
researchers have identified distinct features associated with 
DGA-generated domain names. Consequently, numerous 
studies focus on blocking these DGA domain names as a 
defensive measure [2]. Traditional malware control methods, 
such as blacklisting, static string-matching approaches, and 
hashing schemes, are insufficient for addressing DGA threats. 
Several researchers have worked on algorithmically generated 
domain name detection some of these research papers are 
discussed below. 

Mathew [3] devised a classification system for domain 
generation algorithms based on DNS traffic, along with 
presenting various detection techniques for DGA botnets. 
Among these techniques, the genetic algorithm for DGA 
detection was proposed. However, this method is hindered by 
computational complexity and high implementation costs. 

Daniel Plohmann [4] presented a comprehensive study of 
domain generation algorithms as they are used by modern 
botnets. This study uses the reverse engineering of the DGAs 
of 43 malware families and their variants [5]. The author 
performed an analysis on domain registrations, utilizing 
historic WHOIS data. They have characterized the registration 
behavior of bot masters and sink holes and examined the 
effectiveness of domain mitigations [6]. The author explained 
the complexity of word list-based DGA families and their 
detection. 

Tong and Nguyen [7] employed semantic indicators like 
entropy, domain level, frequency of N-grams and Mahalanobis 
distance were utilized in domain classification [8] for detecting 
DGA domain names. They proposed resampling as a 
preventive measure at the data level, categorizing it into 
oversampling, under sampling, and hybrid sampling combining 
both approaches. 

K. Alieyan [9] introduced a rule-based schema for the 
domain name system designed to identify inconsistencies 
within it. The results of the study demonstrated an accuracy of 
99.35% in detecting botnets, accompanied by a low false 
positive rate of 0.25. It should be noted that this approach is 
specifically tailored for DNS-based traffic flows. 

Kheir et al. [11] introduced the Mentor method, which 
gathers statistical features from suspicious domain names and 
employs supervised machine learning to distinguish between 
benign and suspicious domains. This method was tested against 
an extensive collection of public botnet blacklists. The results 
indicate that the Mentor system effectively detects malicious 
bots while maintaining a low false positive rate by filtering out 
benign domain names. 

The author’s Woodbridge et al. [12] presented a method 
that makes use of LSTM to categorize the DGA-generated and 
legitimate domains. LSTMs have benefits over other 
approaches as they are not dependent on features and make use 
of raw domain names as their input [14]. The experimental 
results show that LSTM outperformed as compared with 
random forest with manually engineered features and logistic 
regression with bigram features [16]. These approaches can 
perform real-time detection but they are sensitive to the 
imbalanced dataset which makes it difficult to detect domains 
from minority families. 

Cheng [18] conducted an analysis comparing legal domains 
with DGA domain names, identifying significant deviations in 
domain name construction rules. They utilized domain name 
length and character information entropy as classification 
features for detecting DGA domain names. Y. Li et al. [19] 
investigated the distribution of alphanumeric characters and 
bigrams across domains sharing the same set of IP addresses to 
analyze the statistical characteristics of domain name language. 
They also evaluated the efficacy of various distance metrics in 
this context. 

Lison et al. [25] similarly adopted an approach where they 
substituted the LSTM layer with a GRU layer, achieving an 
AUC of 0.996. Meanwhile, Mac et al. [26] employed 
additional embedding and integrated an LSTM with an SVM, 
as well as a bidirectional LSTM, achieving AUCs of 0.9969 
and 0.9964, respectively, on comparable datasets. 

To address the constraints of machine learning techniques 
in the aforementioned scenarios Curtin et al. [30] designed a 
framework for detecting DGA domains with recurrent neural 
networks. The author has presented a complexity for domain 
name families called the smash word score; it quantifies how 
much DGA domain is to English words. Further, the DGA 
families having higher smash word scores will usually pose 
greater difficulty for detection [29]. The author used a recurrent 
neural network model with logistic regression for DGA 
detection which outperforms the existing approaches of DGA 
detection. The limitation of this study is results are not up to 
the mark and this is not adoptable for corporate use. 

However, while these studies have demonstrated high 
detection rates for specific DGA families, machine learning-
based detection systems often perform poorly against new 
DGA variants when trained on unrepresentative or imbalanced 
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datasets. Addressing this issue, Anderson et al. [31] employed 
a Generative Adversarial Network (GAN) to create domain 
names that traditional DGA classifiers struggle to identify. The 
generator produced synthetic data used to train new models. 
Initially, an auto-encoder was pre-trained on approximately 
256,000 domains and subsequently fine-tuned. The new 
models were then trained and evaluated using these newly 
generated domain names [32]. As a result, models trained on 
the newly generated domains exhibited an overall improvement 
in True Positive Rate (TPR) from 68% to 70%. 

Chin et al. [33] devised a machine learning-based 
framework for identifying and detecting domains generated by 
DGAs. Further they have applied the proposed ML techniques 
to investigate the DGA-based modern malware. The proposed 
model comprises two levels containing the classification as 
first level operation and the clustering method as a second-
level operation. These methods are to detect and identify the 
algorithmically generated domains. In this work ML-based 
methods apply DNS blacklist for detecting DGA-generated 
domains. 

Vinayakumar et al. [34], the author developed a model that 
gathers traffic data of DNS at the ISP level. Further, it 
identifies the DGA-based domains in real-time. They also used 
many deep learning models such as LSTM, CNN, CNN-LSTM 
and RNN for modern botnet detection. These methods have 
performed well compared to classical ML approaches and also 
give better classification accuracy rate. 

Vinayakumar et al. [35], the author had designed and 
developed scalable architecture called Apache spark. The 
proposed model gathers DNS logs data and performed the 
analysis. The deep learning techniques are being used to detect 
and gives alert for suspicious domains. 

The literature survey shows that recent methods for DGA 
domain name detection and classification based on machine 
learning performed better results and most importantly deep 
learning specifically recurrent based models. In this work, we 
apply enhanced model of LSTM called as GRU for DGA 
domain name detection and classification. 

III. DOMAIN GENERATION ALGORITHM 

A Domain Generation Algorithm (DGA) operates by 
utilizing available sources of randomness within malware to 

generate hundreds or even thousands of domains automatically. 
DGAs enable malware to constantly switch between these 
domains during attacks, complicating efforts to block and 
remove them [3]. Cybercriminals and botnet operators exploit 
DGAs to deliver malware, ensuring continuous communication 
with Command and Control (C&C) servers through 
dynamically generated domains [5]. The malware attempts to 
query each domain against its local DNS server, vital for 
translating domain names into IP addresses on the Internet [9]. 
Only domains registered by the botmaster yield valid IP 
addresses for C&C communication; unregistered domains 
return resolution errors and are disregarded [10]. One 
prominent example is Banjori, widely recognized for targeting 
online banking users to steal information [11]. According to 
NSFOCUS, Banjori was first identified in 2013, and as of in 
2019, a total of 1,499 botnets related to this issue were 
detected. 

2019, a total of 1,499 related botnets had been detected, 
with numbers continuing to rise. Other DGAs, such as Tinba 
and Ramnit, specialize in financial theft and worm infections 
[12]. Given the diversity of DGA types, precise classification 
of these domains is crucial. 

The algorithm takes DNS queries or domain names as 
input. If a domain is broken down into words or letters, it can 
be viewed as a sequence akin to a sentence. Certain words 
serve as the core components, representing key features of the 
domain name. Domain names within the same DGA botnet 
family exhibit similar characteristics based on shared keyword 
sets [13]. Consequently, domains from different families differ 
significantly in their specific keywords. 

Domains within the same family create a consistent context 
based on the characteristic keyword sets used to generate them 
[15]. These contextual differences are essential in the 
classification process. Initially, query domains are processed 
through a trained binary classification model to distinguish 
between malicious and benign domains [17]. Domains 
identified as malicious then undergo multiclass classification to 
accurately determine their DGA botnet family, as illustrated in 
Fig. 1. The binary classification distinguishes between benign 
and malicious domain names, while the multiclass 
classification identifies the specific botnet family associated 
with malicious domains. 

 

Fig. 1. Steps involved in the DGA botnet detection. 

IV. DEEP LEARNING MODELS 

A. Gated Recurrent Unit 

The Gated Recurrent Unit (GRU) is acknowledged as an 
enhanced version of the standard recurrent neural network, first 
introduced by Cho et al. in 2014. It addresses the issue of the 
vanishing gradient that commonly affects traditional RNNs. 
GRU shares similarities with LSTM (Long Short-Term 

Memory) networks in design and often yields comparable 
performance. 

GRU incorporates gating mechanisms and a hidden state to 
regulate information flow [20]. It tackles RNN issues by 
employing two gates: the update gate and the reset gate. These 
gates act as vector components (0, 1) capable of performing a 
convex combination. This mechanism determines whether to 
update (retain) or reset the hidden state based on incoming 

Domain names Binary Classification 

DGA Domains Multi class classification 

Legitimate domains 

DGA Families 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

309 | P a g e  

www.ijacsa.thesai.org 

information [21]. Consequently, the network learns to 
disregard irrelevant temporal details. 

GRUs are effective for enhancing the memory capabilities 
of recurrent neural networks and facilitating easier model 
training. They are widely applicable in diverse fields such as 
speech signal modeling, machine translation, and handwriting 
recognition. 

The basic RNN suffers from short-term memory problems. 
GRU is a modified or lightweight version of LSTM, where it 
combines long and short-term memory into its hidden states 
[22]. LSTM has two attributes cell state and hidden state; here 
it has only a hidden state which can combine both long and 
short-term memory. The GRU (Gated Recurrent Unit) is 
characterized by its two primary gates: the update gate and the 
reset gate. The update gate plays a crucial role in memory 
retention, determining how much past information should be 
preserved. In contrast, the reset gate decides how much past 
information to discard. 

The update gate is pivotal in allowing the model to 
selectively retain relevant earlier information across time steps. 
This capability is particularly advantageous as it enables the 
model to potentially retain all pertinent details from the past, 
thus mitigating the issue of vanishing gradients. 

Conversely, the reset gate determines the degree to which 
past information should be forgotten. Similar to the Forget gate 
in LSTM, the reset gate identifies and disregards irrelevant 
data, facilitating the model's ability to progress without 
unnecessary baggage from previous computations. Both gates 
contribute significantly to the GRU's architecture and function. 
While their formulas are similar, their respective roles and 
weights within the model are distinct, as elaborated in 
subsequent sections. 

In the GRU architecture, two key gates play crucial roles: 
the reset gate and the update gate. These gates are responsible 
for dynamically adjusting how much information each hidden 
unit retains or discards as it processes a sequence. In the figure 
illustrating the Gated Recurrent Unit, denoted as GRU, the 
symbols r and z represent the reset and update gates 
respectively, while h and h’ correspond to the activations and 
candidate activations. This configuration is discussed in 
reference [23]. 

During operation, when the reset gate r approaches zero, 
the hidden state disregards the previous state and resets based 
on the current input. This mechanism allows the model to 
efficiently discard irrelevant data, leading to a more 
streamlined representation. Conversely, the update gate z 
regulates how much information from the previous hidden state 
is transferred to the current hidden state. This process 
resembles the function of a memory cell in LSTM networks, 
facilitating the retention of long-term dependencies. 

At any given time step, the activation of the GRU is 
determined through a linear interpolation between the previous 
activation and the candidate activation. The update gate z 
dictates the extent to which the unit updates its activation or 
content, thereby influencing the flow of information 
throughout the network. 

V. PROPOSED ARCHITECTURE 

The proposed method includes the domain names as an 
input which contains series of characters, later it transforms 
these characters into a series of vectors.  In our proposed work 
we have adopted Keras character level embedding. After 
translating the character representation into a series of vectors 
in the next step series of vectors are provided for deep learning 
layers [24]. Further, it processes the series of vectors in the 
sequential order and at each step it updates the hidden vector 
state information. Finally, the model will be able to perform the 
binary classification task to categorize the domains as either 
benign or DGA generated, where as in multi-classification task 
initially it detects either the domain name is benign or DGA 
generated. If it is DGA generated then it classifies into the 
corresponding malware families. 

The outline of our proposed approach for detecting DGA 
domains using deep learning model is shown in Fig. 2. The 
model represents three stages of operation, first one is character 
encoding here it maps each character into real-valued vector 
and the second one is feature representation and lastly, the fully 
connected layer and softmax function differentiates between 
DGA classes, including a category for non-DGA instances. 
The proposed model is evaluated on both binary classification 
and multi-class classification that classifies whether domains 
are benign or DGA generated. Deep learning models are 
educated and evaluated on the dataset for DGA Detection. 

 
Fig. 2. Proposed deep learning architecture for DGA detection. 

A. Domain Name Character Embedding 

The Keras framework includes an embedding layer that 
translates character-level domain names into dense vectors 
representation shown in Fig. 3. The embedding is also learned 
independently during training. In this paper we have utilized 
keras for DGA detection [27]. In the initial phase of the 
operation weights are going to be assigned and later these 
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weights will learn all the characters in the dataset. Further these 
embedding layer tries to maps each one of character in the 
dataset to a 128 length of real value represented in the vector. 
The domain name character level embedding makes use of 
recurrent neural network to determine numerical value 
representation by looking at their character level compositions. 

 
Fig. 3. Domain name character level embedding. 

B. Domain Name Feature Extraction 

For representing the features various deep layers have been 
used such as LSTM, RNN and GRU. These structures will 
capture the sequential information. The pattern-matching 
approach along with the deep learning layer looks effective and 
efficient compared with regular expression [28]. The regular 
expression outputs a binary value but the deep learning models 
produce a continuous value which in turn represents how much 
the pattern is matched. 

C. Recurrent Layers 

We have used many recurrent networks including LSTM, 
RNN and GRU. Here the number of recurrent units is set to 
128 based on the knowledge acquired. These recurrent network 
layers primarily capture the sequential data from the output of 
the embedding layer. Each unit in a recurrent neural network 
employs an activation function with values ranging from [-1, 
1]. The gate uses a logistic sigmoid function, which produces 
values in the range of [1, 0]. 

D. Deep Learning for the Binary Class Classification Task 

Binary classification task involves distinguishing between 
two classes: benign and DGA (malicious). In our approach, 
benign domains are designated with a label of 0, whereas 
DGAs carry a label of 1. To tackle this task, we trained several 
deep neural network models, such as LSTM, RNN, and GRU, 
drawing on existing research in deep learning for character-
based text classification. To optimize these neural networks for 
classifying domain names as either benign or malicious, we 
refer to the detailed descriptions of the model architectures 
provided in previous studies. When applying these trained 
neural models to a test dataset, a domain is labelled as benign if 
the probability is less than 0.5 and malicious if it is 0.5 or 
higher. 

Deep Learning for the Multiclass Classification Task. The 
dataset used for multiclass classification contains domains 
from both the "benign family" and 20 distinct DGA families, 
totaling 21 families. For this task, we employed a model 
architecture similar to that used for binary classification. 
However, instead of two prediction classes, the models now 
predict among 21 classes (one class per family). Therefore, the 
output layer of the models from reference [18] was adjusted to 
use the "softmax" activation function. This ensures that the 
output values range between 0 and 1, representing predicted 
probabilities. To facilitate this, we applied one-hot encoding, 

resulting in 21 output values, each corresponding to a class. 
The class with the highest probability is selected as the final 
prediction made by the model. 

VI. DATASET DESCRIPTION 

The proposed domain name detection model was assessed 
on AmritaDGA dataset for identifying malwares/botnets from 
the DNS traffic [12]. AmritaDGA is a benchmark dataset 
publically available for research purpose. This database was 
used in DMD-2018 shared task and after the shared task this 
database has been used for benchmark purpose by various 
researchers for DGA detection [13]. Following, in this work, 
the AmritaDGA database was used for DGA domains 
detection. The domain name in the dataset is labeled as benign 
or DGA family. The dataset is further divided into training and 
testing respectively. 

All deep learning models are trained using the training 
dataset. Further the dataset is comprised of training, validation 
and testing dataset. The training, validation and testing domain 
name samples are shown in below Table I. 

TABLE I.  DETAILED INFORMATION OF THE DATASET 

Label Domain Type Training Testing Validation 

0 benign 25574 6414 8079 

1 banjori 3779 1021 1165 

2 corebot 3815 954 1242 

3 dircrypt 3890 942 1201 

4 dnschanger 3883 961 1187 

5 fobber 3815 953 1203 

6 murofet 3823 942 1237 

7 necurs 3282 823 993 

8 newgoz 3858 987 1185 

9 padcrypt 3802 932 1145 

10 proslikefan 3823 946 1176 

11 pykspa 3834 940 1194 

12 qadars 3848 972 1172 

13 qakbot 3844 964 1209 

14 ramdo 3907 963 1198 

15 ranbyus 3868 980 1258 

16 simda 3870 959 1195 

17 suppobox 3850 948 1234 

18 symmi 3802 952 1173 

19 tempedreve 3818 932 1179 

20 tinba 3845 973 1197 

VII. PERFORMANCE METRICS 

We have adopted performance measures to compare the 
accuracy of various DGA classification models. Further the 
various metrics have been used to determine the quality of 
DGA classification models. AUC, recall, precision, F1 score, 
and ROC performance evaluation metrics are used to compare 
the GRU with other deep learning classification techniques. 
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True Positive: It represents the number of domains 
classified as legitimate and which is indicated with class 0. 

True Negative: This represents the number of domains 
classified as DGA generated and which is indicated with class 
1. 

False Positive: It represents the number of domains 
wrongly classified as legitimate. 

False Negative: It represents the number of domains 
wrongly classified as DGA generated. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                          (1) 

Recall: Measures the completeness of correctly labeled 
features. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                            (2) 

F1-score: Defines the harmonic mean between precision 
and recall measures. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
                 (3) 

Receiver operating characteristic measures the trade-off of 
the TPR to FPR where, 

𝑇𝑃𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
                   (4) 

𝐹𝑃𝑅 =  
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
                   (5) 

The ROC curve established with recall and false positive 
rate. It also shows the capability of the binary classifiers. The 
ROC curve also measures the competence of the classifier in 
differentiating the classes as either DGA or legitimate. The 
graph is plotted between the two metrics recall and false 
positive rate. 

𝐴𝑈𝐶 =  ∫
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
𝑑

𝐹𝑃

𝑇𝑁+𝐹𝑃

1

0
                          (6) 

The macro avg. and weighted avg. are used to average the 
results over the classes. The Macro avg. computes the elements 
independently and finally, it takes the average over all classes. 
In this paper, the weighted averaging considers as a significant 
performance indicator. 

VIII. RESULTS AND DISCUSSION 

The deep learning techniques were executed utilizing 
Tensor Flow and Keras. The performance of the trained models 
was evaluated on a per-epoch basis using testing samples. For 
baseline comparison, we applied a logistic regression model to 
bigrams in the character-level representation of domain names, 
as well as other deep learning methods such as RNN, LSTM, 
and GRU. The experimental results demonstrate that these 
methods effectively classify domain names as either benign or 
DGA-generated in binary classification and further categorize 
algorithmically generated domain names into their respective 
malware families, based on metrics such as accuracy, 
precision, recall, and F1-score. 

The performance of our trained model is assessed using 
testing samples on an epoch-by-epoch basis, as shown in Fig. 

4. The baseline model showed good performance till epoch 27 
and this model gives AUC of 0.988. LSTM model is evaluated 
using testing samples on epoch 9 which is shown in Fig. 5, 
whereas the RNN model performed well till epoch 11. 

 
Fig. 4. Training and validation loss curve for baseline model with LR. 

 
Fig. 5. The validation and training loss curve for LSTM. 

 
Fig. 6. Training and validation loss curve for RNN. 
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The proposed deep learning model gated recurrent unit has 
showed better performance till epochs 14 shown in Fig. 6. 
After that point, the performance began to decline due to over 
fitting. This indicates that 15 epochs are sufficient to capture 
the dependencies of domain names at the character level. For 
baseline comparison, we applied a logistic regression model to 
bigrams in the character-level representation of domain names. 

The performance of the deep learning models is evaluated 
using two types of averages: weighted average and macro 
average. The weighted average takes into account the total 
number of samples by calculating the performance for each 
class and then averaging these performances, weighted by the 
sample distribution across classes. This method allows us to 
assess the overall performance across the entire dataset. The 
macro average, in contrast, involves calculating the 
performance for each class separately and then averaging these 
values, treating all classes as if they have the same number of 
samples. This provides the average performance per class. In 
cases of class imbalance in multiclass classification, the 
weighted average is often more representative than the macro 
average. Nevertheless, to obtain a comprehensive 
understanding of the models' performance, we compare the 
results of both the weighted average and macro average. 

 
Fig. 7. The validation and training loss curve GRU. 

Initially, various test experiments were run to identify 
various parameters for GRU model. In the proposed GRU 
model, the first layer is embedding and it contains the 
embedding length parameter. We run experiments with 32, 64, 
128, and 256. The performance with 128 was good compared 
to others and when we increased 128 to 256, the performance 
remained same. Thus we decided to set the embedding length 
as 128. Each character of the domain will be transformed into 
128 length vector. Next embedding layer follows GRU layer 
and again similar experiments were done and 128 units were 
set to GRU layer shown in Fig. 7. GRU layer follows the 
classification or output layer. Also, dropout was added in 
between the output layer and GRU layer. 

The results of the models are represented in the form of a 
PRC curve by differentiating two parameters, such as precision 
and recall. The ROC curve is represented with false positive 
rate and recall value. Deep learning model outperforms the N-
gram derived features with huge size of domain names. The 
PRC curves for the Bigram baseline model, LSTM, RNN and 
GRU are presented in Fig. 8. The performance metrics of 
various methods are displayed in precision recall curve which 

shows that the gated recurrent unit results with higher precision 
and recall value compared with other approaches such as RNN 
and LSTM, the GRU model gives in better precision and recall 
value shown in Fig. 9. The green line represented the Fig. 10 
indicates gated recurrent unit, red line indicates LSTM and 
blue line indicates the baseline model. The calibration 
performance metrics was used to assess the performance of 
classifier and also to tune its parameter shown in Fig. 10. The 
ROC curve is represented with false positive rate and recall 
value shown in Fig. 11. The gated recurrent unit gives the 
performance with an AUC of 0.999 shown in Fig. 12. 

 
Fig. 8. Performance comparison of deep learning models. 

 

Fig. 9. Calibration. 

 

Fig. 10. Precision threshold. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

313 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 11. Receiver operating characteristic. 

 

Fig. 12. Precision recall. 

Table II represents the experimental results of recurrent 
neural network for multiclass classification of DGA domains to 
classify the domain name into a family of malwares in terms of 
accuracy, precision, recall, and f1-score. 

Table III shows experimental results of deep learning 
approaches for multiclass classification of domain names into a 
family of malwares. The proposed detection model gated 
recurrent unit significantly outperforms in comparison with 
other deep learning models like LSTM and RNN in all 
measurements, in which our model produces accuracy of 99%, 
F1-score of 98%, macro avg. of 91% and weighted avg. of 
92% and also provides significantly reduced false positive rate 
(FPR) and false negative rate (FNR). Whereas the LSTM 
produces accuracy of 92%, F1-score of 98%, macro avg. of 
90% and weighted avg. of 91% and RNN models produces 
accuracy of 83%, recall of 94%, precision of 98%, macro avg. 
of 80% and weighted avg. of 84%. The baseline model for 
logistic regression produces accuracy of 87%, f1-score of 99%, 
precision of 98% and macro avg. of 84% and weighted avg. of 
87%. 

TABLE II.  RESULTS OF MULTICLASS CLASSIFICATION FOR RNN 

 Precision Recall F1-score Support 

benign 0.99 0.94 0.97 8079 

banjori 0.98 0.99 0.99 1165 

corebot 0.99 0.99 0.99 1242 

dircrypt 0.51 0.46 0.48 1201 

dnschanger 0.49 1.00 0.66 1187 

fobber 0.75 0.99 0.86 1203 

murofet 0.80 0.89 0.84 1237 

necurs 0.90 0.58 0.70 993 

newgoz 0.98 0.98 0.98 1185 

padcrypt 0.74 0.77 0.76 1145 

proslikefan 0.67 0.60 0.63 1176 

pykspa 0.49 0.62 0.55 1194 

qadars 0.97 0.97 0.97 1172 

qakbot 0.50 0.28 0.36 1209 

ramdo 0.90 0.98 0.94 1198 

ranbyus 0.81 0.76 0.78 1258 

simda 0.92 0.97 0.95 1195 

suppobox 0.89 0.84 0.86 1234 

symmi 0.98 0.99 0.99 1173 

tempedreve 0.58 0.39 0.47 1179 

tinba 0.87 0.65 0.75 1197 

accuracy   0.83 31822 

macro avg 0.80 0.79 0.78 31822 

weighted avg 0.84 0.83 0.82 31822 

TABLE III.  RESULTS OF MULTICLASS CLASSIFICATION FOR GRU 

 Precision Recall F1-score Support 

benign 0.99 0.99 0.99 8079 

banjori 1.00 1.00 1.00 1165 

corebot 1.00 1.00 1.00 1242 

dircrypt 0.71 0.70 0.71 1201 

dnschanger 0.90 0.97 0.94 1187 

fobber 0.88 0.95 0.91 1203 

murofet 0.93 0.94 0.94 1237 

necurs 0.96 0.85 0.90 993 

newgoz 1.00 1.00 1.00 1185 

padcrypt 1.00 0.99 1.00 1145 

proslikefan 0.72 0.71 0.72 1176 

pykspa 0.68 0.78 0.73 1194 

qadars 1.00 1.00 1.00 1172 

qakbot 0.70 0.58 0.63 1209 

ramdo 1.00 1.00 1.00 1198 

ranbyus 0.89 0.88 0.88 1258 

simda 1.00 0.99 1.00 1195 

suppobox 0.98 0.99 0.99 1234 

symmi 1.00 1.00 1.00 1173 

tempedreve 0.76 0.70 0.73 1179 

tinba 0.92 0.96 0.94 1197 

accuracy   0.92 31822 

macro avg 0.91 0.90 0.90 31822 

weighted avg 0.92 0.92 0.92 31822 
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Similarly, Table IV represents the experimental results of 
Long term short memory for multiclass classification of 
algorithmically generated domain names to classify the domain 
name into a family of malwares in terms of accuracy, 
precision, f1-score, recall and Table IV represents the 
experimental results of gated recurrent unit for multiclass 
classification of algorithmically generated domain names to 
classify the domain name into a family of malwares in terms of 
accuracy, precision, recall, and f1-score. By looking at Table 
III and Table V proposed model gated recurrent unit has 
outperformed for multi-class classification in comparison to 
RNN and LSTM and other deep learning architectures. 

TABLE IV.  RESULTS OF MULTICLASS CLASSIFICATION FOR LSTM 

 Precision Recall F1-score Support 

benign 0.99 0.99 0.99 8079 

banjori 1.00 1.00 1.00 1165 

corebot 1.00 1.00 1.00 1242 

dircrypt 0.67 0.68 0.68 1201 

dnschanger 0.90 0.95 0.93 1187 

fobber 0.87 0.94 0.90 1203 

murofet 0.90 0.94 0.92 1237 

necurs 0.94 0.85 0.90 993 

newgoz 1.00 1.00 1.00 1185 

padcrypt 0.99 0.99 1.00 1145 

proslikefan 0.81 0.64 0.71 1176 

pykspa 0.68 0.80 0.73 1194 

qadars 1.00 0.99 0.99 1172 

qakbot 0.65 0.54 0.59 1209 

ramdo 1.00 1.00 1.00 1198 

ranbyus 0.89 0.86 0.87 1258 

simda 0.99 1.00 1.00 1195 

suppobox 0.98 0.99 0.99 1234 

symmi 1.00 1.00 1.00 1173 

tempedreve 0.71 0.76 0.73 1179 

tinba 0.94 0.93 0.93 1197 

accuracy   0.92 31822 

macro avg. 0.90 0.90 0.90 31822 

weighted avg. 0.92 0.92 0.92 31822 

Table V incorporates experimental findings from deep 
learning methods applied at the character level, alongside 
logistic regression (LR) using character bigrams, within the 
specified domain for classification as the domain name into 
corresponding malware family. 

TABLE V.  RESULTS OF MULTICLASS CLASSIFICATION FOR BIGRAM WITH 

LOGISTIC REGRESSION 

 Precision Recall F1-score Support 

benign 0.98 0.99 0.99 8079 

banjori 1.00 1.00 1.00 1165 

corebot 1.00 1.00 1.00 1242 

dircrypt 0.52 0.57 0.54 1201 

dnschanger 0.57 0.85 0.68 1187 

fobber 0.71 0.94 0.81 1203 

murofet 0.96 0.95 0.96 1237 

necurs 0.88 0.71 0.79 993 

newgoz 1.00 0.99 1.00 1185 

padcrypt 1.00 1.00 1.00 1145 

proslikefan 0.78 0.58 0.66 1176 

pykspa 0.55 0.58 0.57 1194 

qadars 1.00 1.00 1.00 1172 

qakbot 0.65 0.47 0.54 1209 

ramdo 0.98 1.00 0.99 1198 

ranbyus 0.79 0.72 0.75 1258 

simda 0.99 0.99 0.99 1195 

suppobox 0.97 1.00 0.99 1234 

symmi 1.00 1.00 1.00 1173 

tempedreve 0.56 0.39 0.46 1179 

tinba 0.80 0.84 0.82 1197 

accuracy   0.87 31822 

macro avg. 0.84 0.84 0.83 31822 

weighted avg. 0.87 0.87 0.87 31822 

IX. CONCLUSION 

In this paper we propose a novel deep learning framework 
for the detection of malicious domain names, achieving 
superior performance accuracy for both binary and multiclass 
classification tasks. Our proposed model uses deep learning 
techniques with Keras embedding and it has the capability to 
detect the domain names to a particular malware family. 
Further the domain names are differentiated as either legitimate 
or DGA generated by training the domain names within the 
character level by automatically extracting the necessary 
features. Detecting DGAs presents a significant challenge in 
cyber security. These algorithms are typically employed by 
attackers to establish communication with diverse servers. This 
paper introduces deep learning architectures designed to 
mitigate DGA threats. The proposed framework includes a 
feature extractor and preprocessing model tailored for 
classifying and detecting malicious domain names. As the 
volume of data grows, deep learning models offer superior 
performance compared to traditional machine learning 
algorithms. This study examines the efficacy of different 
approaches in detecting DGAs and categorizing domain names 
into respective families, utilizing a dataset encompassing 20 
malware families. Specifically, in the GRU model, domain 
names are vectorized through a Keras embedding technique, 
where each domain character is mapped to a vector in a defined 
dictionary. Future work could explore training with more 
complex models and adding additional layers for enhanced 
accuracy. Experimentation with different preprocessing 
techniques, embeddings, hyper parameter fine-tuning, and 
increased epochs may further refine the model's accuracy. 
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