
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

306 | P a g e

www.ijacsa.thesai.org

DGA Domain Name Detection and Classification

Using Deep Learning Models

Ranjana B Nadagoudar1, M Ramakrishna2

Dept. of Computer Science and Engineering, Visvesvaraya Technological University, Belagavi, India1

Dept. of Computer Science and Engineering, Vemana Institute of Technology, Bangalore, India2

Abstract—In today's cyber environment, modern botnets and

malware are increasingly employing domain generation

mechanisms to circumvent conventional detection solutions

reliant on blacklisting or statistical methods for malicious

domains. These outdated methods prove inadequate against

algorithmically generated domain names, presenting significant

challenges for cyber security. Domain Generation Algorithms

(DGAs) have become essential tools for many malware families,

allowing them to create numerous DGA domain names to

establish communication with C&C servers. Consequently,

detecting such malware has become a formidable task in cyber

security. Traditional approaches to domain name detection rely

heavily on manual feature engineering and statistical analysis,

with classifiers designed to differentiate between legitimate and

DGA domain names. In this study, we propose a novel approach

to classify and detect algorithmically generated domain names.

The deep learning architectures, including LSTM, RNN and

GRU are trained and evaluated for their effectiveness in

distinguishing between legitimate and malicious domain names.

The performance of each model is evaluated using standard

metrics such as precision, recall, and F1-score. The findings of

this research have significant implications for cyber security

defense strategies. Our experimental findings illustrate that the

proposed model outperforms current state-of-the-art methods in

both DGA domain name classification and detection. Our

proposed model achieved 99% accuracy for DGA classification.

By integrating additional feature extraction and knowledge-

based methods our proposed model surpasses existing models.

The experimental outcomes suggest that our proposed model

gated recurrent unit can achieve 99% accuracy, a 94% recall

rate, and a 98% F1-score for the detection and classification of

DGA-generated domain names.

Keywords—Botnet; cyber security; Domain Generation

Algorithms (DGAs); gated recurrent unit; Domain Name System

(DNS)

I. INTRODUCTION

With rapid advancement in the information technology and
development of mobile Internet, there is increase in the Internet
connected devices, detecting malicious domain names is of
great importance for network security. The rapid evolution of
the Internet has revolutionized daily life with unprecedented
convenience, yet it also presents a formidable threat to network
security. A constant stream of malicious attacks continues to
emerge, with botnet-based attacks standing out as a major
concern [1]. Botnets consist of a chain of malware-infected
hosts, where a central machine commands these compromised
hosts remotely via a C&C server to carry out malicious
activities. Utilizing the Domain Generation Algorithm (DGA),

botnets exploit algorithmic characteristics to generate pseudo-
random strings and dynamically select connected hosts,
significantly enhancing their stealth and resilience [2].
Consequently, detecting DGA domain names with high
accuracy and minimal cost is crucial for safeguarding network
security.

Conventional methods for detecting domain names
primarily rely on extracting artificial features from Domain
Name Server (DNS) traffic or statistical characteristics of
domain name language. Machine learning is then applied to
analyze these features for the classification and identification
of domain names [4]. However, accurately identifying the
appropriate type of DGA is a challenging task. Each DGA
family typically represents a cluster of similar algorithms, and
various types of DGAs exhibit distinct DNS traffic patterns and
statistical characteristics of domain names. Consequently,
detection strategies that hinge on artificial feature extraction
are costly and lack adaptability, rendering them inadequate for
handling the intricacies of DGA types [5]. Therefore, the
development of a DGA detection model using deep learning
has garnered research attention as an enhanced detection
approach compared to traditional methods.

Developing cyber security solutions remains a formidable
challenge. Traditional signature-based detection systems rely
on human involvement in continuously oversee and revise
signatures, making them ineffective against emerging forms of
cyber threats and emerging malware. Recent advances in
optimization and parallel/distributed computing technologies
have enabled the efficient training of large-scale datasets. Deep
learning, a subset of artificial intelligence, has significantly
improved performance across various domains [6].
Architectures like LSTM, RNN and GRU have demonstrated
superior performance in cyber security applications compared
to classical machine learning algorithms.

Real-time approaches for detecting Domain Generation
Algorithms (DGAs) aim to classify domains as either benign or
generated by a DGA [7]. Retrospective methods have shown
poor performance in this regard. Early detection techniques
likely employed machine learning methods. Classical
approaches to machine learning-based DGA detection heavily
emphasize feature engineering, which results in performance of
these methods are dependent on domain specific features [8].
Recently the deep learning architectures have been considered
for DGA classification and detection, these methods perform
better over the traditional ML algorithms, which circumvent
feature engineering and shows significant performance
improvement [12].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

307 | P a g e

www.ijacsa.thesai.org

In this paper, our intent is to evaluate the effectiveness of
deep learning models for algorithmically generated domain
detection. We suggest a deep learning technique called gated
recurrent unit for DGA classification and detection. Initially
this model performs the binary classification, which gives the
probability of being benign or DGA generated. Further it
detects whether the domains are legitimate or DGA generated,
if the domain name is generated by a DGA then it will
categorize the domain into respective DGA family it belongs.

The structure of this paper is as follows. Section II
examines algorithmically generated domain names and reviews
related work on DGA domain detection. Section III provides
an explanation of the domain generation algorithm. Section IV
covers the theoretical background of deep learning methods.
Section V outlines the overall procedure for DGA domain
classification and detection, while Section VI describes the
dataset used. Section VII evaluates the detection performance
of the proposed deep learning models through experimentation.
Results and discussion is given in Section VIII. Finally,
Section IX presents the conclusions drawn from the study.

II. RELATED WORK

In recent years, many malware families have shifted their
approach to communicating with remote servers. To
distinguish DGA-generated domains from normal ones,
researchers have identified distinct features associated with
DGA-generated domain names. Consequently, numerous
studies focus on blocking these DGA domain names as a
defensive measure [2]. Traditional malware control methods,
such as blacklisting, static string-matching approaches, and
hashing schemes, are insufficient for addressing DGA threats.
Several researchers have worked on algorithmically generated
domain name detection some of these research papers are
discussed below.

Mathew [3] devised a classification system for domain
generation algorithms based on DNS traffic, along with
presenting various detection techniques for DGA botnets.
Among these techniques, the genetic algorithm for DGA
detection was proposed. However, this method is hindered by
computational complexity and high implementation costs.

Daniel Plohmann [4] presented a comprehensive study of
domain generation algorithms as they are used by modern
botnets. This study uses the reverse engineering of the DGAs
of 43 malware families and their variants [5]. The author
performed an analysis on domain registrations, utilizing
historic WHOIS data. They have characterized the registration
behavior of bot masters and sink holes and examined the
effectiveness of domain mitigations [6]. The author explained
the complexity of word list-based DGA families and their
detection.

Tong and Nguyen [7] employed semantic indicators like
entropy, domain level, frequency of N-grams and Mahalanobis
distance were utilized in domain classification [8] for detecting
DGA domain names. They proposed resampling as a
preventive measure at the data level, categorizing it into
oversampling, under sampling, and hybrid sampling combining
both approaches.

K. Alieyan [9] introduced a rule-based schema for the
domain name system designed to identify inconsistencies
within it. The results of the study demonstrated an accuracy of
99.35% in detecting botnets, accompanied by a low false
positive rate of 0.25. It should be noted that this approach is
specifically tailored for DNS-based traffic flows.

Kheir et al. [11] introduced the Mentor method, which
gathers statistical features from suspicious domain names and
employs supervised machine learning to distinguish between
benign and suspicious domains. This method was tested against
an extensive collection of public botnet blacklists. The results
indicate that the Mentor system effectively detects malicious
bots while maintaining a low false positive rate by filtering out
benign domain names.

The author’s Woodbridge et al. [12] presented a method
that makes use of LSTM to categorize the DGA-generated and
legitimate domains. LSTMs have benefits over other
approaches as they are not dependent on features and make use
of raw domain names as their input [14]. The experimental
results show that LSTM outperformed as compared with
random forest with manually engineered features and logistic
regression with bigram features [16]. These approaches can
perform real-time detection but they are sensitive to the
imbalanced dataset which makes it difficult to detect domains
from minority families.

Cheng [18] conducted an analysis comparing legal domains
with DGA domain names, identifying significant deviations in
domain name construction rules. They utilized domain name
length and character information entropy as classification
features for detecting DGA domain names. Y. Li et al. [19]
investigated the distribution of alphanumeric characters and
bigrams across domains sharing the same set of IP addresses to
analyze the statistical characteristics of domain name language.
They also evaluated the efficacy of various distance metrics in
this context.

Lison et al. [25] similarly adopted an approach where they
substituted the LSTM layer with a GRU layer, achieving an
AUC of 0.996. Meanwhile, Mac et al. [26] employed
additional embedding and integrated an LSTM with an SVM,
as well as a bidirectional LSTM, achieving AUCs of 0.9969
and 0.9964, respectively, on comparable datasets.

To address the constraints of machine learning techniques
in the aforementioned scenarios Curtin et al. [30] designed a
framework for detecting DGA domains with recurrent neural
networks. The author has presented a complexity for domain
name families called the smash word score; it quantifies how
much DGA domain is to English words. Further, the DGA
families having higher smash word scores will usually pose
greater difficulty for detection [29]. The author used a recurrent
neural network model with logistic regression for DGA
detection which outperforms the existing approaches of DGA
detection. The limitation of this study is results are not up to
the mark and this is not adoptable for corporate use.

However, while these studies have demonstrated high
detection rates for specific DGA families, machine learning-
based detection systems often perform poorly against new
DGA variants when trained on unrepresentative or imbalanced

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

308 | P a g e

www.ijacsa.thesai.org

datasets. Addressing this issue, Anderson et al. [31] employed
a Generative Adversarial Network (GAN) to create domain
names that traditional DGA classifiers struggle to identify. The
generator produced synthetic data used to train new models.
Initially, an auto-encoder was pre-trained on approximately
256,000 domains and subsequently fine-tuned. The new
models were then trained and evaluated using these newly
generated domain names [32]. As a result, models trained on
the newly generated domains exhibited an overall improvement
in True Positive Rate (TPR) from 68% to 70%.

Chin et al. [33] devised a machine learning-based
framework for identifying and detecting domains generated by
DGAs. Further they have applied the proposed ML techniques
to investigate the DGA-based modern malware. The proposed
model comprises two levels containing the classification as
first level operation and the clustering method as a second-
level operation. These methods are to detect and identify the
algorithmically generated domains. In this work ML-based
methods apply DNS blacklist for detecting DGA-generated
domains.

Vinayakumar et al. [34], the author developed a model that
gathers traffic data of DNS at the ISP level. Further, it
identifies the DGA-based domains in real-time. They also used
many deep learning models such as LSTM, CNN, CNN-LSTM
and RNN for modern botnet detection. These methods have
performed well compared to classical ML approaches and also
give better classification accuracy rate.

Vinayakumar et al. [35], the author had designed and
developed scalable architecture called Apache spark. The
proposed model gathers DNS logs data and performed the
analysis. The deep learning techniques are being used to detect
and gives alert for suspicious domains.

The literature survey shows that recent methods for DGA
domain name detection and classification based on machine
learning performed better results and most importantly deep
learning specifically recurrent based models. In this work, we
apply enhanced model of LSTM called as GRU for DGA
domain name detection and classification.

III. DOMAIN GENERATION ALGORITHM

A Domain Generation Algorithm (DGA) operates by
utilizing available sources of randomness within malware to

generate hundreds or even thousands of domains automatically.
DGAs enable malware to constantly switch between these
domains during attacks, complicating efforts to block and
remove them [3]. Cybercriminals and botnet operators exploit
DGAs to deliver malware, ensuring continuous communication
with Command and Control (C&C) servers through
dynamically generated domains [5]. The malware attempts to
query each domain against its local DNS server, vital for
translating domain names into IP addresses on the Internet [9].
Only domains registered by the botmaster yield valid IP
addresses for C&C communication; unregistered domains
return resolution errors and are disregarded [10]. One
prominent example is Banjori, widely recognized for targeting
online banking users to steal information [11]. According to
NSFOCUS, Banjori was first identified in 2013, and as of in
2019, a total of 1,499 botnets related to this issue were
detected.

2019, a total of 1,499 related botnets had been detected,
with numbers continuing to rise. Other DGAs, such as Tinba
and Ramnit, specialize in financial theft and worm infections
[12]. Given the diversity of DGA types, precise classification
of these domains is crucial.

The algorithm takes DNS queries or domain names as
input. If a domain is broken down into words or letters, it can
be viewed as a sequence akin to a sentence. Certain words
serve as the core components, representing key features of the
domain name. Domain names within the same DGA botnet
family exhibit similar characteristics based on shared keyword
sets [13]. Consequently, domains from different families differ
significantly in their specific keywords.

Domains within the same family create a consistent context
based on the characteristic keyword sets used to generate them
[15]. These contextual differences are essential in the
classification process. Initially, query domains are processed
through a trained binary classification model to distinguish
between malicious and benign domains [17]. Domains
identified as malicious then undergo multiclass classification to
accurately determine their DGA botnet family, as illustrated in
Fig. 1. The binary classification distinguishes between benign
and malicious domain names, while the multiclass
classification identifies the specific botnet family associated
with malicious domains.

Fig. 1. Steps involved in the DGA botnet detection.

IV. DEEP LEARNING MODELS

A. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is acknowledged as an
enhanced version of the standard recurrent neural network, first
introduced by Cho et al. in 2014. It addresses the issue of the
vanishing gradient that commonly affects traditional RNNs.
GRU shares similarities with LSTM (Long Short-Term

Memory) networks in design and often yields comparable
performance.

GRU incorporates gating mechanisms and a hidden state to
regulate information flow [20]. It tackles RNN issues by
employing two gates: the update gate and the reset gate. These
gates act as vector components (0, 1) capable of performing a
convex combination. This mechanism determines whether to
update (retain) or reset the hidden state based on incoming

Domain names Binary Classification

DGA Domains Multi class classification

Legitimate domains

DGA Families

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

309 | P a g e

www.ijacsa.thesai.org

information [21]. Consequently, the network learns to
disregard irrelevant temporal details.

GRUs are effective for enhancing the memory capabilities
of recurrent neural networks and facilitating easier model
training. They are widely applicable in diverse fields such as
speech signal modeling, machine translation, and handwriting
recognition.

The basic RNN suffers from short-term memory problems.
GRU is a modified or lightweight version of LSTM, where it
combines long and short-term memory into its hidden states
[22]. LSTM has two attributes cell state and hidden state; here
it has only a hidden state which can combine both long and
short-term memory. The GRU (Gated Recurrent Unit) is
characterized by its two primary gates: the update gate and the
reset gate. The update gate plays a crucial role in memory
retention, determining how much past information should be
preserved. In contrast, the reset gate decides how much past
information to discard.

The update gate is pivotal in allowing the model to
selectively retain relevant earlier information across time steps.
This capability is particularly advantageous as it enables the
model to potentially retain all pertinent details from the past,
thus mitigating the issue of vanishing gradients.

Conversely, the reset gate determines the degree to which
past information should be forgotten. Similar to the Forget gate
in LSTM, the reset gate identifies and disregards irrelevant
data, facilitating the model's ability to progress without
unnecessary baggage from previous computations. Both gates
contribute significantly to the GRU's architecture and function.
While their formulas are similar, their respective roles and
weights within the model are distinct, as elaborated in
subsequent sections.

In the GRU architecture, two key gates play crucial roles:
the reset gate and the update gate. These gates are responsible
for dynamically adjusting how much information each hidden
unit retains or discards as it processes a sequence. In the figure
illustrating the Gated Recurrent Unit, denoted as GRU, the
symbols r and z represent the reset and update gates
respectively, while h and h’ correspond to the activations and
candidate activations. This configuration is discussed in
reference [23].

During operation, when the reset gate r approaches zero,
the hidden state disregards the previous state and resets based
on the current input. This mechanism allows the model to
efficiently discard irrelevant data, leading to a more
streamlined representation. Conversely, the update gate z
regulates how much information from the previous hidden state
is transferred to the current hidden state. This process
resembles the function of a memory cell in LSTM networks,
facilitating the retention of long-term dependencies.

At any given time step, the activation of the GRU is
determined through a linear interpolation between the previous
activation and the candidate activation. The update gate z
dictates the extent to which the unit updates its activation or
content, thereby influencing the flow of information
throughout the network.

V. PROPOSED ARCHITECTURE

The proposed method includes the domain names as an
input which contains series of characters, later it transforms
these characters into a series of vectors. In our proposed work
we have adopted Keras character level embedding. After
translating the character representation into a series of vectors
in the next step series of vectors are provided for deep learning
layers [24]. Further, it processes the series of vectors in the
sequential order and at each step it updates the hidden vector
state information. Finally, the model will be able to perform the
binary classification task to categorize the domains as either
benign or DGA generated, where as in multi-classification task
initially it detects either the domain name is benign or DGA
generated. If it is DGA generated then it classifies into the
corresponding malware families.

The outline of our proposed approach for detecting DGA
domains using deep learning model is shown in Fig. 2. The
model represents three stages of operation, first one is character
encoding here it maps each character into real-valued vector
and the second one is feature representation and lastly, the fully
connected layer and softmax function differentiates between
DGA classes, including a category for non-DGA instances.
The proposed model is evaluated on both binary classification
and multi-class classification that classifies whether domains
are benign or DGA generated. Deep learning models are
educated and evaluated on the dataset for DGA Detection.

Fig. 2. Proposed deep learning architecture for DGA detection.

A. Domain Name Character Embedding

The Keras framework includes an embedding layer that
translates character-level domain names into dense vectors
representation shown in Fig. 3. The embedding is also learned
independently during training. In this paper we have utilized
keras for DGA detection [27]. In the initial phase of the
operation weights are going to be assigned and later these

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

310 | P a g e

www.ijacsa.thesai.org

weights will learn all the characters in the dataset. Further these
embedding layer tries to maps each one of character in the
dataset to a 128 length of real value represented in the vector.
The domain name character level embedding makes use of
recurrent neural network to determine numerical value
representation by looking at their character level compositions.

Fig. 3. Domain name character level embedding.

B. Domain Name Feature Extraction

For representing the features various deep layers have been
used such as LSTM, RNN and GRU. These structures will
capture the sequential information. The pattern-matching
approach along with the deep learning layer looks effective and
efficient compared with regular expression [28]. The regular
expression outputs a binary value but the deep learning models
produce a continuous value which in turn represents how much
the pattern is matched.

C. Recurrent Layers

We have used many recurrent networks including LSTM,
RNN and GRU. Here the number of recurrent units is set to
128 based on the knowledge acquired. These recurrent network
layers primarily capture the sequential data from the output of
the embedding layer. Each unit in a recurrent neural network
employs an activation function with values ranging from [-1,
1]. The gate uses a logistic sigmoid function, which produces
values in the range of [1, 0].

D. Deep Learning for the Binary Class Classification Task

Binary classification task involves distinguishing between
two classes: benign and DGA (malicious). In our approach,
benign domains are designated with a label of 0, whereas
DGAs carry a label of 1. To tackle this task, we trained several
deep neural network models, such as LSTM, RNN, and GRU,
drawing on existing research in deep learning for character-
based text classification. To optimize these neural networks for
classifying domain names as either benign or malicious, we
refer to the detailed descriptions of the model architectures
provided in previous studies. When applying these trained
neural models to a test dataset, a domain is labelled as benign if
the probability is less than 0.5 and malicious if it is 0.5 or
higher.

Deep Learning for the Multiclass Classification Task. The
dataset used for multiclass classification contains domains
from both the "benign family" and 20 distinct DGA families,
totaling 21 families. For this task, we employed a model
architecture similar to that used for binary classification.
However, instead of two prediction classes, the models now
predict among 21 classes (one class per family). Therefore, the
output layer of the models from reference [18] was adjusted to
use the "softmax" activation function. This ensures that the
output values range between 0 and 1, representing predicted
probabilities. To facilitate this, we applied one-hot encoding,

resulting in 21 output values, each corresponding to a class.
The class with the highest probability is selected as the final
prediction made by the model.

VI. DATASET DESCRIPTION

The proposed domain name detection model was assessed
on AmritaDGA dataset for identifying malwares/botnets from
the DNS traffic [12]. AmritaDGA is a benchmark dataset
publically available for research purpose. This database was
used in DMD-2018 shared task and after the shared task this
database has been used for benchmark purpose by various
researchers for DGA detection [13]. Following, in this work,
the AmritaDGA database was used for DGA domains
detection. The domain name in the dataset is labeled as benign
or DGA family. The dataset is further divided into training and
testing respectively.

All deep learning models are trained using the training
dataset. Further the dataset is comprised of training, validation
and testing dataset. The training, validation and testing domain
name samples are shown in below Table I.

TABLE I. DETAILED INFORMATION OF THE DATASET

Label Domain Type Training Testing Validation

0 benign 25574 6414 8079

1 banjori 3779 1021 1165

2 corebot 3815 954 1242

3 dircrypt 3890 942 1201

4 dnschanger 3883 961 1187

5 fobber 3815 953 1203

6 murofet 3823 942 1237

7 necurs 3282 823 993

8 newgoz 3858 987 1185

9 padcrypt 3802 932 1145

10 proslikefan 3823 946 1176

11 pykspa 3834 940 1194

12 qadars 3848 972 1172

13 qakbot 3844 964 1209

14 ramdo 3907 963 1198

15 ranbyus 3868 980 1258

16 simda 3870 959 1195

17 suppobox 3850 948 1234

18 symmi 3802 952 1173

19 tempedreve 3818 932 1179

20 tinba 3845 973 1197

VII. PERFORMANCE METRICS

We have adopted performance measures to compare the
accuracy of various DGA classification models. Further the
various metrics have been used to determine the quality of
DGA classification models. AUC, recall, precision, F1 score,
and ROC performance evaluation metrics are used to compare
the GRU with other deep learning classification techniques.

www.amazon.c

om

Amaz

on

‘a’,’m’,

’a’,’z’,’

o’,’n’

1,13,1,26,15,

14

[0,0,0…….1,

13,1,26,15,14

]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

311 | P a g e

www.ijacsa.thesai.org

True Positive: It represents the number of domains
classified as legitimate and which is indicated with class 0.

True Negative: This represents the number of domains
classified as DGA generated and which is indicated with class
1.

False Positive: It represents the number of domains
wrongly classified as legitimate.

False Negative: It represents the number of domains
wrongly classified as DGA generated.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (1)

Recall: Measures the completeness of correctly labeled
features.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (2)

F1-score: Defines the harmonic mean between precision
and recall measures.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 (3)

Receiver operating characteristic measures the trade-off of
the TPR to FPR where,

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (4)

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (5)

The ROC curve established with recall and false positive
rate. It also shows the capability of the binary classifiers. The
ROC curve also measures the competence of the classifier in
differentiating the classes as either DGA or legitimate. The
graph is plotted between the two metrics recall and false
positive rate.

𝐴𝑈𝐶 = ∫
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
𝑑

𝐹𝑃

𝑇𝑁+𝐹𝑃

1

0
 (6)

The macro avg. and weighted avg. are used to average the
results over the classes. The Macro avg. computes the elements
independently and finally, it takes the average over all classes.
In this paper, the weighted averaging considers as a significant
performance indicator.

VIII. RESULTS AND DISCUSSION

The deep learning techniques were executed utilizing
Tensor Flow and Keras. The performance of the trained models
was evaluated on a per-epoch basis using testing samples. For
baseline comparison, we applied a logistic regression model to
bigrams in the character-level representation of domain names,
as well as other deep learning methods such as RNN, LSTM,
and GRU. The experimental results demonstrate that these
methods effectively classify domain names as either benign or
DGA-generated in binary classification and further categorize
algorithmically generated domain names into their respective
malware families, based on metrics such as accuracy,
precision, recall, and F1-score.

The performance of our trained model is assessed using
testing samples on an epoch-by-epoch basis, as shown in Fig.

4. The baseline model showed good performance till epoch 27
and this model gives AUC of 0.988. LSTM model is evaluated
using testing samples on epoch 9 which is shown in Fig. 5,
whereas the RNN model performed well till epoch 11.

Fig. 4. Training and validation loss curve for baseline model with LR.

Fig. 5. The validation and training loss curve for LSTM.

Fig. 6. Training and validation loss curve for RNN.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

312 | P a g e

www.ijacsa.thesai.org

The proposed deep learning model gated recurrent unit has
showed better performance till epochs 14 shown in Fig. 6.
After that point, the performance began to decline due to over
fitting. This indicates that 15 epochs are sufficient to capture
the dependencies of domain names at the character level. For
baseline comparison, we applied a logistic regression model to
bigrams in the character-level representation of domain names.

The performance of the deep learning models is evaluated
using two types of averages: weighted average and macro
average. The weighted average takes into account the total
number of samples by calculating the performance for each
class and then averaging these performances, weighted by the
sample distribution across classes. This method allows us to
assess the overall performance across the entire dataset. The
macro average, in contrast, involves calculating the
performance for each class separately and then averaging these
values, treating all classes as if they have the same number of
samples. This provides the average performance per class. In
cases of class imbalance in multiclass classification, the
weighted average is often more representative than the macro
average. Nevertheless, to obtain a comprehensive
understanding of the models' performance, we compare the
results of both the weighted average and macro average.

Fig. 7. The validation and training loss curve GRU.

Initially, various test experiments were run to identify
various parameters for GRU model. In the proposed GRU
model, the first layer is embedding and it contains the
embedding length parameter. We run experiments with 32, 64,
128, and 256. The performance with 128 was good compared
to others and when we increased 128 to 256, the performance
remained same. Thus we decided to set the embedding length
as 128. Each character of the domain will be transformed into
128 length vector. Next embedding layer follows GRU layer
and again similar experiments were done and 128 units were
set to GRU layer shown in Fig. 7. GRU layer follows the
classification or output layer. Also, dropout was added in
between the output layer and GRU layer.

The results of the models are represented in the form of a
PRC curve by differentiating two parameters, such as precision
and recall. The ROC curve is represented with false positive
rate and recall value. Deep learning model outperforms the N-
gram derived features with huge size of domain names. The
PRC curves for the Bigram baseline model, LSTM, RNN and
GRU are presented in Fig. 8. The performance metrics of
various methods are displayed in precision recall curve which

shows that the gated recurrent unit results with higher precision
and recall value compared with other approaches such as RNN
and LSTM, the GRU model gives in better precision and recall
value shown in Fig. 9. The green line represented the Fig. 10
indicates gated recurrent unit, red line indicates LSTM and
blue line indicates the baseline model. The calibration
performance metrics was used to assess the performance of
classifier and also to tune its parameter shown in Fig. 10. The
ROC curve is represented with false positive rate and recall
value shown in Fig. 11. The gated recurrent unit gives the
performance with an AUC of 0.999 shown in Fig. 12.

Fig. 8. Performance comparison of deep learning models.

Fig. 9. Calibration.

Fig. 10. Precision threshold.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

313 | P a g e

www.ijacsa.thesai.org

Fig. 11. Receiver operating characteristic.

Fig. 12. Precision recall.

Table II represents the experimental results of recurrent
neural network for multiclass classification of DGA domains to
classify the domain name into a family of malwares in terms of
accuracy, precision, recall, and f1-score.

Table III shows experimental results of deep learning
approaches for multiclass classification of domain names into a
family of malwares. The proposed detection model gated
recurrent unit significantly outperforms in comparison with
other deep learning models like LSTM and RNN in all
measurements, in which our model produces accuracy of 99%,
F1-score of 98%, macro avg. of 91% and weighted avg. of
92% and also provides significantly reduced false positive rate
(FPR) and false negative rate (FNR). Whereas the LSTM
produces accuracy of 92%, F1-score of 98%, macro avg. of
90% and weighted avg. of 91% and RNN models produces
accuracy of 83%, recall of 94%, precision of 98%, macro avg.
of 80% and weighted avg. of 84%. The baseline model for
logistic regression produces accuracy of 87%, f1-score of 99%,
precision of 98% and macro avg. of 84% and weighted avg. of
87%.

TABLE II. RESULTS OF MULTICLASS CLASSIFICATION FOR RNN

 Precision Recall F1-score Support

benign 0.99 0.94 0.97 8079

banjori 0.98 0.99 0.99 1165

corebot 0.99 0.99 0.99 1242

dircrypt 0.51 0.46 0.48 1201

dnschanger 0.49 1.00 0.66 1187

fobber 0.75 0.99 0.86 1203

murofet 0.80 0.89 0.84 1237

necurs 0.90 0.58 0.70 993

newgoz 0.98 0.98 0.98 1185

padcrypt 0.74 0.77 0.76 1145

proslikefan 0.67 0.60 0.63 1176

pykspa 0.49 0.62 0.55 1194

qadars 0.97 0.97 0.97 1172

qakbot 0.50 0.28 0.36 1209

ramdo 0.90 0.98 0.94 1198

ranbyus 0.81 0.76 0.78 1258

simda 0.92 0.97 0.95 1195

suppobox 0.89 0.84 0.86 1234

symmi 0.98 0.99 0.99 1173

tempedreve 0.58 0.39 0.47 1179

tinba 0.87 0.65 0.75 1197

accuracy 0.83 31822

macro avg 0.80 0.79 0.78 31822

weighted avg 0.84 0.83 0.82 31822

TABLE III. RESULTS OF MULTICLASS CLASSIFICATION FOR GRU

 Precision Recall F1-score Support

benign 0.99 0.99 0.99 8079

banjori 1.00 1.00 1.00 1165

corebot 1.00 1.00 1.00 1242

dircrypt 0.71 0.70 0.71 1201

dnschanger 0.90 0.97 0.94 1187

fobber 0.88 0.95 0.91 1203

murofet 0.93 0.94 0.94 1237

necurs 0.96 0.85 0.90 993

newgoz 1.00 1.00 1.00 1185

padcrypt 1.00 0.99 1.00 1145

proslikefan 0.72 0.71 0.72 1176

pykspa 0.68 0.78 0.73 1194

qadars 1.00 1.00 1.00 1172

qakbot 0.70 0.58 0.63 1209

ramdo 1.00 1.00 1.00 1198

ranbyus 0.89 0.88 0.88 1258

simda 1.00 0.99 1.00 1195

suppobox 0.98 0.99 0.99 1234

symmi 1.00 1.00 1.00 1173

tempedreve 0.76 0.70 0.73 1179

tinba 0.92 0.96 0.94 1197

accuracy 0.92 31822

macro avg 0.91 0.90 0.90 31822

weighted avg 0.92 0.92 0.92 31822

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

314 | P a g e

www.ijacsa.thesai.org

Similarly, Table IV represents the experimental results of
Long term short memory for multiclass classification of
algorithmically generated domain names to classify the domain
name into a family of malwares in terms of accuracy,
precision, f1-score, recall and Table IV represents the
experimental results of gated recurrent unit for multiclass
classification of algorithmically generated domain names to
classify the domain name into a family of malwares in terms of
accuracy, precision, recall, and f1-score. By looking at Table
III and Table V proposed model gated recurrent unit has
outperformed for multi-class classification in comparison to
RNN and LSTM and other deep learning architectures.

TABLE IV. RESULTS OF MULTICLASS CLASSIFICATION FOR LSTM

 Precision Recall F1-score Support

benign 0.99 0.99 0.99 8079

banjori 1.00 1.00 1.00 1165

corebot 1.00 1.00 1.00 1242

dircrypt 0.67 0.68 0.68 1201

dnschanger 0.90 0.95 0.93 1187

fobber 0.87 0.94 0.90 1203

murofet 0.90 0.94 0.92 1237

necurs 0.94 0.85 0.90 993

newgoz 1.00 1.00 1.00 1185

padcrypt 0.99 0.99 1.00 1145

proslikefan 0.81 0.64 0.71 1176

pykspa 0.68 0.80 0.73 1194

qadars 1.00 0.99 0.99 1172

qakbot 0.65 0.54 0.59 1209

ramdo 1.00 1.00 1.00 1198

ranbyus 0.89 0.86 0.87 1258

simda 0.99 1.00 1.00 1195

suppobox 0.98 0.99 0.99 1234

symmi 1.00 1.00 1.00 1173

tempedreve 0.71 0.76 0.73 1179

tinba 0.94 0.93 0.93 1197

accuracy 0.92 31822

macro avg. 0.90 0.90 0.90 31822

weighted avg. 0.92 0.92 0.92 31822

Table V incorporates experimental findings from deep
learning methods applied at the character level, alongside
logistic regression (LR) using character bigrams, within the
specified domain for classification as the domain name into
corresponding malware family.

TABLE V. RESULTS OF MULTICLASS CLASSIFICATION FOR BIGRAM WITH

LOGISTIC REGRESSION

 Precision Recall F1-score Support

benign 0.98 0.99 0.99 8079

banjori 1.00 1.00 1.00 1165

corebot 1.00 1.00 1.00 1242

dircrypt 0.52 0.57 0.54 1201

dnschanger 0.57 0.85 0.68 1187

fobber 0.71 0.94 0.81 1203

murofet 0.96 0.95 0.96 1237

necurs 0.88 0.71 0.79 993

newgoz 1.00 0.99 1.00 1185

padcrypt 1.00 1.00 1.00 1145

proslikefan 0.78 0.58 0.66 1176

pykspa 0.55 0.58 0.57 1194

qadars 1.00 1.00 1.00 1172

qakbot 0.65 0.47 0.54 1209

ramdo 0.98 1.00 0.99 1198

ranbyus 0.79 0.72 0.75 1258

simda 0.99 0.99 0.99 1195

suppobox 0.97 1.00 0.99 1234

symmi 1.00 1.00 1.00 1173

tempedreve 0.56 0.39 0.46 1179

tinba 0.80 0.84 0.82 1197

accuracy 0.87 31822

macro avg. 0.84 0.84 0.83 31822

weighted avg. 0.87 0.87 0.87 31822

IX. CONCLUSION

In this paper we propose a novel deep learning framework
for the detection of malicious domain names, achieving
superior performance accuracy for both binary and multiclass
classification tasks. Our proposed model uses deep learning
techniques with Keras embedding and it has the capability to
detect the domain names to a particular malware family.
Further the domain names are differentiated as either legitimate
or DGA generated by training the domain names within the
character level by automatically extracting the necessary
features. Detecting DGAs presents a significant challenge in
cyber security. These algorithms are typically employed by
attackers to establish communication with diverse servers. This
paper introduces deep learning architectures designed to
mitigate DGA threats. The proposed framework includes a
feature extractor and preprocessing model tailored for
classifying and detecting malicious domain names. As the
volume of data grows, deep learning models offer superior
performance compared to traditional machine learning
algorithms. This study examines the efficacy of different
approaches in detecting DGAs and categorizing domain names
into respective families, utilizing a dataset encompassing 20
malware families. Specifically, in the GRU model, domain
names are vectorized through a Keras embedding technique,
where each domain character is mapped to a vector in a defined
dictionary. Future work could explore training with more
complex models and adding additional layers for enhanced
accuracy. Experimentation with different preprocessing
techniques, embeddings, hyper parameter fine-tuning, and
increased epochs may further refine the model's accuracy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

315 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Bilge, L., Sen, S., Balzarotti, D., Kirda, E., Kruegel, C., 2014.
EXPOSURE: a passive DNS analysis service to detect and report
malicious domains. ACM Trans. Inf. Syst. Secur.16 (4).doi:
10.1145/2584679.

[2] Martin Grill, Ivan Nikolaev, Veronica Valeros, and Martin Rehak. 2015.
DetectingDGA Malware Using NetFlow. In IFIP/IEEE International
Symposium on IntegratedNetwork Management.

[3] Manos Antonakakis, Roberto Perdisci, YacinNadji, NikolaosVasiloglou,
SaeedAbu-Nimeh, Wenke Lee, and David Dagon. 2012. From Throw-
Away Traffic toBots: Detecting the Rise of DGA-Based Malware. In
USENIX Security Symposium.

[4] Daniel Plohmann, Fraunhofer and KhaledYakdan A Comprehensive
Measurement Study of Domain Generating Malware.25th USENIX
Security Symposium August 10–12, 2016, Austin, TX ISBN 978-1-
931971-32-4.

[5] Samuel Schüppen, DominikTeubert, Patrick Herrmann, and Ulrike
Meyer. 2018. FANCI : Feature-based Automated NXDomain
Classification and Intelligence. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD, 1165–
1181.

[6] S. Yadav, A. K. K. Reddy, A. L. N. Reddy, and S. Ranjan. 2012.
Detecting Algorithmically Generated Domain-Flux Attacks with DNS
Traffic Analysis.IEEE/ACM Transactions on Networking 20, 5 (Oct
2012), 1663–1677. https: //doi.org/10.1109/TNET.2012.2184552.

[7] D. T. Truong and G. Cheng, Detecting domain-flux botnet based on
DNS traffic features in managed network, Secur.Commun. Networks,
vol. 9, no. 14, 2016, pp. 2338–2347.

[8] Pereira M, Coleman S, Yu B, DeCock M,Nascimento A (2018)
Dictionary extraction and detection of algorithmically generated domain
names in passive dns traffic. In: International Symposium on Research
in Attacks, Intrusions, and Defenses. Springer, Heraklion.pp 295–314.

[9] K. Alieyan, A. ALmomani, A. Manasrah, M. M. J. N. C. Kadhum, and
Applications, "A survey of botnet detection based on DNS," vol. 28, no.
7, pp. 1541-1558, 2017.

[10] V. Tong and G. Nguyen, A method for detecting DGA botnet based on
semantic and cluster analysis, inProc. Seventh Symp.on Information and
Communication Technology, Ho Chi Minh City, Vietnam, 2016, pp.
272–277.

[11] Kheir, M., Rossow, C., &Holz, T. (2014, September). Paint it black:
Evaluating the effectiveness of malware blacklists. In International
Workshop on Recent Advances in Intrusion Detection (pp. 1-21).
Springer, Cham.

[12] Jonathan Woodbridge, Hyrum S. Anderson, AnjumAhuja, and Daniel
Grant. 2016. Predicting Domain Generation Algorithms with Long
Short-Term Memory Networks. CoRRabs/1611.00791
(2016).arXiv:1611.00791 http://arxiv.org/abs/ 1611.00791.

[13] Shibahara T, Yagi T, Akiyama M, Chiba D, Yada T (2016) Efficient
dynamic malware analysis based on network behavior using deep
learning. In: 2016 IEEE Global Communications Conference
(GLOBECOM). IEEE, Washington, DC.pp 1–7.

[14] Geffner J (2013) End-to-end analysis of a domain generating algorithm
malware family. In: Black Hat USA 2013.

[15] F. Zeng, S. Chang, and X. C. Wan, Classification forDGA-based
malicious domain names with deep learningarchitectures, Int. J. Intell.
Inf. Syst., vol. 6, no. 6, pp. 67–71,2017.

[16] D. Tran, H. Mac, V. Tong, H. A. Tran, and L. G. Nguyen, A LSTM
based framework for handling multiclass imbalance in DGA botnet
detection, Neurocomputing, vol. 275, pp. 2401–2413, 2018.

[17] Qiao, Y.; Zhang, B.; Zhang, W.; Sangaiah, A.K.; Wu, H. DGA Domain
Name Classification Method Based on Long Short-Term Memory with
Attention Mechanism. Appl. Sci. 2019, 9, 4205.

[18] Y. C. Cheng, Y. J. Li, A. Tseng, and T. Lin, Deep learning for malicious
flow detection, arXiv preprint arXiv: 1802.03358, 2018.

[19] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, Predicting
domain generation algorithms with long shortterm memory networks,
arXiv preprint arXiv: 1611.00791, 2016.

[20] Y. Li, K. Q. Xiong, T. Chin, and C. Hu, A machine learning framework
for domain generation algorithm-based malware detection, IEEE Access,
vol. 7, pp. 32 765–32 782, 2019.

[21] C. D. Chang and H. T. Lin, On similarities of string and query sequence
for DGA botnet detection, in Proc. 2018 Int. Conf. on Information
Networking, Chiang Mai, Thailand, 2018, pp. 104–109.

[22] Yang L, Liu G, Zhai J, Dai Y, Yan Z, Zou Y, Huang W (2018) A novel
detection method for word-based dga. In: International Conference on
Cloud Computing and Security. Springer, Haikou.pp 472–483.

[23] Zang X, J G, X H (2018) Detecting malicious domain name based on
agd. J Commun 39(7):15–25.

[24] Yu, Bin, et al. "Character level-based detection of DGA domain names."
2018 International Joint Conference on Neural Networks (IJCNN).IEEE,
2018.

[25] Akarsh, S., et al. "Deep learning framework for domain generation
algorithms prediction using long short-term memory." 2019 5th
International Conference on Advanced Computing & Communication
Systems (ICACCS).IEEE, 2019.

[26] Lison, P.; Mavroeidis, V. Automatic Detection of Malware-Generated
Domains with Recurrent Neural Models. arXiv 2017, arXiv:1709.07102.

[27] Mac, H.; Tran, D.; Tong, V.; Nguyen, L.G.; Tran, H.A. DGA Botnet
Detection Using Supervised Learning Methods. In Proceedings of the
8th International Symposium on Information and Communication
Technology, Nhatrang, Vietnam, 7–8 December 2017; pp. 211–218.

[28] Yu, B.; Gray, D.L.; Pan, J.; de Cock, M.; Nascimento, A.C.A. Inline
DGA detection with deep networks. In Proceedings of the 2017 IEEE
International Conference Data Mining Workshops (ICDMW), New
Orleans, LA, USA, 18–21 November 2017; pp. 683–692.

[29] Zeng, F.; Chang, S.; Wan, X. Classification for DGA-Based Malicious
Domain Names with Deep Learning Architectures. Int. J. Intell. Inf.
Syst. 2017, 6, 67–71.

[30] Lison, P., &Mavroeidis, V. (2017). Automatic Detection of Malware
Generated Domains with Recurrent Neural Models. arXiv preprint
arXiv:1709.07102.

[31] Ryan R. Curtin, Andrew B. Gardner and SlawomirGrzonkowski
“Detecting DGA domains with recurrent neural networks and side
information.”ARES ’19, August 26–29, 2019, Canterbury, NY.

[32] Anderson, H.S.; Woodbridge, J.; Filar, B. DeepDGA: Adversarially-
tuned domain generation and detection. In Proceedings of the 2016
ACM Workshop on Artificial Intelligence and Security, Vienna, Austria,
28 October 2016; pp. 13–21.

[33] J Koh, Rhodes B. Inline detection of domain generation algorithms with
context-sensitive word embeddings. 2018.

[34] Chin, T.; Xiong, K.Q.; Hu, C.B.; Li, Y. A machine learning framework
for studying domain generation algorithm (DGA)-based malware.In
Proceedings of the International Conference on Security and Privacy in
Communication Systems, Singapore, 8–10 August 2018.

[35] Vinayakumar, R., Poornachandran, P., &Soman, K. P. (2018). Scalable
Framework for Cyber Threat Situational Awareness Based on Domain
Name Systems Data Analysis. In Big Data in Engineering Applications
(pp. 113-142).Springer, Singapore.

[36] Vinayakumar, R., Soman, K. P., &Poornachandran, P. (2018). Detecting
malicious domain names using deep learning approaches at scale.
Journal of Intelligent & Fuzzy Systems, 34(3), 1355-1367.

