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Abstract—People in areas affected by natural disasters and use 

social media websites such as Facebook, Twitter (also known as 

“X”) and Instagram tend to post images of damage to their 

surroundings. These social media sites have become vital sources 

of immediate and highly available data for providing situational 

awareness and organisation for natural disaster response. A few 

previous attempts at classifying the level of natural disaster 

damage in these images using image processing techniques had 

noted the challenge in producing robust classification models due 

to the effect of overfitting caused by a lack of observations and 

data imbalance in annotated datasets. This article shows an 

attempt to improve a training strategy within the data level for 

deep learning models such as VGG16, ResNetV2 and 

EffecientNetV2, used to estimate the level of disaster damage in 

images by training them with data generated using image data 

augmentation with data balancing, oversampling up to eight times 

and combining the oversampled image data collections. The F-1 

score achieved for classifying damage on earthquake images and 

images from the Hurricane Matthew data collection by training 

EfficientNetV2 on a generated dataset made with a combination 

of oversampled data surpassed previous benchmark results. These 

results show that using data balancing and oversampling on the 

dataset prior to training deep learning models on these datasets 

result in increased robustness. 

Keywords—Deep learning; image processing; oversampling; 

image data augmentation 

I. INTRODUCTION 

Natural disasters that have occurred from 1998 to 2017 have 
caused $2.9 trillion US in monetary damage and have cost the 
lives of 1.3 million people [4]. Worldwide insured losses from 
natural and man-made disasters in 2017 alone are estimated to 
cost $144 billion US according to a report by the Swiss Re [32]. 
Damages caused by Hurricane Ian in 2022 have been projected 
to cost exceeding $45 billion USD [10]. 

During the disaster response process, an assessment of 
damage done is made typically by door-to-door survey. This 
approach may cause a "cold start" issue to obtain and analyse the 
data. The time required to acquire and the complexity of 
annotating the data for damage assessment may also take several 
days to weeks when using the traditional "boots-on-the-ground" 
method. 

Victims of natural disasters have been using social media 
posts, including image posts, to communicate and update their 
status during a disaster event [13]. The information extracted 

from these social posts have been useful in providing situational 
awareness in disaster response [27]. 

Data from social media websites are multi-dimensional; they 
are generally represented in four dimensions which are space, 
time, content and network [2]. Image data from within the 
content dimension in addition to the spatial and temporal 
dimensions may contribute to gaining situational awareness 
regarding ongoing natural disasters. Endsley [31] defined 
situational awareness as "the perception of elements in the 
environment within a volume of time and space, the 
comprehension of their meaning, and the projection of their 
status in the near future". 

Frameworks for collecting and annotating information 
regarding ongoing disaster events such as Artificial Intelligence 
for Disaster Response (AIDR) have been developed to collect 
data that can be used to combine human intelligence with 
Natural Language Processing (NLP) and Machine Learning 
(ML) models [26]. A system for collecting and annotating 
images with natural disaster damage from social media had been 
integrated into AIDR [35]. 

Deep Neural Networks (DNNs) such as Convolutional 
Neural Networks (CNNs) have been used to process digital 
images in various tasks such as image classification and object 
detection. VGG16 is a CNN that has been implemented to 
classify images from social media in the ImageNet challenge 
[9]. An adaptation of the VGG16 image classification model had 
been used to classify the level of disaster damage in images from 
social media based on intensity [15]. Other models such as 
ResNet50, InceptionNet, EfficientNet and MobileNet have been 
explored as replacements for VGG16 for classifying the severity 
of natural disaster damage [34]. 

This article explores the use of data balancing and 
oversampling in conjunction with image augmentation on a 
labelled image dataset containing images of natural disaster 
damage in various levels. This article aims to investigate the 
effects of using these data manipulation techniques with the goal 
of improving a training strategy for training image DNN disaster 
damage level image classifiers. 

The rest of this paper is organized as follows. Section II 
details the works relating to DNNs, image processing methods 
used in disaster management, image data augmentation methods 
for oversampling, and issues in using image classification in 
disaster management. Section III presents the methodology 
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aimed to improve the performance of current models. Section IV 
shows the results gained from this study, its limitations and 
discusses the achievements of this study. Lastly, Section V 
concludes this article and shows recommendations for further 
study. 

II. RELATED WORK 

This section relays related work regarding literature on deep 
neural networks, their use within natural disaster response and 
current issues. 

A. Deep Neural Networks 

DNNs are a type of Artificial Neural Network (ANN) with 
many hidden layers, where in each layer the aggregation of input 
or activation signals of the prior layer is transformed [12]. DNNs 
have been used to implement image recognition and detection of 
intricate structures [21]. 

CNNs are a type of DNN which includes layers which use 
convolutions to transform the input. CNNs are often used in 
image processing tasks such as optical character recognition, 
image classification and object detection. 

The addition of backpropagation to CNNs allows for the 
neural network to learn convolutional kernel coefficients from 
the dataset [20]. Prior to this, weights in CNN had to be designed 
manually. This led to the development of the LeNet model [19]. 

VGG16 is a relatively modern CNN which won second place 
in the ImageNet Large Scale Visual Recognition Challenge in 
2012. This model uses groups of CNNs followed by fully 
connected layers to extract and classify combinations of features 
to classify images. Compared to other competitors, VGG16 was 
designed with smaller receptive fields (starting with 3x3) 
convoluted by a stride of 1 pixel and had a greater “depth” by 
increasing the number of convolutional weight layers [9]. 

ResNet is an image classification deep residual network 
consisting of a network of “residual units” where each of these 
units consists of skip networks [29]. An improved version 
known as ResNetV2 adds full pre-activation to the skipping 
vertices prior to addition [28]. Both ResNet and ResNetV2 have 
50, 101 and 152 layer versions. 

EfficientNet is an image classification deep neural network 
made as an attempt to create a scalable convolutional neural 
network [6]. EffecentNet’s architecture is based on MnasNet 
which uses successive MBConv layers. The modification made 
by the authors of EfficientNet were that they had proposed a 
compound scaling method that scales the width, depth and 
resolution of these layers. An updated version of EfficientNet 
known as EfficientNetV2 which replaced MBConv layers with 
Fused-MBConv layers which resulted in faster and smaller 
models [5]. 

B. Data Collection and Annotation Methods in Natural 

Disaster Response 

Disaster response is the second stage of natural disaster 
management carried out immediately after a natural disaster 
event. Traditional methods for collecting data for natural 
disaster response typically uses remote sensing or optical 
imagery from satellites but may be susceptible to noise from the 
effects of weather while being costly and time consuming to 

setup [25]. Social media provides an easy and immediate source 
of data to collect from. This allows for a quicker start to disaster 
response by collecting data from social media sites. This data 
includes text, images, videos, geospatial and temporal data [2]. 
Images of natural disaster damage are often uploaded to social 
media sites during and immediately after natural disaster events 
[13]. 

Image analysis for natural disaster response starts in the 
collection of image data. Image data is either scraped from social 
media sites or captured via aerial photography. This data is then 
annotated, based the parameters of the intended image 
processing method. For example, the AIDR [26] platform 
collects image data from Twitter (also known as “X”), uses 
volunteers to annotate the image data to form a dataset, then 
splits the data into a training set, validation set and a testing set, 
with the goal of developing a machine learning model that 
classifies the level of disaster damage shown in image data 
collected in the future. This platform has been used to gather and 
annotate data from social media on the regarding natural 
disasters events [14], [15], [16], [33], [34], [35]. 

Studies using data collected using AIDR have explored 
using various machine learning tasks such as NLP, computer 
vision tasks, and multi-modal learning [33]. For example, data 
collected during various natural disaster events were used to 
train machine learning models to detect natural disaster damage 
[14], classify the level of natural disaster damage [15], [35], 
classify the type of damage caused by natural disasters [16], 
[34]. 

C. Detection of Natural Disaster Damage in Images 

There are multiple methods to detect natural disaster damage 
in images, often through the use of deep learning models trained 
as a binary classifier to detect the presence natural disaster 
damage in images. 

A natural disaster damage image detector was used in [14] 
to filter posts based on the presence of natural disaster related 
content in conjunction with perceptual hashing with the 
intention of reducing the workload of human annotators. This 
classifier was implemented using a pre-trained VGG-16 CNN 
that has been fine-tuned to classify images that are relevant to 
disaster damage and achieved an almost perfect F-1 score of 
0.98. 

Another approach to detecting natural disaster damage in 
images is to use a (Single Shot-MultiBox Detector) SSD to 
detect natural disaster damage in images. A two-part SSD based 
on VGG-16 was used to detect natural disaster damage in aerial 
images [17]. This SSD was trained with a dataset that had been 
oversampled with augmented images. 

Detection of urban flooding in crowd-sourced image data 
has been used to locate occurrences of urban flooding using the 
Clarifai object recognition model as a way to monitor urban 
flooding and to validate urban flooding models [3]. The Clarifai 
object recognition model was developed as a contender in the 
2013 ImageNet LSVR challenge. This object recognition model 
was used via an online API and was used to provide a list of tags 
relevant to each image fed to the model as well as the probability 
of each tag. 
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Another effort relating to floods explored the use of 
InceptionNetv3 and DenseNet to classify images of flood based 
on severity as part of an image sorting system [24]. Both models 
used had an F-1 score of 0.82. 

D. Classification of Natural Disaster Damage in Images 

Damage depicted in image can classified into their 
respective classes following one or more taxonomies. 
Classification of posts often use modified versions deep learning 
models used to implement detection of damage depicted in 
social media posts. Social media posts that depict damage have 
been categorised by damage intensity, relevance, type of 
damage, or within a multi-dimensional taxonomy which may 
include a combination of the prior categorisation schemes. 

Hence, image processing models have been used to classify 
disaster damage in images collected from social media. CNNs 
such as VGG16, InceptionNetV3, InceptionNetV4 and 
InceptionResNet have been used to classify the severity of 
disaster damage shown in the image into either the severe 
damage, mild damage or no damage classes. These models have 
been found to have comparable performance in various use-
cases such as in classification of natural disaster damage levels 
[15], and classification of the types of natural disaster damage. 

Earlier explorations at classifying images of natural disaster 
damage included training a VBoW model against an annotated 
disaster damage dataset but it was found that using pre-trained 
CNNs such as VGG16 pretrained on the ImageNet dataset 
performed better. Fine tuning this pre-trained VGG16 model 
with the same training data further increased the F-1 score [15]. 

TABLE I.  PERFORMANCE OF BOVW AND VGG16 AGAINST DISASTER 

DAMAGE DATA COLLECTIONS 

Event Model Accuracy Precision Recall 

Nepal 
Earthquake 

BoVW 0.78 0.77 0.78 

VGG-16-fc7 0.76 0.76 0.78 

VGG-16-

fine-tuned 
0.84 0.82 0.84 

Ecuador 
Earthquake 

BoVW 0.82 0.81 0.82 

VGG-16-fc7 0.82 0.82 0.84 

VGG-16-

fine-tuned 
0.87 0.86 0.87 

Hurricane 
Matthew 

BoVW 0.64 0.64 0.64 

VGG-16-fc7 0.63 0.63 0.64 

VGG-16-

fine-tuned 
0.74 0.73 0.74 

Typhoon 

Ruby 

BoVW 0.73 0.74 0.73 

VGG-16-fc7 0.79 0.80 0.80 

VGG-16-

fine-tuned 
0.81 0.81 0.80 

Google 

images 

BoVW 0.57 0.53 0.56 

VGG-16-fc7 0.60 0.63 0.64 

VGG-16-
fine-tuned 

0.67 0.67 0.67 

According to study [1], training the last layer of a pre-trained 
model allows the use of a smaller dataset to transfer the 
capabilities of the model to train for a different task. This method 
also reduces the time spent on training the model as a smaller 
dataset is used. This technique is also known as transfer learning 
[1]. 

Table I compares the accuracy, precision, recall rate, and F-
1 score (balance between precision and accuracy) of Bag-of-
Visual-Words, VGG16-fc7 and the fine-tuned VGG16 models 
when trained with single event datasets with image data 
collected from social media related Nepal earthquake, Ecuador 
earthquake, Hurricane Matthew, Typhoon Ruby and images of 
damaged buildings from Google Images. The table shows that 
in some cases (e.g., Nepal earthquake, Ecuador earthquake), 
VGG16 without fine-tuning was comparable to visual bag-of-
words for three of the image collections but surpassed the 
BoVW model’s performance for the Typhoon Ruby and Google 
Images collections. The fine-tuned model achieved a higher F-1 
score on all image collections. 

A similar dataset was included in a benchmark image dataset 
compiled by [34] to benchmark various image classification 
models on various tasks. The F-1 scores obtained for classifying 
images of disaster damage levels using EfficientNetB1 was 
0.758 compared to an F-1 score of 0.753 for VGG16. 

Another notable implementation by [16] of a classifier for 
identifying damage in a social media post analysed both text and 
image data collected from Instagram posts via a fusion of image 
and text classifiers using a multi-modal approach. This multi-
modal classifier was described using the Inception architecture 
to classify images in social media by several InceptionNet 
models to classify the type of disaster damage in images from 
social media. These classes were named: Infrastructure, Nature, 
Fires, Floods, Human and Non-Damage. 

The inception network used was described as a layered stack 
of "Inception modules" with each layer consisting of multiple 
convolution filters with a variety of sizes. The Inception 
Network models have been described to have near state-of-the-
art accuracies with the ImageNet dataset while having a 
relatively smaller model compared to other CNN models. 

Mouzannar et al. [16] compared the performance of four 
DNN models which were InceptionNetv4, InceptionNetv3, 
VGG16 and InceptionResNet. InceptionNetv4 scored a higher 
validation accuracy while InceptionNetv3 scored a higher test 
accuracy. The higher validation accuracy of the InceptionNetv3 
model led to its selection as a component for a multi-modal 
classifier. 

The disaster damage severity task was revisited by [34] as 
part of an effort to build a consolidated benchmark dataset. A 
subset of this benchmark dataset includes the dataset by [15]. 
The F-1 score for classifying damage severity using 
EfficientNetB1 is 0.758, slightly higher compared to the F-1 
score obtained using VGG16 which is 0.753. 

Classification of natural disaster damage in images can also 
be used in image segmentation. Class activated mapping can be 
carried out via CNNs to classify areas of mild damage, severe 
damage or no damage done to an area depicted within these 
images [18]. This information can be used to generate a heatmap 
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visualisation of damage shown within a given image by finding 
gradients between segments of the image with damage, and 
segments without damage. This heatmap can then be used to 
calculate a Damage Assessment Value for each image. 

E. Issues with Classifying Natural Disaster Damage Levels in 

Images 

The research in [15] used a fine-tuned VGG16 model to 
classify image data by the level of disaster damage with a dataset 
that had a small amount of image data. The amount of image 
data in the dataset was limited due to the issues caused by the 
complexity of data annotation tasks, unintended collection of 
irrelevant data, the subjectivity of the data annotation tasks and 
time limitations when collecting and annotating the data. The 
dataset used is imbalanced; there are far fewer images labelled 
as mild within the dataset than images with other labels. 

This issue was also highlighted by [34] when training other 
deep learning models with the same classification task. Alam 
had noted that the number of images labelled as “mild” was 
lower and that models trained for the damage severity task tend 
confuse images with this label as images with other labels. 
Efforts to overcome limitations in the robustness of deep 
learning models for various disaster informatics tasks was noted 
by [33]. 

The study in [14] revisited this and trained a fine-tuned 
VGG16 model to filter posts that are not related to natural 
disasters. This model is then combined with a perceptual hash 
function to filter posts that were irrelevant or duplicates. This 
filtering task reduced the amount of image data in the dataset by 
62%. Training a model with a dataset that has a low amount of 
data can cause overfitting [11]. The dataset that was used by [15] 
was noted to be imbalanced such that the recall rate for minority 
classes was much lower than majority classes leading to many 
false negatives. 

Training with imbalanced data can also increase the 
overfitting issue [23]. Overfitting is a phenomenon that causes 
deep learning models to strictly conform with a training dataset 
as a result of training with a training dataset that has a low 
amount of data. This causes the model to have a lower validation 
score, causing the number of false positives and false negatives 
to increase. The resulting trained VGG16 models by [15] 
achieved precision-recall rates for the minority class that were 
significantly lower compared to other classes and identified that 
the lack of labelled training data was the cause of this issue. [7] 
had shown that the effect of overfitting in CNNs used in image 
classification decreases as the number of observations increases. 
The VGG16 deep learning model uses dropout layers as a way 
to reduce this overfitting [9]. Dropout layers regulate overfitting 
by removing connections between layers [8]. 

F. Image Data Augmentation 

Image Data Augmentation refers to the use of one or more 
image manipulation techniques, often used in conjunction with 
image data oversampling with the goal of reducing the effect of 
overfitting when training deep learning models. Overfitting is a 
phenomenon where a deep learning model is trained such that it 
has a high variance to fit the training data [11]. Overfitting can 
cause a stall in validation accuracy when training deep learning 
models to generalise the dataset. Larger datasets have been 

regarded as resulting in deep learning models with higher overall 
qualitative performance [7]. 

Transformations on images in the dataset include geometric, 
colour space manipulations and noise injection. Various 
geometric transformations can be applied to images in data 
augmentation. These geometric transformations include 
flipping, cropping, rotating and shifting. Colour space 
manipulations include applying a coloured tint or filters 
commonly found within photo editing applications. For 
example, training a classifier with the ImageNet or CIFAR-10 
datasets would yield better results when vertical axis flipping is 
used while slight rotations can help in training with text 
recognition datasets such as MNIST [11]. 

The research in [30] used image data augmentation in 
combination with weight decay an various tasks and found it had 
significantly improved the performance of InceptionNetv3. 

G. Oversampling 

Oversampling is a data level technique which inflates the 
number of samples in a given dataset. Oversampling is often 
used to increase the signal to noise value by adding samples 
augmented with unrelated noise to the dataset before using any 
processing method.  In the case of image processing, the dataset 
is inflated with augmented images [11]. Random oversampling 
can significantly improve classification of images and was 
found to have the best performance against other data-level 
methods such as undersampling, two phase training and 
thresholding [23]. 

H. Combining Data-Level Techniques 

Data level techniques such as image data augmentation 
combined with oversampling can be used to improve the validity 
and robustness of social media image classification models 
especially within the limitations in natural disaster management. 
Image data augmentation utilises a collection of image 
manipulation techniques used as a technique for oversampling 
in image datasets which could play an important role in reducing 
the effect of overfitting brought about by training DNNs with 
smaller datasets. The next section discusses the methodology 
used in combining image data augmentation with image data 
oversampling. 

III. METHODOLOGY 

This section details the methodology in pre-processing a 
labelled dataset by oversampling it with augmented images, 
followed by training VGG16 with the pre-processed dataset, and 
testing the trained model and analysis of the results. 

A. Experiments Carried Out 

Three sequences of deep learning experiments are carried 
out. The initial sequence of experiments consists of a grid search 
of oversampling levels for each data collection using VGG16. 
This first sequence of experiments is also used to search for 
“early stopping” parameters. 

The second sequence of experiments compares the 
performance of deep learning models selected after training each 
of theses models against the Nepal data collection. The deep 
learning models used in this sequence are VGG16, ResNet50V2 
and EfficientNetV2B0. 
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The last of these experiments uses the optimal datasets 
acquired form the first experiment to train best performing 
model in the second experiment. The performance of the 
resulting trained model is then compared with the published 
performance of state-of-the-art models. 

B. Equipment and Software used 

The training of the image classification models was carried 
out on a computer with a graphics card capable of training deep 
learning models. This computer was built around an NVidia 
RTX2060 SUPER graphics card which has 8 GDDR6 RAM and 
272 tensor cores. 

As for the software, Ubuntu Server 20.04 LTS was installed 
without any desktop environment such that the computer can be 
operated headlessly (without a desktop GUI) to reduce GPU 
RAM usage. Python 3.7, TensorFlow version 2.2.0 and the 
included Keras library was used together with Jupyter 
Notebooks to implement image data augmentation, 
oversampling, model training, and model testing. 

C. Dataset Details 

The dataset used in this study is a data collection containing 
images collected from social media regarding several disaster 
events including the 2015 Nepal earthquake, the 2016 Ecuador 
earthquake, Hurricane Matthew in 2016 and Typhoon Ruby in 
2014. These images were collected and annotated using the 
AIDR platform [26] which was modified to work with images 
[35]. 

This data collection contained three comma-separated value 
(CSV) files labelling 1,584 images with no natural disaster 
damage, 451 images showing mild natural disaster damage, and 
1,785 images showing severe natural disaster damage together 
with these images. Each CSV file also divided the images into 
training (60%), cross-validation (20%) and testing (20%) sets. 
This data split is a common arrangement for training with cross-
validation. 

The dataset that contains this image collection can be 
downloaded from https://crisisnlp.qcri.org/ under Resource # 9. 
This dataset is also included in a benchmark dataset published 
by [34] from the same website under Resource #15. 

D. Pre-Processing 

During pre-processing, the images were first sorted based on 
their label to respective directories and split into either the 
training, validation or testing data split using the CSV files 
included such that the data collection can used with the 
ImageDataGenerator object from Keras. 

After sorting the images, image data augmentation and 
various levels of oversampling were applied to generate 
augmented and oversampled datasets. The bulleted lists below 
show the augmentations applied to the training datasets and to 
validation datasets, while images in the testing data was rescaled 
to 1/255 only. These augmentations were selected to generate a 
variety of augmented images to prevent overfitting. The effect 
of these augmentations can be seen in Fig. 1. 

List of Image Data Augmentations Used To Generate 
Training Data: 

 Rescale values to 1/255. 

 Random rotation range of -15° to 15°. 

 Random width shift range of 10%. 

 Random height shift range of 10%. 

 Horizontal flipping. 

List of Image Data Augmentations Used To Generate 
Training Data: 

 Rescale values to 1/255. 

 Horizontal flipping. 

Table II shows the number of images after oversampling the 
images with augmented images. The control dataset does not 
contain any images with augmentations and does not contain any 
images generated for balancing or oversampling. The dataset 
with augmentations only contains augmented images but is not 
balanced or oversampled, preserving the same number of images 
as the control dataset. The balanced dataset contains images that 
have been augmented and balanced by oversampling images 
from the minority classes such that each class has the same 
number of images. The remaining datasets contain augmented 
images and were generated with two times, four times, and six 
times the number of images compared to the balanced dataset. 

 

Fig. 1. Five augmented images were generated from an image from the 

Nepal Earthquake data collection. 

TABLE II.  NUMBER OF IMAGES IN EACH GENERATED DATASET AFTER 

PRE-PROCESSING THE NEPAL DATA COLLECTION 

Name Images 

labelled 

None 

Images 

labelled 

Mild 

Images 

labelled 

Severe 

Total 

Images 

No 
Augmentations 

(control) 

4752 1354 5357 14463 

With 
Augmentations 

4752 1354 5357 14463 

Augmented 
and Balanced 

5357 5357 5357 16071 

2X 
Oversampled 

10714 10714 10714 32142 

4X 

Oversampled 

21428 21428 21428 64282 

6X 

Oversampled 

32142 32142 32142 96424 
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E. Deep Learning Model Implementation 

This study will involve three deep learning models namely 
VGG16, ResNet50v2, and EfficientNetv2B0.  The 
configuration of the VGG16 model used includes 224 pixel by 
224 pixel inputs with three channels. This model was 
constructed using a pre-trained version of VGG16 supplied by 
the Keras software library which did not include dropout layers. 
The model was pre-trained with the ImageNet ILSVRC 2015 
challenge dataset. Dropout layers were added back to the model 
as specified in the original implementation of VGG16 [9] with a 
dropout rate of 0.5 inserted before the FC1 and FC2 layers. 
These dropout layers were used for preventing overfitting by 
randomly dropping units during training [8]. 

The model was further modified by replacing the output 
layer which was originally used to classify 1000 classes in the 
ImageNet ILSVRC 2015 challenge, with a “dense” layer of 
three outputs with each output corresponding to each class found 
in the dataset. The L2 Kernel regularization rate for the output 
layer is set to 0.0005. The last layer was set to be trainable while 
the other layers were set to be not trainable. 

The ResNet50V2 and EfficientNetV2B0 models were pre-
trained with the ImageNet Dataset [22]. The ResNet50v2 model 
had its “head” replaced with a GlobalAveragePooling2D layer, 
followed by a Dropout layer with a dropout rate initially set to 
0.5, and finally a Dense layer with three outputs. The head of the 
EfficientNetV2B0 model was replaced with a 
GlobalAveragePooling2D layer, followed by a 
BatchNormalization layer, then a Dropout layer with a dropout 
rate of 0.5, and finally a Dense layer with three outputs (see Fig. 
2). 

 

Fig. 2. VGG16 with three outputs and dropout layers. 

F. Training, Validation and Testing 

For the first round of training, VGG16 was initially selected 
as a control model. For each dataset generated in the 
prepossessing steps, an instance of this modified VGG16 model 
was trained on the dataset for up to 100 epochs. After each 
epoch, if the validation loss is lower than in all prior epochs, the 
weights of the model are saved. 

During testing, the weights of each trained VGG16 instance 
was loaded, then tested by classifying images from the test set. 
The number of “true” and “predicted” occurrences is collected 
to calculate the precision, recall rate, F-1 score and to plot a 
confusion matrix. A “combined” F-1 score is also calculated to 
measure the overall performance of the trained model. Fig. 3 
shows an activity diagram summarizing the process of training, 
validation and testing. 

 

Fig. 3. Activity Diagram for training a CNN. 

The second round of training, validation and testing involves 
ResNet50V2 and EfficientNetV2B0, the results of which are 
used to compare against each other (including VGG16) to 
determine which model achieves a higher F-1 score. This effort 
uses a similar process to the first round. 

The third and final round of training involves the model 
selected from the second round of training against a dataset built 
by combining generated datasets that have obtained the highest 
combined F-1 score within each of the image data collections. 
This endeavour also uses a similar process to the first two rounds 
but has the addition of including a grid search of the dropout 
rate. The range of this dropout rate grid search starts from a 
dropout rate of 0.3 through 0.7 with a resolution of 0.1. 

IV. RESULTS, LIMITATIONS AND DISCUSSION 

A. Results on VGG16 Single Event Tasks 

Table III shows the F-1 scores for each class and the overall 
“combined” F-1 score obtained from testing VGG16 trained on 
single event generated datasets. The results in Table III 
demonstrate the effect of oversampling with image 
augmentations in training VGG16. With the exception of the 
Ruby image collection, models trained with generated datasets 
that had more oversampling tends to have a higher F-1 score. 

Generated datasets that led to a higher combined F-1 score 
were selected to form a a combined dataset. An exception was 
made for the Nepal 6X generated dataset as combining it with 
the other selected datasets made it too large such that it caused 
an out-of-memory error. The final combined dataset included 
the balanced Nepal, Ecuador 8X, Matthew 8X, Ruby 2X 
datasets. 

B. VGG16, ResNet50V2 and EffecientNetV2B0 against 

Nepal6X Dataset 

Table IV shows the F-1 score obtained from testing VGG16, 
ResNet50V2 and EfficientNetV2B0 against the Nepal6X 
generated dataset. These three models were trained without a 
grid search of the dropout rate. 
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TABLE III.  F-1 SCORE OF VGG16 AGAINST SINGLE-EVENT TASKS 

Event Generated Dataset F-1 Score 

None Mild Severe Combined 

Nepal No Augmentations 0.76 0.02 0.80 0.53 

With Augmentations 0.75 0.05 0.79 0.53 

Balanceda 0.74 0.25 0.79 0.59 

2X Augmentations 0.72 0.18 0.76 0.55 

4X Augmentations 0.69 0.28 0.71 0.56 

6X Augmentationsb 0.73 0.29 0.74 0.59 

Ecuador No Augmentations 0.80 0.00 0.85 0.55 

With Augmentations 0.78 0.00 0.84 0.54 

Balanced 0.72 0.19 0.81 0.57 

2X Augmentations 0.75 0.13 0.83 0.57 

4X Augmentations 0.73 0.18 0.79 0.57 

6X Augmentations 0.71 0.14 0.59 0.48 

8X Augmentationsa 0.76 0.20 0.80 0.59 

Matthew No Augmentations 0.77 0.43 0.63 0.61 

With Augmentations 0.76 0.21 0.60 0.52 

Balanced 0.69 0.48 0.58 0.58 

2X Augmentations 0.73 0.45 0.59 0.59 

4X Augmentations 0.73 0.52 0.50 0.58 

6X Augmentations 0.70 0.46 0.61 0.59 

8X Augmentationsa 0.67 0.54 0.62 0.61 

Ruby No Augmentations 0.74 0.73 0.11 0.53 

With Augmentations 0.77 0.72 0.36 0.62 

Balanced 0.72 0.64 0.47 0.61 

2X Augmentationsa 0.75 0.66 0.46 0.62 

4X Augmentations 0.78 0.55 0.41 0.58 

6X Augmentations 0.74 0.67 0.38 0.60 

8X Augmentations 0.78 0.62 0.42 0.61 

a. Generated datasets selected. 

b. Too large to be combined with other datasets (causes out-of-memory error). 

EfficientNetV2B obtained the highest F-1 score leading 
ResNet50V2 by 0.04 and VGG16 by 0.14. Both 
EfficientNetV2B and ResNet50V2 had significantly higher F-1 
scores for all classes compared to VGG16. These results led to 
the selection of EfficientNetV2B0 for the next step. 

TABLE IV.  F-1 SCORE COMPARING VGG16 RESNET50V2 AND 

EFFICIENTNETV2B0 

Model 
F-1 Score 

None Mild Severe Combined 

VGG16 0.73 0.29 0.74 0.59 

ResNet50V2 0.82 0.40 0.84 0.69 

EfficientNetV2B0 0.85 0.45 0.89 0.73 

C. EfficientNetV2B0 against the Combined Dataset 

The final model has managed to outperform state-of-the-art 
models in classifying the severity of damage in the Nepal, 
Ecuador and Matthew data collections which makes up the bulk 
of the damage severity dataset. Compared to [15], the F-1 score 
has increased from 0.76 to 0.782 for the Nepal data collection, 
0.82 to 0.837 for the Ecuador data collection, and from 0.63 to 
0.68 for the Matthew data collection. The combined overall F-1 
score in the EfficientNetV2B0 model is close to the performance 
obtained with VGG16-fc7 by [34]. 

TABLE V.  F-1 SCORE COMPARING VGG16 RESNET50V2 AND 

EFFICIENTNETV2B0 

Data Collection VGG16-fc7cd EfficientNetV1B1d EfficientNetV2B0 

Nepal 0.76c - 0.782 

Ecuador 0.82c - 0.837 

Matthew 0.63c - 0.682 

Ruby 0.80c - 0.709 

Google Images 0.63c - 0.576 

Combined 0.753d 0.758d 0.752 

c. from [15] 

d. from [34] 

D. Limitations 

This study contains various technical limitations and time 
constraints which caused the scope of this study to be reduced. 

This study was carried out using a single consumer grade 
Nvidia GPU with 8 Gigabytes of video RAM, namely an RTX 
2060 Super. The computer used in this study had a solid state 
drive (SSD, not to be confused with Single Shot-MultiBox 
Detector) with a capacity of 256GB limiting the amount of 
generated image datasets that can be generated. This limits the 
size of both the model and the dataset that it can be trained on.  
These technical constraints restricted the scope of this study to 
models with 224 by 224 pixel inputs. There was not enough disk 
space to expand the study to include models with 240 by 240 
input with this setup. These technical limitations also 
contributed to encountering an out-of-memory error when 
combining the six times oversampled Nepal dataset with other 
chosen generated datasets. 

Another limitation is the amount of time needed to carry out 
model training. Training a deep learning model on one generated 
image dataset would take between three to six hours with the 
current setup assuming that the early stopping callback did not 
trigger. Each data collection would have seven generated 
datasets. Expanding the current scope to include the 
“CrisisMMD” dataset (containing 7 data collections) and 
“Damage Multimodal Dataset” dataset (treated as one data 
collection) would require an additional 56 single-event training 
and testing sessions, increasing the amount of time needed to 
include these. It is preferred that a data assessment task in 
response to the event of natural disasters takes place within 72 
hours [25]. In the interest of time, the dataset used was limited 
to the “ASONAM2017” dataset. 
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This study did not explore fine-tuning as there is a lack of 
benchmarks for fine-tuned models trained on similar tasks to 
compare against. 

E. Discussion 

This paper shows a significant advancement in training deep 
learning models for classifying the level of natural disaster 
damage in images. The EfficientNetV2B0 model trained on the 
novel oversampling strategy was able to out-perform existing 
published benchmarks on classifying the level of disaster 
damage in the Nepal, Ecuador and Matthew data collections as 
seen in Table V. 

These improvements were made possible using a 
combination of image data preprocessing techniques including 
a novel oversampling search strategy. This combination of 
techniques involve the use of image augmentation, data 
balancing and oversampling to address ongoing challenges in 
faced in data collection for disaster informatics leading to data 
imbalance and limited sample size for tasks involving image 
classification of disaster damage severity. The methods in order 
to obtain these results are: 

1) For each image data collection, generate image datasets 

oversampled with augmented images ranging from balanced 

sampling to oversampling up to eight times the original sample 

size. 

2) Use VGG16 to carry out a grid search of oversampling 

levels to identify which generated image dataset provides the 

highest F-1 score for each image data collection. 

3) Combine the datasets identified in step 2 to create an 

optimized comprehensive dataset for training 

EfficientNetV2B0. 

These steps have allowed for the creation of a dataset for 
training EfficientNetV2B0 such that it produces a more robust 
model with superior classification performance across various 
natural disaster scenarios. 

These methods have demonstrated an importance in 
strategising the use of data preparation methods in machine 
learning when faced against situations caused by the nature of 
natural disaster events creating limitations that affect data 
collection. By using these image augmentation, balancing and 
oversampling methods, these issues that historically cause class 
imbalance and low sample size of images in this domain have 
been mitigated. 

The findings in this study have shown several implications 
regarding disaster damage assessment through the classification 
of images. This study has demonstrated that the proposed 
training strategy improved the robustness and F-1 score of 
EfficienNetV2B0 in classifying the level of disaster damage. 
This in turn could increase the reliability of deep learning 
models used in the aftermath of a disaster event, potentially 
improving future efforts undertaken during disaster response 
and disaster resource allocation. 

The proposed methodology in this paper could potentially be 
applied or be developed further in deep learning tasks facing 
similar issues on data imbalance and data scarcity. This 
combination of image data augmentation, data balancing and 

strategic data oversampling grid search could be implemented 
improve deep learning image classification tasks to counter the 
effects of imbalanced or scarce data.  

V. CONCLUSION 

This study has shown a novel strategy in countering the issue 
of data imbalance and data scarcity in classifying the level of 
disaster damage in images using deep learning models. By 
applying a mixture of techniques such as image data 
augmentation and image data oversampling, a trained 
EfficientNetV2B0 model that surpasses the performance of 
current models of similar input size in classifying the severity of 
natural disaster damage in some image collections has been 
obtained. 

The methods in this study involved generating datasets of 
varying oversampling levels on different image data collections, 
ranging from balanced oversampling up to eight times the 
sample size. A search of an optimal amount of oversampling 
using VGG16 was carried out. The generated datasets with the 
optimal amount of oversampling were then combined to train 
the EfficentNetV2B0 model. 

This success has netted a trained EfficentNetV2B0 model 
with improved F-1 scores of 0.782 on the Nepal data collection, 
0.837 on the Ecuador data collection and a notable 0.683 on the 
Matthew data collection while maintaining a robust overall F-1 
score of 0.752. These results show a major improvement on the 
classification of natural disaster damage levels in images, 
particularly on the Matthew data collection with some 
improvements on the Nepal and Ecuador data collections. 

The findings in this study suggests that applying a 
combination of image data augmentation and oversampling 
techniques prior to model training helps in improving the 
robustness of deep learning classification models for classifying 
natural disaster damage. These methods have the potential to 
solve the challenges of data imbalance and data scarcity in image 
classification tasks involving natural disasters and offers a 
solution to improve the reliability and efficacy of  natural 
disaster damage level classification in disaster response efforts. 
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