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Abstract—This study focuses on enhancing the accuracy of 

traffic sign detection systems for self-driving. With the increasing 

proliferation of autonomous vehicles, reliable detection and 

interpretation of traffic signs is crucial for road safety and 

efficiency. The primary goal of this research was to improve the 

performance of traffic sign detection, particularly in identifying 

unfamiliar signs and dealing with adverse weather conditions. 

We obtained a dataset of 3,480 images from Roboflow and 

utilized deep learning techniques, including Convolutional 

Neural Networks (CNNs) and algorithms such as YOLO and the 

Vision Engineering (VGG) toolkit. Unlike previous studies that 

focused on a single version of YOLO, this study conducted a 

comparative analysis of different deep-learning models, including 

YOLOv5, YOLOv8, and VGG-16. The study results show 

promising outcomes, with YOLOv5 achieving an accuracy of up 

to 94.2%, YOLOv8 reaching 95.3% accuracy, and VGG-16 

outperforming the other techniques with an impressive 98.68% 

accuracy. These findings highlight the significant potential for 

future advancements in traffic sign detection systems, 

contributing to the ongoing efforts to enhance the safety and 

efficiency of autonomous driving technologies. 
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VGG16 

I. INTRODUCTION 

Traffic sign detection plays a crucial role in the 
development of autonomous driving systems. The ability of 
these systems to accurately identify and understand road traffic 
signs is essential for ensuring road safety and efficiency. In 
recent years, there has been an increasing reliance on 
autonomous vehicles [1], which makes accurate detection and 
interpretation of traffic signs even more important. This 
research aimed to enhance the accuracy of traffic sign detection 
systems, with a particular focus on detecting unusual traffic 
signs that may not be widely recognized. Deep learning 
techniques and algorithms were important in the field of self-
driving cars, as they were increasingly being used to detect 
traffic signs [2]. This led to increased efficiency and safety in 
self-driving cars. In particular, deep learning algorithms such 
as YOLOv8, YOLOv5, and VGG-16 were useful in achieving 
accurate traffic sign detection. These algorithms enabled traffic 
signs to be recognized and interpreted, thus enhancing the 
capabilities of autonomous driving systems. By training YOLO 
models on labeled datasets, algorithms could learn to identify 
the different shapes, colors, and symbols associated with road 

signs. The use of these algorithms to detect road signs ensured 
that vehicles were able to proactively respond to traffic signals, 
thus improving road safety and efficiency. By leveraging these 
algorithms, self-driving cars could effectively recognize 
different types of road signs, including speed limits, stop signs, 
yield signs, and more. This information was then used to make 
informed decisions and adapt the vehicle's behavior 
accordingly. 

II. LITERATURE REVIEW 

Qian et al. [3] found that the recognition of traffic signs has 
gained significant importance in applications such as self-
driving cars, traffic mapping, and traffic surveillance in recent 
years. The dataset used is the German Traffic Sign Recognition 
Benchmark (GTSRB). It is a benchmark dataset specifically 
designed for traffic sign recognition. The dataset consists of 
images of traffic signs captured under various conditions, such 
as different lighting and weather conditions. Each image is 
labeled with the corresponding traffic sign category. The 
algorithm used in the paper is a Convolutional Neural Network 
(CNN). The proposed CNN architecture consists of multiple 
convolutional layers, activation layers, max pooling layers, 
fully connected layers, and a softmax layer for classification. 
The CNN Committee achieved high accuracy, which is 
99.46%. The advantages of the proposed approach are that it 
achieves outstanding performance on the GTSRB dataset, 
indicating its effectiveness in traffic sign recognition tasks, and 
The deep learning model (CNN) used in the system has 
powerful representational learning capabilities, allowing it to 
extract discriminative features from traffic sign images. 

Arcos- García et al. [4] improved traffic sign classification 
using deep learning in diverse real-world scenarios. They 
compared different optimization algorithms, including 
Stochastic Gradient Descent (SGD), SGD with Nesterov 
momentum (SGD-Nesterov), RMSprop, and Adam, and 
analyzed the impact of integrating Spatial Transformer 
Networks (STNs) into CNN. The authors utilized publicly 
available traffic sign datasets from Germany and Belgium, 
specifically the German Traffic Sign Recognition Benchmark 
(GTSRB). Their proposed CNN achieved an impressive 
recognition rate accuracy of 99.71% in the GTSRB, surpassing 
previous methods and demonstrating improved memory 
efficiency. 
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Morillo et al. [5] provided a comprehensive analysis of 
state-of-the-art object detection systems, along with several 
feature extraction tools, for traffic sign detection. The study 
utilizes the GTSDB dataset, which contains 900 images of 
traffic lights with various orientations and lighting conditions. 
The authors fine-tuned object detection models, namely Faster 
R-CNN, R-FCN, SSD, and YOLO V2, all of which employ the 
CNN algorithm. The results indicate that Faster R-CNN 
Inception Resnet V2 achieves the highest accuracy (95.77%), 
followed by R-FCN Resnet 101 with an accuracy of 95.15%. 
Additionally, the YOLO V2 and SSD Mobilenet models are 
highlighted for their competitive performance and lightweight 
design. Overall, the researchers provide valuable insights for 
practitioners and researchers working in the field of traffic 
signal detection. 

Rajendran et al. [6] addressed the challenges that traffic 
sign detection systems using Yolo methods are facing, such as 
poor accuracy and small object detection issues, unlike the 
CNN-based methods that provide high accuracy and real-time 
performance. The authors proposed an approach for traffic sign 
recognition using YOLOv3 for detection and a CNN-based 
classifier for classification. The methodology is evaluated 
using the German Traffic Sign Detection Benchmark (GTSDB) 
dataset, which contains 600 training images and 300 test 
images. They also utilized the German Traffic Sign 
Recognition Benchmark (GTSRB) dataset, which consists of 
more than 50000 traffic sign images divided into 39209 
training images and 12630 test images. The YOLOv3 detector 
and the CNN-based classifier are implemented using Keras 
with a TensorFlow backend. The detector performance results 
were compared with another detector called the faster R-CNN-
based method. According to the results, the proposed YOLOv3 
outperformed the other detector in terms of accuracy, with an 
mAP of 92.2% on the GTSDB test set and a frame rate of 10 
fps. The CNN-based classifier was evaluated using the GTSRB 
test set, and it achieved a high accuracy of 99.6%. The future 
work involves exploring simulation detection and classification 
using single-stage detectors without the need for an additional 
traffic sign classification network. 

Tabernik et al. [7] addressed the problem of automating 
traffic signal detection and recognition. They propose a deep 
learning-based approach using the Mask R-CNN algorithm and 
present a new dataset called DFG, consisting of 200 classes of 
traffic lights. The dataset contains a total of 13,000 traffic light 
instances and 7,000 high-resolution images. The results of their 
study demonstrate the effectiveness of their approach, as they 
achieved error rates of less than 3%. This makes it suitable for 
practical applications in traffic signal inventory management. 
The researchers present a comprehensive deep learning 
analysis for dealing with traffic signals with different 
appearances. Additionally, it provides a challenging dataset 
that serves as a benchmark. However, one limitation of the 
paper is that the dataset is limited to the categories chosen by 
the researchers, and its generalizability to a wider range of 
traffic signals remains uncertain. 

Sichkar et al. [8] presented a holistic model for real-time 
traffic sign detection and classification, which was important 
for car vision systems and future autonomous vehicles. The 
model utilized YOLO version 3 for traffic sign localization and 

CNN for classification. The detection model was trained on the 
German Traffic Sign Detection Benchmark (GTSDB) dataset, 
consisting of 630 training RGB images and 111 validation 
images. Meanwhile, the classification model was trained on the 
German Traffic Sign Recognition Benchmark (GTSRB) 
dataset, which included 66,000 RGB images. The YOLO-
based detection model achieved a 97.22% mAP accuracy on 
four traffic sign categories, while the CNN-based classification 
model achieved an accuracy of 0.868% on the test dataset. 

Zhu et al. [9] explored the application of deep learning 
techniques, specifically the latest version of YOLOv5, for 
accurate and efficient traffic sign detection and recognition. 
The dataset used in the paper is referred to as "our dataset" and 
was specifically created for Traffic Sign Recognition (TSR) 
experiments. It contains 2,182 images with eight classes of 
traffic signs. The algorithm used for TSR in the paper is 
YOLOv5, which stands for "You Only Look Once" Version 5. 
It compares the performance of YOLOv5 with another 
algorithm called SSD (Single Shot MultiBox Detector). 
YOLOv5 achieved a mean Average Precision (mAP) of 
97.70% at a threshold of 0.5 for all classes in terms of TSR. On 
the other hand, SSD obtained a mAP of 90.14% under the 
same conditions. It is also mentioned that YOLOv5 
outperformed SSD in terms of recognition speed. The 
advantages of using YOLOv5 for TSR are its improved 
accuracy compared to previous models like YOLOv3, faster 
detection speed, and the ability to simultaneously predict 
bounding box coordinates, target confidence, and class 
probabilities. As for the disadvantages, the paper does not 
provide a comprehensive analysis of the limitations or potential 
drawbacks of YOLOv5 compared to SSD or other TSR 
algorithms. 

Song et al. [10] proposed a deep learning-based algorithm 
that aims to improve the performance of intelligent vehicles in 
accurately detecting and recognizing traffic signs. The study 
utilized the CCTSDB 2021 dataset, which includes 16,356 
images with 13,876 prohibitive signs, 4598 warning signs, and 
8363 mandatory signs. They improved the algorithm; TSR-
YOLO is built upon YOLO (You Only Look Once) and 
achieved a high detection accuracy of 96.62%. Furthermore, 
this paper specifically focuses on Chinese traffic signs, making 
it difficult to assess the generalizability of the algorithm for all 
types of traffic signs. 

Qu et al. [11] proposed an algorithm for traffic sign 
detection in complex weather conditions based on an improved 
version of the YOLOv5s model. The study utilized the 
CCTSDB 2021 dataset, which includes 5268 new traffic scene 
images. The algorithm employed is PSG-Yolov540, an 
enhanced version of YOLOv5s, which incorporates 
improvements such as coordinate attention (CA), an additional 
prediction head, and the utilization of Alpha-IoU to enhance 
the original positioning loss CIoU. The algorithm achieves a 
precision increase of 12.5% and an improved recall rate of 
23.9% compared to the original YOLOv5s model, resulting in 
a precision of 88.1% and a recall rate of 79.8%. However, the 
paper lacks a thorough discussion of the algorithm's limitations 
and does not explore potential challenges or failure cases that 
may arise in real-world scenarios. 
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Liu et al. [12] introduced an enhanced methodology called 
ETSR-YOLO, a modified version of the YOLOv5 object 
detection algorithm. The study introduced two improved C3 
modules that aim to suppress background noise interference 
and enhance the feature extraction capabilities of the network. 
This paper introduced several enhancements to YOLOv5, 
including the upgrade of the path aggregation network to 
capture more contextual information, which improves the 
detection of traffic signs of varied sizes. Second, we 
incorporated a coordinated attention method into the backbone 
network to adaptively improve key features while suppressing 
noise. Third, the ConvNeXt block increases the network's 
receptive field and minimizes information loss during feature 
fusion. Finally, during post-processing, they utilized the WIoU 
function to improve the predictability and robustness of the 
model. They utilized the TT100K (Tsinghua-Tencent 100K) 
dataset, which contains 6634 training images and 1659 test 
images, and also the CCTSDB2021 (CSUST Chinese Traffic 
Sign Detection Benchmark 2021) dataset, which contains 
14258 training images and 3571 test images. According to the 
experimental results, ETSR-YOLO increases MAP at 0.5 by 
6.6% on the TT100K dataset and 1.9% on the CSUST Chinese 
Traffic Sign Detection Benchmark 2021 (CCTSDB2021) 
dataset. Future research aims to enhance the model's 
performance in complicated road situations and improve 
computing efficiency for more accurate traffic sign recognition 
on embedded platforms in vehicles. 

One limitation in many studies that train models on traffic 
signs is that they focus on traffic signs in clear weather and not 
traffic signs with difficult weather conditions such as rain and 
fog. This gap in training data can lead to reduced performance 
and accuracy when the models encounter these difficult 
weather signs in real-world scenarios. Secondly, many studies 
do not provide a comprehensive analysis of the limitations or 
potential drawbacks of YOLOv5 compared to other algorithms. 
Thirdly, most of the previous studies didn’t make a comparison 
between the different models and their results. 

III. DATA COLLECTION AND METHODOLOGY 

A. Dataset 

It was necessary to have a dataset of images to train deep-
learning models. In the context of traffic sign detection and 
classification, the dataset needed to include various types of 
traffic signs, including clear and unclear signs, covering most 
of the possible factors that affect the visibility of traffic signs. 
After conducting a comprehensive search, an existing dataset 
was found to meet these specific requirements. Additionally, 
the available dataset of traffic signs varied in size, 
encompassing different weather conditions. Also, these types 
of traffic signs varied in shape, size, and popularity in terms of 
usage. Images were collected from the Roboflow dataset 
named "Road Sign Detector Image Dataset Computer Vision 
Project". 

Finding a sufficient number of traffic signs was difficult, as 
they weren't abundantly available in most dataset sources, and 
it was challenging to find images in challenging weather 
conditions due to their limited availability. Extensive searching 
was conducted on multiple sources to assist in finding a wide 
range of traffic signs in challenging weather conditions. As a 

result, 3480 images (3,006 for training, 186 for testing, and 288 
for validation) of traffic signs encompassing different and 
numerous classes were collected from Roboflow, with the aim 
of ensuring diversity and clarity to assist autonomous vehicles 
under challenging weather conditions. We did not find these 
data from any other free or open-source datasets, and had to 
use the data available on Roboflow. We searched other sources 
like Kaggle and GitHub, but could not find a ready-to-use 
dataset that met our requirements, so we could not train our 
models on different datasets. 

B. Methodology 

1) Yolo algorithms: The YOLO (You Only Look Once) 

algorithm is a highly popular and efficient object detection 

algorithm known for its innovation and speed [15]. YOLO 

works uniquely by analyzing the entire image in a single pass. 

Instead of using a proposal-based detection approach, YOLO 

divides the image into a grid of cells and predicts the 

bounding boxes and confidence scores for each cell in a single 

pass. This holistic approach gives YOLO the ability to 

leverage the overall context of the image to improve the 

accuracy of its predictions. Additionally, YOLO is 

characterized by its high response speed, making it suitable for 

applications that require fast object detection, such as 

autonomous driving and surveillance. 

a) YOLOv8: YOLOv8 is an advanced object detection 

algorithm in computer vision. It has revolutionized the field by 

achieving superior detection accuracy and real-time 

performance using a single end-to-end neural network. 

YOLOv8 is widely utilized in various applications, such as 

autonomous driving, surveillance systems, and robotics, where 

rapid and accurate object detection is crucial. Its impressive 

performance and versatility have made it a popular choice 

among researchers and practitioners in the computer vision 

community. 

b) YOLOv5: YOLOv5 is an enhanced version of the 

YOLO (You Only Look Once) architecture, renowned for its 

improved efficiency, accuracy, and speed in object detection 

tasks. It features a streamlined design and incorporates 

advanced techniques like a novel backbone network and 

multi-scale prediction strategy. YOLOv5 has gained 

significant popularity in domains such as autonomous driving, 

surveillance systems, and robotics, thanks to its balanced 

trade-off between detection accuracy and computational 

efficiency. It offers faster inference times while maintaining 

competitive performance, making it a preferred choice for 

real-time object detection applications. 

2) VGG-16: VGG-16, or Visual Geometry Group 16, is a 

renowned deep convolutional neural network architecture 

known for its simplicity and effectiveness in image 

classification tasks. With 16 layers, including 13 

convolutional layers and 3 fully connected layers, VGG-16 

captures complex features from input images. Despite newer 

models surpassing its performance, VGG-16 remains a 

popular choice for transfer learning due to its strong feature 

extraction capabilities and publicly available pre-trained 

weights. 
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3) Training methodology: The primary objective of this 

study was to compare the performance of YOLO with 

previous studies in detecting traffic signs. Additionally, we 

employed the VGG-16 model to perform the same task, but 

with the classification of traffic signs. This comparison 

allowed us to assess and evaluate the effectiveness of both 

YOLO and VGG-16 in the context of traffic sign detection 

and classification. The models were trained using a dataset 

consisting of 3480 images and a set of hyperparameters that 

included epochs varying from 20 to 45 and batch sizes of 16 

for Yolov5s, 16 for Yolov8n, and 16 for VGG-16. Below are 

the Table I, and II that show the hyperparameter settings. 

TABLE I. THE HYPERPARAMETERS SET FOR YOLOV5 AND YOLOV8 

Hyperparameters YOLOv5 YOLOv8 

Input image size 640 640 

Epochs 45 32 

Batch size 16 16 

Optimizer AdamW AdamW 

Initial learning rate 0.01 0.01 

Final learning rate 0.01 0.01 

Momentum 0.937 0.937 

Weight decay 0.0005 0.0005 

TABLE II. THE HYPERPARAMETERS SET FOR VGG-16 

Hyperparameters VGG-16 

Target size 224 

Epochs 20 

Batch size 16 

learning rate 0.01 

4) Training environment: To meet our training 

requirements for both YOLO and VGG-16, we utilized 

Google Colab. This platform provided us with the necessary 

infrastructure to execute the Python code and leverage 

advanced computational power, including GPUs. By 

leveraging the capabilities of Google Colab, we were able to 

efficiently train the models and take advantage of the 

accelerated processing provided by GPUs. This expedited the 

training process and enabled us to achieve optimal 

performance for both YOLO and VGG-16. 

IV. RESULTS AND DISCUSSION 

In this section, we present the results obtained from training 
three different models: YOLOv5, YOLOv8, and VGG16. We 
discuss the performance of each model and provide an analysis 
of their strengths and areas for improvement. 

A. YOLO Object Detection and Classification 

YOLO versions 5, and 8 were used for object detection and 
classification of traffic signs under weather conditions. 

YOLOv5, as shown in Table III, achieved mAP50s of 
79.3%, 89.6%, 91.3%, 94.1%, and 94.2% over epochs 5, 10, 
20, 40, and 45, respectively. The results show the high 
performance of the model. Furthermore, Fig. 1 displays the 
results for YOLOv5 at epoch 45. Additionally, Fig. 2 presents 

performance metrics for YOLOv5, including the precision of 
92.37%, the recall rate of 90.85%, the mean average precision 
at an IoU threshold of 0.5 (mAP50) of 94.23%, and the mean 
average precision at IoU thresholds ranging from 0.5 to 0.95 
(mAP50-95) of 70.28%. Fig. 3 shows the recall confidence 
curve for all classes 0.97 at 0.000, the precision confidence 
curve for all classes 1.00 at 0.964, the precision-recall curve for 
all classes 0.947 mAP 0.5, and the F1-confidence curve for all 
classes 0.92 at 0.689. Fig. 4 shows the training batch. Fig. 5 
shows a sample of the validating batch prediction. Fig. 6 shows 
a sample of the validating batch label. The total estimated 
VRAM usage during training for YOLOv5 on a Tesla T4 GPU 
is approximately 8-12 GB. This includes memory for model 
parameters, activation maps, gradients, and batch data. The 
total estimated VRAM usage during inference is around 4-8 
GB, primarily due to model parameters and activation maps, 
with lower requirements as no gradients are stored. YOLOv5 
computation time is 61.68 minutes. 

TABLE III. YOLOV5 MAP50 OVER 45 EPOCHS 

Model Epoch mAP50 

YOLOv5 

5 79.3% 

10 89.6% 

20 91.3% 

40 94.1% 

45 94.2% 

 
Fig. 1. Results obtained by YOLOv5 at epoch 45. 

 

Fig. 2. Performance metrics for YOLOv5. 
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Fig. 3. Confidence curve results for YOLOv5. 

 

Fig. 4. Sample of train_batch for YOLOv5. 

 

Fig. 5. Sample of val_batch_pred for YOLOv5. 

 
Fig. 6. Sample of val_batch_label for YOLOv5. 

YOLOv8, as shown in Table IV, achieved mAP50s of 
75.6%, 89.3%, 94%, 94.2%, and 95.3% over epochs 5, 10, 20, 
25, and 32, respectively. The results show the high 
performance of the model. Additionally, Fig. 7 displays the 
results for YOLOv8 at epoch 32. Next, Fig. 8 presents 
performance metrics for YOLOv8, including the precision of 
92.58%, the recall rate of 92.73%, the mean average precision 
at an IoU threshold of 0.5 (mAP50) of 95.31%, and the mean 
average precision at IoU thresholds ranging from 0.5 to 0.95 
(mAP50-95) of 71.23%. Fig. 9 shows the recall confidence 
curve for all classes 0.97 at 0.000, the precision confidence 
curve for all classes 1.00 at 0.979, the precision-recall curve for 
all classes 0.958 mAP 0.5, and the F1-confidence curve for all 
classes 0.93 at 0.535. Fig. 10 shows the training batch. Fig. 11 
shows a sample of the validating batch prediction. Fig. 12 
shows a sample of the validating batch label. The total 
estimated VRAM usage during training for YOLOv8m on a 
Tesla T4 GPU is approximately 10-12 GB. This includes the 
memory for model parameters, activation maps, gradients, and 
batch data. The total estimated VRAM usage during inference 
is around 5-8 GB, primarily due to model parameters and 
activation maps, with lower requirements as no gradients are 
stored. YOLOv8 computation time is 59.64 minutes. 

TABLE IV. YOLOV8 MAP50 OVER 32 EPOCHS 

Model Epoch mAP50 

YOLOv8 

5 75.6% 

10 89.3% 

20 94% 

25 94.2% 

32 95.3% 
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Fig. 7. Results obtained by YOLOv8 at epoch 32. 

 

Fig. 8. Performance metrics for YOLOv8. 

 

Fig. 9. Confidence curve results for YOLOv5. 

 
Fig. 10. Sample of train_batch for YOLOv8. 

 
Fig. 11. Sample of val_batch_label for YOLOv8. 

B. VGG16 

Lastly, the VGG-16 model [13], [14] that we trained 
exhibited excellent performance, as demonstrated in Table V. 
It had achieved accuracies of 68%, 96.4%, 99.5%, and 100% 
for epochs 5, 10, 15, and 20, respectively. These results 
showcased the model's remarkable ability to classify images 
with a very high degree of accuracy. Fig. 13 shows the 
accuracy of the VGG16 model for the training epochs. Fig. 14 
shows the loss of the VGG16 model for the training epochs. 
The accuracy curve steadily increased, reaching 98.68% by the 
20th epoch, while the loss curve correspondingly decreased, 
indicating the model's effective learning and optimization 
during the training process. The VGG16 model has strong 
performance metrics, as shown in Fig. 15. It achieves a recall 
of 98.59%, precision of 100%, and F1 score of 99.29%. As you 
see in Figure 16, the confusion matrix shows the VGG16 
model made 178 false positive predictions, where it incorrectly 
classified a sample as belonging to a certain class when the true 
class was different. However, it only made 8 false negative 
predictions, where it failed to correctly identify a sample's true 
class. 
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 False positives: the cases where something is 
incorrectly identified as positive or present when in 
reality it is negative or absent. 

 False negatives: the cases where the diagnosis fails to 
identify something as positive or present when in 
reality it is positive or present. 

TABLE V. VGG16 ACCURACY OVER EPOCHS 

Model Epoch Accuracy 

VGG16 5 61.73% 

10 96.65% 

15 97.79% 

20 98.68% 

 

Fig. 12. Accuracy over 20 epochs of VGG16. 

 

Fig. 13. Loss over 20 epochs of VGG16. 

 
Fig. 14. Performance metrics for the VGG16 model. 

 
Fig. 15. Confusion matrix for the VGG16 model. 

 

Fig. 16. Performance comparison of YOLO5, YOLOv8, and VGG16. 
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V. OVERALL COMPARISON AND INSIGHTS 

After reviewing the results of the three models, we found 
that the YOLOv5 model confirmed its fast inference speed, 
making it suitable for real-time applications such as 
autonomous driving. Although the accuracy is good, it is 
slightly lower than the other two models we evaluated. Also, 
there is a risk of overfitting, as this model may sometimes 
struggle to generalize to new, unseen data, and the model's 
performance may degrade in adverse weather conditions or 
with occluded or partially visible traffic signs. As for 
YOLOv8, it is one of the latest versions of the YOLO 
algorithm, and this model is generally characterized by its 
lightweight and efficiency. However, one of its drawbacks is 
that maintaining a balance between accuracy and inference 
speed may be a challenge, as the increasing model complexity 
can impact real-time performance. And the VGG16 model 
gave us remarkable results, as the model's ability to achieve an 
accuracy of 98.68% indicates its high capability to handle the 
challenges posed by adverse weather conditions and detect 
unfamiliar traffic signs. However, despite this, VGG16 is a 
relatively larger and more complex model compared to the 
YOLOv5 and YOLOv8 models, and the training and fine-
tuning of the VGG16 model may be more time-consuming and 
resource-intensive compared to the YOLO models. 

TABLE VI. YOLO AND VGG-16 RESULTS 

Model Epoch 
Performance 

measure 

for each class 

(Training) 

The performance 

measure for all 

YOLOv5 

5 

mAP50 

79.3% 

94.2% 

10 89.6% 

20 91.3% 

40 94.1% 

45 94.2% 

YOLOv8 

5 

mAP50 

75.6% 

95.3% 

10 89.3% 

20 94% 

25 94.2% 

32 95.3% 

VGG16 

5 

Accuracy 

61.73% 

98.68% 
10 96.65% 

15 97.79% 

20 98.68% 

In terms of results, in our evaluation of the YOLOv5, 
YOLOv8, and VGG16 models, we gained valuable insights. 
Regarding the model trained using YOLOv8, it achieved 
largely satisfactory results. It demonstrated a precision of 
92.58%, a recall of 88%, a mAP50 of 95.31%, a mAP50-95 of 
71.23%, and an F1 score of 97.5%. These metrics indicate its 
effectiveness in accurately detecting traffic signs under weather 
conditions. In the case of the model trained using YOLOv5, it 
achieved a precision of 92.37%, a recall rate of 90.85%, a 
mAP50 of 94.23%, a mAP50-95 of 70.28%, and an F1 score of 
97%. These results indicate its ability to detect and classify 
objects with a reasonable level of precision and consistency 
across varying IoU thresholds. On the other hand, the model 
trained using VGG-16 exhibited a highly satisfactory result, 
achieving an accuracy of 98.68%, a recall of 98.59%, a 

precision of 100%, and an F1 score of 99.29%. This showcases 
its capability to classify images with a high level of accuracy. 
Table VI presents all the model's results for a clear comparison 
between them. . In terms of the overall evaluation, the 
performance comparison as shown in Figure 17, including their 
recall, precision, and F1 scores, indicates that the VGG-16 
model outperforms the YOLOv5 and YOLOv8 models in 
terms of precision, recall, and F1 score. However, the YOLO 
models offer faster inference speed, which can be crucial for 
real-time applications like autonomous driving. The choice of 
the most suitable model ultimately depends on the specific 
requirements and trade-offs between accuracy, inference speed, 
and computational resources for the given application. 

 
Fig. 17. The performance of different models using error rate. 

VI. ANALYZE THE PERFORMANCE OF DIFFERENT MODELS 

USING ERROR RATE 

The error rate is a measure that determines the accuracy of 
a machine learning model in making predictions. It is 
calculated by finding the percentage of incorrect predictions 
out of the total predictions. This metric is important for 
evaluating model performance and identifying which one 
performs better. In this analysis, we calculated the error rates 
for three different models: VGG16, YOLO5, and YOLOV8. 
These error rates were calculated with respect to three key 
performance metrics: Accuracy, Recall, and F1 Score. 

1) Error Rate from Accuracy 

Accuracy = 100 - model_accuracy 

2) Error Rate from Recall 

Recall = 100 - model_recall 

3) Error Rate from the F1 Score 
F1 Score = 100 - model_f1_score 

 Performance metrics for VGG16: 

Accuracy: 98.68 

Recall: 98.59 

F1score: 99.29 

o VGG16 Error Rate from Accuracy: 1.32% 

o VGG16 Error Rate from Recall: 1.41% 

o VGG16 Error Rate from F1 Score: 0.71% 
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 Performance metrics for YOLOv5: 

Accuracy: 94.2 

Recall: 94.2 

F1score: 97.0 

o YOLOv5 Error Rate from Accuracy: 5.80% 

o YOLOv5 Error Rate from Recall: 5.80% 

o YOLOv5 Error Rate from F1 Score: 3.00% 

 Performance metrics for YOLOv8: 

Accuracy: 95.3 

Recall: 95.3 

F1score: 97.5 

o YOLOv8 Error Rate from Accuracy: 4.70% 

o YOLOv8 Error Rate from Recall: 4.70% 

o YOLOv8 Error Rate from F1 Score: 2.50% 

By comparing these results, we can observe that VGG16 
outperforms YOLOv5 and YOLOv8 in terms of all the 
mentioned performance metrics. It also exhibits the lowest 
average error rate. Therefore, VGG16 is the best performing 
model among the three studied. 

The main claims of our paper revolve around the 
comprehensive evaluation of multiple deep learning models for 
traffic sign detection and classification, with a particular focus 
on improving accuracy, especially in difficult weather 
conditions and with unfamiliar signs. Our findings highlight 
the great potential for further progress in this area, which is 
critical to enhancing the safety and efficiency of autonomous 
driving technologies. 

VII. CONCLUSION 

The field of traffic sign detection plays a crucial role in 
advancing autonomous driving systems and ensuring road 
safety. Many studies on traffic sign detection focus on 
detecting signs in normal weather conditions rather than 
challenging weather. This research aims to enhance the 
accuracy of traffic sign detection systems, particularly in 
challenging weather conditions such as rain and fog. Deep 
learning techniques and algorithms, including various versions 
of YOLO such as YOLOv5, YOLOv8, and VGG16, were 
employed to achieve precise recognition and interpretation of 
traffic signs. 

The YOLOv5 model achieved a mAP50 of 94.2% after 45 
iterations, while the YOLOv8 model demonstrated satisfactory 
results, with a mAP50 of 95.3% after 32 iterations and 95.2% 
after 45 iterations. The VGG16 model, which focuses on object 
classification, displayed high accuracy in training, reaching 
98.68% after 15 iterations. Overall, the utilization of deep 
learning models, such as YOLOv5, YOLOv8, and VGG16, has 
shown significant potential in improving the accuracy and 
efficiency of traffic sign detection systems under challenging 
weather conditions. These models can be trained on labeled 

datasets to learn and recognize various shapes, colors, and 
symbols associated with road signs. 

The research presented promising results in traffic sign 
detection under challenging weather conditions, contributing to 
the advancement of autonomous driving systems and 
promoting safer and more efficient roadways. Further 
optimization and refinement of the models can lead to even 
better performance. 

The novelty of this study lies in its holistic evaluation of 
multiple YOLO versions and the VGG-16 model, which 
provides a more nuanced understanding of the performance 
and applicability of these deep learning techniques for traffic 
sign detection under diverse environmental conditions. This 
comparative approach represents a significant contribution to 
the field, as it goes beyond the limitations of previous studies 
that focused on a single YOLO version, and offers valuable 
insights for the development of advanced autonomous driving 
systems. 
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