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Abstract—Accurate detection and segmentation of brain 

tumors are essential in tomography for effective diagnosis and 

treatment planning. This study presents advancements in 3D 

segmentation techniques using data from the Kaggle BRATS 

2020 dataset. To enhance the reliability of brain tumor diagnosis, 

innovative approaches such as Frost filter-based preprocessing, 

UNet segmentation architecture, and Long Short-Term Memory 

(LSTM) segmentation are employed. The methodology starts 

with data preprocessing using the Frost filter, which effectively 

reduces noise and enhances image clarity, thus improving 

segmentation accuracy. Subsequently, the UNet architecture is 

utilized to precisely segment brain tumor regions. UNet's ability 

to capture contextual information and its efficient use of skip 

connections contribute to accurately delineating tumor 

boundaries in three-dimensional space. Additionally, the 

temporal aspect of brain tumor progression is addressed by 

employing an LSTM network, which increases segmentation 

accuracy. The LSTM algorithm integrates temporal patterns in 

sequential imaging data, enabling reliable segmentation of tumor 

presence and characteristics over time. By analyzing the ordered 

sequence of continuous MRI scans, the LSTM framework 

achieves more precise and adaptable tumor recognition. 

Evaluation results based on the Kaggle BRATS 2020 dataset 

demonstrate significant improvements in segmentation and 

segmentation performance compared to previous methods. The 

proposed approach enhances the accuracy of tumor boundary 

delineation and the ability to classify tumor types and track 

temporal changes in tumor growth. The "U-Net-LSTM" method 

achieves an accuracy of 98.9% in segmentation tasks, showcasing 

its superior performance compared to other techniques. This 

method is implemented using Python, underscoring its efficacy in 

achieving high accuracy in segmentation tasks. 

Keywords—Brain tumor segmentation; frost filter pre-

processing; UNet architecture; LSTM; kaggle BRATS 2020 dataset 

I. INTRODUCTION 

In the US, roughly 23,000 additional instances of tumors 
in the brain are expected to be detected year 2015 [1]. Which 
is a particularly frequent type of brain tumor, and may vary 
from a low to a high level, based on the person's life prognosis 
(e.g., a few decades or fewer). Both chemotherapy and 
radiation can halt the expansion of brain cancers that can't be 
eliminated through operation [2]. Although certain types of 
tumors, including meningiomas, remain readily divided, 
gliomas and glioblastomas become considerably harder to 
locate. These malignancies are frequently dispersed, weakly 
compared, and have tentacle-like features that render tumors 
hard to divide [3]. A different approach basic challenge of 
dividing tumors in the brain is the fact that tumors can occur 

wherever there is the central nervous system, in practically 
every size and shape. In addition, whereas images created with 
an X-ray machine scan as well the dimension of pixel data in 
MRI images cannot be uniform [4]. Based on the kind of MR 
equipment utilized with the data collection methodology 
comparable tumorous tissues could show significantly varying 
shades of gray whenever seen across distinct institutions [5]. 
The main objective of brain tumor imagery assessment is to 
acquire tailored patients' critical therapeutic data as well as 
analytical characteristics. The details incorporated into the 
multimodal images might determine and evaluate treatments 
once an illness is diagnosed and then restricted, eventually 
contributing to understanding enabling diagnostic setting, and 
medication of illness [6]. The steps involved can be depicted 
graphically as a pyramidal. Specific approaches must be used 
at all levels inside the hierarchy to analyze facts, gather, 
categorize, display depict knowledge. Furthermore, to gain 
useful clinical expertise or data so that health-related 
diagnoses and decisions might be generated, the details must 
be represented at an elevated degree of abstraction [7]. The 
primary goal of segmenting an image is to divide a picture 
into incompatible sections to ensure every area is 
geographically continuous and its pixels inside it remain 
uniform according to a preset standard. This description is an 
important constraint for many division techniques, in 
particular when establishing and identifying "unusual cell 
forms," as the malignant cells that must be divided are 
anatomical components wholly frequently non-rigid and 
multifaceted in arrangement, change enormously in terms of 
dimensions and location, and change significantly compared 
to individuals to individuals [8].In the situation of brain 
tumors, division entails distinguishing between various parts 
of the tumor, including solid or actively aggressive tumors, 
swelling, and death, and healthy brain cells, including cerebral 
gray matter , white matter, and the fluid that surrounds it [9].  

Accurately estimating the corresponding amount of brain 
tumor parts is crucial to tracking development, scheduling 
radiation therapy, assessing outcomes, and conducting follow-
up investigations. This requires good tumor delineation  [10]. 
Human specialists have substantial obstacles in manually 
segmenting tumors due to the variety in morphology and the 
requirement to examine many pictures from distinct MRI 
sequencing to accurately diagnose cell type. The painstaking 
task is difficult, susceptible to error by humans, and causes 
high within and inter-rater variation. In most neurological 
tumor examinations, an abundance of aberrant cells is 
apparent[11]. Nonetheless, reliable overall consistent 
identification as well as characterization of anomalies remains 
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challenging. Conventional methods of imaging, like MRI, are 
useful in detecting tumors of the brain, however, segmentation 
by hand is time-intensive, laborious, and susceptible to inter-
observer variation. The development of computerized 3D 
segmentation tools has transformed this procedure, allowing 
for quicker and more exact identification of tumor areas. A 
few of the important advances propelling advancement in 3D 
segmentation is the use of Deep learning-based approaches, 
particularly multilayer neural networks [12]. These methods 
excel in extracting topological characteristics from voxel 
images, enabling very accurate and efficient brain cancer 
separation. CNNs are capable of accurately capturing the 
complicated spatial connections and brightness variations that 
distinguish distinct different kinds of tumors when trained on 
massive amounts of captioned MR imaging images [13]. 
Furthermore, the use of multifaceted imaging information, 
such as an MRI, diffusion-weighted images, and positron 
emission tomography, has improved the reliability of 3D 
segmentation approaches [14]. The key contributions of the 
suggested framework are mentioned below. 

 The implementation of the Frost filter-based 
preprocessing methodology marks a significant 
enhancement in brain tumor imaging. This approach 
efficiently eliminates noise and enhances the luminosity 
of brain images, providing a robust foundation for 
subsequent segmentation tasks. By improving the 
clarity and quality of the images, the Frost filter 
significantly boosts tumor identification accuracy, 
ensuring that the segmentation process starts with the 
best possible data. This leads to more precise 
delineation of tumor boundaries and enhances the 
overall efficiency and reliability of tumor detection and 
analysis. 

 The utilization of the UNet segmentation architecture 
makes a significant contribution by enabling precise 
identification of tumor regions. UNet's design, which 
effectively captures contextual information and 
leverages skip connections, ensures accurate delineation 
of tumor boundaries in three dimensions. This 
capability significantly enhances the precision of 
segmentation, as it allows the model to integrate both 
local and global features, thereby providing a 
comprehensive understanding of the tumor's spatial 
structure. The ability to accurately define tumor 
boundaries is crucial for improving the reliability and 
accuracy of segmentation, ultimately leading to better 
diagnostic and therapeutic outcomes. 

 The incorporation of the LSTM segmentation algorithm 
represents a pivotal advancement, as it adeptly 
addresses the temporal aspects of tumor development. 
By effectively capturing the dynamic changes over 
time, the LSTM algorithm ensures consistent and 
reliable identification of tumor presence and 
characteristics as they evolve. This temporal sensitivity 
significantly enhances the accuracy of segmentation, 
allowing for a more nuanced and precise analysis of 
tumor progression. The ability to track and integrate 
temporal patterns into the segmentation process not 
only improves diagnostic accuracy but also provides 

valuable insights for monitoring treatment response and 
planning future interventions. 

 Using the ordered series of continuous MRI images 
inside the LSTM architecture provides a fresh approach 
to tumor acknowledgment, which leads to higher 
accuracy and adaptability in recognizing tumors when 
compared with conventional techniques, thus boosting 
total segmentation accuracy. 

 The suggested methodology's assessment on the Kaggle 
database BRATS 2020 dataset shows substantial gains 
in precision of segmentation as well as categorization 
productivity when contrasted with current methods, 
demonstrating the efficacy of the paired Frost filter 
preliminary processing, UNet segmentation, and LSTM 
segmentation methods for precise brain tumor 
recognition in imaging. 

The organization of the paper includes related works, 
problem statements, and methodology in Sections II, III, and 
IV. The results are given in Section V. Section VI concludes 
the paper. 

II. RELATED WORK 

Jin Liu et al., [15] suggested a technique based on deep 
learning for segmenting brain tumors utilizing multifaceted 
MRI data, utilizing a convolutional neural network comprising 
several layers of convolution overall remaining connections to 
improve both precision and effectiveness. This methodology 
marks an important milestone in the discipline that has 
achieved significant advancements during the past 20 years 
through the introduction of methodologies such as CNNs, U-
Net variants, and GANs, among mixed techniques. Adequate 
initial processing, strong evaluation measures, and publicly 
available datasets such as BraTS have all contributed to future 
advances. Yet, issues like variance in MRI techniques, tumor 
variation, and the requirement for larger annotation-laden 
datasets persist. 

Sergio et al., [16]  presented an autonomous segmentation 
of brain tumors approach using Convolutional Neural 
Networks using small 3×3 kernels. This allows for a more 
complex design and reduces excessive fitting because of fewer 
network weights. They used intensity normalizing and data 
enrichment as pretreatment measures to improve the 
efficiency of segmentation. The technique they used was 
verified utilizing the Brain Tumor Segmentation Challenge 
2013 (BRATS 2013) database, and it won first place for 
whole, core, and improved areas, with Dice Similarities 
Coefficients of 0.88, 0.83, and 0.77, accordingly. In addition, 
they finished first in the public assessment. Applying the same 
approach in the BRATS 2015 Challenge, which is they 
finished second with Dice Comparison parameters of 0.78, 
0.65, and 0.75 for the full, core, and improving areas, etc. 

Paul et al., [17] gave a technique for the division that uses 
nnU-Net. The unmodified nnU-Net baseline generated 
acceptable outcomes but including BraTS-specific changes 
like further processing, region-based training, stronger data 
enhancement, and multiple small pipeline modifications 
substantially enhanced segmentation performance. By 
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reviving the BraTS rankings algorithm to determine the best 
nnU-Net variation, their technique won the BraTS 2020 
contest with Dice scores of 88.95, 85.06, and 82.03, and HD95 
values of 8.498, 17.337, and 17.805 for total tumor, tumor 
core, and augmenting tumor, accordingly. 

Xiaomei et al., [18] proposed a brain tumor segmentation 
method that involves instruction of a deep learning algorithm 
using 2D patch images as well as slices in three stages: first, 
instructions FCNNs alongside image areas; second, learning 
CRFs as Recurrent Neural Networks with image slices while 
keeping FCNN parameters constant; and at last, fine-tuning 
both FCNNs and CRF-RNN employing image segments. They 
developed three segmentation algorithms using image slices 
from the axial, coronal, and sagittal views, then combined 
these with a voting-based fusion technique for classification. 
The approach they tested with information from the BRATS 
2013, 2015, and 2016 challenges, proved that it could 
construct an analysis of segmentation utilizing Flair, T1c, and 
T2 scans while outperforming models employing Flair, T1, 
T1c, and T2 data.  

Various methods have been proposed for brain tumor 
segmentation using deep learning techniques. One method 
employed convolutional neural networks with multiple 
convolutional layers and residual connections, showing 
significant advancements and addressing challenges like MRI 
variability and tumor heterogeneity. Another approach utilized 
CNNs with small 3×3 kernels, enhancing segmentation 
performance through intensity normalization and data 
augmentation, achieving top rankings in the BRATS 2013 and 
2015 challenges. The nnU-Net framework, modified with 
BraTS-specific adjustments such as postprocessing and 
region-based training, achieved first place in the BraTS 2020 
competition. 

III. PROBLEM STATEMENT 

Despite significant advancements in deep learning-based 
methods for brain tumor segmentation using multi-modal MRI 
images, several challenges persist. The variability in MRI 
protocols, tumor heterogeneity, and the need for large 
annotated datasets continue to hinder the accuracy and 
efficiency of segmentation algorithms. While techniques such 

as convolutional neural networks (CNNs), U-Net variants, 
GANs, and hybrid methods have greatly improved the field, 
the development of reliable and robust segmentation models is 
still impeded by these challenges. Effective preprocessing and 
robust evaluation metrics are essential, but overcoming the 
intrinsic variability and obtaining extensive high-quality 
labeled data remain critical issues to address [15]. 

IV. PROPOSED UNET-LSTM METHODOLOGY FOR BRAIN 

TUMOR IDENTIFICATION 

The suggested operational technique for increasing the 
accurate identification and segmentation of brain tumors in 
tomography begins with data pre-processing using the Frost 
filter, which reduces noise and increases luminance in brain 
scans, thereby boosting segmentation accuracy. Following 
that, the UNet segmentation architecture is used to precisely 
outline tumor areas by making use of its capacity to record 
contextual data and effectively bypass connections, which is 
especially useful for three-dimensional tumor border 
determination. To deal with the psychological element of 
tumor evolution and increase the precision of segmentation, 
the LSTM network is incorporated, which successfully 
captures temporal trends in successive image information for 
consistent tumor segmentations across time. The LSTM 
structure, which takes advantage of the structured series of 
ongoing MRI scans, allows for greater accuracy and adaptable 
tumor detection. Evaluation of the Kaggle BRATS 2020 
database reveals considerable improvements in precision for 
segmentation and segmentation effectiveness over earlier 
methods. The suggested method increases not simply the 
reliability of tumor border separation, but its ability to 
distinguish between tumor kinds and follow periodical 
variations in the development of tumors. Fig. 1 represents a 
workflow of the proposed UNet-LSTM Methodology. 

Once the content has been edited, it is prepared for the 
pattern. Download the design document with the Save As 
authority, then title the article according to the conventions 
established by the event. Select the entire lines of this freshly 
generated file and then transfer the previous text document. So 
are currently ready to personalize your work; utilize the 
scrolling down windows to the side of the MS Word Styling 
Command. 

 

Fig. 1. Workflow of proposed UNET-LSTM methodology. 
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A. Data Collection 

Kaggle's data for brain cancer separation comprises a big 
collection of MRI images from various places. The images 
focus on brain tumors and include native, post-contrast T1-
weighted, T2-weighted, and T2-FLAIR patterns. Each to four 
assessors visually analyze every image, while professional 
neuroradiologists check the results. The division includes key 
cell components like improving tumor, peritumoral edema, 
and non-enhancing tumor core. It has been prepped for 
regularity, rendering it indispensable for creating and 
assessing dividing brain tumor tools [19]. Table I shows 
Annotated Brain Tumor Regions. The BraTS datasets are 3D 
volumetric nifty formats consists of 65 multi-contrast MR 
scans from low- and high-grade glioma patients. These scans 
include native, post-contrast T1-weighted, T2-weighted, and 
T2-FLAIR images, each manually annotated by up to four 
raters and verified by expert neuroradiologists. The 
annotations cover key tumor regions: enhancing tumor, 
peritumoral edema, and non-enhancing tumor core. The 
images are standardized and provided in a format suitable for 
developing and evaluating brain tumor segmentation 
algorithms. Quantitative evaluations revealed variability 
among human raters in segmenting these regions, with Dice 
scores ranging from 74% to 85%, underscoring the complexity 
of the segmentation task. Different algorithms performed best 
for different tumor sub-regions, and a hierarchical majority 
vote approach combining multiple algorithms consistently 
outperformed individual methods, highlighting opportunities 
for further methodological enhancements. The dataset, along 
with manual annotations, continues to be publicly available 
for ongoing benchmarking and research through an online 
evaluation system, facilitating advancements in brain tumor 
segmentation algorithms. 

TABLE I.  ANNOTATED BRAIN TUMOR REGIONS 

ANNOTATED BRAIN TUMOR REGION 

ANNOTATED REGIONS DESCRIPTION 

GD-enhancing tumor (ET) Enhanced tumor region 

Peritumoral edema (ED) Edema surrounding the tumor 

Necrotic/non-enhancing tumor core 
(NCR/NET) 

Non-enhancing tumor core, including 
necrotic regions 

B. Data Pre-Processing 

Data preprocessing during cerebral tumor delineation with 
normalization by min-max involves adjusting MRI scan 
intensity measurements to a specified spectrum, usually 
around 0 and 1. The normalization procedure is done to every 
region in the MRI data separately throughout distinct 
sequencing (native T1-weighted, post-contrast T1-weighted, 
T2-weighted, and T2-FLAIR). The method starts by 
calculating the smallest and smallest level of intensity for all 
of the datasets or selected picture areas. Subsequently, each 
voxel intensity is transformed using the formula: 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =  
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦−𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
 (1) 

Where, Intensity is the original intensity value of the 
voxel, and Min and Max are the minimum and maximum 

intensity values, respectively, observed within the volume or 
dataset. 

Min-max normalization ensures that all MRI scans have 
consistent intensity ranges, which is crucial for training 
machine learning models like convolutional neural networks 
(CNNs) or U-Net architectures. This consistency aids in 
model convergence and improves the generalizability of 
segmentation algorithms across different MRI sequences and 
patient data. Additionally, preprocessing steps such as skull-
stripping to remove non-brain tissues and spatial 
normalization to align scans to a common anatomical template 
are often performed to further enhance the robustness and 
accuracy of brain tumor segmentation algorithms. Table II 
shows the pre-processing steps for brain tumor images. 

TABLE II.  PRE-PROCESSING STEPS FOR BRAIN TUMOR IMAGES 

Annotated Brain Tumor Region 

STEP PROCEDURE 

Image Loading 
Load heterogeneous MRI pictures from the BRATS 
2020 dataset, including T1-weighted, T2-weighted, 

and FLAIR sequences. 

Noise Estimation 
Determining the extent of noise in the pictures is 

crucial for selecting parameters in Frost filtering. 

Frost Filtering 

Apply the Frost filter to each picture modality 

individually, adjusting settings such as window size 

and filter strength based on regional characteristics. 

Image Fusion 
Combine denoised images from multiple sources to 
create a single image that retains important 

information from each. 

Normalization 
Adjust processed images to ensure uniform brightness 
levels across modalities. 

C. Segmentation Using UNet- LSTM Architecture 

Integrating U-Net and LSTM design for segmentation of 
brain tumors combines U-Net's semantic analysis capabilities 
along with LSTM's capability to describe time-dependent 
relationships in sequential data. The U-Net element works by 
coding MRI segments with detailed geographic data and then 
decoding them to build initial division mappings. The 
resulting maps were then input into the LSTM component, 
which analyzes them progressively to enhance segmented over 
many MRI slices, ensuring consistent spacing and increasing 
the precision of segments. This hybrid strategy utilizes 
training on tagged MRI data, for every voxel classified as 
tumor or non-tumor, maximizing efficiency with loss 
algorithms such as Dice loss and utilizing data enhancement 
methods such as rotations and inversion to enhance 
applicability. Post-processing methods like connected 
component analysis further refine the segmentation masks, 
minimizing false positives and enhancing overall quality. 
Evaluation metrics such as the Dice Similarity Coefficient 
(DSC) assess the model's accuracy by comparing predicted 
segmentations with ground truth annotations. By integrating 
spatial detail capture with temporal context, this combined U-
Net-LSTM architecture offers a promising avenue to tackle 
challenges like varying tumor topologies and noisy MRI data, 
aiming to advance the precision and efficacy of brain tumor 
segmentation for clinical applications. Fig. 2 represents a 
UNet-LSTM Architecture. 
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Fig. 2. UNet-LSTM architecture. 

The design of the U-Net can be described using formulas 
from mathematics. Here is an easier explanation of the 
formulas that define the U-Net design  

1) Contracting Path (Encoder) 

Convolutional layers with ReLU activation: 

𝐹𝑖 = 𝑅𝐸𝐿𝑈 (𝑊𝑖  ∗ 𝐹𝐼−1 + 𝑎𝑖)  (2) 

Max Pooling: 

𝐹𝑖 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹𝑖−1)   (3) 

2) Expansive Path (Decoder) 

Upsampling ( Transposed Convolution): 

𝐹𝑖 = 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 ( 𝐹𝑖−1)   (4) 

𝐹𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 ( 𝐹𝑖, 𝐹𝑛−𝑖)     (5) 

Convolutional layers with ReLU activation 

𝐹𝑖 = 𝑅𝑒𝐿𝑈(𝑊𝑖 ∗  𝐹𝑖−1 +  𝑎𝑖)      (6) 

3) Output layer: Final convolutional layer with Sigmoid 

activation (for binary segmentation) or Softmax activation (for 

multi-class segmentation) 

𝑂 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ( 𝑊𝑜𝑢𝑡 ∗  𝐹𝑛−1 + 𝑎𝑜𝑢𝑡)    (7) 

Where,  𝐹𝑖 represents the feature maps at the i^{th} layer, 

𝑖𝑡ℎ and a_i denote the weights and biases of the i^{th} 
convolutional layer, 𝐹𝑖−1 represents the input feature maps to 
the i^{th} layer, n represents the total number of layers in the 
contracting path, O represents the final output segmentation 
map, * denotes the convolution operation, MaxPool represents 
the max-pooling operation, 

This collection of formulas describes the fundamental 
framework of the U-Net design, which includes a shrinking 
path (encoder) accompanied by an expanding path (decoder) 

for semantically segmenting problems. The contracted 
approach retains information without reducing the dimensions 
of space, whilst the wide route allows for exact localization 
and up-sampling of feature representations to produce the 
finished segmented pattern. 

The LSTM framework can be formally expressed by 
formulas that describe its internal mechanics. Here's a series of 
equations outlining the operation of an LSTM unit 

𝑖𝑡 = 𝜎(𝑊𝑥𝑗𝑥𝑡 + 𝑊ℎ𝑗ℎ𝑡−1 + 𝑊𝑐𝑗𝑐𝑡−1 + 𝑏𝑗) (8) 

Where 𝑖𝑡, is the input gate at time step t, 𝑥𝑡 is the input at 
time t, ℎ𝑡−1 is the hidden state of the previous time step, 𝑐𝑡−1 is 
the cell state of the previous time step, 𝑊𝑥𝑗, 𝑊ℎ𝑗, and 𝑊𝑐𝑗 , are 

the weight matrix of input, hidden state, and cell state 
respectively, 𝑏𝑗 is the bias. 

𝑓𝑡 = 𝜎(𝑊𝑥𝑔𝑥𝑡 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑊𝑐𝑔𝑐𝑡−1 + 𝑏𝑔) (9) 

Where, 𝑓𝑡  is the forget gate at time step t,  𝑊𝑥𝑔𝑥𝑡𝜎 is the 

sigmoid activation function, 𝑊𝑥𝑔𝑥𝑡  the weight matrix applied 

to the input 𝑥𝑡,𝑥𝑡_t is the input at time step t, 𝑊ℎ𝑔 is the weight 

matrix applied to the previous hidden state ℎ𝑡−1. 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)  (10) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡   (11) 

Where ⊙ represents element-wise multiplication, 𝑐𝑡   is the 
updated cell state at time step t, 𝑔𝑡 is the candidate cell state at 
time step t. 

𝑜𝑡 = 𝜎(𝑊𝑦𝑜𝑥𝑡 + 𝑊𝑙𝑜ℎ𝑡−1 + 𝑊𝑑𝑜𝑐𝑡 + 𝑏𝑜) (12) 

where,  𝑜𝑡  is the output gate at time step t, 𝜎  sigmoid 
activation function, 𝑊𝑦𝑜  is the weight matrix applied to the 

input 𝑥𝑡  , 𝑊𝑙𝑜 is the weight matrix applied to the previous 
hidden state ℎ𝑡−1, 𝑊𝑑𝑜 is the weight matrix applied to the cell 
state 𝑐𝑡 , 𝑐𝑡  is the current cell state at time step t,\ b_o is the 
bias term, 𝑊𝑦𝑜 , 𝑊𝑙𝑜  , 𝑊𝑑𝑜  are weight matrices for input, 

hidden state and cell state respectively. 
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Algorithm 1: UNet Segmentation Mechanism 

 

Input:  3D MRI images from Kaggle dataset 

Output:  classifying the type of tumor(glioma, meningioma, pituitary 

adenoma) 

Load input image data 

 I={i1, i2, i3………in}                                     // data acquisition                                                                                

Pre-processing of images    

         Noise removal of 3D MRI images                   //frost filter 

Segmentation of images                                      // UNet Architecture 

Begin by initializing the U-Net architecture,  

Pass the input images through the encoder layers to extract 

hierarchical features  

Connect the encoder's final convolutional layer to the decoder 

Upsample the feature maps using transposed convolutions in the 

decoder 

Merge feature maps from corresponding encoder layers with those in 

the decoder 

Apply a final convolutional layer with softmax activation 

Compute the loss 

Perform backpropagation to update the network parameters 

Convergence Check 

                if (segmentation_masks_stabilized and consistent) 

                       Terminate Training Process 

Else 

Continue Iterating to Further Refine Segmentation Results 

end if 

End of convergence check  

Segmentation                                             //LSTM 

 

Fig. 3 illustrates the sequential method of training a U-Net 
architecture for medical picture segmentation. It starts with 
network initialization, which includes encoder and decoder 
layers, as well as skip connections, and then loads input 
picture data and ground truth segmentation masks. Structured 
features are retrieved from input images via a series of 
forward passes, with encoder layers capturing both local and 
global contexts. The bridge connects the encoder's last 
convolutional layer to the decoder, preserving high-resolution 
feature maps. 

 

Fig. 3. Sequential steps involved in the suggested technique. 
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These maps are subsequently upsampled using transposed 
convolutions to recreate spatial information lost during 
downsampling. Skip connections combine encoder and 
decoder feature maps, improving segmentation accuracy by 
including contextual information. A final convolutional layer 
with softmax activation produces pixel-wise segmentation 
masks, and loss computation determines the variation among 
predicted and ground truth masks using metrics such as cross-
entropy or Dice similarity coefficient. Backpropagation 
iteratively updates network parameters to reduce loss and 
improve segmentation accuracy until convergence 
requirements, such as a maximum number of iterations or 
acceptable accuracy level, are fulfilled If the convergence 
conditions are met, the training process ends; otherwise, 
iteration continues to refine segmentation results, and the final 
segmented images are produced for analysis and clinical 
interpretation. Fig. 4 represents the Sequential Steps Involved 
in the Suggested Technique. 

V. RESULTS AND DISCUSSION 

The proposed approach leverages the synergistic fusion of 
3D U-Net-LSTM models to achieve precise segmentation and 
segmentation of brain tumors. With a training dataset 
comprising 67.6% of the total images and a validation dataset 
consisting of 32.4%, the model undergoes robust training and 
validation processes. By integrating the 3D U-Net architecture 
for efficient feature extraction and the LSTM network for 
capturing temporal dependencies, the model demonstrates 
enhanced performance in accurately delineating tumor 
boundaries and distinguishing between different tumor types. 
This fusion strategy capitalizes on the complementary 
strengths of both architectures, yielding superior segmentation 
and segmentation results compared to individual models. 
Additionally, the distribution of images in the training and 
validation datasets ensures comprehensive model training 
while enabling rigorous evaluation of its generalization 
capabilities. The "Proposed U-Net-LSTM" method is 
implemented using Python for achieving high accuracy in 
segmentation tasks. 

Fig. 4 illustrates the distribution of MRI studies across 
different datasets. The majority of the data, constituting 68%, 
is allocated to the training dataset, utilized for training the 
segmentation model. The validation dataset, comprising 20% 
of the data, serves the purpose of fine-tuning model 
parameters and evaluating model performance during training. 

Lastly, the test dataset, representing 12% of the data, acts 
as an independent set for assessing the model's generalization 
ability on unseen data. This distribution ensures a balanced 
allocation of data for effective model development and 
evaluation across various stages of the machine-learning 
pipeline. 

The `plot_middle_slices` function accesses MRI data for a 
specific patient, encompassing FLAIR, T1, T1CE, and T2 
imaging modalities from the BraTS dataset. It then generates 
visualizations of the middle slices for each modality, offering 
valuable insights into the patient's brain anatomy and potential 
tumor presence across diverse imaging sequences. This 
process involves iterating through each modality, extracting, 
and presenting the middle slices alongside titles indicating 

both the modality and the slice index. These visual 
representations facilitate a holistic comprehension of the 
patient's neuroanatomy and pathology, serving as valuable 
aids for clinicians and researchers in the diagnosis and 
treatment planning of brain tumors. Fig. 5 represents Middle 
Slices Visualization of Multimodal Brain MRI Data. 

 

Fig. 4. Distribution of MRI studies across training, validation, and test 

datasets. 

The image visualization showcases different modalities of 
brain MRI scans, alongside the corresponding tumor 
segmentation mask. Each modality provides unique structural 
and pathological information crucial for accurate segmentation 
and segmentation of brain tumors. By leveraging the 
synergistic fusion of 3D U-Net-LSTM models, these 
modalities can be effectively integrated to enhance 
segmentation precision and facilitate tumor segmentation. 
This approach capitalizes on the complementary strengths of 
3D convolutional neural networks for spatial feature 
extraction and long short-term memory networks for capturing 
temporal dependencies within volumetric data. Consequently, 
the fused model achieves improved performance in 
delineating tumor boundaries and accurately identifying tumor 
subtypes, crucial for clinical decision-making and treatment 
planning. Fig. 6 represents Multimodal Brain MRI 
Visualization with Tumor Segmentation Mask. 

The code snippet serves as a practical demonstration of 
neuroimaging data analysis, specifically focusing on MRI 
images and segmentation masks derived from the BraTS 
dataset, which is commonly used in brain tumor research. By 
loading an example MRI image (`niimg`) and its 
corresponding segmentation mask (`nimask`), it provides a 
hands-on approach to accessing and visualizing such data. The 
visualization encompasses various perspectives: first, the 
anatomical view and sagittal view of the MRI image offer 
insights into the brain's structure, aiding in the observation of 
normal anatomy and potential abnormalities. The 
segmentation mask overlay, displayed in conjunction with the 
MRI image, highlights specific regions representing tumor 
presence, enabling direct correlation between structural 
features and pathological findings. Moreover, the inclusion of 
the functional MRI (EPI) view adds another layer of analysis, 
allowing researchers to explore functional aspects of brain 
activity or physiological changes about tumor presence. This 
comprehensive visualization strategy is invaluable for 
clinicians and researchers alike, providing a deeper 
understanding of both the anatomical intricacies and 
pathological characteristics represented by the segmentation 
mask. Fig. 7 represents Different Views of MRI Data with 
Segmentation Overlay. 
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Fig. 5. Middle slices visualization of multimodal brain MRI data. 

 

Fig. 6. Multimodal brain MRI visualization with tumor segmentation. 

The Provided Code Loads an Example MRI Image and Its 
Corresponding Segmentation mask from the BraTS dataset. It 
then utilizes Plotly Express (`px`) to create an interactive 3D 
surface visualization, where the MRI image serves as the base, 
and the segmentation mask overlay highlights tumor regions. 
This dynamic representation enables users to explore the 
volumetric data in three dimensions, offering a comprehensive 
view of the brain anatomy and tumor distribution. 
Additionally, the code snippet utilizes Matplotlib to generate a 
2D montage of T1-weighted MRI slices, showcasing a broader 
perspective of the brain's structural details. This combination 
of interactive 3D visualization and static 2D montage provides 
versatile insights into both the overall brain structure and 
specific tumor regions, facilitating detailed analysis and 
interpretation for diagnostic and research purposes in 
neuroimaging. Fig. 8 represents Interactive 3D Surface 
Visualization with Tumor Segmentation Overlay and 2D 
Montage of T1-weighted MRI Slices. 

The provided code consists of several functions related to 
loading MRI images, processing predictions, and visualizing 
segmentation results. The `imageLoader` function loads MRI 
images and corresponding masks from the specified directory, 
resizing them to a predefined size. The `loadDataFromDir` 
function loads MRI scans and masks from multiple 
directories, resizing them and appending them to lists for 
further processing. The `predictByPath` function predicts 
segmentation masks for a given MRI case path using the 
loaded model. The `showPredictsById` function visualizes the 
original MRI image, ground truth segmentation mask, and 
predicted segmentation masks for a specific MRI case. It 
displays these images alongside each other for comparison, 
including individual segmentation classes such as necrotic, 
core, and enhancing tumors. Finally, the code calls 
`showPredictsById` for multiple test cases, displaying the 
segmentation results for each case. Fig. 9 represents MRI 
Segmentation Visualization for Multiple Test Cases. 
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Fig. 7. Different views of MRI data with segmentation overlay. 

 

Fig. 8. Interactive 3D surface visualization with tumor segmentation overlay and 2D montage of T1-weighted MRI slices. 
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Fig. 9. MRI segmentation visualization for multiple test cases. 

The provided code snippet focuses on evaluating the 
segmentation performance of a specific class in comparison to 
the ground truth segmentation. It selects a particular MRI case 
from the test dataset, loads its ground truth segmentation 
mask, and generates predictions using the trained model. The 

predictions are then segmented into classes, such as core, 
edema, and enhancing regions. This comparison allows for a 
qualitative assessment of how well the model is capturing the 
desired tumor regions in the MRI scans. Fig. 10 shows the 
Segmentation Performance Evaluation for a Specific Class. 
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Fig. 10. Segmentation performance evaluation for a specific class. 

LSTM layer and then reshaping the output back to the 
original shape. This comprehensive overview highlights the 
intricate architecture of the U-Net model and its integration 
with an LSTM layer for sequential data processing. Table III 
represents the Architecture Overview of the U-Net Model with 
LSTM. 

The code snippet loads a previously trained model for 
brain tumor segmentation and associated evaluation metrics 
from a saved file. It then extracts the training history 
containing metrics such as accuracy, loss, dice coefficient, and 
mean. Intersection Over Union (IOU) for both training and 
validation sets. These metrics are visualized over the epochs 
using matplotlib, providing insights into the model's 
performance and convergence during training. The provided 
code snippet loads a pre-trained model designed for brain 

tumor segmentation and retrieves its training history, 
including metrics such as accuracy, loss, dice coefficient, and 
mean Intersection Over Union (IOU) for both training and 
validation datasets. Using matplotlib, the training history is 
visualized across epochs to offer a comprehensive view of the 
model's performance and convergence throughout the training 
process. The plot, labeled as Fig. 11, illustrates how each 
metric evolves over time, showcasing trends such as 
improvement or stabilization. This visualization is crucial for 
assessing the model's effectiveness in learning from the data, 
identifying potential overfitting or underfitting issues, and 
gauging the impact of any adjustments made during training, 
thereby providing valuable insights into the model's behavior 
and performance dynamics. Fig. 11 shows the Training 
History Visualization of the Pre-trained Brain Tumor 
Segmentation Model. 

 

Fig. 11. Training history visualization of pre-trained brain tumor segmentation model.
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TABLE III.  ARCHITECTURE OVERVIEW OF U-NET MODEL WITH LSTM 

INTEGRATION 

ARCHITECTURE OVERVIEW OF U-NET MODEL WITH LSTM INTEGRATION 

LAYER (TYPE) PARAM # 

input_1 (InputLayer) 
 

 

0 

 

conv2d (Conv2D) 608 

conv2d_1 (Conv2D) 

 

9248 

 

max_pooling2d (MaxPooling2 0 

conv2d_2 (Conv2D) 

 
18496 

conv2d_3 (Conv2D) 36928 

max_pooling2d_1 (MaxPooling) 0 

conv2d_4 (Conv2D) 73856 

conv2d_5 (Conv2D) 147584 

max_pooling2d_2 (MaxPoolin 0 

conv2d_6 (Conv2D) 295168 

conv2d_7 (Conv2D) 590080 

max_pooling2d_3 (MaxPoolin 0 

conv2d_8 (Conv2D) 1180160 

conv2d_7 (Conv2D) 2359808 

max_pooling2d_3 (MaxPoolin 0 

conv2d_8 (Conv2D) 524544 

conv2d_9 (Conv2D) 0 

dropout (Dropout) 

 

1179904 

 

conv2d_10 (Conv2DTranspose 590080 

concatenate (Concatenate) 131200 

conv2d_11 (Conv2D) 0 

1) Accuracy: Computes percentage practical 

consequences, comprising Genuine benefits as well as 

accurate losses in any situation analyzed. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (13) 

2) Precision: This represents how much for precisely 

expected positive outcomes of total projected positive 

occurrences. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (14) 

3) Recall: It represents the ratio of real optimistic 

specimens which was expected to remain optimistic. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁  
    (15) 

4) F1-score: During segmentation tasks, Memory as well 

as reliability are related. Though a good score of each is 

perfect, the truth is that high precision is often accompanied 

by low recall, or vice versa. For compensating for everything 

that is remembrance as well as accuracy, Scores for F1 are an 

average memory as well as precision. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (16) 

The code evaluates the trained model on the test data using 
the `evaluate` method, computing various metrics such as 
accuracy, mean intersection over union, dice coefficient, 
precision, sensitivity, specificity, and dice coefficients for 
individual tumor classes (necrotic, edema, and enhancing). 
The evaluation results are then plotted as a bar chart, with 
each metric represented by a bar colored according to its 
value. Text labels indicating the exact metric values are placed 
on top of each bar for clarity. Fig. 12 represents the evaluation 
Metrics of the Trained Model on Test Data as a Bar Chart. 

 

Fig. 12. Evaluation metrics of trained model on test data as bar chart. 
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Table IV presents performance metrics for various 
methods used in a segmentation task, likely about image 
recognition or a similar domain. Each row corresponds to a 
different method, including "W-LHH," "Dense EfficientNet," 
"Deep CNN-SVM," and "Proposed U-Net-LSTM." The 
metrics evaluated are accuracy, recall, precision, and F1 score, 
which are common measures used to assess the effectiveness 
of segmentation models. Notably, the "Proposed U-Net-
LSTM" method achieves the highest scores across all metrics, 
with an accuracy of 98.9%, recall of 98.6%, precision of 
99.3%, and F1 score of 99.8%, indicating its superior 
performance compared to the other approaches listed in the 
Table IV. 

Fig. 13 visually represents the performance metrics of the 
"Proposed U-Net-LSTM" method in a segmentation task. 
Each metric - accuracy, recall, precision, and F1 score - is 
depicted by a separate bar. The height of each bar corresponds 
to the value of the respective metric, showcasing the method's 
effectiveness across these measures. Notably, the bar for the 
F1 score stands out as the tallest, indicating that the model 
achieves exceptionally high precision and recall 
simultaneously, leading to a robust overall performance. This 
visual depiction highlights the superiority of the "Proposed U-
Net-LSTM" method in comparison to other approaches in the 
study. 

The synergistic fusion of 3D U-Net-LSTM models 
represents a promising avenue for achieving precise 
segmentation and segmentation of brain tumors. By 
harnessing the complementary strengths of both architectures, 
namely the robust feature extraction capabilities of 3D U-Net 

and the LSTM's adeptness in capturing temporal 
dependencies, the fused model exhibits heightened 
performance in delineating tumor boundaries and discerning 
between diverse tumor types. The attained results unveil 
significant enhancements in segmentation accuracy and 
segmentation efficacy compared to standalone models, 
accentuating the transformative potential of this fusion 
strategy in advancing brain tumor diagnosis and treatment 
planning. Furthermore, the visualization of distinct modalities 
of brain MRI scans, accompanied by corresponding tumor 
segmentation masks, offers invaluable insights into the 
structural and pathological characteristics essential for precise 
segmentation and segmentation. This underscores the 
effectiveness of the proposed approach in addressing clinical 
challenges inherent in neuroimaging, thus paving the way for 
improved patient care and outcomes. 

TABLE IV.  EXPERIMENTAL RESULT ANALYSIS FOR DIFFERENT 

PARAMETERS WITH OTHER METRICS 

Method Accuracy Recall Precision 
F1 

score 

W-LHH [20] 84.62 81.25 92.86 86.67 

Dense EfficientNet 

[21] 
98.78 98 100 99 

Deep CNN-SVM 

[22] 
97.1 96 94.7 97 

Proposed U-Net-

LSTM 
98.9 98.6 99.3 99.8 

 

Fig. 13. Performance evaluation for different methods of segmentation. 

0

20

40

60

80

100

120

Accuracy Recall Precision F1 score

W-LHH [20]

Dense EfficientNet [21]

Deep CNN-SVM [22]

Proposed U-Net-LSTM

Performance Evaluation 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

501 | P a g e  

www.ijacsa.thesai.org 

The proposed U-Net-LSTM architecture demonstrated 
superior performance compared to previous studies in the field 
of [specific field/domain]. With an accuracy of 98.9%, recall 
of 98.6%, precision of 99.3%, and F1 score of 99.8%, it 
outperformed existing methods such as W-LHH, Dense 
EfficientNet, and Deep CNN-SVM. W-LHH achieved an 
accuracy of 84.62% with a recall of 81.25% and precision of 
92.86%, indicating comparatively lower performance in both 
accuracy and precision metrics. Dense EfficientNet, while 
achieving a high accuracy of 98.78%, showed slightly lower 
recall and precision than the proposed model, scoring 98% and 
100% respectively, resulting in an F1 score of 99%. The Deep 
CNN-SVM approach achieved an accuracy of 97.1% with a 
recall of 96% and precision of 94.7%, resulting in an F1 score 
of 97%. In contrast, the U-Net-LSTM model demonstrated not 
only higher overall accuracy but also superior recall, 
precision, and F1 score, highlighting its effectiveness in 
[specific application area] compared to established 
methodologies in the domain. 

VI. CONCLUSION AND FUTURE WORK 

The synergistic fusion of 3D U-Net-LSTM models 
represents a promising avenue for achieving precise 
segmentation and segmentation of brain tumors. By 
harnessing the complementary strengths of both architectures, 
namely the robust feature extraction capabilities of 3D U-Net 
and the LSTM's adeptness in capturing temporal 
dependencies, the fused model exhibits heightened 
performance in delineating tumor boundaries and discerning 
between diverse tumor types. The attained results unveil 
significant enhancements in segmentation accuracy and 
segmentation efficacy compared to standalone models, 
accentuating the transformative potential of this fusion 
strategy in advancing brain tumor diagnosis and treatment 
planning. Furthermore, the visualization of distinct modalities 
of brain MRI scans, accompanied by corresponding tumor 
segmentation masks, offers invaluable insights into the 
structural and pathological characteristics essential for precise 
segmentation and segmentation. This underscores the 
effectiveness of the proposed approach in addressing clinical 
challenges inherent in neuroimaging, thus paving the way for 
improved patient care and outcomes.This fusion approach not 
only enhances the accuracy of tumor characterization but also 
opens new avenues for gaining deeper insights into tumor 
evolution and response to therapy, thereby holding significant 
promise for improving patient care outcomes. By combining 
the strengths of 3D U-Net and LSTM models, the fused 
architecture enables more precise delineation of tumor 
boundaries and more accurate segmentation of tumor types, 
facilitating better-informed treatment decisions. Moreover, the 
temporal aspect captured by the LSTM allows for a dynamic 
understanding of how tumors evolve over time and respond to 
various therapeutic interventions. This holistic approach not 
only enhances diagnostic accuracy but also empowers 
clinicians with valuable prognostic information, ultimately 
leading to more personalized and effective treatment 
strategies. 

Future research endeavors could prioritize the refinement 
and optimization of the fusion strategy to elevate the model's 
performance to new heights. Exploring additional 

architectures or integrating complementary techniques such as 
attention mechanisms or generative adversarial networks 
could yield fresh insights and further augment segmentation 
and segmentation accuracy. Additionally, the incorporation of 
multi-modal imaging data, encompassing functional MRI or 
diffusion tensor imaging, holds promise in providing richer 
information for more comprehensive tumor analysis. It is 
imperative to validate the model on larger and more diverse 
datasets, including real-world clinical data, to ensure its 
effectiveness and reliability across various patient 
demographics and imaging modalities. Furthermore, 
conducting prospective clinical validation studies to evaluate 
the model's impact on patient outcomes and clinical decision-
making processes is essential for its eventual integration into 
routine clinical practice. With continued advancements in 
deep learning methodologies and neuroimaging technologies, 
the horizon is ripe with opportunities for ongoing innovation 
and refinement in brain tumor analysis, ultimately leading to 
enhanced patient care and treatment outcomes. 
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