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Abstract—People with a hearing impairment commonly use 

sign language for communication, however, they find it 

challenging to communicate with a normal person who does not 

recognise the sign language. They normally require an 

intermediary human to act as a translator for convenient means 

of expressing their thoughts. To address this issue, the work aims 

to enhance their communication capability by eliminating the 

need for an intermediary person by developing a sign language 

converter that uses a vision-based dynamic recognition strategy 

to convert continuous sign language into multimodal output. This 

work introduces a deep neural network based on convolutional 

long short-term memory (ConvLSTM) networks to determine 

the real-time dynamic gesture recognition of the actions of the 

impaired persons captured through cameras. The investigations 

of the continuous sign language recognition (CSLR) were 

deployed on the Chinese Sign Language Dataset, CSL-Daily, 

Phoenix-2014 and Phoenix-2014T datasets and the performance 

comparisons were done for conventional LSTM, Gated 

Recurrent Unit (GRU) and ConvLSTM. Experimental results 

have shown that the ConvLSTM network outperforms the other 

techniques, and they can detect the sign actions with a better 

accuracy of 90%, and a precision rate of 0.93, which ensures 

interpreting the meanings for each sign sequence with ease by 

integrating the proposed novel cognitive assisted adaptive 

keyframe selection. The proposed system could be easily 

implemented in the modern learning management system. 

Keywords—ConvLSTM; GRU; keyframes; LSTM; sequential 

learning; sign language recognition 

I. INTRODUCTION 

People with hearing disabilities use sign language for 
communication in day-to-day life. When spoken 
communication is impossible, sign language is used to 
communicate through body movements, particularly hands 
and arms. Because deaf-dumb people mainly use it and a 
normal person does not learn it, interpreters are required for 
deaf and hearing people to communicate. According to the 
WHO report, around 2.5 billion individuals will encounter 
hearing loss by 2050 [1]. So, it is necessary to develop an 
automated translation system for communication with them 
and reduce the gap between the hearing and deaf 
communities. Sign language recognition is meant to exact 
meaning for each sign in continuation with a sequence of 
signs i.e., mapping visual signs with words. On the other 

hand, creating meaningful sentences from the extracted signs 
is known as sign language translation. 

Most sign language recognition systems focus only on 
isolated signs rather than a continuous sign sequence. Most 
sign language recognition systems use data gloves, and 
sensor gloves with sensors (depth sensors, optical sensors, 
thermal sensors, and leap motion sensors) for gesture 
recognition. In glove-based methods, the signer must wear a 
hardware glove, from which gestures are recognised [2]. 
These sign language recognition methods, which ensure 
higher accuracy, will be quite awkward to use in public 
places. In [3], the sign actions performed by the deaf were 
captured using cameras. Then the keyframes were identified 
adaptively and for those frames features like body pose, hand 
poses, and finger orientations were extracted using CNN. 
This method captures only spatial information and ignores 
other crucial features. Most of the sign language translation 
in the literature lacks accurate temporal data [4-5] and faces 
various linguistic challenges. 

To address this, a vision-based dynamic recognition 
method for real-time gesture recognition with cameras is 
proposed in this article for sign language recognition and 
translation. Features are extracted automatically and 
adaptively by video streams of signs and gestures made by 
the impaired persons. First, the video sequences are 
segmented into frames and keyframes are extracted. Second, 
in the feature extraction stages, temporal information was 
sequentially learned using LSTM [6]. Third, a ConvLSTM 
cell is constructed by replacing an LSTM structure with 
weighted convolution operations at each cell gate. Further, 
the convolution operation in a ConvLSTM cell was assistive 
in extracting short-term spatial correlations process between 
successive measurements within a single time step. This 
striking feature of a ConvLSTM cell was useful for 
capturing the signs and gestures of hearing-impaired persons 
by identifying long-term temporal dependencies. Finally, the 
experimental outcomes were compared with the standard 
recurrent neural networks Gated Recurrent Unit (GRU). 
Here, encoder-decoder architecture is constructed using 
LSTM and used for sentence generation. An overview of the 
proposed work is shown in Fig. 1. 
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Fig. 1. System design for the proposed work. 

The isolated output prediction description is as follows. 
(1) Key frame capturing based on similarity score for the 
input video. (2) Visual feature extraction for the identified 
keyframes. (3) Temporal information capturing through 
sequence learning using LSTM. (4) Isolated output 
prediction. 

The proposed system will act as a machine-made 
interpreter that automatically converts continuous sign 
language into multimodal output, i.e., text or speech output. 

This paper is organised as follows. Existing methods and 
related work are discussed in Section II. The proposed work 
with a detailed system design will be explained in Section 
III. Section IV will discuss experimental results. Conclusions 
for the entire work are given in Section V. 

II. RELATED WORK 

In this section, state-of-the-art works that use glove and 
sensor-based approaches as well as vision-based approaches 
to recognise sign language were explored. Hand gesture 
recognition has been done in various ways, from which 
glove-based and vision-based are the most used. In glove-
based methods, sensors attached to those gloves transfer 
electrical signals helping to determine the hand gesture. The 
signs made by the impaired will be identified from the 
acquired electrical signals.  On the other hand, instead of a 
glove, the sensor camera could be used to capture the sign 
actions. Gestures will be classified from the captured 
sequences of images extracted from the video frames. 
Vision-based methods reduce the challenges and 
complexities compared with glove-based methods. 

A. Glove & Sensor based Approaches 

To create a hand sign recognition system, the authors in 
[7] used Electrical Impedance Tomography (EIT) imaging 
(gauss-newton image reconstruction algorithm) and robust 
CNN classification (support vector machine and softmax 
classifier). Mittal et al. [8] proposed a modified LSTM 
model for continuous sign language recognition. They 
captured hand gestures using a Leap Motion sensor and 
extracted 12 features. They fed 2D CNN feature maps into 
an LSTM model with a RESNET gate for output prediction. 
For sign language recognition, Deriche et al. [9] proposed a 
dual Leap Motion Controller (LMC), and to address the 
challenges of finger occlusions and missing data, they used 
both front and rear-side LMCs. Feature extractions were 

performed by selecting the set of the best geometric features 
from both controllers, such as finger length, width, hand roll, 
hand pitch, and hand yaw. They applied a Bayesian 
approach, a Gaussian mixture model and a simple linear 
discriminant analysis to do the final classification. An 
evidence-based fusion approach is used for combining data 
from two LMCs (Dempster-Shafer, theory of evidence). 
Marin et al. [10] proposed using LMC and Kinect devices to 
capture hand gestures. The LMC records finger distances, 
angles, and elevations, whereas the Kinect device records 
depth information. Theodorakis et al. [36] proposed lexicon-
based sign language recognition. To improve recognition 
performance, leap motion data was combined with Kinect 
data, and the results were then classified using an SVM 
classifier. Further, for gesture recognition tasks, a one-
against-one approach was delayed. The gesture with the most 
number votes was chosen as the desired output. 

To distinguish American Sign Language (ASL) 
alphabets, Lee et al. [11] created a smart wearable with five 
flex sensors, two pressure sensors, and a three-axis inertial 
motion sensor. The device's embedded SVM classifier 
recognises alphabets. For gesture recognition, Huang et al. 
[12] designed a wearable glove with less graphene oxide 
fibre. It keeps track of the movement of ten joints in one 
hand. For British Sign Language (BSL) recognition, Dias et 
al. [13] used an instrumented glove with five flex sensors 
and two contact sensors. The information gathered is divided 
into three categories: construction, alphabet gesture, and 
relaxation period. For recognition, these data are fed into 
MLP-NN, KNN, SVM, RF, and NB classifiers. Li et al. [14] 
developed a sign language recognition system based on 
ultra-wideband radar. The Micro Doppler spectrogram input 
is used to calculate cumulative energy distribution, which 
divides the density bands for each cumulative energy 
distribution image. Gurbuz et al. [15] use a multi-frequency 
RF sensor network to measure ASL in a non-invasive, non-
contact manner regardless of lighting conditions. Further, the 
authors used SVM, KNN, and random forest to classify the 
signs and compare their performances. 

B. Vision-based Approaches 

Guo et al. [16] used a combination of 3D CNN and 
LSTM to capture spatiotemporal representations in a video. 
A stacked decoding network is also used to predict gloss and 
query adaptive fusion is used to generate sentences. Zhou et 
al. [17] proposed a multi-cue framework (spatial multi-cue 
and temporal multi-cue) for sign language recognition and 
translation to learn spatial-temporal correlations of visual 
cues. They used 2D CNN to generate multi-cue features, 
CTC-Decoder for sign language recognition, and SA-LSTM 
for sign language translation in this study. Breland et al. [18] 
proposed a Deep CNN model for gesture recognition, that is 
light-independent and is based on high-resolution thermal 
imaging. Passos et al. [19] used a two-step method with 
feature mapping and classification for gesture recognition in 
videos. They used deep neural network architecture to 
segment each body part, then used gait energy images to 
encode body part motion. 

For CSLR, Huang et al. [20] proposed a sequence-to-
sequence learning method using keyframe-centered clips 
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(KCCs) split out from the input video. The CNN features of 
RGB keyframes, HOG of depth motion maps, and trajectory 
features of skeleton joints are fused by the feature fusion 
layer for feature extraction. Finally, all multimodal features 
are combined and fed into an LSTM model for sub-word and 
then word construction. For accurate CSLR classification, 
Wei et al. [21] proposed a semantic boundary detection 
method based on reinforcement learning. Initially, a 
discriminative representation for sign video with multiscale 
perception loss is learned using a spatial-temporal CNN and 
bidirectional LSTM. Each segment's clip-level features were 
refined between adjacent boundaries to form a single feature 
vector. The sentence is then decoded from the refined video 
representation. Huang et al. [22] proposed a 3DConv neural 
network based on attention for SLR. Wu et al. [23] proposed 
a semi-supervised hierarchical dynamic framework based on 
a Hidden Markov Model for simultaneous gesture 
segmentation. The high-level spatiotemporal representation 
is learned using this method. The skeletal dynamics were 
handled by a Gaussian-Bernoulli Deep Belief Network 
(DBN), and batches of depth and RGB images were 
managed and fused by 3DCNN. Yu et al. [24] deal with the 
segmentation of old queries. 

III. PROPOSED SYSTEM 

The proposed work's general framework is depicted in 
Fig. 1, and a detailed flow diagram is depicted in Fig. 2.  
Keyframes extracted from the sign video were considered for 
input to the proposed model. Further, after spatial and 
temporal learning through CNN and LSTM, isolated words 
will be identified. Notations of the parameters used in this 
proposed work are given in Table I. 

TABLE I. PARAMETER NOTATION 

Symbol Description 

Sv Similarity value between images 

N Number of signs 

Fn’ 
Total number of frames in the video. Different for different 

inputs. 

FL1 Total key frames selected in level 1 from Fn’. 

FL2 Total key frames selected in level 2 from FL1. 

PF1, PF2 Pixel in frames 

Fw, Fh Frame width and height 

Pa Probability for each action 

Fig. 2 presents a flowchart of the proposed model: 

 key frame capturing based on similarity score for the 
input video] 

 Spatiotemporal learning through CNN and LSTM; 

 Isolated Output Prediction] 

 Sentence output using the encoder-decoder network. 

In our work, the vision-based dynamic recognition 
approach is used for real-time gesture recognition. Two 
subsequent phases of this method are sign language 
recognition and translation. Sign language recognition is 
performed through the one-to-one mapping between signs 
and isolated words. Sign language translation is performed 
for generating sentences from the mapping of sign and 

isolated words. The following sections discuss in detail the 
modules in the proposed work. 

 

Fig. 2. Flowchart for the proposed model. 

A. Key Frame Selection 

As discussed in Section I, keyframes from the input 
video will be extracted by comparing similarity scores 
between images adaptively. The steps for similarity score 
generation for the two inputted images were detailed in 
Algorithm 1. The diff_ratio is computed by analyzing each 
pixel in the two images which plays a vital role in similarity 
score identification. As there will be slight changes in pixel 
values in the key coordinates of the subsequent frames in the 
sign language video, each pixel change contributes to the 
accurate prediction of sign gestures. Also, from the 
literature, it is predominantly found and concluded that 
different sign gestures have slight changes in the pixel value. 
Thus, a novel pixel-wise similarity score generation 
algorithm was coined with a time complexity of O(n log(n)) 
where n denotes the total number of pixels in the image. 
Based on the similarity value of one frame with another 
frame in the video, the number of keyframes suitable for sign 
language recognition will vary. 

Fig. 3 depicts the adapted two-level key frame selection 
strategy. At level 1, frames with Sv greater than 1.5 will be 
selected and at level 2, Sv with values greater than 2 will be 
selected as keyframes. 

B. Feature Extraction 

Visual features are essential while working with images. 
Hence for the adaptively identified 𝐹𝐿2  keyframes, visual 
features will be extracted. Since CNN works best with image 
data, each identified keyframe will be passed into it to 
extract spatial information at a given time step in the input 
video. Features like body pose, hand position, and finger 
orientation will be identified for each frame. 
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Fig. 3. Adaptive key frame selection using similarity score. 

In our model kernel size of 3 Х 3 is used with a 2 Х 2 pool 

size. To reduce computational complexity and extract low-
level features like body edges, a max-pooling strategy is 
adopted. Max pooling mathematical notation as shown in (1) 

where 𝐻𝑤ℎ
𝑙

 denotes the activation layer of 𝑙. 

𝐻𝑤ℎ
𝑙 = 𝑚𝑎𝑥𝑥=0,…,𝑠,𝑦=0,…,𝑠𝐻(𝑤+𝑥)(ℎ+𝑦)

𝑙−1  (1) 

C. Sequence Learning 

To work with a continuous range of inputs across 
different time steps, temporal information through the entire 
input must be captured. Since RNNs are very effective in 
solving complex sequence-related problems, extracted visual 
features from CNN will be fed into a sequence of the RNN 

layer. In our proposed system, LSTM is the basic RNN cell. 
Temporal relations between subsequent frames will be 
captured throughout the entire video. 

In our proposed work to handle spatiotemporal 
information as depicted in Fig. 4, all the inputs 𝐹1,  𝐹2, … , 𝐹𝑡, 
cell outputs 𝐶1 , hidden states 𝑌 , and gates 𝑖𝑡 ,  𝑓𝑡 , 𝑜𝑡 
ConvLSTM are 3D tensors whose last 2 dimensions are 
spatial. Extracted features passed through CNN for spatial & 
visual feature learning. CNN followed by LSTM used for 
temporal learning across the video. The equations of 
ConvLSTM are represented in (2), where the convolution 
operation was denoted by ‘*’ and the Hadamard product was 
denoted by ‘ʘ’. Internal matrix multiplications are performed 
with convolution operations in ConvLSTM, a recurrent layer 
like LSTM. The data passes through the ConvLSTM cell, 
which maintains the input dimension of 3D until the end. 

𝑖𝑡 =  𝜎 (𝑊𝑥𝑖 ∗ 𝐹𝑡  + 𝑊ℎ𝑖 ∗  𝑌𝑡−1  +  𝑊𝑐𝑖ʘ 𝐶𝑡−1 + 𝑏𝑖)  

𝑓𝑡 =  𝜎 (𝑊𝑥𝑓 ∗ 𝐹𝑡  + 𝑊ℎ𝑓 ∗  𝑌𝑡−1  +  𝑊𝑐𝑓ʘ 𝐶𝑡−1 + 𝑏𝑓)  

𝐶𝑡 =  𝑓𝑡ʘ𝐶𝑡−1 + 𝑖𝑡ʘ𝑡𝑎𝑛ℎ (𝑊𝑥𝑐 ∗ 𝐹𝑡 + 𝑊ℎ𝑐 ∗ 𝑌𝑡−1 + 𝑏𝑐)  

𝑜𝑡 =  𝜎 (𝑊𝑥𝑜 ∗ 𝐹𝑡  + 𝑊ℎ𝑜 ∗  𝑌𝑡−1  +  𝑊𝑐𝑜ʘ 𝐶𝑡−1 + 𝑏𝑜)  

𝑌𝑡 = 𝑜𝑡 ʘ 𝑡𝑎𝑛ℎ (𝐶𝑡)                     (2) 

 

Fig. 4. Spatiotemporal learning through CNN and LSTM. 

D. Isolated Output Prediction 

For isolated SLR, our ConvLSTM model (see Table II) 
returns multiple sets of words as depicted in Fig. 5. From the 
obtained sequence of words, the class with the highest 
probability will be selected as output. 

𝑃𝑎 =  ∑ max (𝑃𝑎)𝑁
𝑖=0                        (3) 

 

Fig. 5. Isolated SLR output prediction. 

Algorithm 1  : Generate_Similarity_Score 

Input         : Images, I1 & I2 

Output         : Similarity value, Sv 

1. Sv←0   #Initially two images were not similar 

2. 𝑡𝑜𝑡𝐷𝑖𝑓𝑓 ← 0, 𝑝𝑖𝑥𝑒𝑙𝐷𝑖𝑓𝑓 ← 0, 𝑖𝑚𝑔𝑆𝑖𝑧𝑒 ← 0 

3. H ← height(I1)      // finds height of image  

4. W ← width(I1)     // finds width of image 

5. I2 ← resize(H, W) 

6. 𝑖𝑚𝑔𝑆𝑖𝑧𝑒 ← 𝐻 +  𝑊 

7. for each Pixel px1 ∈ I1, Pixel px2 ∈ I2 

a. 𝑝𝑖𝑥𝑒𝑙𝐷𝑖𝑓𝑓 ←  𝑝𝑥1 −  𝑝𝑥2 

b. 𝑡𝑜𝑡𝐷𝑖𝑓𝑓 ← 𝑡𝑜𝑡𝐷𝑖𝑓𝑓 + 𝑝𝑖𝑥𝑒𝑙𝐷𝑖𝑓𝑓 

8. 𝑑𝑖𝑓𝑓_𝑟𝑎𝑡𝑖𝑜 ←  
𝑡𝑜𝑡𝐷𝑖𝑓𝑓

𝑖𝑚𝑔𝑆𝑖𝑧𝑒
 

9. 𝑠𝑡𝑎𝑟𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ←  1 

10. 𝑒𝑛𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ←  𝑑𝑖𝑓𝑓_𝑟𝑎𝑡𝑖𝑜 /2 

11. while (start_threshold <= end_threshold) 

a. 𝑆𝑣 ←
𝑠𝑡𝑎𝑟𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 𝑒𝑛𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

2
 

b.  if (𝑑𝑖𝑓𝑓_𝑟𝑎𝑡𝑖𝑜 >  𝑆𝑣2) 

i. 𝑠𝑡𝑎𝑟𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ←  𝑆𝑣 +  1 

ii. 𝑆𝑣_𝑢𝑝𝑑𝑎𝑡𝑒 ←  𝑆𝑣 

c. else if (𝑑𝑖𝑓𝑓_𝑟𝑎𝑡𝑖𝑜 <  𝑆𝑣2) 
𝑒𝑛𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ←  𝑆𝑣 −  1 

d. else 
     return Sv 

12.  return Sv_update 
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TABLE II. THE ARCHITECTURE FOR ISOLATED WORD PREDICTION USING 

CONVLSTM. 

Layer Kernel Output Size 

Keyframes - FL2 x 128 x 128 

ConvLSTM2D 3, 3 FL2 x 126 x 126 

MaxPooling3D 1, 2, 2 FL2 x 63 x 63 

ConvLSTM2D 3, 3 FL2 x 61 x 61 

MaxPooling3D 1, 2, 2 FL2 x 31 x 31 

ConvLSTM2D 3, 3 FL2 x 29 x 29 

MaxPooling3D 1, 2, 2 FL2 x15 x 15 

ConvLSTM2D 3, 3 FL2 x 13 x 13 

MaxPooling3D 1, 2, 2 FL2 x 7 x 7 

Flatten - 1 x 24304 

E. Sentence Generation 

For Continuous SLR, an encoder-decoder network is 
used for sentence generation. In our proposed work both 
encoder and decoder were developed using LSTM models. 
Instead, different RNNs could also be used for sentence 
generation. The encoder reads the input sequence and stores 
information in internal state vectors. The decoder’s initial 
states are initialised from the output of the encoder. This 
vector triggers the decoder to start generating the output. Fig. 
6 depicts the encoder-decoder architecture using LSTM (X1 

to Xn are identified keyframes) and Fig. 7 represents the 
sentence generation with natural language processing. 

Hidden states in the encoder state are computed using (4) 
and in the decoder, states are computed using (5). Instead of 
the output layer in Isolated SLR, an encoder-decoder using LSTM 

is added for sentence generation. 

ℎ𝑡 =  𝑓 (𝑊ℎℎ ∗ 𝑌𝑡−1  + 𝑊ℎ𝑥 ∗  𝑋𝑡 )              (4) 

ℎ𝑡 =  𝑓 (𝑊ℎℎ ∗ 𝑌𝑡−1 )                                (5) 

 

Fig. 6. Encoder decoder architecture built with LSTM for sentence 

generation. 

 

Fig. 7. Continuous SLR output prediction. 

IV. EXPERIMENT 

A. Dataset 

The Chinese Sign Language Dataset [25-30] is used in 
our experiments for analysis and evaluation of the proposed 
approach. Isolated SLR and Continuous SLR are two types 
of SLR. Isolated SLR consists of 500 words, each spoken 
five times in sign language by 50 people. Continuous SLR 
consists of 100 sentences, each spoken five times by 50 
signers in sign language. Each sentence contains 4 to 5 
words on average. In addition, the experimental evaluation 
was also carried out in another notable dataset, CSL-Daily 
[31], which focuses on Chinese sign language, featuring 
18401 training, 1077 development, and 1176 testing video 
samples, showcasing performances from ten signers across 
diverse topics like family life, medical care, and school life. 
CSL-Daily encompasses a gloss vocabulary of size 2000. 
The datasets Phoenix-2014 and Phoenix-2014T, as discussed 
by [32] and [33] respectively, are prominent in the field of 
Sign Language Recognition (SLR) in Germany. Phoenix-
2014 includes 5672 training, 540 development, and 629 
testing samples, with a gloss vocabulary of 1295. 
Conversely, Phoenix-2014T is an extension of Phoenix-
2014, offering 7096 training, 519 development, and 642 
testing samples, with a gloss vocabulary of 1085. 

B. Model Setting for Isolated & Continuous SLR 

Initially, the given input video will be split into 𝐹𝑛
′ frames 

i.e., 𝐹1𝐹2, … 𝐹𝑛
′. By default, frame 1 (𝐹1) will be selected as 

one of the keyframes. Then a similarity score will be 
calculated between 𝐹1  and its subsequent frames. If the 𝑆𝑣 
value between two frames is greater than 1.5 then it will be 
selected as a keyframe. Further, 𝐹1 will be replaced by the 
chosen keyframe and the similarity value will be calculated 
from the immediate next frame. The loop continues till the 
end of the last frame. At level 1, 𝐹𝐿1 frames are selected as 
keyframes. The following Fig. 4 shows sample key frame 
selection in level 1. 

For the selected keyframes from level 1, similarity scores 
will be calculated again. 𝑆𝑣  values greater than 2 will be 
selected as keyframes in level 2. Finally, 𝐹𝐿2 frames were 
selected as key frames from the input video. Fig. 5 shows 
frames selected from level 1 with 𝑆𝑣 > 2. 

As shown in Fig. 3, the given input video keyframes will 
be identified in two levels. At level 1, frames with an 𝑆𝑣 
value less than 1.5 are not considered keyframes. Level 1 
frame selection is shown in Fig. 8. At level 2 frames with an 
𝑆𝑣 value, less than 2 are not considered keyframes. Level 2 
key frame selection is shown in Fig. 9. 

 

Fig. 8. Level 1 key frame selection with Sv> 1.5. 
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Fig. 9. Level 2 key frame selection with Sv> 2. 

Followed by the adaptive key frame extraction from the 
input video, those frames are resized to a size of 64x64 and 
normalized to reduce the computational complexity. Fig. 10 
shows body pose features extracted using our custom-
designed lightweight CNN architecture to cope with the 
overall less complex design. At layers 1 and 2 outer body 
pose features are learned. At levels 3 & 4 features are 
learned vertically for effective capturing of hand and finger 
orientation. 

 

Fig. 10. Features extracted using CNN. 

The proposed model for Isolated SLR consists of four 
ConvLSTM layers with a kernel size of 3x3 and four pooling 
layers with a size of 2x2. Softmax activation function was 
used with optimiser as Adam, loss as categorical cross-
entropy, learning rate as 0.001, and batch size as 4. For 
Continuous SLR, an encoder-decoder network has been 
added with the previously trained model for isolated SLR. 
Both encoder-decoder networks have a kernel of size 3x3 
and tanh as an activation function. 

A. Model Comparison 

Since our proposed model was constructed with the 
encoder-decoder framework, it is compared with other 
similar models: S2VT [34] (standard 2-layer encoder-
decoder architecture), LSTM-E [35] (deep 2DCNN and 3D 
CNN features with mean pooling for high semantic 
embedding), LSTM-Attention [36] (attention mechanism to 
capture temporal relations), LSTM-Global-Attention [37] 
(global attention mechanism is explored for NMT), and HRF 
[16] (hierarchical recurrent deep fusion). 

B. Evaluation of LSTM 

In the simple LSTM approach, the extracted keyframes 
were directly fed into LSTM for sign language recognition. 
The LSTM model achieves a training accuracy of 0.54 and a 
testing accuracy of 0.53. Fig. 11 and Fig. 12 show the 
comparison of training and validation loss and training and 
validation accuracy for LSTM (Table III). 

TABLE III. COMPARISON OF SLT (OURS) WITH ENCODER-DECODER 

ARCHITECTURE 

Model PRECISION 

S2VT [34] 0.897 

LSTM-E [35] 0.882 

LSTM-Attention [36] 0.851 

LSTM-global-Attention [37] 0.858 

HRF-S [16] 0.924 

HRF-S-att [16] 0.929 

Ours 0.932 

 

Fig. 11. Simple LSTM: Training vs. testing loss comparison. 

 

Fig. 12. Simple LSTM: Training vs. testing accuracy comparison. 
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C. Evaluation of GRU 

Instead of LSTM, the extracted keyframes will be 
directly fed into GRU for sign language recognition. GRU 
model achieves a training accuracy of 0.56 and a testing 
accuracy of 0.53. Fig. 13 and Fig. 14 show the comparison 
of training and validation loss and training and validation 
accuracy for GRU. 

 

Fig. 13. Simple GRU: Training vs. testing loss comparison. 

 

Fig. 14. Simple GRU: Training vs. testing accuracy comparison. 

D. Evaluation of ConvLSTM 

In ConvLSTM (Ours), extracted keyframes will be 
directly fed to ConvLSTM for spatial and temporal learning 
to recognise sign language. Compared to the previous two 
models ConvLSTM model achieves a training accuracy of 
0.90 and a testing accuracy of 0.88. Fig. 15 and Fig. 16 show 
the comparison of training and validation loss and training 
and validation accuracy for the ConvLSTM model. 

 

Fig. 15. ConvLSTM Model: Training vs. testing loss comparison. 

 

Fig. 16. ConvLSTM Model: Training vs. testing accuracy comparison. 

E. Comparison of LSTM Vs. GRU Vs. Convlstm 

Comparing all the three models ConvLSTM gives better 
performance since it captures both spatial and temporal 
information. The ConvLSTM model achieves an accuracy of 
0.90 while the other two approaches produce 0.54 and 0.56 
for LSTM and GRU respectively and it is illustrated in 
Table IV. 

TABLE IV. COMPARISON OF SLT (OURS) WITH ENCODER-DECODER 

ARCHITECTURE ON DIFFERENT EVALUATION METRICS 

Model 

Training Testing 

Accuracy Loss Accuracy Loss 

LSTM 0.54 0.62  0.53 0.41 

GRU 0.56 0.64 0.53 0.48 

Ours 0.90 0.21 0.88 0.26 

F. Comparison with State-of-the-ART Works 

Table V shows the evaluation of different metrics in the 
CSL dataset. 

TABLE V. THE EVALUATION OF DIFFERENT METRICS IN THE CSL 

DATASET 

Model PRECISION BLEU METEOR ROUGE-L 

S2VT [34] 0.897 0.902 0.642 0.904 

HRF-S [16] 0.924 0.942 0.699 0.944 

HRF-S-att 
[16] 

0.929 0.948 0.703 0.951 

Ours 0.932 0.949 0.710 0.951 

In this section, the detailed analysis is carried out with 
other datasets and it is given in Table VI, Table VII and 
Table VIII. 

TABLE VI. SOTA FOR BLEU-4 AND ROUGE ON PHOENIX-2014T 

BENCHMARK 

Method Dev Test 

BLEU-4 ROUGE BLEU-4 ROUGE 

PT [38] 11.82 33.18 10.51 32.46 

AT [39] 12.65 33.68 10.81 32.74 

MDN [40] 11.54 33.40 11.68 33.19 

MoMP [41] 14.03 37.76 13.30 36.77 

FS-NET [42] 16.92 35.74 21.10 42.57 

SignDiff [43] 18.26 39.62 22.15 46.82 

Ours 27.93 52.81 29.25 54.58 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

534 | P a g e  

www.ijacsa.thesai.org 

TABLE VII. SOTA FOR WER ON PHOENIX-2014 AND PHOENIX-2014T 

Method 
Phoenix-2014 Phoenix-2014T 

Dev (%) 

WER 

Test (%) 

WER 

Dev (%) 

WER 

Test (%) 

WER 

SubUNets [44] 40.8 40.7 - - 

CNN-LSTM-HMMs [45] 26.0 26.0 24.1 26.1 

FCN [46] 23.7 23.9 23.3 25.1 

Joint-SLRT [47] - - 24.6 24.5 

SignBT [31] - - 22.7 23.9 

Two-Stream-SLR [48] 18.4 18.8 17.7 19.3 

CorrNet [49] 18.8 19.4 18.9 20.5 

CVT-SLR [50] 19.8 20.1 19.4 20.3 

SEN [51] 19.5 21.0 19.3 20.7 

Ours 16.8 16.2 15.9 15.7 

From the experimental evaluation it is found that by 
incorporating a novel adaptive key frame extraction 
technique, there is a significant improvement in the BLEU-4 
and ROUGE score on the diversified datasets of 
consideration. Also, the noticeable decrease in the Word 
Error Rate by around 2% indicates that the proposed system 
to extract keyframes for continuous sign language in video 
outperforms SOTA systems. 

TABLE VIII. SOTA FOR WER ON THE CSL-DAILY DATASET 

Method WER 

Dev (%) Test (%) 

SubUNets [44] 41.1 41.0 

FCN [46] 39.0 39/4 

Joint-SLRT [47] 33.1 32.0 

SignBT [31] 33.2 33.2 

Two-Stream-SLR [48] 25.4 25.3 

CorrNet [49] 30.6 30.1 

SEN [51] 31.1 30.7 

Ours 19.3 19.1 

V. CONCLUSION 

The paper has proposed multimodal output from 
continuous sign language using ConvLSTM with adaptive 
frame selection that achieves an accuracy of 90% with a 
precision rate of 0.93. The proposed network provides better 
performance by capturing spatial and temporal information 
in the video through CNN and LSTM. The experimental 
discussion shows that our proposed model performs well for 
Isolated and Continuous SLR. However, the Continuous 
SLR still has some issues due to word order mapping with 
signs, and sentences with an average of 4-5 words are only 
taken. As a future work, it is planned to enhance the 
performance of sign-word mapping in the sentence, 
particularly augmenting the sign language-based education 
system with the outcomes presented in this study. The 
analysis and evaluation will be experimented with over 
bigger sentences with long sign actions to test the robustness 
of the proposed model.  
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