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Abstract—Cloud computing enables the sharing of resources 

across the Internet in a highly adaptable and quantifiable way. 

This technology allows users to access customizable distributed 

resources and offers various services for resource allocation, 

scientific operations, and service computing via virtualization. 

Effectively allocating tasks to available resources is essential to 

providing reliable consumer performance. Task scheduling in 

cloud computing models presents substantial challenges as it 

necessitates an efficient scheduler to map multiple tasks from 

numerous sources and dynamically distribute resources to users 

based on their requirements. This study presents a metaheuristic 

optimization methodology that integrates load balancing by 

dynamically distributing tasks across available resources based on 

current load conditions. This ensures an even distribution of 

workloads, preventing resource bottlenecks and enhancing overall 

system performance. The suggested method is suitable for both 

constant and variable activities. Our technique was compared 

with established metaheuristic methods, including HDD-PLB, 

HG-GSA, and CAAH. The proposed method demonstrated 

superior performance due to its adaptive load balancing 

mechanism and efficient resource utilization, reducing task 

completion times and improving overall system throughput. 
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I. INTRODUCTION 

A. Context 

Cloud computing is a rapidly evolving technology, marking 
its place as the next generation in IT and business landscapes 
[1]. It offers a spectrum of services, including reliable software 
and hardware, accessible through the Internet and remote data 
centres [2]. With its architecture, cloud services efficiently 
manage diverse computing tasks on a large scale, covering 
multiple IT functions such as storage, computation, database, 
and application services [3]. The increasing demand for storage, 
processing, and analysis of extensive datasets has propelled 
organizations and individuals to embrace cloud computing [4]. 
Scientific applications, notably those requiring significant 
computational resources for extensive experiments, have found 
refuge in cloud deployments due to limitations in local server 
facilities [5]. Reduced capital costs, immense data generation, 
and consumption growth from these experiments have driven 
this shift. Moreover, cloud service providers are now 
incorporating data parallelism capabilities into their offerings, 
empowering users to leverage cloud resources and execute their 
workflows more effectively [6]. 

B. Problem Statement 

Cloud computing is a paradigm that enables universal, 
flexible, and immediate access to various configurable 
computing resources in the form of services, applications, 
storage, servers, and networks, easily delivered and released 
without much service provider interaction or management effort 
[7]. It serves as a solution with several advantages to overcome 
economic and technological challenges. The cloud computing 
model offers lower total costs and allows companies to 
concentrate on their primary tasks and functions without 
concerning themselves with infrastructure issues or the 
availability and flexibility of resources [8]. 

Furthermore, the amalgamation of cloud services, including 
computation, infrastructure, and storage, into the utility model 
of cloud computing presents an exceptionally appealing 
environment for scientists to conduct their experiments [9]. 
Cloud computing provides various service models tailored to 
meet distinct customer requirements. Cloud service models can 
be classified as Platform as a Service (PaaS), Software as a 
Service (SaaS), or Infrastructure as a Service (IaaS) [10]. IaaS 
offers virtual computing resources over the Internet. It allows 
users to manage and operate applications without needing to 
handle physical hardware complexities by combining virtual 
machines, storage, and networks [11]. PaaS allows customers to 
develop, run, and manage applications independently of the 
underlying infrastructure [12]. It includes development 
frameworks, databases, and tools. SaaS provides subscription-
based access to software applications over the Internet [13]. 

C. Motivation 

In recent years, the issue of task scheduling within a 
distributed environment has become a focal point for 
researchers. Task scheduling is regarded as a critical concern in 
the cloud computing domain, taking into account various factors 
such as completion time, overall cost of executing users' tasks, 
resource utilization, power consumption, and fault tolerance 
[14]. The challenge arises in attaining the optimal equilibrium 
between the time required to complete a task and the amount of 
energy consumed for a parallel application bound by 
precedence, resulting in a problem of bi-objective optimization. 
The resolution to this problem yields a collection of Pareto 
points, where Pareto solutions indicate that enhancing one target 
requires making concessions in at least one other objective. 
Therefore, the resolution to a bi-objective issue comprises a 
collection of Pareto points rather than a single answer. 
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Task scheduling in cloud computing environments is 
commonly known as an NP-complete and multi-objective 
optimization issue [15]. It deals with the allocation of user-
defined tasks on the existing cloud virtual machines. The main 
goal of any task scheduling strategy is to minimize total 
execution time. An effective solution to this challenge may be 
achieved by integrating multiple approaches to enhance task 
execution and optimize the utilization of resources. This can be 
achieved by optimizing task placement, task scheduling, and 
task execution. Additionally, task scheduling algorithms should 
be adaptive and capable of continuously optimizing their 
operations in response to changing workloads and resource 
availability. 

D. Contribution 

The current investigation centers on implementing and 
comparing metaheuristic optimization techniques for task 
scheduling. We compare such methods with conventional 
heuristics, addressing the problem of scheduling static tasks 
independently in cloud infrastructure contexts. Experiments are 
conducted in both uniform and uneven environments. In the 
uniform scenario, virtual machine characteristics remain 
constant, whereas the asymmetric environment involves a 
random selection of virtual machines based on diverse features 
like MIPS, Bandwidth, and RAM. Despite the simplicity of the 
symmetric scheduling approach, it fails to fully exploit the 
potential offered by the asymmetric characteristics of virtual 
machines. Section I and Section II provide an overview of 
various conventional metaheuristic task scheduling approaches 
along with their inherent limitations. Section III gives a 
comprehensive description of the proposed optimization 
strategy. Section IV describes the simulation setup and outlines 
diverse experiments conducted, all grounded in the proposed 
technique. Finally, Section V articulates the paper's conclusions 
and suggests potential avenues for future research enhancements 
applicable to the proposed optimization technique. 

II. RELATED WORK 

This section discusses existing research efforts addressing 
task scheduling challenges in cloud computing contexts. Several 

methodologies have been explored for optimizing the allocation 
of tasks to virtual machines, enhancing system efficiency, 
reducing execution times, and maximizing resource utilization. 
Table I compares various cloud computing task scheduling 
approaches. 

Yang, et al. [16] proposed a task scheduling algorithm 
derived from game theory in their research. This paper presents 
three significant contributions tailored to the features of cloud 
computing. Primarily, leveraging game theory enhances the 
coordination between task distribution and energy allocation. 
Secondly, the paper offers a task-scheduling framework to 
handle big data through a mathematical formulation. 
Verification by experiment in this research attests to both stable 
states and optimal computational efficiency. 

Chaudhary and Kumar [17] proposed a novel load 
scheduling technique named Hybrid Genetic-Gravitational 
Search Algorithm (HG-GSA) with the aim of reducing the 
overall computational burden, encompassing both execution and 
transfer costs. HG-GSA employs a hybrid crossover mechanism 
to explore the optimal arrangement of particles in the search 
space. The calculated force is then utilized to determine an 
optimal particle position. The performance of HG-GSA is 
evaluated against alternative methods using the CloudSim 
simulator. Through convergence analysis and quantitative 
assessments, the proposed HG-GSA approach significantly 
reduces the total computation cost over existing algorithms such 
as PSO, Cloudy-GSA, and LIGSA-C. 

Imene, et al. [18] applied the Non-dominated Sorting 
Genetic Algorithm (NSGA-III), a third-generation multi-
objective optimization strategy, for scheduling cloud computing 
tasks. They introduced an innovative multi-objective adaptation 
process designed to optimize three crucial factors: cost, power 
consumption, and runtime. Further, the study conducted a 
comparative analysis between NSGA-III and its precursor, 
NSGA-II, revealing that NSGA-III outperformed NSGA-II. 

TABLE I. AN OVERVIEW OF THE RECENT CLOUD TASK SCHEDULING APPROACHES 

References Algorithm Contributions Evaluation metrics 

[16] Game theory-based task scheduling 
Mathematical model for big data task scheduling 

and experimental verification 

Equilibrium states and computational 

efficiency 

[17] Hybrid genetic-gravitational search algorithm Novel hybrid crossover mechanism 

Convergence analysis, statistical 

assessments, and computation cost 

reduction 

[18] Non-dominated sorting genetic algorithm Novel multi-objective adaptation function Runtime, power consumption, and cost 

[19] 
Hybrid deadline-constrained, dynamic VM 
provisioning and load balancing 

Hybridization of heuristic techniques with 
metaheuristic 

Makespan, cost, and VM utilization 

[20] 
Context-aware adaptive heuristic-based 

mechanism 

Context-aware adaptive heuristic-based solution 

and significant performance improvements 

Performance efficiency and energy 

savings 

[21] Adaptive ant colony optimization algorithm Pheromone adaptive update mechanism 
Task completion time, execution cost, and 
balance degree 

[22] 
Moth search algorithm with differential 

evolution 
Strong exploration and exploitation Makespan 

[23] Chemical reaction partial swarm optimization 
Integration of chemical reaction optimization and 
partial swarm optimization 

Execution time, makespan, cost, and 
energy 

[24] Deep Q-learning network Utilization of deep Q-learning network 
Makespan, SLA violation, and energy 

consumption 
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Kaur and Kaur [19] proposed a hybrid delay-constrained 
dynamic virtual machine provisioning and load balancing 
approach called HDD-PLB. The primary goal of HDD-PLB is 
to enhance VM utilization by achieving uniform load 
distribution. This optimization strategy relies on combining 
heuristics with metaheuristics to attain optimum performance, 
focusing on metrics such as cost and makespan. Within the 
HDD-PLB methodology, two heuristics are proposed: hybrid 
heterogeneous earliest finish time heuristic with Ant Colony 
Optimization (ACO) algorithm and hybrid predicted earliest 
finish time heuristic with ACO algorithm. A comprehensive 
analysis and comparison of these approaches is conducted to 
determine their superiority within the proposed HDD-PLB 
model. 

Kulkarni and Annappa [20] proposed an effective context-
aware adaptive heuristic-based (CAAH) methodology tailored 
for virtual machine allocation in diverse and heterogeneous 
cloud data centers. CAAH accounts for both the inherent 
properties of physical machines and the varying load conditions 
(moderate or high) within heterogeneous data centers. The 
primary objective is to augment performance efficiency and 
facilitate power savings for operators managing data centers. 
Through experimental assessments employing both genuine 
cloud workloads and synthetic workloads, noteworthy 
enhancements in performance and energy conservation were 
observed with CAAH in comparison to a widely recognized 
adaptive heuristic-based technique. 

Liu [21] proposed a dynamic task-scheduling technique 
designed for cloud computing and based on the ACO algorithm. 
Their proposed approach enhances the standard ACO by 
integrating pheromone adaptive updating to expedite 
convergence while effectively circumventing local optima. This 
enhanced algorithm generates a distribution scheme that offers 
reduced processing time, minimized costs, and well-balanced 
task loads based on user-submitted tasks. By conducting 
experiments on a cloud computing platform, the traditional ACO 
is compared against the enhanced adaptive ACO algorithm. The 
empirical data illustrates that the improved adaptive ACO 
efficiently identifies optimal solutions for cloud computing 
resource scheduling issues, resulting in reduced task completion 
times, decreased execution costs, and maintaining a balanced 
load across the cloud system. 

Abd Elaziz, et al. [22] introduced an innovative approach to 
solving the cloud task scheduling challenge with a primary focus 
on minimizing the amount of time needed to schedule diverse 
tasks across distinct virtual machines. The proposed 
methodology incorporates the Differential Evolution (DE) 
technique into the Moth Search Algorithm (MSA). The MSA 
draws inspiration from moth navigation toward a light source, a 
natural process, leveraging Levy flights and phototaxis to 
emulate exploitation and exploration capabilities. While the 
MSA exhibits robust exploration abilities, its exploitation facet 
requires enhancement, prompting the integration of DE as a 
local search technique. Three experiments were performed to 
measure the effectiveness of the newly introduced MSDE 
algorithm. The initial test compares the performance between 
the classic MSA and the modified algorithm across twenty 
global optimization problems. In the subsequent two testing 
phases, the proposed algorithm was benchmarked with various 

heuristic and meta-heuristic algorithms, utilizing both synthetic 
and real-world data. 

Dubey and Sharma [23] introduced a pioneering task 
scheduling approach, termed Chemical Reaction Partial Swarm 
Optimization (CRPSO), to allocate several independent tasks to 
available virtual machines. This innovative method combines 
partial swarm optimization and chemical reaction optimization, 
amalgamating their features to sequence the optimal task 
schedule based on demand and deadlines. The aim is to enhance 
quality across various factors such as cost, energy, and 
makespan. Their simulation experiments, conducted via the 
CloudSim toolkit, confirm the performance of the proposed 
algorithm. Comparative tests, varying the number of tasks and 
virtual machines, demonstrate an average reduction in execution 
time ranging between 1% to 6%, exceeding 10% in certain 
scenarios. The makespan results also exhibit an effectiveness 
enhancement between 5% to 12% and a total cost reduction 
between 2% to 10%, while the energy consumption rates show 
an improvement of 1% to 9%. 

Mangalampalli, et al. [24] utilized a multi-dimensional deep 
learning algorithm to manage the cloud task scheduling issue, 
conducting extensive simulations through the Cloudsim toolkit. 
The simulations were executed in two phases: first utilizing 
randomly generated workloads and then incorporating HPC2N 
and NASA workloads to assess the efficiency of the suggested 
algorithm. The proposed scheduler was compared against 
conventional schedulers like Earliest Deadline First, RR, and 
FCFS. 

III. PROPOSED METHOD 

The client provides a set of tasks, aiming to generate an 
optimal task execution plan using a metaheuristic method based 
on optimization techniques. One vital aspect of any meta-
heuristic algorithm in achieving an optimal solution is the 
selection of a seed arrangement. Arrangements of seeds serve as 
initial feasible solutions to the problem, aiding optimization 
algorithms in the quest for an optimal solution. These 
arrangements play a critical role in the rapid convergence of any 
optimization-based solution. Researchers have employed 
various strategies to generate seed arrangements, depending on 
the nature of the problem. These strategies encompass selecting 
a complex arrangement, a logical configuration based on a 
particular problem model, or a heuristic-based arrangement. 
Each approach has its own advantages and drawbacks. 
However, in many cases, an uneven seed arrangement is utilized 
to generate a seed arrangement in the absence of a proper 
heuristic. 

The proposed algorithm aims to minimize execution time 
and meet deadlines while preserving task dependencies across 
various users. It operates based on a Directed Acyclic Graph 
(DAG) representing the task set (T) and task dependencies 
through edges denoting data transmission time. These 
relationships establish entry-exit dependencies between child 
and parent nodes, forming the basis of the task behavior. The 
proposed algorithm operates as a population-based approach, 
aligning with swarm intelligence behavior to provide an 
optimized solution to complex data. It functions as a meta-
heuristic technique in comparison to other algorithms. The 
algorithm encompasses two phases: scheduling jobs with static 
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constraints and dynamic constraints. These phases aim to handle 
task positions in the schedule based on execution time and 
deadlines, with a primary goal of minimizing the makespan. The 
algorithm considers the constraints stated by the user and adjusts 
the tasks accordingly, ensuring dependencies are maintained 
throughout the sorting process. 

During the task scheduling process, the algorithm utilizes 
swarm behavior, mimicking the distribution and interaction 
patterns of particles for improved optimization of multi-
objective tasks. Its adaptability helps in solving a wide range of 
NP-hard-level tasks, effectively handling the scheduling of 
various tasks on different machines. The algorithm's efficiency 
is further enhanced by its ability to detect all scheduled tasks, 
ensuring effective outcomes. Employing a random phase, the 
algorithm aims to optimize the scheduling of cloudlets for 
execution on Virtual Machines (VMs). Particle fitness, 
bandwidth, MIPS, flow time, response time, resource usage, 
throughput time, and imbalance degree guide the selection of 
particles in the pursuit space, ensuring improved wellness values 
and effective execution outcomes. 

The aim is to allocate a set of tasks (𝑇 = 𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛) 
onto a designated group of processors (𝑃 = 𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) 
within a cluster of VMs. This task allocation, called solution S, 
follows predetermined measures and constraints within the 
cloud environment. 

𝐹(𝑆) = 𝑚𝑖𝑛 ∑ 𝐶𝑡𝑡,𝑚
𝑖=1,𝑗=1                              (1) 

In Eq. (1), F(S) represents the fitness function of the 
solutions, m corresponds to the total number of available 
machines, t stands for the entire number of tasks submitted by 
the user, and Ct denotes the completion time of all tasks. Fitness 
function values vary with the type of job. Jobs can be 
categorized as either dynamic or static. Static jobs possess 
predefined properties, such as a fixed total data amount, data 
flow within the system, and time constraints. Conversely, 
dynamic jobs encompass undefined job properties, like data 
bursting and indeterminate data types. Users are required to 
specify whether the job properties are static or dynamic when 
submitting the data. 

For static job scheduling, where job properties are 
determined by the cloud service provider, denoted as 
(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛). The user-provided variables are used to 
characterize the present infrastructure utilization and determine 
the needed virtual machine cluster. Various categories of VM 
clusters are evaluated, and their corresponding fitness scores are 
computed. By employing the optimal fit algorithm, the VM 
cluster that is most appropriate is chosen, thereby accomplishing 
load balancing. The cost of task execution is determined by the 
user's given property values, as per Eq. (2). Fig. 1 depicts the 
system architecture of the suggested approach. 

𝐶 = ∑ 𝑃𝑖𝑛,𝑚
𝑖=1,𝑗=1                                            (2) 

In Eq. (2), Pi represents the property of the ith job, n defines 
the number of job properties, m denotes the number of jobs, and 
C refers to the cost of executing the function. Job costs are 
considered when computing fitness values for potential VM 
clusters, and these values are used to pick the most appropriate 
VM cluster. Eq. (3) details the fitness function calculation. 

𝐹(𝑆) = 𝑚𝑖𝑛 ∑ (𝑃1, 𝑃2, … , 𝑃𝑥) + 𝑇𝑗 + 𝑀𝑘
𝑛,𝑚,𝑝
𝑖=1,𝑗=1,𝑘=1          (3) 

Where F(S) represents the fitness value of the respective 
cluster, p indicates the available machines within the respective 
cluster, M is the machine, m signifies the number of tasks, T 
refers to the corresponding task, x reflects the job's property, and 
n indicates the number of jobs. The proposed algorithm defines 
the static scheduling of tasks, as outlined in the Algorithm. 1. 

Algorithm. 1. Pseudocode for the proposed static task 

scheduling 

Function ProposedAlgorithm(J, P, M): 

    Initialize BestFitCluster as empty 

    For Each Task Ti in Job J: 

        For Each VM Cluster Mk in Set of VM Clusters: 

            Calculate Cost(C) for placing Ti in Mk based on properties 

P 

        Select VM Cluster M with minimum Cost(C) 

        If BestFitCluster is empty or Cost(C) < Cost(BestFitCluster): 

            Update BestFitCluster with M 

    Return BestFitCluster 

End Function 

Dynamic task scheduling involves the possibility of 
unspecified task properties, which necessitates the service 
provider to establish a minimal set of parameters and their 
assigned weights. The user provides these variables during the 
first task submission, which determines the allocation of 
required machines. The quantity of machines in operation can 
be modified according to the workload duration of the task. The 
cost of task execution is determined by the highest value that the 
user is willing to pay for the first setup, as specified in Eq. (4). 

𝐶 = 𝑚𝑎𝑥 ∑ 𝑃𝑖𝑛,𝑚
𝑖=1,𝑗=1                                (4) 

Where Pi represents the maximum value of the property, 
while n signifies the number of job properties, and m represents 
the task count. Throughout runtime, the highest property 
estimates gathered from the job's tasks are logged. The average 
value of the property is considered when allocating a new VM 
cluster for arriving tasks carrying varying properties, determined 
by Eq. (5) and Eq. (6). 

𝑃𝑖(𝑇) =
(∑ 𝑉𝑖𝑛

𝑖=1 )
𝑛⁄                                  (5) 

𝐹(𝑆) = 𝑚𝑖𝑛(∑ (𝑃1, 𝑃2, … , 𝑃𝑥) + 𝑇𝑗 + 𝑀𝑘
𝑛,𝑚,𝑝
𝑖=1,𝑗=1,𝑘=1 ) <

𝑚𝑎𝑥 ∑ 𝑃𝑖𝑛,𝑚
𝑖=1,𝑗=1                         (6) 
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Fig. 1. System architecture.

Eq. (5) defines Pi(T) as the average property value of the job, 
Vi as the specific property value, and n as the total number of 
property values obtained from the operations. The fitness value 
of the VM cluster is denoted by F(S). In this equation, n refers 
to the number of jobs, x stands for the value of property P for 
the job, T is the task, m signifies the number of tasks, M 
represents the machine, and p refers to the number of machines 
within the VM cluster. The computed value should be the 
minimum among all fitness values lower than the maximum 
value the user is willing to accept for task execution. The method 
proposed in Algorithm 2 defines the dynamic scheduling of 
tasks. 

Algorithm 2. Pseudocode for the proposed dynamic task 

scheduling 

Start 

Input: Job with set of Tasks J(T1, T2, ….. Tj); 

       Set of task properties (P1, P2, ……Pn); 

       Set of VM cluster properties (M1, M2, …… Mk); 

       Set of Task property values V; 

Output: Bestfit VM cluster F(S) 

Initialize BestfitCluster to null 

For each task T in J 

    Calculate Cost C for each VM cluster using task properties P 

and values V 

          For i = 1 to n & j = 1 to m 

        Calculate Fitness F(S) for each VM cluster 

    end For 

    Find the VM cluster with the minimum Fitness (min F(S)) 

    If BestfitCluster is null or F(S) < Fitness of BestfitCluster 

        Update BestfitCluster with the current VM cluster 

End For 

Return BestfitCluster 

End 

IV. RESULTS AND DISCUSSION 

The efficiency of the suggested technique has been evaluated 
using the CloudSim simulator. Table II provides a concise 
overview of the specifications for key components of a cloud 
platform, including virtual machines (VMs), cloudlets, data 
centers, and clients. These parameters are regarded as minimal 
for dynamic simulation and constant for static simulation, 
allowing for changes during execution. The suggested method is 
evaluated against three techniques described in Section II, 
specifically HDD-PLB [19], HG-GSA [17], and CAAH [20]. 
The performance metrics considered include VM utilization 
ratio, execution time, response time, and makespan time. VM 
utilization ratio denotes the number of VMs deployed relative to 
the total VMs available, execution time indicates the duration of 
task completion in the VMs, response time signifies the 
scheduler's time taken to schedule tasks, and makespan 
represents the finishing time of the last task. 

TABLE II. SIMULATION PARAMETER SPECIFICATIONS 

Components Attributes Values 

Task Total number 250-2000 

Cloudlet Length 50,000 

 Total number 500 

Host Bandwidth 10 GB/s 

 Storage 100 GB 

 RAM 2 GB 

 Total number 3 

VM Total number 100 

 OS Linux 

 MIPS 10000 

 Processor 2.4 GHz 

 SSD 100 GB 

 RAM 2 GB 

Data center Total number 2 
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Fig. 2. VM utilization ratio comparison. 

 

Fig. 3. Execution time comparison. 

Fig. 2 compares the suggested strategy with existing 
alternatives in terms of the VM utilization ratio. This indicator 
is crucial for evaluating the efficiency and performance of 
resource allocation in a cloud computing environment. It offers 
valuable information on the efficient utilization of resources by 
virtual machines, enabling the discovery of virtual machines that 
are either underutilized or overutilized while making appropriate 
modifications to achieve optimal performance. The figure 
illustrates that the proposed algorithm schedules tasks optimally, 
using a lower number of VMs compared to the comparative 
algorithms. Specifically, for tasks based on static properties, our 
algorithm minimizes the number of VMs required, 
outperforming other methods. The performance comparison 
indicates that our algorithm optimizes VM scheduling and 
achieves load balancing, enabling the cloud service provider to 
handle more tasks from different users in real-time. However, a 
drawback of the proposed approach is its tendency to utilize 
more VM placements when dealing with dynamically changing 
tasks, making it challenging to predict future VM usage 
accurately. 

Fig. 3 illustrates a comparative analysis of our approach and 
other algorithms based on their respective execution times. The 

data presented in the figure proves that our technique, which 
supports both active and passive property-based tasks, 
outperforms other present ones through optimized VM 
placement, resulting in improved execution time. By efficiently 
allocating fewer complex tasks to VMs, our technique reduces 
the overall execution time. 

In Fig. 4, the proposed algorithm is compared to other 
algorithms for response time. This comparison shows that our 
algorithm converges faster and delivers VM placement 
scheduling for the given tasks more rapidly. It can promptly 
allocate VMs by prioritizing static property values for simpler 
tasks, enhancing its ability to effectively handle tasks based on 
dynamic properties. 

 

Fig. 4. Response time comparison. 

 

Fig. 5. Makespan time comparison. 

Fig. 5 compares the proposed algorithm with existing 
methods measured by the makespan metric. The figure indicates 
that our algorithm offers optimal placement of VMs regardless 
of increasing workloads compared to the comparative 
algorithms. The algorithm considers task properties to place 
VMs optimally. 
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Despite all these improvements in task scheduling and 
resource allocation, the proposed method has some limitations. 
One primary limitation is the overhead resulting from more VM 
placements to accommodate dynamically changing tasks. While 
the method is superior in terms of efficiency in carrying out tasks 
characterized by static properties of resources, it can over-
allocate VMs in such a task with dynamic properties. This 
tendency can bring about some issues, including reduced 
efficiency and increased operation costs since forecasting the 
future usage of VMs becomes complicated. As such, the method 
does not guarantee the selection of an inexpensive solution that 
would be advantageous in systems with volatile traffic loads. 

Another limitation is that complexity can result from 
handling scheduling algorithms employed in the examination 
process. Although load balancing coupled with metaheuristic 
optimization techniques offers a solution for resolving 
inefficiencies, it is accompanied by increased computational 
complexity. This complexity might affect the method's usability 
when scaling up and applying it to larger and more diverse cloud 
environments. Further, due to the dependency of the algorithm 
on chosen performance parameters and simulation parameters, 
it is possible to infer that the efficiency of the algorithm can be 
different from that of another Cloud platform and from that of a 
real-world scenario. Mitigating these limitations involves an 
enhancement of the method and its application with the aim of 
achieving uniformity and efficiency in various settings and 
projects. 

V. CONCLUSION 

Cloud computing has gained popularity due to its flexible 
and resourceful nature, providing adaptable resources on a 
shared infrastructure. This technology provides a framework for 
various services, from scientific operations to service 
computing, highlighting the critical role of efficient task 
scheduling in ensuring optimal resource allocation and 
performance. In this study, we introduced a novel approach for 
task scheduling in cloud infrastructure services, addressing the 
significant challenge of mapping tasks to available resources 
while minimizing execution plan objectives. The proposed 
technique leverages a metaheuristic optimization method along 
with load distribution, designed to optimize cloud computing 
service providers' overall performance and effectively alleviate 
scheduling issues. One of the key strengths of our proposed 
approach is its adaptability to both static and dynamic task 
conditions. In static scenarios, where VM parameters are fixed, 
and in dynamic conditions, where parameters are adjusted in 
real-time, our method exhibits efficacy and flexibility. 
Simulation results unequivocally demonstrated the superiority 
of our proposed technique over existing methods, showcasing 
notable improvements in key performance metrics such as 
makespan, response time, and execution time. 

The outcomes of our study underscore the practical viability 
and potency of our proposed metaheuristic optimization 
approach with load balancing in addressing the complexities of 
task scheduling in cloud infrastructure services. It not only 
optimizes resource utilization but also contributes significantly 
to enhancing user experience by ensuring guaranteed 
performance and efficient resource allocation. While this 
research presents promising results, future work could delve 

deeper into exploring the scalability of the proposed method for 
larger and more diverse cloud environments. Moreover, 
considering real-world deployment and testing on varied cloud 
platforms could further validate the applicability and robustness 
of the approach. Overall, the proposed technique stands as a 
promising step towards addressing the challenges in task 
scheduling within cloud infrastructure services, offering a 
potential avenue for further advancements and practical 
implementations in the field. 
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