
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

590 | P a g e

www.ijacsa.thesai.org

Metaheuristic Optimization for Dynamic Task

Scheduling in Cloud Computing Environments

Longyang Du*, Qingxuan Wang

School of Artificial Intelligence, Jiaozuo University, Jiaozuo 454000, Henan, China

Abstract—Cloud computing enables the sharing of resources

across the Internet in a highly adaptable and quantifiable way.

This technology allows users to access customizable distributed

resources and offers various services for resource allocation,

scientific operations, and service computing via virtualization.

Effectively allocating tasks to available resources is essential to

providing reliable consumer performance. Task scheduling in

cloud computing models presents substantial challenges as it

necessitates an efficient scheduler to map multiple tasks from

numerous sources and dynamically distribute resources to users

based on their requirements. This study presents a metaheuristic

optimization methodology that integrates load balancing by

dynamically distributing tasks across available resources based on

current load conditions. This ensures an even distribution of

workloads, preventing resource bottlenecks and enhancing overall

system performance. The suggested method is suitable for both

constant and variable activities. Our technique was compared

with established metaheuristic methods, including HDD-PLB,

HG-GSA, and CAAH. The proposed method demonstrated

superior performance due to its adaptive load balancing

mechanism and efficient resource utilization, reducing task

completion times and improving overall system throughput.

Keywords—Dynamic task scheduling; cloud computing;

metaheuristic optimization; load balancing; task allocation;

resource utilization

I. INTRODUCTION

A. Context

Cloud computing is a rapidly evolving technology, marking
its place as the next generation in IT and business landscapes
[1]. It offers a spectrum of services, including reliable software
and hardware, accessible through the Internet and remote data
centres [2]. With its architecture, cloud services efficiently
manage diverse computing tasks on a large scale, covering
multiple IT functions such as storage, computation, database,
and application services [3]. The increasing demand for storage,
processing, and analysis of extensive datasets has propelled
organizations and individuals to embrace cloud computing [4].
Scientific applications, notably those requiring significant
computational resources for extensive experiments, have found
refuge in cloud deployments due to limitations in local server
facilities [5]. Reduced capital costs, immense data generation,
and consumption growth from these experiments have driven
this shift. Moreover, cloud service providers are now
incorporating data parallelism capabilities into their offerings,
empowering users to leverage cloud resources and execute their
workflows more effectively [6].

B. Problem Statement

Cloud computing is a paradigm that enables universal,
flexible, and immediate access to various configurable
computing resources in the form of services, applications,
storage, servers, and networks, easily delivered and released
without much service provider interaction or management effort
[7]. It serves as a solution with several advantages to overcome
economic and technological challenges. The cloud computing
model offers lower total costs and allows companies to
concentrate on their primary tasks and functions without
concerning themselves with infrastructure issues or the
availability and flexibility of resources [8].

Furthermore, the amalgamation of cloud services, including
computation, infrastructure, and storage, into the utility model
of cloud computing presents an exceptionally appealing
environment for scientists to conduct their experiments [9].
Cloud computing provides various service models tailored to
meet distinct customer requirements. Cloud service models can
be classified as Platform as a Service (PaaS), Software as a
Service (SaaS), or Infrastructure as a Service (IaaS) [10]. IaaS
offers virtual computing resources over the Internet. It allows
users to manage and operate applications without needing to
handle physical hardware complexities by combining virtual
machines, storage, and networks [11]. PaaS allows customers to
develop, run, and manage applications independently of the
underlying infrastructure [12]. It includes development
frameworks, databases, and tools. SaaS provides subscription-
based access to software applications over the Internet [13].

C. Motivation

In recent years, the issue of task scheduling within a
distributed environment has become a focal point for
researchers. Task scheduling is regarded as a critical concern in
the cloud computing domain, taking into account various factors
such as completion time, overall cost of executing users' tasks,
resource utilization, power consumption, and fault tolerance
[14]. The challenge arises in attaining the optimal equilibrium
between the time required to complete a task and the amount of
energy consumed for a parallel application bound by
precedence, resulting in a problem of bi-objective optimization.
The resolution to this problem yields a collection of Pareto
points, where Pareto solutions indicate that enhancing one target
requires making concessions in at least one other objective.
Therefore, the resolution to a bi-objective issue comprises a
collection of Pareto points rather than a single answer.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

591 | P a g e

www.ijacsa.thesai.org

Task scheduling in cloud computing environments is
commonly known as an NP-complete and multi-objective
optimization issue [15]. It deals with the allocation of user-
defined tasks on the existing cloud virtual machines. The main
goal of any task scheduling strategy is to minimize total
execution time. An effective solution to this challenge may be
achieved by integrating multiple approaches to enhance task
execution and optimize the utilization of resources. This can be
achieved by optimizing task placement, task scheduling, and
task execution. Additionally, task scheduling algorithms should
be adaptive and capable of continuously optimizing their
operations in response to changing workloads and resource
availability.

D. Contribution

The current investigation centers on implementing and
comparing metaheuristic optimization techniques for task
scheduling. We compare such methods with conventional
heuristics, addressing the problem of scheduling static tasks
independently in cloud infrastructure contexts. Experiments are
conducted in both uniform and uneven environments. In the
uniform scenario, virtual machine characteristics remain
constant, whereas the asymmetric environment involves a
random selection of virtual machines based on diverse features
like MIPS, Bandwidth, and RAM. Despite the simplicity of the
symmetric scheduling approach, it fails to fully exploit the
potential offered by the asymmetric characteristics of virtual
machines. Section I and Section II provide an overview of
various conventional metaheuristic task scheduling approaches
along with their inherent limitations. Section III gives a
comprehensive description of the proposed optimization
strategy. Section IV describes the simulation setup and outlines
diverse experiments conducted, all grounded in the proposed
technique. Finally, Section V articulates the paper's conclusions
and suggests potential avenues for future research enhancements
applicable to the proposed optimization technique.

II. RELATED WORK

This section discusses existing research efforts addressing
task scheduling challenges in cloud computing contexts. Several

methodologies have been explored for optimizing the allocation
of tasks to virtual machines, enhancing system efficiency,
reducing execution times, and maximizing resource utilization.
Table I compares various cloud computing task scheduling
approaches.

Yang, et al. [16] proposed a task scheduling algorithm
derived from game theory in their research. This paper presents
three significant contributions tailored to the features of cloud
computing. Primarily, leveraging game theory enhances the
coordination between task distribution and energy allocation.
Secondly, the paper offers a task-scheduling framework to
handle big data through a mathematical formulation.
Verification by experiment in this research attests to both stable
states and optimal computational efficiency.

Chaudhary and Kumar [17] proposed a novel load
scheduling technique named Hybrid Genetic-Gravitational
Search Algorithm (HG-GSA) with the aim of reducing the
overall computational burden, encompassing both execution and
transfer costs. HG-GSA employs a hybrid crossover mechanism
to explore the optimal arrangement of particles in the search
space. The calculated force is then utilized to determine an
optimal particle position. The performance of HG-GSA is
evaluated against alternative methods using the CloudSim
simulator. Through convergence analysis and quantitative
assessments, the proposed HG-GSA approach significantly
reduces the total computation cost over existing algorithms such
as PSO, Cloudy-GSA, and LIGSA-C.

Imene, et al. [18] applied the Non-dominated Sorting
Genetic Algorithm (NSGA-III), a third-generation multi-
objective optimization strategy, for scheduling cloud computing
tasks. They introduced an innovative multi-objective adaptation
process designed to optimize three crucial factors: cost, power
consumption, and runtime. Further, the study conducted a
comparative analysis between NSGA-III and its precursor,
NSGA-II, revealing that NSGA-III outperformed NSGA-II.

TABLE I. AN OVERVIEW OF THE RECENT CLOUD TASK SCHEDULING APPROACHES

References Algorithm Contributions Evaluation metrics

[16] Game theory-based task scheduling
Mathematical model for big data task scheduling

and experimental verification

Equilibrium states and computational

efficiency

[17] Hybrid genetic-gravitational search algorithm Novel hybrid crossover mechanism

Convergence analysis, statistical

assessments, and computation cost

reduction

[18] Non-dominated sorting genetic algorithm Novel multi-objective adaptation function Runtime, power consumption, and cost

[19]
Hybrid deadline-constrained, dynamic VM
provisioning and load balancing

Hybridization of heuristic techniques with
metaheuristic

Makespan, cost, and VM utilization

[20]
Context-aware adaptive heuristic-based

mechanism

Context-aware adaptive heuristic-based solution

and significant performance improvements

Performance efficiency and energy

savings

[21] Adaptive ant colony optimization algorithm Pheromone adaptive update mechanism
Task completion time, execution cost, and
balance degree

[22]
Moth search algorithm with differential

evolution
Strong exploration and exploitation Makespan

[23] Chemical reaction partial swarm optimization
Integration of chemical reaction optimization and
partial swarm optimization

Execution time, makespan, cost, and
energy

[24] Deep Q-learning network Utilization of deep Q-learning network
Makespan, SLA violation, and energy

consumption

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

592 | P a g e

www.ijacsa.thesai.org

Kaur and Kaur [19] proposed a hybrid delay-constrained
dynamic virtual machine provisioning and load balancing
approach called HDD-PLB. The primary goal of HDD-PLB is
to enhance VM utilization by achieving uniform load
distribution. This optimization strategy relies on combining
heuristics with metaheuristics to attain optimum performance,
focusing on metrics such as cost and makespan. Within the
HDD-PLB methodology, two heuristics are proposed: hybrid
heterogeneous earliest finish time heuristic with Ant Colony
Optimization (ACO) algorithm and hybrid predicted earliest
finish time heuristic with ACO algorithm. A comprehensive
analysis and comparison of these approaches is conducted to
determine their superiority within the proposed HDD-PLB
model.

Kulkarni and Annappa [20] proposed an effective context-
aware adaptive heuristic-based (CAAH) methodology tailored
for virtual machine allocation in diverse and heterogeneous
cloud data centers. CAAH accounts for both the inherent
properties of physical machines and the varying load conditions
(moderate or high) within heterogeneous data centers. The
primary objective is to augment performance efficiency and
facilitate power savings for operators managing data centers.
Through experimental assessments employing both genuine
cloud workloads and synthetic workloads, noteworthy
enhancements in performance and energy conservation were
observed with CAAH in comparison to a widely recognized
adaptive heuristic-based technique.

Liu [21] proposed a dynamic task-scheduling technique
designed for cloud computing and based on the ACO algorithm.
Their proposed approach enhances the standard ACO by
integrating pheromone adaptive updating to expedite
convergence while effectively circumventing local optima. This
enhanced algorithm generates a distribution scheme that offers
reduced processing time, minimized costs, and well-balanced
task loads based on user-submitted tasks. By conducting
experiments on a cloud computing platform, the traditional ACO
is compared against the enhanced adaptive ACO algorithm. The
empirical data illustrates that the improved adaptive ACO
efficiently identifies optimal solutions for cloud computing
resource scheduling issues, resulting in reduced task completion
times, decreased execution costs, and maintaining a balanced
load across the cloud system.

Abd Elaziz, et al. [22] introduced an innovative approach to
solving the cloud task scheduling challenge with a primary focus
on minimizing the amount of time needed to schedule diverse
tasks across distinct virtual machines. The proposed
methodology incorporates the Differential Evolution (DE)
technique into the Moth Search Algorithm (MSA). The MSA
draws inspiration from moth navigation toward a light source, a
natural process, leveraging Levy flights and phototaxis to
emulate exploitation and exploration capabilities. While the
MSA exhibits robust exploration abilities, its exploitation facet
requires enhancement, prompting the integration of DE as a
local search technique. Three experiments were performed to
measure the effectiveness of the newly introduced MSDE
algorithm. The initial test compares the performance between
the classic MSA and the modified algorithm across twenty
global optimization problems. In the subsequent two testing
phases, the proposed algorithm was benchmarked with various

heuristic and meta-heuristic algorithms, utilizing both synthetic
and real-world data.

Dubey and Sharma [23] introduced a pioneering task
scheduling approach, termed Chemical Reaction Partial Swarm
Optimization (CRPSO), to allocate several independent tasks to
available virtual machines. This innovative method combines
partial swarm optimization and chemical reaction optimization,
amalgamating their features to sequence the optimal task
schedule based on demand and deadlines. The aim is to enhance
quality across various factors such as cost, energy, and
makespan. Their simulation experiments, conducted via the
CloudSim toolkit, confirm the performance of the proposed
algorithm. Comparative tests, varying the number of tasks and
virtual machines, demonstrate an average reduction in execution
time ranging between 1% to 6%, exceeding 10% in certain
scenarios. The makespan results also exhibit an effectiveness
enhancement between 5% to 12% and a total cost reduction
between 2% to 10%, while the energy consumption rates show
an improvement of 1% to 9%.

Mangalampalli, et al. [24] utilized a multi-dimensional deep
learning algorithm to manage the cloud task scheduling issue,
conducting extensive simulations through the Cloudsim toolkit.
The simulations were executed in two phases: first utilizing
randomly generated workloads and then incorporating HPC2N
and NASA workloads to assess the efficiency of the suggested
algorithm. The proposed scheduler was compared against
conventional schedulers like Earliest Deadline First, RR, and
FCFS.

III. PROPOSED METHOD

The client provides a set of tasks, aiming to generate an
optimal task execution plan using a metaheuristic method based
on optimization techniques. One vital aspect of any meta-
heuristic algorithm in achieving an optimal solution is the
selection of a seed arrangement. Arrangements of seeds serve as
initial feasible solutions to the problem, aiding optimization
algorithms in the quest for an optimal solution. These
arrangements play a critical role in the rapid convergence of any
optimization-based solution. Researchers have employed
various strategies to generate seed arrangements, depending on
the nature of the problem. These strategies encompass selecting
a complex arrangement, a logical configuration based on a
particular problem model, or a heuristic-based arrangement.
Each approach has its own advantages and drawbacks.
However, in many cases, an uneven seed arrangement is utilized
to generate a seed arrangement in the absence of a proper
heuristic.

The proposed algorithm aims to minimize execution time
and meet deadlines while preserving task dependencies across
various users. It operates based on a Directed Acyclic Graph
(DAG) representing the task set (T) and task dependencies
through edges denoting data transmission time. These
relationships establish entry-exit dependencies between child
and parent nodes, forming the basis of the task behavior. The
proposed algorithm operates as a population-based approach,
aligning with swarm intelligence behavior to provide an
optimized solution to complex data. It functions as a meta-
heuristic technique in comparison to other algorithms. The
algorithm encompasses two phases: scheduling jobs with static

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

593 | P a g e

www.ijacsa.thesai.org

constraints and dynamic constraints. These phases aim to handle
task positions in the schedule based on execution time and
deadlines, with a primary goal of minimizing the makespan. The
algorithm considers the constraints stated by the user and adjusts
the tasks accordingly, ensuring dependencies are maintained
throughout the sorting process.

During the task scheduling process, the algorithm utilizes
swarm behavior, mimicking the distribution and interaction
patterns of particles for improved optimization of multi-
objective tasks. Its adaptability helps in solving a wide range of
NP-hard-level tasks, effectively handling the scheduling of
various tasks on different machines. The algorithm's efficiency
is further enhanced by its ability to detect all scheduled tasks,
ensuring effective outcomes. Employing a random phase, the
algorithm aims to optimize the scheduling of cloudlets for
execution on Virtual Machines (VMs). Particle fitness,
bandwidth, MIPS, flow time, response time, resource usage,
throughput time, and imbalance degree guide the selection of
particles in the pursuit space, ensuring improved wellness values
and effective execution outcomes.

The aim is to allocate a set of tasks (𝑇 = 𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛)
onto a designated group of processors (𝑃 = 𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)
within a cluster of VMs. This task allocation, called solution S,
follows predetermined measures and constraints within the
cloud environment.

𝐹(𝑆) = 𝑚𝑖𝑛 ∑ 𝐶𝑡𝑡,𝑚
𝑖=1,𝑗=1 (1)

In Eq. (1), F(S) represents the fitness function of the
solutions, m corresponds to the total number of available
machines, t stands for the entire number of tasks submitted by
the user, and Ct denotes the completion time of all tasks. Fitness
function values vary with the type of job. Jobs can be
categorized as either dynamic or static. Static jobs possess
predefined properties, such as a fixed total data amount, data
flow within the system, and time constraints. Conversely,
dynamic jobs encompass undefined job properties, like data
bursting and indeterminate data types. Users are required to
specify whether the job properties are static or dynamic when
submitting the data.

For static job scheduling, where job properties are
determined by the cloud service provider, denoted as
(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛). The user-provided variables are used to
characterize the present infrastructure utilization and determine
the needed virtual machine cluster. Various categories of VM
clusters are evaluated, and their corresponding fitness scores are
computed. By employing the optimal fit algorithm, the VM
cluster that is most appropriate is chosen, thereby accomplishing
load balancing. The cost of task execution is determined by the
user's given property values, as per Eq. (2). Fig. 1 depicts the
system architecture of the suggested approach.

𝐶 = ∑ 𝑃𝑖𝑛,𝑚
𝑖=1,𝑗=1 (2)

In Eq. (2), Pi represents the property of the ith job, n defines
the number of job properties, m denotes the number of jobs, and
C refers to the cost of executing the function. Job costs are
considered when computing fitness values for potential VM
clusters, and these values are used to pick the most appropriate
VM cluster. Eq. (3) details the fitness function calculation.

𝐹(𝑆) = 𝑚𝑖𝑛 ∑ (𝑃1, 𝑃2, … , 𝑃𝑥) + 𝑇𝑗 + 𝑀𝑘
𝑛,𝑚,𝑝
𝑖=1,𝑗=1,𝑘=1 (3)

Where F(S) represents the fitness value of the respective
cluster, p indicates the available machines within the respective
cluster, M is the machine, m signifies the number of tasks, T
refers to the corresponding task, x reflects the job's property, and
n indicates the number of jobs. The proposed algorithm defines
the static scheduling of tasks, as outlined in the Algorithm. 1.

Algorithm. 1. Pseudocode for the proposed static task

scheduling

Function ProposedAlgorithm(J, P, M):

 Initialize BestFitCluster as empty

 For Each Task Ti in Job J:

 For Each VM Cluster Mk in Set of VM Clusters:

 Calculate Cost(C) for placing Ti in Mk based on properties

P

 Select VM Cluster M with minimum Cost(C)

 If BestFitCluster is empty or Cost(C) < Cost(BestFitCluster):

 Update BestFitCluster with M

 Return BestFitCluster

End Function

Dynamic task scheduling involves the possibility of
unspecified task properties, which necessitates the service
provider to establish a minimal set of parameters and their
assigned weights. The user provides these variables during the
first task submission, which determines the allocation of
required machines. The quantity of machines in operation can
be modified according to the workload duration of the task. The
cost of task execution is determined by the highest value that the
user is willing to pay for the first setup, as specified in Eq. (4).

𝐶 = 𝑚𝑎𝑥 ∑ 𝑃𝑖𝑛,𝑚
𝑖=1,𝑗=1 (4)

Where Pi represents the maximum value of the property,
while n signifies the number of job properties, and m represents
the task count. Throughout runtime, the highest property
estimates gathered from the job's tasks are logged. The average
value of the property is considered when allocating a new VM
cluster for arriving tasks carrying varying properties, determined
by Eq. (5) and Eq. (6).

𝑃𝑖(𝑇) =
(∑ 𝑉𝑖𝑛

𝑖=1)
𝑛⁄ (5)

𝐹(𝑆) = 𝑚𝑖𝑛(∑ (𝑃1, 𝑃2, … , 𝑃𝑥) + 𝑇𝑗 + 𝑀𝑘
𝑛,𝑚,𝑝
𝑖=1,𝑗=1,𝑘=1) <

𝑚𝑎𝑥 ∑ 𝑃𝑖𝑛,𝑚
𝑖=1,𝑗=1 (6)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

594 | P a g e

www.ijacsa.thesai.org

Fig. 1. System architecture.

Eq. (5) defines Pi(T) as the average property value of the job,
Vi as the specific property value, and n as the total number of
property values obtained from the operations. The fitness value
of the VM cluster is denoted by F(S). In this equation, n refers
to the number of jobs, x stands for the value of property P for
the job, T is the task, m signifies the number of tasks, M
represents the machine, and p refers to the number of machines
within the VM cluster. The computed value should be the
minimum among all fitness values lower than the maximum
value the user is willing to accept for task execution. The method
proposed in Algorithm 2 defines the dynamic scheduling of
tasks.

Algorithm 2. Pseudocode for the proposed dynamic task

scheduling

Start

Input: Job with set of Tasks J(T1, T2, ….. Tj);

 Set of task properties (P1, P2, ……Pn);

 Set of VM cluster properties (M1, M2, …… Mk);

 Set of Task property values V;

Output: Bestfit VM cluster F(S)

Initialize BestfitCluster to null

For each task T in J

 Calculate Cost C for each VM cluster using task properties P

and values V

 For i = 1 to n & j = 1 to m

 Calculate Fitness F(S) for each VM cluster

 end For

 Find the VM cluster with the minimum Fitness (min F(S))

 If BestfitCluster is null or F(S) < Fitness of BestfitCluster

 Update BestfitCluster with the current VM cluster

End For

Return BestfitCluster

End

IV. RESULTS AND DISCUSSION

The efficiency of the suggested technique has been evaluated
using the CloudSim simulator. Table II provides a concise
overview of the specifications for key components of a cloud
platform, including virtual machines (VMs), cloudlets, data
centers, and clients. These parameters are regarded as minimal
for dynamic simulation and constant for static simulation,
allowing for changes during execution. The suggested method is
evaluated against three techniques described in Section II,
specifically HDD-PLB [19], HG-GSA [17], and CAAH [20].
The performance metrics considered include VM utilization
ratio, execution time, response time, and makespan time. VM
utilization ratio denotes the number of VMs deployed relative to
the total VMs available, execution time indicates the duration of
task completion in the VMs, response time signifies the
scheduler's time taken to schedule tasks, and makespan
represents the finishing time of the last task.

TABLE II. SIMULATION PARAMETER SPECIFICATIONS

Components Attributes Values

Task Total number 250-2000

Cloudlet Length 50,000

 Total number 500

Host Bandwidth 10 GB/s

 Storage 100 GB

 RAM 2 GB

 Total number 3

VM Total number 100

 OS Linux

 MIPS 10000

 Processor 2.4 GHz

 SSD 100 GB

 RAM 2 GB

Data center Total number 2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

595 | P a g e

www.ijacsa.thesai.org

Fig. 2. VM utilization ratio comparison.

Fig. 3. Execution time comparison.

Fig. 2 compares the suggested strategy with existing
alternatives in terms of the VM utilization ratio. This indicator
is crucial for evaluating the efficiency and performance of
resource allocation in a cloud computing environment. It offers
valuable information on the efficient utilization of resources by
virtual machines, enabling the discovery of virtual machines that
are either underutilized or overutilized while making appropriate
modifications to achieve optimal performance. The figure
illustrates that the proposed algorithm schedules tasks optimally,
using a lower number of VMs compared to the comparative
algorithms. Specifically, for tasks based on static properties, our
algorithm minimizes the number of VMs required,
outperforming other methods. The performance comparison
indicates that our algorithm optimizes VM scheduling and
achieves load balancing, enabling the cloud service provider to
handle more tasks from different users in real-time. However, a
drawback of the proposed approach is its tendency to utilize
more VM placements when dealing with dynamically changing
tasks, making it challenging to predict future VM usage
accurately.

Fig. 3 illustrates a comparative analysis of our approach and
other algorithms based on their respective execution times. The

data presented in the figure proves that our technique, which
supports both active and passive property-based tasks,
outperforms other present ones through optimized VM
placement, resulting in improved execution time. By efficiently
allocating fewer complex tasks to VMs, our technique reduces
the overall execution time.

In Fig. 4, the proposed algorithm is compared to other
algorithms for response time. This comparison shows that our
algorithm converges faster and delivers VM placement
scheduling for the given tasks more rapidly. It can promptly
allocate VMs by prioritizing static property values for simpler
tasks, enhancing its ability to effectively handle tasks based on
dynamic properties.

Fig. 4. Response time comparison.

Fig. 5. Makespan time comparison.

Fig. 5 compares the proposed algorithm with existing
methods measured by the makespan metric. The figure indicates
that our algorithm offers optimal placement of VMs regardless
of increasing workloads compared to the comparative
algorithms. The algorithm considers task properties to place
VMs optimally.

Number of tasks

400 600 800 1000 1200 1400 1600 1800 2000

N
u

m
b
er

 o
f

V
M

s

0

2

4

6

8

10

12

14
HDD-PLB
HG-GSA
CAAH
Proposed method

Number of tasks

400 600 800 1000 1200 1400 1600 1800 2000

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
e

0

5e+4

1e+5

2e+5

2e+5

HDD-PLB
HG-GSA
CAAH
Proposed method

Number of tasks

400 600 800 1000 1200 1400 1600 1800 2000

A
v
er

ag
e

m
ak

es
p
an

 t
im

e

0

5000

10000

15000

20000

25000

HDD-PLB
HG-GSA
CAAH
Proposed method

Number of tasks

400 600 800 1000 1200 1400 1600 1800 2000

A
v

er
ag

e
m

ak
es

p
an

 t
im

e

0

5000

10000

15000

20000

25000

HDD-PLB
HG-GSA
CAAH
Proposed method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

596 | P a g e

www.ijacsa.thesai.org

Despite all these improvements in task scheduling and
resource allocation, the proposed method has some limitations.
One primary limitation is the overhead resulting from more VM
placements to accommodate dynamically changing tasks. While
the method is superior in terms of efficiency in carrying out tasks
characterized by static properties of resources, it can over-
allocate VMs in such a task with dynamic properties. This
tendency can bring about some issues, including reduced
efficiency and increased operation costs since forecasting the
future usage of VMs becomes complicated. As such, the method
does not guarantee the selection of an inexpensive solution that
would be advantageous in systems with volatile traffic loads.

Another limitation is that complexity can result from
handling scheduling algorithms employed in the examination
process. Although load balancing coupled with metaheuristic
optimization techniques offers a solution for resolving
inefficiencies, it is accompanied by increased computational
complexity. This complexity might affect the method's usability
when scaling up and applying it to larger and more diverse cloud
environments. Further, due to the dependency of the algorithm
on chosen performance parameters and simulation parameters,
it is possible to infer that the efficiency of the algorithm can be
different from that of another Cloud platform and from that of a
real-world scenario. Mitigating these limitations involves an
enhancement of the method and its application with the aim of
achieving uniformity and efficiency in various settings and
projects.

V. CONCLUSION

Cloud computing has gained popularity due to its flexible
and resourceful nature, providing adaptable resources on a
shared infrastructure. This technology provides a framework for
various services, from scientific operations to service
computing, highlighting the critical role of efficient task
scheduling in ensuring optimal resource allocation and
performance. In this study, we introduced a novel approach for
task scheduling in cloud infrastructure services, addressing the
significant challenge of mapping tasks to available resources
while minimizing execution plan objectives. The proposed
technique leverages a metaheuristic optimization method along
with load distribution, designed to optimize cloud computing
service providers' overall performance and effectively alleviate
scheduling issues. One of the key strengths of our proposed
approach is its adaptability to both static and dynamic task
conditions. In static scenarios, where VM parameters are fixed,
and in dynamic conditions, where parameters are adjusted in
real-time, our method exhibits efficacy and flexibility.
Simulation results unequivocally demonstrated the superiority
of our proposed technique over existing methods, showcasing
notable improvements in key performance metrics such as
makespan, response time, and execution time.

The outcomes of our study underscore the practical viability
and potency of our proposed metaheuristic optimization
approach with load balancing in addressing the complexities of
task scheduling in cloud infrastructure services. It not only
optimizes resource utilization but also contributes significantly
to enhancing user experience by ensuring guaranteed
performance and efficient resource allocation. While this
research presents promising results, future work could delve

deeper into exploring the scalability of the proposed method for
larger and more diverse cloud environments. Moreover,
considering real-world deployment and testing on varied cloud
platforms could further validate the applicability and robustness
of the approach. Overall, the proposed technique stands as a
promising step towards addressing the challenges in task
scheduling within cloud infrastructure services, offering a
potential avenue for further advancements and practical
implementations in the field.

REFERENCES

[1] V. Hayyolalam, B. Pourghebleh, A. A. P. Kazem, and A. Ghaffari,
"Exploring the state-of-the-art service composition approaches in cloud
manufacturing systems to enhance upcoming techniques," The
International Journal of Advanced Manufacturing Technology, vol. 105,
no. 1-4, pp. 471-498, 2019.

[2] K. Saidi and D. Bardou, "Task scheduling and VM placement to resource
allocation in Cloud computing: challenges and opportunities," Cluster
Computing, vol. 26, no. 5, pp. 3069-3087, 2023.

[3] W. Wang and Z. Liu, "Cloud Service Composition using Firefly
Optimization Algorithm and Fuzzy Logic," International Journal of
Advanced Computer Science and Applications, vol. 14, no. 3, 2023.

[4] S. Zhao, J. Miao, J. Zhao, and N. Naghshbandi, "A comprehensive and
systematic review of the banking systems based on pay-as-you-go
payment fashion and cloud computing in the pandemic era," Information
Systems and e-Business Management, pp. 1-29, 2023.

[5] X. Liu and Y. Deng, "A new QoS-aware service discovery technique in
the Internet of Things using whale optimization and genetic algorithms,"
Journal of Engineering and Applied Science, vol. 71, no. 1, p. 4, 2024.

[6] B. Kruekaew and W. Kimpan, "Multi-objective task scheduling
optimization for load balancing in cloud computing environment using
hybrid artificial bee colony algorithm with reinforcement learning," IEEE
Access, vol. 10, pp. 17803-17818, 2022.

[7] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, "The
importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, pp. 1-24, 2021.

[8] A. G. Gad, E. H. Houssein, M. Zhou, P. N. Suganthan, and Y. M. Wazery,
"Damping-assisted evolutionary swarm intelligence for industrial iot task
scheduling in cloud computing," IEEE Internet of Things Journal, 2023.

[9] M.-L. Chiang, H.-C. Hsieh, Y.-H. Cheng, W.-L. Lin, and B.-H. Zeng,
"Improvement of tasks scheduling algorithm based on load balancing
candidate method under cloud computing environment," Expert Systems
with Applications, vol. 212, p. 118714, 2023.

[10] M. Yadav and A. Mishra, "An enhanced ordinal optimization with lower
scheduling overhead based novel approach for task scheduling in cloud
computing environment," Journal of Cloud Computing, vol. 12, no. 1, p.
8, 2023.

[11] H. Godhrawala and R. Sridaran, "Apriori Algorithm Based Approach for
Improving QoS and SLA Guarantee in IaaS Clouds Using Pattern-Based
Service-Oriented Architecture," SN Computer Science, vol. 4, no. 5, p.
700, 2023.

[12] F. Thabit, O. Can, R. U. Z. Wani, M. A. Qasem, S. Thorat, and H. A.
Alkhzaimi, "Data security techniques in cloud computing based on
machine learning algorithms and cryptographic algorithms: Lightweight
algorithms and genetics algorithms," Concurrency and Computation:
Practice and Experience, p. e7691, 2023.

[13] P. A. Malla and S. Sheikh, "Analysis of QoS aware energy‐efficient
resource provisioning techniques in cloud computing," International
Journal of Communication Systems, vol. 36, no. 1, p. e5359, 2023.

[14] I. Behera and S. Sobhanayak, "Task scheduling optimization in
heterogeneous cloud computing environments: A hybrid GA-GWO
approach," Journal of Parallel and Distributed Computing, vol. 183, p.
104766, 2024.

[15] P. V. Reddy and K. G. Reddy, "An energy efficient RL based workflow
scheduling in cloud computing," Expert Systems with Applications, vol.
234, p. 121038, 2023.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

597 | P a g e

www.ijacsa.thesai.org

[16] J. Yang, B. Jiang, Z. Lv, and K.-K. R. Choo, "A task scheduling algorithm
considering game theory designed for energy management in cloud
computing," Future Generation computer systems, vol. 105, pp. 985-992,
2020.

[17] D. Chaudhary and B. Kumar, "Cost optimized hybrid genetic-
gravitational search algorithm for load scheduling in cloud computing,"
Applied Soft Computing, vol. 83, p. 105627, 2019.

[18] L. Imene, S. Sihem, K. Okba, and B. Mohamed, "A third generation
genetic algorithm NSGAIII for task scheduling in cloud computing,"
Journal of King Saud University-Computer and Information Sciences,
vol. 34, no. 9, pp. 7515-7529, 2022.

[19] A. Kaur and B. Kaur, "Load balancing optimization based on hybrid
Heuristic-Metaheuristic techniques in cloud environment," Journal of
King Saud University-Computer and Information Sciences, vol. 34, no. 3,
pp. 813-824, 2022.

[20] A. K. Kulkarni and B. Annappa, "Context aware VM placement
optimization technique for heterogeneous IaaS cloud," IEEE access, vol.
7, pp. 89702-89713, 2019.

[21] H. Liu, "Research on cloud computing adaptive task scheduling based on
ant colony algorithm," Optik, vol. 258, p. 168677, 2022.

[22] M. Abd Elaziz, S. Xiong, K. Jayasena, and L. Li, "Task scheduling in
cloud computing based on hybrid moth search algorithm and differential
evolution," Knowledge-Based Systems, vol. 169, pp. 39-52, 2019.

[23] K. Dubey and S. C. Sharma, "A novel multi-objective CR-PSO task
scheduling algorithm with deadline constraint in cloud computing,"
Sustainable Computing: Informatics and Systems, vol. 32, p. 100605,
2021.

[24] S. Mangalampalli, G. R. Karri, M. Kumar, O. I. Khalaf, C. A. T. Romero,
and G. A. Sahib, "DRLBTSA: Deep reinforcement learning based task-
scheduling algorithm in cloud computing," Multimedia Tools and
Applications, pp. 1-29, 2023.

