
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

628 | P a g e

www.ijacsa.thesai.org

Design and Development of a Unified Query Platform

as Middleware for NoSQL Data Stores

Hadwin Valentine, Boniface Kabaso

Faculty of Informatics and Design, Cape Peninsula University of Technology, Cape Town 8000, South Africa

Abstract—The advancements in technology such as Web 2.0,

3.0, mobile devices and recently IoT devices has given rise to a

massive amount of structured, semi-structure and unstructured

datasets, i.e. big data. The increasing complexity and diversity of

data sources poses significant challenges for stakeholders when

extracting meaningful insights. This paper demonstrates how we

developed a unified query prototype as middleware using a

polyglot technique capable of interrogating and manipulating the

four categories of NoSQL data models. This study applied

established algorithms to different aspects of the prototype to

attain this study’s objective. The prototype was subjected to an

experiment where varying query workloads were processed. The

performance data comprised of application performance index,

memory consumption, and execution time and error rates. The

results demonstrated that the prototype had a low error rate

indicating it’s robustness and reliability. In addition, the results

showed that the prototype is responsive and able to query the

underlying storage system effectively and efficiently. The

prototype provides a standardize set of operations abstracting the

complexities of each underlying storage system; reducing the need

for multiple data retrieval management systems.

Keywords—Unified query; polyglot; NoSQL; middleware; query

processing; big data

I. INTRODUCTION

Information systems in the modern era have shifted the
mindset of organizations from application-driven processes to
data driven initiatives, i.e. big data. This has led to the creation
and adoption variety of NoSQL database technologies, each
with its own underlying architectural principles [1, 3]. As a
direct result of big data technologies, organizations face the
ultimate challenge; how to query structured, semi-structured and
unstructured data uniformly? Since numerous NoSQL storage
technologies exist; technical consumers have embarked on
creating a singular platform for consolidating these
heterogeneous data models [17, 27].

The term NoSQL is often confused with “No SQL”, the
implication being that NoSQL is intended to replace relational
SQL database management systems. However, the actual
meaning refers to “Not Only SQL” [27]. NoSQL technologies
has become the preferred choice for managing big data in this
ubiquitous digital realm [1, 3]. The NoSQL philosophy
essentially stems from the shortcomings of the relational
database management systems. The NoSQL technology stack
supports four fundamental data models (1) key-value, (2)
column-orientated, (3) document-orientated and (4) graph
models [1]. These data models are schema-less in nature, owing

to the de-normalize data it holds within the data store [8, 27].
This requires data to be interpreted by the consuming
application. A number of challenges start to arise when collating
heterogenous NoSQL data schemas from disparate sources since
each database system has its respective guidelines and features
[17]. This is partly due to the absence of a global schema capable
of encompassing the four fundamental data models promoted by
NoSQL technologies. As each NoSQL database technology is
tailored to serve specific use cases.

In the absence of a global schema for diverse data sets [16,
27], organizations painstakingly develop very specific and rigid
implementations to consolidate data from different databases in
order to gain valuable and actionable insights from a particular
business domain. This activity is traditionally accomplished
through data warehousing via ETL’s i.e. extract, load and
transform [8]. However, the past decade has seen a rise of
proposed and propriety unified query solutions to bridge the
heterogenous querying gap that exists between database
technologies. This data-driven need is inspired by organizations
looking to extract key metrics from data to support strategic
business initiatives in real time [8, 13, 32]. A common approach
used to consolidate disparate data sources is to develop
middleware. This is known as a polyglot persistent solution.
Polyglot persistent solutions in the context of this paper refer to
a system’s ability to interact with several database technologies
in a multi-faceted way. While there have been numerous
successes in these endeavours, the solutions tend to serve very
specific use cases and are not easily generalized to the wider IT
audience.

A. Aim of Research

The primary objective of this study was to evaluate and
validate the effectiveness and efficiency of the developed
unified query prototype. It measured the performance of the
query process in a holistic manner specifically in terms of query
response times, accuracy, reliability and efficacy across
different NoSQL storage systems.

B. Significance of Study

This study simplifies the querying process for interrogating
multiple categories of NoSQL storage systems. It facilitates
seamless data integration, while ensuring data consistency
across the supported data models. The prototype segments the
boundaries between the varying databases making it easier to
extend the family of storage options appropriate for big data [10]
applications. Moreover, it assists in outlining the direction for
future research initiatives in unified query systems, fostering
advancement in the field.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

629 | P a g e

www.ijacsa.thesai.org

C. Problem Statement

In the absence of a global query instrument, interrogating
heterogenous NoSQL storage systems presents complexities
when attempting to collate data in a uniformed manner [5, 25].
According to Zhang et al. [9:p.1], the various NoSQL storage
models inherently serves by design “different characteristics
supported by different database systems and the differences in
query syntax rules”, thus impeding the pursuit standardization
for uniformed query.

Consequently, software engineers spend an inordinate
amount of time learning each individual NoSQL database’s
features. Although a number of research papers have contributed
towards developing a unified query model, not many
middleware solutions truly encapsulate how key-value, column-
orientated, document-orientated and graph data models may be
query via a single query mechanism simultaneously.
Furthermore, there are unequivocally no standardized data
modelling paradigms to the best of our knowledge that exist
today able to consolidate the four distinct NoSQL types through
normalised methods [15, 9].

An effective and efficient way to overcome this obstacle is
to develop a query platform system. This is exactly what this
work entailed. Adopting an approach to easily interface with the
heterogeneous data models while abstracting the technical
details of each storage mechanism. This study provided insights
on a developed prototype to determine its feasibility.

D. Contributions

The study contributes to the field of unified query systems in
several ways. Firstly, offers a text-based language that’s
intuitive abstracting the technical barriers of each underlying
storage system. Secondly, it presents a novel approach [2] to
querying multiple NoSQL systems in a uniform manner by
organising established programming design patterns in a unique
way. In addition, the modular approach facilitates scalability in
terms of extending support for additional storage options
without impeding existing supported targeted options. Finally,
the prototype's performance results demonstrated that it reduces
operational time and costs, considering how it envelops query
workloads in a standardized manner.

E. Summary

In this paper, we present the design and development of a
unified query platform that acts as middleware for NoSQL
datastores. Our research aims to address the challenges
associated with querying across heterogeneous NoSQL
databases by providing a single query interface that abstracts the
underlying complexities. In order to provide clear and concise
view of the study, we have organized this paper as follows:

 Section II: Background - Identifies key principles that’s
required to be present when developing a unified query
platform as middleware.

 Section III: Related Works - Discusses related work on
existing polyglot solutions within the context of NoSQL
databases.

 Section IV: Proposed Architecture - We discuss the
architectural and design details of our proposed unified

query platform. Furthermore, we describe the
composition of the prototype and the software design
patterns applied.

 Section V: Experimental Approach - Describes the
evaluation method employed to assess the performance
of the prototype.

 Section VI: Prototype’s Results - We present and analyse
the results attained through the experiment.

 Section VII: Discussion – We identified and discussed
key findings and repeated themes encountered in the
experiment.

 Section VIII: Conclusion and Future Work - Summarizes
the key findings and implications of our research. We
also outline future work directions.

II. BACKGROUND

Polyglot query systems generally adheres to layered
architectural pattern. However, each layer encompasses a unique
class of problems which it aims to resolve [4, 3, 24]. The
differences lies within the variety of approaches, methods,
principles and technology instantiations to satisfy the intended
use cases as shown in Fig. 1. Researchers assessing polyglot
systems concur that specific criteria must be met during solution
development for it to be deemed acceptable [6, 30]. These
criteria form the foundation of unified query resolutions. They
are designed to streamline the diversity among various data
storage mechanisms [8, 28] and facilitate the abstraction process
needed to tackle the complexities inherent in a disparate
collection of database technologies.

Fig. 1. Approaches to unified query system adopted from [27:p.18].

A. Key Principles

We’ve identified fives key principles that should be present
in these types of systems:

1) Abstract syntax tree: In computer science an Abstract

Syntax Tree (AST) acts as a mediator, bridging the gap between

conceptualization, design, implementation, and execution,

regardless of the underlying technology employed. This

concept has found utility across various research domains,

including source code compilers, security exploration, anti-

plagiarism detection, and code analysis systems [14, 31].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

630 | P a g e

www.ijacsa.thesai.org

Within the scope of this study, an AST is employed within the

query parser to ensure that commands adhere to syntax,

semantic, and lexical rules, thereby guaranteeing that the

command constitutes a well-formed statement [19].

2) Schema consolodation: A fundamental aspect of

developing unified solutions is obtaining a comprehensive

understanding of the schema information for each underlying

storage mechanism [15]. This is commonly referred to as

metamodeling. Despite the promotion of NoSQL as schema-

less because of its efficient handling of unstructured data, there

indeed exists a schema. Depending on the vendor, schema

constraints may be enforced, which the consuming application

must adhere to.

3) Query translation: Arguably, the most crucial aspect of

any unified solution is to generate native queries capable of

interrogating NoSQL storage models [23, 32]. It's important to

note that this feature is heavily influenced by the unified

approach shown in Fig. 1. However, conceptually, regardless of

the approach, it facilitates the generation of native queries that

can execute on their respective NoSQL databases.

4) Database integration: In every unified query solution,

provision must inevitably be made for communication with the

targeted databases [17]. NoSQL databases commonly employ

diverse protocols as communication mediums to access the data

source [9, 23]. These communication protocols range from

HTTP(S) to TCP/IP, typically employing an adaptor or driver

that implements a generic interface for database connection. An

intriguing observation noted during this study is a direct

correlation between the primary communication protocol and

query language. Depending on the protocol, the query

interrogation mechanism may access the database data via an

API endpoint or some form of lower-level network protocol for

data exchange.

5) Output management: To present data from various

storage systems uniformly, unified query systems typically

employ two approaches: Global-as-View (GaV) and Local-as-

View (LaV), where data unification is facilitated by a mediator

[8, 13]. It's important to note that this also contributes to the

aforementioned key features. This feature is categorized as a

mediator, an intelligent layer that possesses structural

knowledge of the local data stores. GaV integrates schemas of

the underlying local data stores, providing a unified view of

heterogeneous structures. Conversely, LaV amalgamates local

schemas to form a global view.

III. RELATED WORKS

Polyglot solutions like BigDawg aims to leverage the
relative strengths of underlying DBMSs to effectively process
data [30]. This solution embraces three types of data models:
key-value, relational, and array stores. The architecture of
BigDawg primarily focuses on query processing rather than
query construction. Its objective is to utilize key features to
achieve optimal performance and produce the most
comprehensive result set. To achieve this objective, the
architecture incorporates features such as islands, shims, and
cast, as illustrated in Fig. 2 [6, 30].

Fig. 2. BigDawg architecture [30].

An island is associated with a specific data model and a set
of query language features for the storage engine it intends to
support. A shim acts as a communication bridge between the
island and the storage engines. A cast facilitates data migration
from one storage engine to another. The API directs inquiries to
the middleware, which handles query execution and data
migration through casts [4]. The middleware comprises various
modules, including the query planner, performance monitor, and
executor. These modules validate the semantic correctness of
queries and route them to the appropriate storage mechanism for
execution.

Fig. 3. Unified SQL query middleware architecture [9].

Zhang et al. [9] introduced a solution that employs
middleware to execute queries on multiple heterogeneous
databases through a unified interface using standard SQL
syntax. Their segmented architecture, depicted in Fig. 3,
separates the initial query from the targeted queries via an
abstract syntax tree. This tree is responsible for verifying if the
initial query aligns with the requirements of the respective
heterogeneous databases. While the article mentions that the
middleware supports a pluggable interface for new data sources,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

631 | P a g e

www.ijacsa.thesai.org

it does not detail how this would impact the abstract tree and
computing layer. The provided middleware comprises three
main components: a syntax parsing layer, a computing engine,
and a data layer. The syntax layer validates a unified query
against a customer abstract syntax tree. Native queries are then
generated based on a meta store, which delegates them to the
computing engine for execution on the data layer.

NoDA, a lightweight implementation, acts as an
intermediary layer between applications and targeted NoSQL
databases, including MongoDB, HBase, Redis, and Neo4j [23].
This middleware offers a generic set of operators such as sorting,
filtering, and aggregation, aiming to efficiently execute queries
using the Apache Spark open-source data analytical framework.
Although NoDA is categorized as a polyglot implementation, it
simplifies complexity by separating the rule engine, which
validates syntax and semantics of the unified query, from the
abstract layer using a third-party tool.

Cox et al. [29] introduced the Translator Query Language
(TranQL), a solution that federates biomedical ontologies within
a framework. Their study is grounded in real-world case studies.
TranQL utilizes natural language to map to queries, generating
targeted queries on various graph data models. An essential
component of the framework is the Translator KGS API, which
employs the shared schema RDF concept to express queries as
Biolink data model, a hierarchical medical ontology at a high
level. This API maps a network of knowledge graphs as a
coherent whole, forming the basis for TranQL as a unified query
pattern by interconnecting federated knowledge graph data
models through curated links across entities.

Fig. 4. Unified SQL query middleware architecture [28].

Apache Drill is a fully distributed open-source software
framework designed for large-scale analysis in data-intensive
applications [16]. It specializes in processing extensive datasets
efficiently by executing tasks in parallel. The Apache Drill
solution leverages in-memory data representation in JSON and
Parquet formats for rapid data manipulation operations.
Additionally, its MPP (Massively Parallel Processing) query
engine dynamically compiles and recompiles data queries on the
fly to maximize performance, relying on parallelism [28].
Similar to BigDawg's implementation, Apache Drill supports
various data models accessed through a comparable mechanism
as illustrate in Fig. 4. However, instead of islands, it utilizes
plugins to connect to different storage engines and file systems
via the Drillbit component [6]. Drillbit serves as a background
component orchestrating the optimal execution query plan. The
query executions are partially rendered on an execution tree and
brought into memory.

CloudMdsQL is recognized as a multistore system capable
of querying multiple databases through its SQL-Like unified
query construct [4, 6]. Supporting relational, NoSQL, and HDFS
storage mechanisms, CloudMdsQL is designed to leverage the
inherent features of each supported heterogeneous data store
[23]. The abstract layer catalogs the semantics rules of the
supported data stores, enabling the optimization of native
queries. This allows the construction of native queries through a
relational query framework for targeted executions. The results
of embedded invocations are converted into an intermediary
table for distributed processing.

A. Evaluation Approaches of Polyglot Systems

It's important to note that this paper does not encompass all
unified solutions, as the objective is not to describe every
possible solution. Rather, we aim to introduce readers to the
distinguishing components of these solutions and the use cases
it aims to satisfy. Research papers proposing unified query
solutions understandably prioritize the overall utility of the
artifact. Much emphasis is placed on practical considerations
such as query workloads, indexing, and partitioning, which are
integral to query processing [13, 32].

The described polyglot solutions are tailored to address
different use cases. For instance, Apache Drill excels in
processing vast amounts of data for analysis, requiring robust
hardware as it loads data into memory for rapid retrieval [6].
Conversely, CloudMdsQL and BigDawg aim to leverage the full
capabilities of supported databases' native features to process
data, thereby providing users with enhanced native capabilities.
TranQL serves as a federated query system for Biolink data
using a topology of graph stores. Each of these solutions
comprises a collection of individual isolated components
targeting the supporting databases. These components operate
independently, acting as intermediaries between the middleware
layer and the database, except for BigDawg, which allows data
integration between silos.

Other solutions, such as NoDA, are less intricate, as it
follows the basic principles. This prototype primarily focus on
the query construct [23, 9], which aligns with the goals of this
study. Although the middleware supports the four primary
categories of NoSQL data models, it can only query one
underlying database at a time. The authors highlight this
limitation, underscoring that the prototype primarily emphasizes
the system's capability to access data through its connector.
Zhang et al. [9] on the other hand, is limited to select queries and
does not accommodate evolving schemas. Additionally, the use
of wildcards within the middleware may introduce suboptimal
practices and potential runtime issues stemming from datatype
and schema mismatches.

IV. PROPOSED ARCHITECTURE

This section presents the methods employed to design and
develop the prototype. The goal of this prototype was to provide
a high-level unified query platform that is database-agnostic
capable of querying data across the four distinct types of NoSQL
storage models simultaneously [17]. The prototype provides a
query language that offers a consistent a set of syntax, semantics
and data operations to express queries in a generic manner for
the targeted storage models.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

632 | P a g e

www.ijacsa.thesai.org

Fig. 5. Prototype: architectural overview.

The prototype for the unified query platform had the
following basic requirements, (1) develop a custom parser that
accepts a SQL-like query as input, (2) develop a metamodel
describing the each of the native schemas as well as the global
schema, (3) build a translation engine that accepted the parser’s
output and generated a native queries, (4) build a an executing
layer that accepts the native queries as input and executes it on
the supported NoSQL data stores, and finally a (5) logging
mechanism to audit performance and functionality of the
prototype. This is encapsulated in Fig. 5. showing the overall
architecture and the interactions between the various
components.

Design Science Research: This paper used DSR
methodology to ascertain the necessary knowledge to build the
prototype. DSR is a problem-solving architype that creates
knowledge on the design process and product concurrently [12].
The study subscribed to the seven guidelines proposed by
Hevner et al. [2]. The design and architectural choices made was
influenced by existing literature and the empirical insights
during the development and evaluation phase of the prototype.
The iterative nature facilitated the authors of this study to test
and refined the prototype based on ideal approaches and current
shortfalls on unified query platforms. The constant feedback
loop guided the software development lifecycle [18]. The act of
the repeated circumscription process influenced the prototype
construction until design requirements in Table I were satisfied.
A student database for each instance of the supported NoSQL
storage systems was created shown in Appendices A and B to
interrogate.

The study employed a mathematical abstraction, wherein
q(n) symbolizes the native or targeted query for each instance
category of a NoSQL database [3]. Furthermore, DS represents
the data source which consolidates the four supported types of
NoSQL storage data models. i.e., GR - Graph, KV - Key-Value,
DO – Document-Orientated, CO - Column- Orientated data
stores. The data source is represented as 𝐷𝑆 → 𝐺𝑅 ∪ 𝐾𝑉 ∪
𝐷𝑂 ∪ 𝐶𝑂, indicating which the NoSQL data storage models are
supported. The query parser ensures the unified query conforms
to the signature of the abstract syntax tree, whereby the unified
query is required to prove it conforms to the lexical (lex),
semantic (sem) and syntactic (syn) rules of the prototype.

𝑆𝑙𝑠𝑠 = ∑ 𝑘𝑖 , 𝑘 < (𝑙𝑒𝑥[i] ∧ 𝑠𝑒𝑚[i] ∧ 𝑠𝑦𝑛[i]) 𝑛−1
𝑖=0 (1)

The query translator verifies if the targeted data model,
dm(k), specified in the unified query is an element of the data
source:

𝑑𝑚(𝑘) = {
1, 𝑖𝑓(𝑘 ∈ 𝐷𝑆)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

Once the system has established that the data model is
supported by one or more elements of the data sources, it is
required to generate the targeted or native query, t(k):

𝑡(𝑘) = {
1, 𝑖𝑓(𝑑𝑚(𝑘) ⊢ (𝐺𝑅 | 𝐾𝑉 | 𝐷𝑂 | 𝐶𝑂))
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

The query executor subsequently directs t(k) to appropriate
NoSQL database instance to be executed. If 𝑞(𝑛) =

 ∏ 𝑘, ∃𝑛[∅, 𝑛]. 𝑡(𝑘).
𝐷𝑆𝑛
𝑘=1 𝑑𝑚(𝑘) ℎ𝑜𝑙𝑑𝑠 dm(k), the native query is

executed on the target storage model. Finally, the object mapper

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

633 | P a g e

www.ijacsa.thesai.org

wraps the output of each target query into a result, 𝑟𝑖 = 𝑜 ∈
 [𝑞(0), … 𝑞(𝑛)]. (𝑘 ≥ 𝑞(𝑘)).

A. Design Requirements

A set of requirements were identified to achieve the
envisioned design goals shown in Table I. Each requirement was
linked to a component responsible for a specific functionality in
realising a unified query platform. These components function
are akin to "spokes in a wheel," relying on each other to
accomplish the functional objectives.

TABLE I. PROTOTYPE DESIGN REQUIREMENTS

Prototype Design

Components Requirements

Metamodel repository

Create a metadata schema denoting Redis.

Create a metadata schema denoting Cassandra.

Create a metadata schema denoting MongoDB.

Create a metadata schema denoting Neo4j.

Create a global metadata schema.

Query parser

Build a lexer for input characters.

Build a query syntax tree.

Build a semantic engine.

Query translator

engine

Build Syntax and Semantic Matching engine.

Build Feature Mapping engine.

Build Query Optimization engine.

Query Executor
Build a database adapter for NoSQL databases.

Map native results to a global view.

Log Mechanism Build data collection mechanism.

B. Prototype Construction

The first step was to determine how context and meaning can
be given to the prototype’s intended query language [14, 19].
Therefore, the prototype facilitates three commands: Fetch, Add
and Modify (Appendix C). The nature of these commands is
intrinsic, as their names suggest. The Fetch command retrieves
data, the Add command inserts data, and the Modify command
updates data across the supported NoSQL storage system
concurrently. Determining the fundamental intent of the query
serves as the initial step in shaping the unified query platform.

1) Query parser: To operationalise the commands, an AST

was built within the query parser component. A text-based

language was the preferred design choice to serve as the

prototype’s unified query as its familiar to consumers

interrogating data and will most likely drive greater adoption

[19]. The elements of the query language within the prototype

were deconstructed into an organized tree-like structure. The

prototype incorporates an embedded lexer feature within the

query parser component, which scans the text and generates a

stream of tokens, serving as input for the subsequent parsing

phase. During the parsing phase, the stream of tokens produced

as shown in Table II by the lexer is systematically examined,

and the abstract syntax tree (AST) is constructed based on the

grammar rules of the unified query language. The keywords and

identifiers guided informed the prototypes query intent, path

and code generators to executed the appropriate native query.

On this basis the necessary tokens is generated are

representative of the unified query’s meaning and purpose.

TABLE II. PARSER’S LEXICONS

Keywords
Parser

Lexicons Input Text

FETCH FETCH

MODIFY MODIFY

ADD ADD

PROPERTIES PROPERTIES

DATA_MODEL DATA_MODEL

FILTER_ON FILTER_ON

ORDER_BY ORDER_BY

RESTRICT_TO RESTRICT_TO

TARGET TARGET

ASC ASC

DESC DESC

LAND AND

LOR OR

Identifiers

REFERENCE_ALIAS
Identifier preceding ‘DOT’;

example: t.property

REFERENCE_ALIAS_N
AME

Identifier succeeding ‘AS’;
example: t.property AS alias

REFERENCE_MODEL

Identifier succeeding ‘AS’ in

DATA_MODEL; example
DATA_MODEL { data AS

dataAlias }

PROPERTY
Referenced column\attribute

name

JSON_PROPERTY
A JSON referenced

column\attribute name

TERM

Identifier succeeding

‘FILTER_ON’; example
FILTER_ON { term = ‘1’ }

DATA

Identifier succeeding

‘DATA_MODEL’; example
DATA_MODEL { data }

NAMED_VENDOR

Identifier of database vendor;

example neo4j, mongodb,

cassandra, redis

AS AS

LEFT_CURLY_BRACK

ET
{

RIGHT_CURLY_BRAC
KET

}

LEFT_BRACKET [

RIGHT_BRACKET]

LEFT_PAREN (

RIGHT_PAREN)

COMMA ,

DOT .

NSUM Nsum

NAVG Navg

NCOUNT Ncount

NMIN Nmin

NMAX Nmax

Operators

EQL =

LSS <

GTR >

GTE >=

LTE <=

Literals
NUMBER 1,2,3,4,5,6,7,8,9,0

STRING Aa,Bb,Cc,….Zz

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

634 | P a g e

www.ijacsa.thesai.org

The prototype employs a parser combinator technique,
where multiple parsers are accepted as input to create a new
parser as output. This technique enables the prototype to
modularize sections of the query language by recursively
traversing through the token stream and using demarcating
locations. These demarcated locations assist the program in
indicating where the parser should start and stop. Following a
recursive descent strategy, the parser inspects terminal and non-
terminal symbols based on the syntactic rules governing the
grammar of the unified query. This process results in grouping
a disjointed set of nodes [11]. A lightweight library called
Superpower was utilised to facilitate the construction of token-
driven parsers embedded directly in the source code [21]. This
library is an extension of Sprache, a text-based parsing
framework that does not require any additional build tools or
runtime configurations. According to its documentation “it fits
somewhere in between regular expressions and a full-featured
toolset like ANTLR” [20]. A demonstration of the lexical
activity reveals how the tokens are generated by the prototype
as per a given input (Appendix D). Once the unified query has
proven to be well-formed by the parse, the prototype delegates
the query to the metamodel to determine if the actual properties
are defined in the global schema.

2) Metamodel: The function of the metamodel is to bridge

the gap between the unified and native schemas [6, 16, 17]. It

plays a crucial role in the solution by revealing the physical

structures of the native schemas and the conceptual structure of

the global schema. The global schema contains instructional

configurations to the native schema, indicating the relationship

between the models. The prototype's metamodel catalogues

each storage mechanism's schematics, data types, and indexes.

Additionally, it assists the query parsing mechanism by

performing basic validations to ensure that the specified fields

are supported by the unified query data model. It aids the query

translator in resolving native references at runtime and assists

in generating the appropriate native query constructs. To some

extent, it informs the query processing engine about the optimal

query to create when inspecting relevant native storage

mechanism schematic information such as indexes and unique

keys.

3) Query translator: The translation engine has several

features for the query processing and the creation of executable

native queries:

 Syntax and Semantics Matching

 Feature Mapping

 Query Optimization

a) Syntax and semantics matching: Any unified query

polyglot system targeting multiple types of databases, will

innately have different syntax and semantics compared to the

native query languages [5]. Hence, the prototype’s query

translation engine finds the equivalent meaning and grammar

of the supported databases in order to successfully build

executable queries. Finding the equivalent match ensures the

intended meaning and functionality is preserved during the

conversion process of unified query. In addition, the syntactic

translation involves converting the unified query's expressions,

keywords, identifiers, literals and operators to match the syntax

of the native query language [23]. This ensures the adherence

to each supported database, safeguarding against unintended

results once the generated query is eventually natively

executed.

b) Feature mapping: The prototype’s query language in

some instances does not have the direct equivalent features or

constructs in the targeted native query language. It attempts to

preserves the anticipated functionality while still creating a

converted query that may be executed. In general, features for

database management systems are naturally influence by the

applicable use cases [1, 3]. In the instance of the key-value

database, Redis, aggregation amongst other features are not

natively supported in its database management as shown in

Table III. Therefore the prototype requires an additional

abstraction layer for the Redis data store to circumvent this

issue which currently does not support.

TABLE III. PROTOTYPE VERSUS EQUIVALENT NATIVE DATA STORES

FEATURES

Prototype Redis Cassandra MongoDB Neo4j

Aggregation

NSUM X X X

NAVG X X X

NMIN X X X

NMAX X X X

NCOUNT X X X

Filtering

WHERE X X X X

AND X X X

OR X X X

JOIN X

RESTRICT X X X

Sorting

ASC X X X

DESC X X X

Projections

*No explicit
command

 X X

Operators

’=’, ’+’, ’ -’, ’*’,
‘/’

X (only
‘=’)

X X X

Comparators

’<’, ’<=’, ’>=’,
’>’

 X X X

The translation engine maps these features to appropriate
native constructs, ensuring the preservation of the expected
functionality. Specialized strategies for each of the inherent data
stores was built, thus establishing clear boundaries between the
various NoSQL translation layers.

c) Query optimization: The query optimizer plays an key

role in the efficiency of the polyglot solution. The prototype

employs an approach concerned with delegating the heaving

lifting to the targeted database of query filtering, sorting,

projections and aggregation where applicable [32]. As a

consequence, it aims to shift the I/O, memory and CPU

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

635 | P a g e

www.ijacsa.thesai.org

processing power to the respective DBMS reducing the

computational footprint on the prototype. Additionally, pushing

operations such as projections and filtering closer to the data

source, reduces the network bottleneck when data is transferred

between the prototype and the corresponding NoSQL data

stores [27].

4) Query executor: This component is responsible for

natively running queries produced by the query translation

engine against the respective NoSQL data sources. It

establishes the database connections, the authentication

procedures and data transfer between the unified query platform

and the data source, similar approaches to BigDawg, NoDA [9,

23]. The prototype’s query executor coordinates the concurrent

executions of the respective native queries amongst the NoSQL

data stores based on the targets specified in the unified query.

It splits the executable queries into multiple processing units by

creating threads for each one. For each data source, the executor

collects the query results. It performs any necessary data

mapping to present a consolidated result. Any errors and

exceptions that may occur during query execution process

provides the appropriate error messages back to the query

interface.

5) Logger: The experiment embeds metrics directly into

the prototype. Utilizing an open-source library known as App

Metrics (app-metrics.io, 2021), the prototype measured various

performance aspects of the components within the unified

query solution. The report modules provided a set of libraries

through which the unified query parser, translator, and executor

could be scoped.

C. Design Integration

Ultimately, the prototype needed specific non-functional
aspects to finalize the solution. The study identified the (i) query
intent, (ii) query path, and (iii) query generator as key elements
comprising the non-functional requirements. Each of these
elements was implemented using established programming
design patterns. Fig. 6 depicts the alignment of the parser,
translator, and executor components with the non-functional
requirements. It illustrates the path of the unified query through
each stage of the query processor and, importantly, how the
design programming patterns are encapsulated within this
process.

Fig. 6. Prototype design patterns and components.

1) Query intent: Determining the intent of the unified query

is crucial as it directly influences the expected outcomes. This

necessitates the solution to align the prototype commands with

the corresponding features of each native system. Once the

query intent is identified, the prototype directs the query to

follow the appropriate query path. The chain of responsibility

design pattern was selected, wherein the prototype dynamically

determines which command to execute at runtime [22]. The

prototype defines Fetch, Add, and Modify commands as

handlers (see Fig. 7), each responsible for interpreting its

respective request. These handlers share a common interface,

which is tasked with dispatching client query requests to the

appropriate command handler based on the data inquiry [26].

The command handlers contain the query parser and translator

logic.

Fig. 7. Query intent: chain of responsible design pattern.

This pattern has found widespread application in scenarios
where system messages dictate the execution result [7]. Upon
the program's initiation, new instances of each command type
are created, resulting in a chain of objects. To enhance the
efficiency of the execution processing chain of objects, the
collection of concrete handlers, i.e., command handlers, was
organized as a dictionary, with the command types serving as
unique keys. The query request passed to handlers is tagged with
the appropriate command type, which is then used to locate the
corresponding handler in the execution chain. In instances where
the command is not found in the dictionary, no action is taken,
and the unified query request is aborted with an error message.
The prototype implements the chain of responsibility in the
following manner as shown in Table IV. Q denotes the intent of
the query language. Each of the commands within the unified
query are denoted as f for Fetch, m for Modify and a for Add.
Therefore the command, represented as cmd, must always be
present in the unified query. Thus one can conclude that the cmd
is a subset of Q, i.e. 𝑐𝑚𝑑 ⊆ 𝑄. N represents the collection of
nodes within the AST, 𝑁 → {𝑛1, … , 𝑛𝑛}. The nodes are assigned
an array of instantiations expressing the mechanical parts of the
query. The prototype is able to discover command instantiations
thereby enabling the correct handler to be invoke. This act
facilitates the prototype to realise the intent.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

636 | P a g e

www.ijacsa.thesai.org

TABLE IV. CHAIN OF RESPONSIBILITY PATTERN PSEUDOCODE

Algorithm : Query Intent

≔ 𝑸𝒖𝒆𝒓𝒚𝑰𝒏𝒕𝒆𝒏𝒕(𝒒)

𝒊𝒇 𝑞 ∈ 𝑄 𝒅𝒐

 𝒊𝒇 𝑞. 𝑐𝑚𝑑 ∈ 𝑓 𝒅𝒐

 𝑓(𝑁)

 𝒆𝒍𝒔𝒆 𝒊𝒇 𝑞. 𝑐𝑚𝑑 ∈ 𝑚 𝒅𝒐

 𝑚(𝑁)

 𝒆𝒍𝒔𝒆 𝒊𝒇 𝑞. 𝑐𝑚𝑑 ∈ 𝑎 𝒅𝒐

 𝑎(𝑁)

 𝒆𝒍𝒔𝒆

 𝐼𝑛𝑣𝑜𝑘𝑒𝐸𝑟𝑟𝑜𝑟

2) Query path: In anticipation of the native query

generators, the query path determines the supported NoSQL

storage systems to target and the components to execute. This

guarantees the generation of the correct native query based on

the unified query intent. The strategy pattern was employed,

ensuring the appropriate algorithm is enforced based on the

query elements specified in the target clause within the AST.

Each of the supported NoSQL data storage models was defined

as descendants within a family of algorithms shared by the same

ancestor [22]. In the prototype, each of the supported NoSQL

data models is represented as specialized classes responsible for

constructing a collection of visitors to be executed by the query

generator. The prototype takes the query intent as input and

matches the command and storage target to the relevant

strategy. During the translation process, the repository

metamodel is utilized to identify the equivalent native field for

the unified field. If no matches are found, the field is excluded.

The prototype intentionally constructs a collection of class

instantiations, represented as visitors, to closely mimic the

structure of the native query languages it needs to create.

Finally, once the native queries are generated by the query

generator, the strategy pattern sends the output back to the

calling method for execution.

The query path strategy implementation considers the target
models specified in the unified query once the command has
been established (see Fig. 8). The target models as shown in
Table V. where rs represents redis, ms mongodb, cs cassandra
and ns neo4j. The translator component T, accepts the target
models as input thus directing the appropriate queries to be
generated. The supported NoSQL databases are implemented as
concrete classes subscribing to a single collection as they all
share a common interface, 𝑆𝑃 → {𝑠𝑝1, … , 𝑠𝑝𝑛} . The classes
inherits from a base strategy class where 𝑠𝑝𝑛 ∈
 (𝑟𝑠 | 𝑚𝑠 | 𝑐𝑠 | 𝑛𝑠) . The strategies are preloaded within T.
Therefore, to execute the relevant strategy, it must exist with the
translation component 𝑠𝑝𝑛 ∋ 𝑇. The data source DS is indicative
of the underlying NoSQL database categories, KV : key-value,
CO : column orientated, DO : document orientated and GR :
graph data stores. The output n, generated by the translator,
denotes the native query. This eventually runs on the targeted
NoSQL database completing the execution path.

Fig. 8. Query path: strategy design pattern.

TABLE V. STRATEGY PATTERN PSEUDOCODE

Algorithm : Query Path

𝐼 → 𝑄𝑢𝑒𝑟𝑦𝐼𝑛𝑡𝑒𝑛𝑡(𝑞)

≔ 𝑸𝒖𝒆𝒓𝒚𝑷𝒂𝒕𝒉(𝒒)

𝒊𝒇 𝑞 ∈ 𝐼 𝒅𝒐

𝒊𝒇 𝑒 → ∃(𝑖. 𝑐𝑚𝑑) 𝒅𝒐

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 → 𝑞. 𝐷𝑆

𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑠𝑝 ∈ 𝑆𝑃(𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑜𝑟𝑎𝑔𝑒) 𝒅𝒐

𝒊𝒇 𝑠𝑝 ⊆ 𝐾𝑉 𝒅𝒐

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑟𝑠)

𝒊𝒇 𝑠𝑝 ⊆ 𝐶𝑂 𝒅𝒐

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑐𝑠)

𝒊𝒇 𝑠𝑝 ⊆ 𝐷𝑂 𝒅𝒐

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑚𝑠)

𝒊𝒇 𝑠𝑝 ⊆ 𝐺𝑅 𝒅𝒐

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑛𝑠)

𝑟𝑒𝑡𝑢𝑟𝑛 𝒏

3) Query generator: The query generators separate the

processing logic from query components. To generate the

native NoSQL queries for the prototype, the visitor pattern was

employed. It is invoked by the query translator component. The

native query elements are represented as "visitors" which

directly correspond to elements of the tokens generated by the

query parser. This pattern is highly effective, as it enables class

instantiation to add functionality without altering the structure

of the class, thereby ensuring scalability [22].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

637 | P a g e

www.ijacsa.thesai.org

Fig. 9. Query generator: visitor design pattern.

In the context of this study, each supported NoSQL data
storage model possesses its own distinct code generating
implementation as shown in Fig. 9. This pattern empowers the
prototype to traverse through various elements of the query
expressions, constructing parts of the native query while
retaining its internal state, referred to as the 'whole part' or native
query. As the prototype progresses through the organized parts,
it invokes other visitors, thereby facilitating the construction of
complex query structures in a systematic and controlled manner.

The query generator uniquely encompasses a collection of
classes called visitors, each one responsible for generating a part
relevant to native query; 𝑉𝑆 → {𝑣𝑠1, … , 𝑣𝑠𝑛}. In Table VI., rg
represents redis, cg cassandra, mg mongodb while ng neo4j. The
supported NoSQL categories are tied to a storage element which
delegates deciding on which code generator to invoke based on
the target models in the unpacked in the translation component,
𝑆𝐸 → {𝑞𝑒1, … , 𝑞𝑒𝑛}. Each visitor represent a specific part within
the broader query. The conversion of the unified query requires
the visitor to be a specified order. The query generator then
proceeds to systematically build each part of the native query,
thus returning an executable query.

TABLE VI. VISITOR PATTERN PSEUDOCODE

Algorithm : Query Generator

𝐼 → 𝑄𝑢𝑒𝑟𝑦𝑃𝑎𝑡ℎ(𝑞 → 𝑄𝑢𝑒𝑟𝑦)

≔ 𝑸𝒖𝒆𝒓𝒚𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓(𝒊)

𝒊𝒇 𝑖 ⊢ 𝐼 𝒅𝒐

𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑝𝑎𝑡ℎ → 𝑖. 𝐷𝑆

𝑉𝑆 → 𝐵𝑢𝑖𝑙𝑑𝑉𝑖𝑠𝑖𝑡𝑜𝑟𝑠(𝑖. 𝑞𝑢𝑒𝑟𝑦_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)

𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑝𝑎𝑟𝑡 𝑖𝑛 𝑉𝑆 𝒅𝒐

𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑟𝑔 𝒅𝒐

𝑟𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡)

𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑐𝑔 𝒅𝒐

𝑐𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡)

𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑚𝑔 𝒅𝒐

𝑚𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡)

𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑛𝑔 𝒅𝒐

𝑛𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡)

The prototype components and embedded features in tandem
with the programming design patterns aids in producing a
working artifact. Careful consideration was given to the
middleware as an abstraction layer. By applying a separation of
concerns approach, enabled components and features within the
prototype to operated independently. Thus, delegating any tasks
to the isolated components. Furthermore, compartmentalisation
of the intents, the generators and executable paths supplied a
clear route for the query processing system.

D. Limitations

The study encountered several limitations and challenges
during the research endeavour, including. Initially, the study
proposed an automated schema identifier capable of affecting
the underlying native schemas through the prototype. However,
due to time constraints, this feature was excluded from the scope
of the research project. Manual schema updates were necessary,
leaving the prototype susceptible to errors. The prototype
struggled to handle complex data additions and updates,
particularly in the case of nested query processing based on
existing data models. Updates couldn't be performed on
complex fields within the Cassandra database management
system, as it required retrieving the entire object, updating the
identified field(s), and then sending the entire field back for
modification. The study was restricted to specific versions of the
supported NoSQL data storage options. Any changes in versions
of the respective NoSQL database management system may
render the solution obsolete or cause previously successful
unified queries to produce errors. The adaptors developed for the
prototype relied on a rudimentary security mechanism for the
respective NoSQL databases, requiring connections to be
authenticated.

V. EXPERIMENTAL APPROACH

We’ve conducted an experiment to assess the complexity of
key algorithms contained within the overarching design
principles. The prototype was tested against varying workloads
contained within threads to measure its scalability and
robustness. In accordance with Hevner et al. (2004), it is
imperative to meticulously demonstrate the effectiveness of an
artifact through the appropriate evaluation methods. Therefore
the prototype was subjected to ninety-one individual test cases,
shown in Table VII. Each test cases were grouped to specific

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

638 | P a g e

www.ijacsa.thesai.org

query intents in order to isolated and identify potential errors or
performance degradation. Furthermore, each test case represents
a participant or user assigned to a predefined query to leverage
control over the experiment. This enable us to effectively
automate the testing process.

TABLE VII. TEST CASE SUMMARY

Summary Test Cases

1 Syntax and Sematic Validations. 87, 88, 89, 90, 91

2 Retrieve complete dataset. 1, 9, 28, 45, 66

3
Retrieve dataset where a single filter

was applied.
2, 3, 4, 10, 16, 17, 54, 67, 77, 78, 79

4
Retrieve dataset where a multiples

filters were applied.

11,12, 15, 29, 30, 55, 56, 68, 69, 70,

80, 81

5
Apply a limit to the dataset retrieval
process.

13, 31, 46, 47, 48, 49, 50, 51, 52, 53

6
Apply sorting to the dataset retrieval

process.
14, 32, 33, 34, 35, 36, 57, 71

7 Aggregation on a datasets.
18, 19, 20, 21, 22, 37, 38, 39, 40,
41, 58, 59, 60, 61, 62, 72, 73, 74,

75, 76

8 Update existing dataset.
5, 6, 23, 24, 25, 42, 43, 63, 64, 82,
83, 84, 85

9 Data inserts. 7, 8, 26, 27, 44, 65, 86

We conduct the experiment using an Intel(R) Core(TM) i7-
10610U CPU running at 1.80GHz with a maximum frequency
of 2.30GHz. The device is equipped with 16,0 GB (15,6 GB
usable). The system operates on a 64-bit Windows operating
system and is based on an x64 processor architecture.

A. Participants

We purposefully embedded a module within the prototype
which comprised of participants. The participants within the
context of this study served as human stakeholders with specific
query intents. Each participant invoked the prototype’s query
language, consisting of either data retrieval, modification, or
insertion commands. The query workloads assisted in
automating the experimental process and facilitating the
capturing of performance metrics for analysis. In addition, we
were able to control the expected outcomes in deterministic
manner. Thus playing a crucial role in evaluating the prototype's
performance.

B. Metrics

The data collected for each payload encompasses a number
of varying metrics which includes the Apdex, CPU usage,
memory usage, execution times for each individual component
and error rates. The Apdex, CPU and memory usage enveloped
the entire query’s execution path. While the execution times and
error rates were logged at a granular level with respect to each
component i.e. the query parser, translator and executor.

1) Application performance index: The Apdex or

Application Performance Index score is an industry standard,

which was utilised to assess the users or participants

satisfaction rate in terms of the responsiveness of the prototype.

It’s a binary metric whereby 1 represents the best possible

outcome, alternatively 0 represents the worst possible outcome.

In this study, we’ve set benchmarks to classify the user

experience as follows :

 Satisfied - Response time less than 2 seconds

 Tolerating - Response time between 2 and 8 seconds

 Frustrating - Response time greater than 8 seconds

let’s say :

 sr is satisfied requests

 tr is tolerating requests

 s is the total number of requests (i.e. sample size)

∴ 𝐴𝑝𝑑𝑒𝑥 𝑆𝑐𝑜𝑟𝑒 =
(𝑠𝑟+

𝑡𝑟

2
)

𝑠
 (4)

2) CPU usage : The prototype’s consumption of the

Central Processing Unit (CPU) provided a multifaceted

perspective on performance, functionality and viability of the

solution.

let’s say :

 st is the start time of CPU utilisation

 et is the end time of CPU utilisation

 pa is the number of processors available to the current
process

 pt is the total processing time

∴ 𝐶𝑃𝑈 𝑈𝑠𝑎𝑔𝑒 =
(𝑒𝑡−𝑠𝑡)

(𝑝𝑎×𝑝𝑡)
 (5)

3) Memory usage :The memory consumption of the

prototype was evaluated from two perspectives, both the virtual

and physical. In both instances the memory expenditure was

calculated as follows :

In the case of virtual memory:

 ivm is the initial amount of virtual memory allocated.

 fvm is the final amount of virtual memory allocated.

∴ 𝑣𝑚 = 𝑓𝑣𝑚 − 𝑖𝑣𝑚 (6)

In the case of physical memory:

 ipm is the initial amount of physical memory allocated.

 fpm is the final amount of physical memory allocated.

∴ 𝑝𝑚 = 𝑓𝑝𝑚 − 𝑖𝑝𝑚 (7)

4) Query execution times : The individual components of

the prototype measured the respective execution times in

milliseconds. The parser determines the time taken for the

global parser to validate the unified query. The translator

measures the time taken for the translator to generate the native

queries. Whereas the executor measures execution time of the

generated native query on the supported storage system.

Elapsed time measurement:

 st is start time

 et is end time

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

639 | P a g e

www.ijacsa.thesai.org

∴ 𝑒𝑙 = 𝑒𝑡 − 𝑠𝑡 (8)

5) Error rate: The components, namely the parser,

translator and executor reported the number of errors produced

by each of the automated participants.

VI. PROTOTYPE’S RESULTS

The prototype’s architecture adheres to established design
principles promoting modularity, extensibility, reusability and
scalability. This section assesses the efficacy of those applied
principles evaluating the varying algorithms employed in the
query parsing, translation, and execution processes.

1) Application performance index: In the instance of the

Apdex data acquired, the queries executed when viewed from

an overall perspective, demonstrates a minimal use of resources

within the call stack, leading to an optimal execution path. This

efficiency is further corroborated by the Apdex scores in Fig.

10, which consistently indicated that the results were delivered

within an acceptable timeframe. Therefore it is plausible to

assert that the query parser, translator, and executor worked in

harmony to ensure timely query responses from multiple

storage mechanisms. However, the experimental results also

indicated performance outlier’s whereby certain tests exceeded

the satisfactory threshold. This was evident in the Neo4j storage

system in test group 2, as a large amount of connected nodes

degraded performance as observed in Cox et al. (2020) study.

The other notable observation relates to the use of the “OR”
logical operator. The experiment revealed when applying
deepened search criteria, it results in longer execution times,
negatively affecting Apdex score. These compounding factors
highlights a need to improve the metamodel in terms of
enhanced cataloguing which affects the translation feature.
Firstly, the metamodel requires an improved awareness of the
with each targeted storage systems indexes. Secondly, it need to
be aware of the capabilities for the individual storage systems to
a certain extent. This should encompass the limitations of the
supported models, thus aiding in the translation process to
support efficient executable native queries.

2) CPU usage: The objective was to assess whether the

prototype excessively consumed the physical machine’s

resources during the simulated tests. We deliberately

overloaded the prototype with threaded workloads to monitor if

it caused system instability or crashes during operations. The

prototype demonstrated fluctuations in the CPU based on the

query activities. Each query of the predefined queries induced,

handled by a dedicated thread intentionally loaded the CPU

with requests to measure the feasibility of the prototype. It

proved to show peak activity during high query loads and

effectively releases the processor at the appropriate time

revealing the efficient design algorithms applied to the parser,

translator and executor (Fig. 11).

Fig. 10. Apdex scores.

Fig. 11. Central process unit consumption.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

640 | P a g e

www.ijacsa.thesai.org

3) Memory usage: We’ve observed the correlation between

increased query workloads and memory consumption. This

associative behaviour is expected, however more importantly,

it was fundamental to ascertain how well the prototype releases

memory. On start up, the prototype initially consumed more

virtual memory than physical memory. Nonetheless, once the

query workloads was imposed, the system virtual memory

exceed the physical memory. This indicates that the query

parser, translator and executor optimally utilises the available

RAM to achieve effective performance rather than relying on

slower disk-based memory i.e. vm. Furthermore, this implies

the system ensured no excessive memory consumption which

underscores the robustness of the prototype’s architectural

design choices (Fig. 12).

4) Query execution times: This applies to the prototype’s

query parser, translator and executor to determine any

bottlenecks in the query execution path illustrated in Fig. 13.

The response times of each component generally produced

favourable results. The granular results of each component

enabled the authors to further assess the pertinency of the

design principles applied to each component. Thus

strengthening the findings of the CPU, memory and Apdex

results. As discovered in the Apdex results, the executor

highlighted inefficiencies in the translator component. The

query executor performance explicitly depends on how well a

native query is generated by the translator. We’ve observed

apply sorting and logical operators has a significant impact on

the overall responsiveness of the prototype.

5) Error rates: The number of errors produced during the

experiment signifies the stability and reliability of the

prototype. In general the prototype exhibited low error rates

under the varying workloads. The error rates were evaluated

from two perspective, intentional to establish the boundaries of

the system and unintentional to assess faults within the system.

The data indicated, the prototype was able to distinguish

between well-formed queries and non-conforming queries. It

also highlighted shortcomings (Fig. 14) in the prototype

revealing that the system is not aware of the full compatibilities

of certain storage systems and date fields could not be parsed.

In demonstrating its robustness, certain unexpected errors

produced was isolated to specific targeted storage system, thus

not negatively impacting all facets of the unified query.

Fig. 12. Physical and memory consumption.

Fig. 13. Component execution times.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

641 | P a g e

www.ijacsa.thesai.org

Fig. 14. Errors per component.

VII. DISCUSSION

During our experiment, the performance data revealed that
the prototype utilizes the physical machine’s resources
efficiently, even under load. Since excessive resource
consumption can lead to a number significant challenges such
system instability and degraded user experience; it important to
identify and implement the optimal design patterns at inception.
In certain instances, we observed fluctuations of high resource
usage by the prototype which could have affected other
applications running on the machine. However, the Apdex
scores coupled with the query execution times and error rate
demonstrated the stability of the prototype within it’s
environment. Fortunately we could observed that these spikes
occurred in short time-bursts, preventing the prototype from
monopolizing CPU and memory which could have led to
degraded performance and overall user experience. We further
attest to these insights as all of the participants were able to
execute their respective unified queries to completion without
any system interupts or fatal errors.

On reflection of the emperical data produced by the
experiment, it is evident that efficiency and robustness must be
prioritized from the onset. The experiment highlighted potential
inefficiencies in the query translator and executor which heavily
relies on the metamodel to produce well-formed native queries.
The data suggests that the ineffecienct queries produced by the
translator results in longer running times on the executor
component. By addressing these potential bottlenecks in the
query path at an early stage, it reduces the need for extensive
rework later. These findings emphasis the importance of
effective and efficient components as an inadequate solution
from the start will exponentially increase cost and reduce quality
over time i.e. user experience. This is especially pertinent in
today’s digital era where scalability and cost-effective solutions
are at the forefront of innovation. An holistic approach to
developing such polyglot systems is essential to demonstrating
it’s utility.

VIII. CONCLUSION AND FUTURE WORK

In this article we presented an approach to design and
develop a unified query system. The efficiency, scalability and
robustness demonstrated by the prototype essentially advocates
in favour of the design and architectural patterns applied to the
system. A modular approach to the components supports the
prototype to be easily extendable and adaptive to change, i.e.

new storage systems should be easily added without having
adverse effects on the existing integration. The results attained
in relation to the query parser, translator and executor worked
together to ensure the prototype achieved optimal performance.
This is suggested in the Apdex scores achieved by the system as
well as the efficient utilisation of the CPU and memory. The
low error rates, affirmed the reliability of the developed
prototype.

In future, we propose a study that addresses the deficiencies
of the prototype. The experiment results revealed it may be
beneficial for the metamodel to be partitioned in a fashion that
is responsible for different aspects of the unified query system.
One such aspect relates to greater schema awareness, therefore
an exhaustive catalogue of alternative mappings between unified
fields and natives fields including complex data types. This will
offer a wider range of query translation permutations are during
the native query generation process as well as supporting
advanced query parsing methods. Another aspect relates to a
context awareness metamodel to identify use cases supporting
the accurate interpretation of query intents. Recognising the
limitations of the targeted storage models to improve query
optimizing algorithms within the prototype. Thus providing
improved indexing strategies and query rewriting techniques.
The metamodel may also benefit from cataloguing each native
storage systems supported operations. This will allow the
prototype to delegate unsupported operations to the middleware
or at least give context is to why the intent cannot be realised.
Finally, the metamodel could benefit from machine learning by
either automating the catalogue process, i.e. mapping new native
fields to unified model or using historical log information to
improve the query optimisation process.

CONFLICT OF INTEREST

The prototype utilised the Microsoft Visual Studio
Community Edition IDE to develop the solution. Microsoft
clearly states that this IDE may be used for academic purposes,
the study in no way promotes or forms part of any advertising
on behalf of the organisation. Furthermore, the study was not
funded by Microsoft.

AUTHOR’S CONTRIBUTION

Hadwin conceptualized the research study as part of his
Master of Information Communication and Technology (MICT)
research journey. The student performed the required systematic
literature review and built the subsequent prototype. This article
represents a chapter within the thesis MICT degree. Dr B.
Kabaso supervised this research journey providing invaluable
insights and guidance in achieving its goal.

ACKNOWLEDGMENT

The authors wishes to thank the Cape Town University of
Technology for providing the opportunity to partake in this
study. A special sentiment of appreciation to Dr. B, Kabaso for
his patience and support.

REFERENCES

[1] A. Davoudian, L. Chen and M. Liu, “A survey on NoSQL stores,” ACM
Computing Surveys (CSUR). vol. 51, no. 2, 2018, pp. 3-36.
https://doi.org/10.1145/3158661

https://doi.org/10.1145/3158661

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

642 | P a g e

www.ijacsa.thesai.org

[2] A. Hevner, S.T. March, J. Park and S. Ram, “Design science research in
information systems,” MIS quarterly, vol. 28, no. 1, pp. 75-105, 2004.

[3] A. Oussous, F.Z. Benjelloun, A.A. Lahcen and S. Belfkih,. “Big Data
technologies: A survey” Journal of King Saud University-Computer and
Information Sciences, vol. 30, no. 4, 2018, pp. 432-436.
https://doi.org/10.1016/j.jksuci.2017.06.001

[4] B. Kolev, C. Bondiombouy, O. Levchenko, P. Valduriez, R. Jimenez-
Péris, R. Pau, and J. Pereira, “Design and implementation of the
CloudMdsQL multistore system,” CLOSER: Cloud Computing and
Services Science, vol. 1, 2016, pp. 352-359. doi :
10.5220/0005923803520359

[5] C.J.F. Candel, D.S Ruiz, and J.J García-Molina, “A unified metamodel
for nosql and relational databases,” ScienceDirect. 104, p.101898, 2021,
pp. 2-25. https://doi.org/10.1016/j.is.2021.101898

[6] D. Glake, F. Kiehn, M. Schmidt, F. Panse and N. Ritter, “Towards
Polyglot Data Stores--Overview and Open Research Questions,“ arXiv
preprint, 2022, pp. 1-27. https://doi.org/10.48550/arXiv.2204.05779

[7] F. Wedyan and S. Abufakher, “Impact of design patterns on software
quality: a systematic literature review,” IET Software, vol. 14, no.1, 2020,
pp. 1-17. https://doi.org/10.1049/iet-sen.2018.5446

[8] H. Ramadhan, F.I. Indikawati, J. Kwon and B. Koo, “MusQ: A Multi-
store query system for iot data using a datalog-like language,” IEEE
Access, vol. 8, 2020, pp. 58032-58050. doi:
10.1109/ACCESS.2020.2982472

[9] H. Zhang, C. Zhang, R. Hu, X. Liu and D. Dai, “Unified SQL Query
Middleware for Heterogeneous Databases”. In Journal of Physics:
Conference Series, IOP Publishing, p.012065, vol. 1873, no. 1, 2021, pp.
1-6. https://doi.org/10.1007/s11431-020-1666-4

[10] I. Košmerl, K. Rabuzin, and M. Šestak, “Multi-Model Databases-
Introducing Polyglot Persistence in the Big Data World,” in 2020 43rd
International Convention on Information, Communication and Electronic
Technology (MIPRO). IEEE, 2020, pp. 1724-1728. doi:
10.23919/MIPRO48935.2020.9245178

[11] J. Guo, Q. Liu, J.G. Lou, Z. Li, X. Liu, T. Xie and T. Liu, “Benchmarking
meaning representations in neural semantic parsing,” in Proceedings of
the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020, pp. 1520-1528. doi:
10.18653/v1/2020.emnlp-main.118

[12] J. vom Brocke, A. Hevner and A. Maedche, Introduction to design science
research. In Design Science Research. Cases. Springer, Cham, 2020, pp.
1-17. https://doi.org/10.1007/978-3-030-46781-4_1

[13] K.M. Endris, “Federated Query Processing over Heterogeneous Data
Sources in a Semantic Data Lake,” Doctoral dissertation, Universitäts-und
Landesbibliothek Bonn, 2019, pp. 58-69.

[14] M. Duracik, P. Hrkut, E. Krsak and S. Toth, “Abstract syntax tree based
source code antiplagiarism system for large projects set,” IEEE Access,
vol. 8, 2020, pp. 175350-175354. doi: 10.1109/ACCESS.2020.3026422

[15] M. Gobert, “Schema Evolution in Hybrid Databases Systems,” in
[Provisoire] Proceedings of the 46th International Conference on Very
Large Data Bases (VLDB 2020): PhD workshop track, ACM Press, 2020,
pp. 1-3.

[16] M. Hewasinghage, A. Abelló, J. Varga and E. Zimányi, “Managing
polyglot systems metadata with hypergraphs,” Data & Knowledge
Engineering, ScienceDirect, vol. 134, p.101896, 2021, pp. 1-14.
https://doi.org/10.1016/j.datak.2021.101896

[17] M. Kolonko and S. Müllenbach, “Polyglot persistence in conceptual
modeling for information analysis,” in 2020 10th International

Conference on Advanced Computer Information Technologies (ACIT) ,
IEEE, 2020, pp. 590-594. doi: 10.1109/ACIT49673.2020.9208928

[18] M. Olsen and M. Raunak, Quantitative Measurements of Model
Credibility. In Model Engineering for Simulation., Academic Press, 2019,
ch 8, pp. 163-175. https://doi.org/10.1016/B978-0-12-813543-3.00008-1

[19] M. Zhang, “A survey of syntactic-semantic parsing based on constituent
and dependency structures,” Science China Technological Sciences, vol.
63, no. 10, 2020, pp. 1898-1920. https://doi.org/10.1007/s11431-020-
1666-4

[20] N. Blumhardt. (2021). Sprache. [Online]. Available:
https://github.com/sprache/Sprache. [Accessed 23th January 2023]

[21] N. Blumhardt. (2022). Superpower. [Online]. Available:
https://github.com/datalust/superpower. [Accessed 23th January 2023]

[22] N. El Maghawry and A.R. Dawood, “Aspect oriented GoF design
patterns,” in 2010 The 7th International Conference on Informatics and
Systems (INFOS), 2010, pp. 1-7.

[23] N. Koutroumanis, N. Kousathanas, C. Doulkeridis and A. Vlachou, “A
demonstration of NoDA: unified access to NoSQL stores,” Proceedings
of the VLDB Endowment, vol. 14, no. 12, 2021, pp. 2851-2854.
https://doi.org/10.14778/3476311.3476361

[24] N. Roy-Hubara, P. Shoval and A. Sturm, “Selecting databases for
Polyglot Persistence applications,” Data & Knowledge Engineering, vol.
137, p.101950, 2022, pp. 2-18.
https://doi.org/10.1016/j.datak.2021.101950

[25] P. Atzeni, F. Bugiotti,, L. Cabibbo and R Torlone, “Data modeling in the
NoSQL world,” Computer Standards & Interfaces, 67, p.103149, 2020,
pp. 1-10.

[26] P. Gahlyan and S.N. Singh, “Analysis of catalogue of GoF software
design patterns,” in 2018 8th International Conference on Cloud
Computing, Data Science & Engineering (Confluence), 2018, pp. 814-
818. doi: 10.1109/CONFLUENCE.2018.8442878

[27] P.P. Khine and Z. Wang, “A review of polyglot persistence in the Big
Data world,” Information, vol. 10, no. 4, 2019, pp. 1-19.
https://doi.org/10.3390/info10040141

[28] R.Tan, R. Chirkova, V. Gadepally, and T.G. Mattson, “Enabling query
processing across heterogeneous data models: A survey,” In 2017 IEEE
International Conference on Big Data (Big Data). IEEE, 2017, pp. 3211-
3219. doi: 10.1109/BigData.2017.8258302

[29] S. Cox, S.C. Ahalt, J. Balhoff, C. Bizon, K. Fecho, Y. Kebede, K. Morton,
A. Tropsha, P. Wang and H. Xu, “Visualization Environment for
Federated Knowledge Graphs: Development of an Interactive Biomedical
Query Language and Web Application Interface,” JMIR Medical
Informatics, vol. 8, no. 11, p.e17964, 2020, pp. 1-7. doi:10.2196/17964

[30] V. Gadepally, P. Chen, J. Duggan, A. Elmore, B. Haynes, J. Kepner, S.
Madden, T. Mattson and M. Stonebraker, “The BigDAWG polystore
system and architecture,” in 2016 IEEE High Performance Extreme
Computing Conference (HPEC), 2016, pp. 1-6. doi:
10.1109/HPEC.2016.7761636

[31] X. Yang, X. Zhang. and Y. Tong, “Simplified abstract syntax tree based
semantic features learning for software change prediction,” Journal of
Software: Evolution and Process, vol. 34, no. 4, p.e2445, 2022, pp. 1-9.
https://doi.org/10.1002/smr.2445

[32] Y. Khan, A. Zimmermann, A. Jha, V. Gadepally, M. D’Aquin, and R.
Sahay, “One size does not fit all: Querying web polystores,” IEEE Access,
vol. 7, 2019, pp. 9598-9605. doi: 10.1109/ACCESS.2018.2888601

https://doi.org/10.1016/j.jksuci.2017.06.001
https://doi.org/10.1016/j.is.2021.101898
https://doi.org/10.48550/arXiv.2204.05779
https://doi.org/10.1049/iet-sen.2018.5446
https://doi.org/10.1007/s11431-020-1666-4
https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1016/B978-0-12-813543-3.00008-
https://doi.org/10.1007/s11431-020-1666-4
https://doi.org/10.1007/s11431-020-1666-4
https://github.com/sprache/Sprache
https://github.com/datalust/superpower
https://doi.org/10.14778/3476311.3476361
https://doi.org/10.1016/j.datak.2021.101950
https://doi.org/10.3390/info10040141
https://doi.org/10.1002/smr.2445

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

643 | P a g e

www.ijacsa.thesai.org

APPENDIX A: NOSQL DATABASE SCHEMAS
R

e
d

is

C
a

ss
a

n
d

r
a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

644 | P a g e

www.ijacsa.thesai.org

M
o

n
g
o

D
B

N
e
o
4

j

APPENDIX B: REPOSITORY MODEL

 Property Neo4j Mongodb Cassandra Redis

Models pupil students student user

student

identifier pupilid student_id id user_id

idnumber id id_number idno identity_number

title title title title title

preferredname alias aka other_name

initial initial init initials

name name name firstname first_name

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

645 | P a g e

www.ijacsa.thesai.org

surname surname surname lastname last_name

dateofbirth dob date_of_birth dob birth_date

gender gender gender_identity gendered gender

address X

contact X

register X

transcript X

 faculty faculty

faculty
code key short_code x X

name description name registered.faculty X

 course course

course
code key short_code x X

name description name registered.course X

 subject subject subject

subject

code key short_code x X

name description name descr x

cost cost price price x

duration term duration period x

 address address

address

streetno x x streetno x

street x street streetname x

postaladdress x x postalcode x

postalcode x code postalcode x

suburb x x suburb x

city city.description city city user.city

province x x province x

country x

 contact

contact
email pupil.email email_addrress student.email x

mobile pupil.mobile phone student.cellno x

register studentno pupil.studentnum student.student_no student.studentno user.student_number

 faculty faculty faculty faculty X

 course course course course X

 subject subject subject subject X

 username x x x user.user_name

 password x x x user.psw

 type x enroll.enollment_type x X

 ipaddress x x x user.ip_address

 date x enroll.enrollment_date register.registerdate X

 progress grades

transcript subject results.subject.description x subject X

 result results.score x grades.mark X

 symbol results.grade x grades.symbol X

* Text in italics or bold denotes a class or complex object

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

646 | P a g e

www.ijacsa.thesai.org

APPENDIX C: UNIFIED QUERY LANGUAGE TEMPLATE

Fetch Statement:

FETCH { <property>, <function<property>,…}

DATA_MODEL { <data>}

FILTER_ON { <term> <operator> <term> <comparator>}

RESTRICT_TO { <number> }

ORDER_BY { <property>}

TARGET { <database vendors>,… }

Add Statement:

ADD { <data>}

PROPERTIES { <property> <operator> <property> }

TARGET { <database vendors>,… }

Modify Statement:

MODIFY { <data>}

PROPERTIES { <property> <operator> <property> }

FILTER_ON { <term> <operator> <term> <comparator >}

TARGET { <database vendors>,… }

APPENDIX D: AST SAMPLE

Command Input Tokens

FETCH

FETCH { id, name, surname, idnumber,

dateofbirth }

DATA_MODEL { student }

TARGET { cassandra }

{FETCH@0 (line 1, column 1): FETCH}

{PROPERTY@8 (line 1, column 9): id}

{COMMA@10 (line 1, column 11): ,}

{PROPERTY@12 (line 1, column 13): name}

{COMMA@16 (line 1, column 17): ,}

{PROPERTY@18 (line 1, column 19): surname}

{COMMA@25 (line 1, column 26): ,}

{PROPERTY@27 (line 1, column 28): idnumber}

{COMMA@35 (line 1, column 36): ,}

{PROPERTY@37 (line 1, column 38): dateofbirth}

{DATA_MODEL@72 (line 2, column 21): DATA_MODEL}

{DATA@85 (line 2, column 34): student}

{TARGET@115 (line 3, column 21): TARGET}

{NAMED_VENDOR@125 (line 3, column 31): cassandra}

ADD

ADD { student }

PROPERTIES { name = 'Chuck T'}

TARGET { cassandra }

{ADD@0 (line 1, column 1): ADD}

{DATA@6 (line 1, column 7): student}

{PROPERTIES@43 (line 2, column 27): PROPERTIES}

{TERM@56 (line 2, column 40): name}

{EQL@61 (line 2, column 45): =}

{STRING@64 (line 2, column 48): Chuck T}

{TARGET@101 (line 3, column 27): TARGET}

{NAMED_VENDOR@110 (line 3, column 36): cassandra}

MODIFY

MODIFY { student }

PROPERTIES { name = 'Chuck T'}

TARGET { cassandra }

{MODIFY@0 (line 1, column 1): MODIFY}

{DATA@9 (line 1, column 10): student}

{PROPERTIES@48 (line 2, column 29): PROPERTIES}

{TERM@61 (line 2, column 42): name}

{EQL@66 (line 2, column 47): =}

{STRING@69 (line 2, column 50): Chuck T}

{TARGET@108 (line 3, column 29): TARGET}

{NAMED_VENDOR@117 (line 3, column 38): cassandra}

