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Abstract—The advancements in technology such as Web 2.0, 

3.0, mobile devices and recently IoT devices has given rise to a 

massive amount of structured, semi-structure and unstructured 

datasets, i.e. big data. The increasing complexity and diversity of 

data sources poses significant challenges for stakeholders when 

extracting meaningful insights. This paper demonstrates how we 

developed a unified query prototype as middleware using a 

polyglot technique capable of interrogating and manipulating the 

four categories of NoSQL data models. This study applied 

established algorithms to different aspects of the prototype to 

attain this study’s objective. The prototype was subjected to an 

experiment where varying query workloads were processed. The 

performance data comprised of application performance index, 

memory consumption, and execution time and error rates. The 

results demonstrated that the prototype had a low error rate 

indicating it’s robustness and reliability. In addition, the results 

showed that the prototype is responsive and able to query the 

underlying storage system effectively and efficiently. The 

prototype provides a standardize set of operations abstracting the 

complexities of each underlying storage system; reducing the need 

for multiple data retrieval management systems. 

Keywords—Unified query; polyglot; NoSQL; middleware; query 

processing; big data 

I. INTRODUCTION 

Information systems in the modern era have shifted the 
mindset of organizations from application-driven processes to 
data driven initiatives, i.e. big data. This has led to the creation 
and adoption variety of NoSQL database technologies, each 
with its own underlying architectural principles [1, 3]. As a 
direct result of big data technologies, organizations face the 
ultimate challenge; how to query structured, semi-structured and 
unstructured data uniformly? Since numerous NoSQL storage 
technologies exist; technical consumers have embarked on 
creating a singular platform for consolidating these 
heterogeneous data models [17, 27]. 

The term NoSQL is often confused with “No SQL”, the 
implication being that NoSQL is intended to replace relational 
SQL database management systems. However, the actual 
meaning refers to “Not Only SQL” [27]. NoSQL technologies 
has become the preferred choice for managing big data in this 
ubiquitous digital realm [1, 3]. The NoSQL philosophy 
essentially stems from the shortcomings of the relational 
database management systems. The NoSQL technology stack 
supports four fundamental data models (1) key-value, (2) 
column-orientated, (3) document-orientated and (4) graph 
models [1]. These data models are schema-less in nature, owing 

to the de-normalize data it holds within the data store [8, 27]. 
This requires data to be interpreted by the consuming 
application. A number of challenges start to arise when collating 
heterogenous NoSQL data schemas from disparate sources since 
each database system has its respective guidelines and features 
[17]. This is partly due to the absence of a global schema capable 
of encompassing the four fundamental data models promoted by 
NoSQL technologies. As each NoSQL database technology is 
tailored to serve specific use cases. 

In the absence of a global schema for diverse data sets [16, 
27], organizations painstakingly develop very specific and rigid 
implementations to consolidate data from different databases in 
order to gain valuable and actionable insights from a particular 
business domain. This activity is traditionally accomplished 
through data warehousing via ETL’s i.e. extract, load and 
transform [8]. However, the past decade has seen a rise of 
proposed and propriety unified query solutions to bridge the 
heterogenous querying gap that exists between database 
technologies. This data-driven need is inspired by organizations 
looking to extract key metrics from data to support strategic 
business initiatives in real time [8, 13, 32]. A common approach 
used to consolidate disparate data sources is to develop 
middleware. This is known as a polyglot persistent solution. 
Polyglot persistent solutions in the context of this paper refer to 
a system’s ability to interact with several database technologies 
in a multi-faceted way. While there have been numerous 
successes in these endeavours, the solutions tend to serve very 
specific use cases and are not easily generalized to the wider IT 
audience. 

A. Aim of Research 

The primary objective of this study was to evaluate and 
validate the effectiveness and efficiency of the developed 
unified query prototype. It measured the performance of the 
query process in a holistic manner specifically in terms of query 
response times, accuracy, reliability and efficacy across 
different NoSQL storage systems. 

B. Significance of Study 

This study simplifies the querying process for interrogating 
multiple categories of NoSQL storage systems. It facilitates 
seamless data integration, while ensuring data consistency 
across the supported data models. The prototype segments the 
boundaries between the varying databases making it easier to 
extend the family of storage options appropriate for big data [10] 
applications. Moreover, it assists in outlining the direction for 
future research initiatives in unified query systems, fostering 
advancement in the field. 
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C. Problem Statement 

In the absence of a global query instrument, interrogating 
heterogenous NoSQL storage systems presents complexities 
when attempting to collate data in a uniformed manner [5, 25]. 
According to Zhang et al. [9:p.1], the various NoSQL storage 
models inherently serves by design “different characteristics 
supported by different database systems and the differences in 
query syntax rules”, thus impeding the pursuit standardization 
for uniformed query. 

Consequently, software engineers spend an inordinate 
amount of time learning each individual NoSQL database’s 
features. Although a number of research papers have contributed 
towards developing a unified query model, not many 
middleware solutions truly encapsulate how key-value, column-
orientated, document-orientated and graph data models may be 
query via a single query mechanism simultaneously. 
Furthermore, there are unequivocally no standardized data 
modelling paradigms to the best of our knowledge that exist 
today able to consolidate the four distinct NoSQL types through 
normalised methods [15, 9]. 

An effective and efficient way to overcome this obstacle is 
to develop a query platform system. This is exactly what this 
work entailed. Adopting an approach to easily interface with the 
heterogeneous data models while abstracting the technical 
details of each storage mechanism. This study provided insights 
on a developed prototype to determine its feasibility. 

D. Contributions 

The study contributes to the field of unified query systems in 
several ways. Firstly, offers a text-based language that’s 
intuitive abstracting the technical barriers of each underlying 
storage system. Secondly, it presents a novel approach [2] to 
querying multiple NoSQL systems in a uniform manner by 
organising established programming design patterns in a unique 
way. In addition, the modular approach facilitates scalability in 
terms of extending support for additional storage options 
without impeding existing supported targeted options. Finally, 
the prototype's performance results demonstrated that it reduces 
operational time and costs, considering how it envelops query 
workloads in a standardized manner. 

E. Summary 

In this paper, we present the design and development of a 
unified query platform that acts as middleware for NoSQL 
datastores. Our research aims to address the challenges 
associated with querying across heterogeneous NoSQL 
databases by providing a single query interface that abstracts the 
underlying complexities. In order to provide clear and concise 
view of the study, we have organized this paper as follows: 

 Section II: Background - Identifies key principles that’s 
required to be present when developing a unified query 
platform as middleware. 

 Section III: Related Works - Discusses related work on 
existing polyglot solutions within the context of NoSQL 
databases. 

 Section IV: Proposed Architecture - We discuss the 
architectural and design details of our proposed unified 

query platform. Furthermore, we describe the 
composition of the prototype and the software design 
patterns applied. 

 Section V: Experimental Approach - Describes the 
evaluation method employed to assess the performance 
of the prototype. 

 Section VI: Prototype’s Results - We present and analyse 
the results attained through the experiment. 

 Section VII: Discussion – We identified and discussed 
key findings and repeated themes encountered in the 
experiment. 

 Section VIII: Conclusion and Future Work - Summarizes 
the key findings and implications of our research. We 
also outline future work directions. 

II. BACKGROUND 

Polyglot query systems generally adheres to layered 
architectural pattern. However, each layer encompasses a unique 
class of problems which it aims to resolve [4, 3, 24]. The 
differences lies within the variety of approaches, methods, 
principles and technology instantiations to satisfy the intended 
use cases as shown in Fig. 1. Researchers assessing polyglot 
systems concur that specific criteria must be met during solution 
development for it to be deemed acceptable [6, 30]. These 
criteria form the foundation of unified query resolutions. They 
are designed to streamline the diversity among various data 
storage mechanisms [8, 28] and facilitate the abstraction process 
needed to tackle the complexities inherent in a disparate 
collection of database technologies. 

 
Fig. 1. Approaches to unified query system adopted from [27:p.18]. 

A. Key Principles 

We’ve identified fives key principles that should be present 
in these types of systems: 

1) Abstract syntax tree: In computer science an Abstract 

Syntax Tree (AST) acts as a mediator, bridging the gap between 

conceptualization, design, implementation, and execution, 

regardless of the underlying technology employed. This 

concept has found utility across various research domains, 

including source code compilers, security exploration, anti-

plagiarism detection, and code analysis systems [14, 31]. 
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Within the scope of this study, an AST is employed within the 

query parser to ensure that commands adhere to syntax, 

semantic, and lexical rules, thereby guaranteeing that the 

command constitutes a well-formed statement [19]. 

2) Schema consolodation: A fundamental aspect of 

developing unified solutions is obtaining a comprehensive 

understanding of the schema information for each underlying 

storage mechanism [15]. This is commonly referred to as 

metamodeling. Despite the promotion of NoSQL as schema-

less because of its efficient handling of unstructured data, there 

indeed exists a schema. Depending on the vendor, schema 

constraints may be enforced, which the consuming application 

must adhere to. 

3) Query translation: Arguably, the most crucial aspect of 

any unified solution is to generate native queries capable of 

interrogating NoSQL storage models [23, 32]. It's important to 

note that this feature is heavily influenced by the unified 

approach shown in Fig. 1. However, conceptually, regardless of 

the approach, it facilitates the generation of native queries that 

can execute on their respective NoSQL databases. 

4) Database integration: In every unified query solution, 

provision must inevitably be made for communication with the 

targeted databases [17]. NoSQL databases commonly employ 

diverse protocols as communication mediums to access the data 

source [9, 23]. These communication protocols range from 

HTTP(S) to TCP/IP, typically employing an adaptor or driver 

that implements a generic interface for database connection. An 

intriguing observation noted during this study is a direct 

correlation between the primary communication protocol and 

query language. Depending on the protocol, the query 

interrogation mechanism may access the database data via an 

API endpoint or some form of lower-level network protocol for 

data exchange. 

5) Output management: To present data from various 

storage systems uniformly, unified query systems typically 

employ two approaches: Global-as-View (GaV) and Local-as-

View (LaV), where data unification is facilitated by a mediator 

[8, 13]. It's important to note that this also contributes to the 

aforementioned key features. This feature is categorized as a 

mediator, an intelligent layer that possesses structural 

knowledge of the local data stores. GaV integrates schemas of 

the underlying local data stores, providing a unified view of 

heterogeneous structures. Conversely, LaV amalgamates local 

schemas to form a global view. 

III. RELATED WORKS 

Polyglot solutions like BigDawg aims to leverage the 
relative strengths of underlying DBMSs to effectively process 
data [30]. This solution embraces three types of data models: 
key-value, relational, and array stores. The architecture of 
BigDawg primarily focuses on query processing rather than 
query construction. Its objective is to utilize key features to 
achieve optimal performance and produce the most 
comprehensive result set. To achieve this objective, the 
architecture incorporates features such as islands, shims, and 
cast, as illustrated in Fig. 2 [6, 30]. 

 
Fig. 2. BigDawg architecture [30]. 

An island is associated with a specific data model and a set 
of query language features for the storage engine it intends to 
support. A shim acts as a communication bridge between the 
island and the storage engines. A cast facilitates data migration 
from one storage engine to another. The API directs inquiries to 
the middleware, which handles query execution and data 
migration through casts [4]. The middleware comprises various 
modules, including the query planner, performance monitor, and 
executor. These modules validate the semantic correctness of 
queries and route them to the appropriate storage mechanism for 
execution. 

 
Fig. 3. Unified SQL query middleware architecture [9]. 

Zhang et al. [9] introduced a solution that employs 
middleware to execute queries on multiple heterogeneous 
databases through a unified interface using standard SQL 
syntax. Their segmented architecture, depicted in Fig. 3, 
separates the initial query from the targeted queries via an 
abstract syntax tree. This tree is responsible for verifying if the 
initial query aligns with the requirements of the respective 
heterogeneous databases. While the article mentions that the 
middleware supports a pluggable interface for new data sources, 
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it does not detail how this would impact the abstract tree and 
computing layer. The provided middleware comprises three 
main components: a syntax parsing layer, a computing engine, 
and a data layer. The syntax layer validates a unified query 
against a customer abstract syntax tree. Native queries are then 
generated based on a meta store, which delegates them to the 
computing engine for execution on the data layer. 

NoDA, a lightweight implementation, acts as an 
intermediary layer between applications and targeted NoSQL 
databases, including MongoDB, HBase, Redis, and Neo4j [23]. 
This middleware offers a generic set of operators such as sorting, 
filtering, and aggregation, aiming to efficiently execute queries 
using the Apache Spark open-source data analytical framework. 
Although NoDA is categorized as a polyglot implementation, it 
simplifies complexity by separating the rule engine, which 
validates syntax and semantics of the unified query, from the 
abstract layer using a third-party tool. 

Cox et al. [29] introduced the Translator Query Language 
(TranQL), a solution that federates biomedical ontologies within 
a framework. Their study is grounded in real-world case studies. 
TranQL utilizes natural language to map to queries, generating 
targeted queries on various graph data models. An essential 
component of the framework is the Translator KGS API, which 
employs the shared schema RDF concept to express queries as 
Biolink data model, a hierarchical medical ontology at a high 
level. This API maps a network of knowledge graphs as a 
coherent whole, forming the basis for TranQL as a unified query 
pattern by interconnecting federated knowledge graph data 
models through curated links across entities. 

 
Fig. 4. Unified SQL query middleware architecture [28]. 

Apache Drill is a fully distributed open-source software 
framework designed for large-scale analysis in data-intensive 
applications [16]. It specializes in processing extensive datasets 
efficiently by executing tasks in parallel. The Apache Drill 
solution leverages in-memory data representation in JSON and 
Parquet formats for rapid data manipulation operations. 
Additionally, its MPP (Massively Parallel Processing) query 
engine dynamically compiles and recompiles data queries on the 
fly to maximize performance, relying on parallelism [28]. 
Similar to BigDawg's implementation, Apache Drill supports 
various data models accessed through a comparable mechanism 
as illustrate in Fig. 4. However, instead of islands, it utilizes 
plugins to connect to different storage engines and file systems 
via the Drillbit component [6]. Drillbit serves as a background 
component orchestrating the optimal execution query plan. The 
query executions are partially rendered on an execution tree and 
brought into memory. 

CloudMdsQL is recognized as a multistore system capable 
of querying multiple databases through its SQL-Like unified 
query construct [4, 6]. Supporting relational, NoSQL, and HDFS 
storage mechanisms, CloudMdsQL is designed to leverage the 
inherent features of each supported heterogeneous data store 
[23]. The abstract layer catalogs the semantics rules of the 
supported data stores, enabling the optimization of native 
queries. This allows the construction of native queries through a 
relational query framework for targeted executions. The results 
of embedded invocations are converted into an intermediary 
table for distributed processing. 

A. Evaluation Approaches of Polyglot Systems 

It's important to note that this paper does not encompass all 
unified solutions, as the objective is not to describe every 
possible solution. Rather, we aim to introduce readers to the 
distinguishing components of these solutions and the use cases 
it aims to satisfy. Research papers proposing unified query 
solutions understandably prioritize the overall utility of the 
artifact. Much emphasis is placed on practical considerations 
such as query workloads, indexing, and partitioning, which are 
integral to query processing [13, 32]. 

The described polyglot solutions are tailored to address 
different use cases. For instance, Apache Drill excels in 
processing vast amounts of data for analysis, requiring robust 
hardware as it loads data into memory for rapid retrieval [6]. 
Conversely, CloudMdsQL and BigDawg aim to leverage the full 
capabilities of supported databases' native features to process 
data, thereby providing users with enhanced native capabilities. 
TranQL serves as a federated query system for Biolink data 
using a topology of graph stores. Each of these solutions 
comprises a collection of individual isolated components 
targeting the supporting databases. These components operate 
independently, acting as intermediaries between the middleware 
layer and the database, except for BigDawg, which allows data 
integration between silos. 

Other solutions, such as NoDA, are less intricate, as it 
follows the basic principles. This prototype primarily focus on 
the query construct [23, 9], which aligns with the goals of this 
study. Although the middleware supports the four primary 
categories of NoSQL data models, it can only query one 
underlying database at a time. The authors highlight this 
limitation, underscoring that the prototype primarily emphasizes 
the system's capability to access data through its connector. 
Zhang et al. [9] on the other hand, is limited to select queries and 
does not accommodate evolving schemas. Additionally, the use 
of wildcards within the middleware may introduce suboptimal 
practices and potential runtime issues stemming from datatype 
and schema mismatches. 

IV. PROPOSED ARCHITECTURE 

This section presents the methods employed to design and 
develop the prototype. The goal of this prototype was to provide 
a high-level unified query platform that is database-agnostic 
capable of querying data across the four distinct types of NoSQL 
storage models simultaneously [17]. The prototype provides a 
query language that offers a consistent a set of syntax, semantics 
and data operations to express queries in a generic manner for 
the targeted storage models. 
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Fig. 5. Prototype: architectural overview. 

The prototype for the unified query platform had the 
following basic requirements, (1) develop a custom parser that 
accepts a SQL-like query as input, (2) develop a metamodel 
describing the each of the native schemas as well as the global 
schema, (3) build a translation engine that accepted the parser’s 
output and generated a native queries, (4) build a an executing 
layer that accepts the native queries as input and executes it on 
the supported NoSQL data stores, and finally a (5) logging 
mechanism to audit performance and functionality of the 
prototype. This is encapsulated in Fig. 5. showing the overall 
architecture and the interactions between the various 
components. 

Design Science Research: This paper used DSR 
methodology to ascertain the necessary knowledge to build the 
prototype. DSR is a problem-solving architype that creates 
knowledge on the design process and product concurrently [12]. 
The study subscribed to the seven guidelines proposed by 
Hevner et al. [2]. The design and architectural choices made was 
influenced by existing literature and the empirical insights 
during the development and evaluation phase of the prototype. 
The iterative nature facilitated the authors of this study to test 
and refined the prototype based on ideal approaches and current 
shortfalls on unified query platforms. The constant feedback 
loop guided the software development lifecycle [18]. The act of  
the repeated circumscription process influenced the prototype 
construction until design requirements in Table I were satisfied. 
A student database for each instance of the supported NoSQL 
storage systems was created shown in Appendices A and B to 
interrogate. 

The study employed a mathematical abstraction, wherein 
q(n) symbolizes the native or targeted query for each instance 
category of a NoSQL database [3]. Furthermore, DS represents 
the data source which consolidates the four supported types of 
NoSQL storage data models. i.e., GR - Graph, KV - Key-Value, 
DO – Document-Orientated, CO - Column- Orientated data 
stores. The data source is represented as 𝐷𝑆 → 𝐺𝑅 ∪ 𝐾𝑉 ∪
𝐷𝑂 ∪ 𝐶𝑂, indicating which the NoSQL data storage models are 
supported. The query parser ensures the unified query conforms 
to the signature of the abstract syntax tree, whereby the unified 
query is required to prove it conforms to the lexical (lex), 
semantic (sem) and syntactic (syn) rules of the prototype. 

𝑆𝑙𝑠𝑠 =  ∑ 𝑘𝑖 , 𝑘 < (𝑙𝑒𝑥[i]  ∧  𝑠𝑒𝑚[i] ∧  𝑠𝑦𝑛[i]) 𝑛−1
𝑖=0         (1) 

The query translator verifies if the targeted data model, 
dm(k), specified in the unified query is an element of the data 
source: 

𝑑𝑚(𝑘) = {
1, 𝑖𝑓(𝑘 ∈ 𝐷𝑆)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (2) 

Once the system has established that the data model is 
supported by one or more elements of the data sources, it is 
required to generate the targeted or native query, t(k): 

𝑡(𝑘) = {
1, 𝑖𝑓(𝑑𝑚(𝑘) ⊢ (𝐺𝑅 | 𝐾𝑉 | 𝐷𝑂 | 𝐶𝑂))
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3) 

The query executor subsequently directs t(k) to appropriate 
NoSQL database instance to be executed. If 𝑞(𝑛) =

 ∏ 𝑘, ∃𝑛[∅, 𝑛]. 𝑡(𝑘).
𝐷𝑆𝑛
𝑘=1 𝑑𝑚(𝑘) ℎ𝑜𝑙𝑑𝑠 dm(k), the native query is 

executed on the target storage model. Finally, the object mapper 
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wraps the output of each target query into a result, 𝑟𝑖 = 𝑜 ∈
 [𝑞(0), … 𝑞(𝑛)]. (𝑘 ≥ 𝑞(𝑘)). 

A. Design Requirements 

A set of requirements were identified to achieve the 
envisioned design goals shown in Table I. Each requirement was 
linked to a component responsible for a specific functionality in 
realising a unified query platform. These components function 
are akin to "spokes in a wheel," relying on each other to 
accomplish the functional objectives. 

TABLE I.  PROTOTYPE DESIGN REQUIREMENTS 

Prototype Design 

Components Requirements 

Metamodel repository 

Create a metadata schema denoting Redis. 

Create a metadata schema denoting Cassandra. 

Create a metadata schema denoting MongoDB. 

Create a metadata schema denoting Neo4j. 

Create a global metadata schema. 

Query parser 

Build a lexer for input characters. 

Build a query syntax tree. 

Build a semantic engine. 

Query translator 

engine 

Build Syntax and Semantic Matching engine. 

Build Feature Mapping engine. 

Build Query Optimization engine. 

Query Executor 
Build a database adapter for NoSQL databases. 

Map native results to a global view. 

Log Mechanism Build data collection mechanism. 
 

B. Prototype Construction 

The first step was to determine how context and meaning can 
be given to the prototype’s intended query language [14, 19]. 
Therefore, the prototype facilitates three commands:  Fetch, Add 
and Modify (Appendix C). The nature of these commands is 
intrinsic, as their names suggest. The Fetch command retrieves 
data, the Add command inserts data, and the Modify command 
updates data across the supported NoSQL storage system 
concurrently. Determining the fundamental intent of the query 
serves as the initial step in shaping the unified query platform. 

1) Query parser: To operationalise the commands, an AST 

was built within the query parser component. A text-based 

language was the preferred design choice to serve as the 

prototype’s unified query as its familiar to consumers 

interrogating data and will most likely drive greater adoption 

[19]. The elements of the query language within the prototype 

were deconstructed into an organized tree-like structure. The 

prototype incorporates an embedded lexer feature within the 

query parser component, which scans the text and generates a 

stream of tokens, serving as input for the subsequent parsing 

phase. During the parsing phase, the stream of tokens produced 

as shown in Table II by the lexer is systematically examined, 

and the abstract syntax tree (AST) is constructed based on the 

grammar rules of the unified query language. The keywords and 

identifiers guided informed the prototypes query intent, path 

and code generators to executed the appropriate native query. 

On this basis the necessary tokens is generated are 

representative of the unified query’s meaning and purpose. 

TABLE II.  PARSER’S LEXICONS 

Keywords 
Parser 

Lexicons Input Text 

 

FETCH FETCH 

MODIFY MODIFY 

ADD ADD 

PROPERTIES PROPERTIES 

DATA_MODEL DATA_MODEL 

FILTER_ON FILTER_ON 

ORDER_BY ORDER_BY 

RESTRICT_TO RESTRICT_TO 

TARGET TARGET 

ASC ASC 

DESC DESC 

LAND AND 

LOR OR 

Identifiers 

REFERENCE_ALIAS 
Identifier preceding ‘DOT’; 

example: t.property 

REFERENCE_ALIAS_N
AME 

Identifier succeeding ‘AS’; 
example: t.property AS alias 

REFERENCE_MODEL 

Identifier succeeding ‘AS’ in 

DATA_MODEL; example 
DATA_MODEL { data AS 

dataAlias } 

PROPERTY 
Referenced column\attribute  

name 

JSON_PROPERTY 
A JSON referenced 

column\attribute name 

TERM 

Identifier succeeding 

‘FILTER_ON’; example 
FILTER_ON { term = ‘1’ } 

DATA 

Identifier succeeding 

‘DATA_MODEL’; example 
DATA_MODEL { data } 

NAMED_VENDOR 

Identifier of database vendor; 

example neo4j, mongodb, 

cassandra, redis 

AS AS 

LEFT_CURLY_BRACK

ET 
{ 

RIGHT_CURLY_BRAC
KET 

} 

LEFT_BRACKET [ 

RIGHT_BRACKET ] 

LEFT_PAREN ( 

RIGHT_PAREN ) 

COMMA , 

DOT . 

NSUM Nsum 

NAVG Navg 

NCOUNT Ncount 

NMIN Nmin 

NMAX Nmax 

Operators 

EQL = 

LSS < 

GTR > 

GTE >= 

LTE <= 

Literals 
NUMBER 1,2,3,4,5,6,7,8,9,0 

STRING Aa,Bb,Cc,….Zz 
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The prototype employs a parser combinator technique, 
where multiple parsers are accepted as input to create a new 
parser as output. This technique enables the prototype to 
modularize sections of the query language by recursively 
traversing through the token stream and using demarcating 
locations. These demarcated locations assist the program in 
indicating where the parser should start and stop. Following a 
recursive descent strategy, the parser inspects terminal and non-
terminal symbols based on the syntactic rules governing the 
grammar of the unified query. This process results in grouping 
a disjointed set of nodes [11]. A lightweight library called 
Superpower was utilised to facilitate the construction of token-
driven parsers embedded directly in the source code [21]. This 
library is an extension of Sprache, a text-based parsing 
framework that does not require any additional build tools or 
runtime configurations. According to its documentation “it fits 
somewhere in between regular expressions and a full-featured 
toolset like ANTLR” [20]. A demonstration of the lexical 
activity reveals how the tokens are generated by the prototype 
as per a given input (Appendix D). Once the unified query has 
proven to be well-formed by the parse, the prototype delegates 
the query to the metamodel to determine if the actual properties 
are defined in the global schema. 

2) Metamodel: The function of the metamodel is to bridge 

the gap between the unified and native schemas [6, 16, 17]. It 

plays a crucial role in the solution by revealing the physical 

structures of the native schemas and the conceptual structure of 

the global schema. The global schema contains instructional 

configurations to the native schema, indicating the relationship 

between the models. The prototype's metamodel catalogues 

each storage mechanism's schematics, data types, and indexes. 

Additionally, it assists the query parsing mechanism by 

performing basic validations to ensure that the specified fields 

are supported by the unified query data model. It aids the query 

translator in resolving native references at runtime and assists 

in generating the appropriate native query constructs. To some 

extent, it informs the query processing engine about the optimal 

query to create when inspecting relevant native storage 

mechanism schematic information such as indexes and unique 

keys. 

3) Query translator: The translation engine has several 

features for the query processing and the creation of  executable 

native queries: 

 Syntax and Semantics Matching 

 Feature Mapping 

 Query Optimization 

a) Syntax and semantics matching: Any unified query 

polyglot system targeting multiple types of databases, will 

innately have different syntax and semantics compared to the 

native query languages [5]. Hence, the prototype’s query 

translation engine finds the equivalent meaning and grammar 

of the supported databases in order to successfully build 

executable queries. Finding the equivalent match ensures the 

intended meaning and functionality is preserved during the 

conversion process of unified query. In addition, the syntactic 

translation involves converting the unified query's expressions, 

keywords, identifiers, literals and operators to match the syntax 

of the native query language [23]. This ensures the adherence 

to each supported database, safeguarding against unintended 

results once the generated query is eventually natively 

executed. 

b) Feature mapping: The prototype’s query language in 

some instances does not have the direct equivalent features or 

constructs in the targeted native query language. It attempts to 

preserves the anticipated functionality while still creating a 

converted query that may be executed. In general, features for 

database management systems are naturally influence by the 

applicable use cases [1, 3]. In the instance of the key-value 

database, Redis, aggregation amongst other features are not 

natively supported in its database management as shown in 

Table III. Therefore the prototype requires an additional 

abstraction layer for the Redis data store to circumvent this 

issue which currently does not support. 

TABLE III.  PROTOTYPE VERSUS EQUIVALENT NATIVE DATA STORES 

FEATURES 

Prototype Redis Cassandra MongoDB Neo4j 

Aggregation 

NSUM  X X X 

NAVG  X X X 

NMIN  X X X 

NMAX  X X X 

NCOUNT  X X X 

Filtering 

WHERE X X X X 

AND  X X X 

OR  X X X 

JOIN    X 

RESTRICT  X X X 

Sorting 

ASC  X X X 

DESC  X X X 

Projections 

*No explicit 
command 

  X X 

Operators 

’=’, ’+’, ’ -’, ’*’, 
‘/’ 

X (only 
‘=’) 

X X X 

Comparators 

’<’, ’<=’, ’>=’, 
’>’ 

 X X X 

The translation engine maps these features to appropriate 
native constructs, ensuring the preservation of the expected 
functionality. Specialized strategies for each of the inherent data 
stores was built, thus establishing clear boundaries between the 
various NoSQL translation layers. 

c) Query optimization: The query optimizer plays an key 

role in the efficiency of the polyglot solution. The prototype 

employs an approach concerned with delegating the heaving 

lifting to the targeted database of query filtering, sorting, 

projections and aggregation where applicable [32]. As a 

consequence, it aims to shift the I/O, memory and CPU 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

635 | P a g e  

www.ijacsa.thesai.org 

processing power to the respective DBMS reducing the 

computational footprint on the prototype. Additionally, pushing 

operations such as projections and filtering closer to the data 

source, reduces the network bottleneck when data is transferred 

between the prototype and the corresponding NoSQL data 

stores [27]. 

4) Query executor: This component is responsible for 

natively running queries produced by the query translation 

engine against the respective NoSQL data sources. It 

establishes the database connections, the authentication 

procedures and data transfer between the unified query platform 

and the data source, similar approaches to BigDawg, NoDA [9, 

23]. The prototype’s query executor coordinates the concurrent 

executions of the respective native queries amongst the NoSQL 

data stores based on the targets specified in the unified query. 

It splits the executable queries into multiple processing units by 

creating threads for each one. For each data source, the executor 

collects  the query results. It performs any necessary data 

mapping to present a consolidated result. Any errors and 

exceptions that may occur during query execution process 

provides the appropriate error messages back to the query 

interface. 

5) Logger: The experiment embeds metrics directly into 

the prototype. Utilizing an open-source library known as App 

Metrics (app-metrics.io, 2021), the prototype measured various 

performance aspects of the components within the unified 

query solution. The report modules provided a set of libraries 

through which the unified query parser, translator, and executor 

could be scoped. 

C. Design Integration 

Ultimately, the prototype needed specific non-functional 
aspects to finalize the solution. The study identified the (i) query 
intent, (ii) query path, and (iii) query generator as key elements 
comprising the non-functional requirements. Each of these 
elements was implemented using established programming 
design patterns. Fig. 6 depicts the alignment of the parser, 
translator, and executor components with the non-functional 
requirements. It illustrates the path of the unified query through 
each stage of the query processor and, importantly, how the 
design programming patterns are encapsulated within this 
process. 

 
Fig. 6. Prototype design patterns and components. 

1) Query intent: Determining the intent of the unified query 

is crucial as it directly influences the expected outcomes. This 

necessitates the solution to align the prototype commands with 

the corresponding features of each native system. Once the 

query intent is identified, the prototype directs the query to 

follow the appropriate query path. The chain of responsibility 

design pattern was selected, wherein the prototype dynamically 

determines which command to execute at runtime [22]. The 

prototype defines Fetch, Add, and Modify commands as 

handlers (see Fig. 7), each responsible for interpreting its 

respective request. These handlers share a common interface, 

which is tasked with dispatching client query requests to the 

appropriate command handler based on the data inquiry [26]. 

The command handlers contain the query parser and translator 

logic. 

 
Fig. 7. Query intent: chain of responsible design pattern. 

This pattern has found widespread application in scenarios 
where system messages dictate the execution result [7]. Upon 
the program's initiation, new instances of each command type 
are created, resulting in a chain of objects. To enhance the 
efficiency of the execution processing chain of objects, the 
collection of concrete handlers, i.e., command handlers, was 
organized as a dictionary, with the command types serving as 
unique keys. The query request passed to handlers is tagged with 
the appropriate command type, which is then used to locate the 
corresponding handler in the execution chain. In instances where 
the command is not found in the dictionary, no action is taken, 
and the unified query request is aborted with an error message. 
The prototype implements the chain of responsibility in the 
following manner as shown in Table IV. Q denotes the intent of 
the query language. Each of the commands within the unified 
query are denoted as f for Fetch, m for Modify and a for Add. 
Therefore the command, represented as cmd, must always be 
present in the unified query. Thus one can conclude that the cmd 
is a subset of Q, i.e. 𝑐𝑚𝑑 ⊆ 𝑄. N represents the collection of 
nodes within the AST, 𝑁 →  {𝑛1, … , 𝑛𝑛}. The nodes are assigned 
an array of instantiations expressing the mechanical parts of the 
query. The prototype is able to discover command instantiations 
thereby enabling the correct handler to be invoke. This act 
facilitates the prototype to realise the intent. 
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TABLE IV.  CHAIN OF RESPONSIBILITY PATTERN PSEUDOCODE 

Algorithm : Query Intent 

≔ 𝑸𝒖𝒆𝒓𝒚𝑰𝒏𝒕𝒆𝒏𝒕(𝒒) 

𝒊𝒇 𝑞 ∈ 𝑄 𝒅𝒐 

    𝒊𝒇 𝑞. 𝑐𝑚𝑑 ∈ 𝑓 𝒅𝒐 

        𝑓(𝑁) 

    𝒆𝒍𝒔𝒆 𝒊𝒇 𝑞. 𝑐𝑚𝑑 ∈ 𝑚 𝒅𝒐  

        𝑚(𝑁) 

    𝒆𝒍𝒔𝒆 𝒊𝒇 𝑞. 𝑐𝑚𝑑 ∈ 𝑎 𝒅𝒐 

        𝑎(𝑁) 

     𝒆𝒍𝒔𝒆   

          𝐼𝑛𝑣𝑜𝑘𝑒𝐸𝑟𝑟𝑜𝑟 

2) Query path: In anticipation of the native query 

generators, the query path determines the supported NoSQL 

storage systems to target and the components to execute. This 

guarantees the generation of the correct native query based on 

the unified query intent. The strategy pattern was employed, 

ensuring the appropriate algorithm is enforced based on the 

query elements specified in the target clause within the AST. 

Each of the supported NoSQL data storage models was defined 

as descendants within a family of algorithms shared by the same 

ancestor [22]. In the prototype, each of the supported NoSQL 

data models is represented as specialized classes responsible for 

constructing a collection of visitors to be executed by the query 

generator. The prototype takes the query intent as input and 

matches the command and storage target to the relevant 

strategy. During the translation process, the repository 

metamodel is utilized to identify the equivalent native field for 

the unified field. If no matches are found, the field is excluded. 

The prototype intentionally constructs a collection of class 

instantiations, represented as visitors, to closely mimic the 

structure of the native query languages it needs to create. 

Finally, once the native queries are generated by the query 

generator, the strategy pattern sends the output back to the 

calling method for execution. 

The query path strategy implementation considers the target 
models specified in the unified query once the command has 
been established (see Fig. 8). The target models as shown in 
Table V. where rs represents redis, ms mongodb, cs cassandra 
and ns neo4j. The translator component T, accepts the target 
models as input thus directing the appropriate queries to be 
generated. The supported NoSQL databases are implemented as 
concrete classes subscribing to a single collection as they all 
share a common interface, 𝑆𝑃 → {𝑠𝑝1, … , 𝑠𝑝𝑛} . The classes 
inherits from a base strategy class where 𝑠𝑝𝑛  ∈
 (𝑟𝑠 | 𝑚𝑠 | 𝑐𝑠 | 𝑛𝑠) . The strategies are preloaded within T. 
Therefore, to execute the relevant strategy, it must exist with the 
translation component 𝑠𝑝𝑛 ∋ 𝑇. The data source DS is indicative 
of the  underlying NoSQL database categories, KV : key-value, 
CO : column orientated, DO : document orientated and GR : 
graph data stores. The output n, generated by the translator, 
denotes the native query. This eventually runs on the targeted 
NoSQL database completing the execution path. 

 
Fig. 8. Query path: strategy design pattern. 

TABLE V.  STRATEGY PATTERN PSEUDOCODE 

Algorithm : Query Path 

𝐼 → 𝑄𝑢𝑒𝑟𝑦𝐼𝑛𝑡𝑒𝑛𝑡(𝑞) 

≔ 𝑸𝒖𝒆𝒓𝒚𝑷𝒂𝒕𝒉(𝒒) 

𝒊𝒇 𝑞 ∈ 𝐼 𝒅𝒐 

𝒊𝒇 𝑒 → ∃(𝑖. 𝑐𝑚𝑑)  𝒅𝒐 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 → 𝑞. 𝐷𝑆 

𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑠𝑝 ∈ 𝑆𝑃(𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑡𝑜𝑟𝑎𝑔𝑒) 𝒅𝒐 

𝒊𝒇 𝑠𝑝 ⊆ 𝐾𝑉 𝒅𝒐 

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑟𝑠) 

𝒊𝒇 𝑠𝑝 ⊆ 𝐶𝑂 𝒅𝒐 

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑐𝑠) 

𝒊𝒇 𝑠𝑝 ⊆ 𝐷𝑂 𝒅𝒐 

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑚𝑠) 

𝒊𝒇 𝑠𝑝 ⊆ 𝐺𝑅 𝒅𝒐 

𝑛 → 𝑇. 𝑅𝑢𝑛(𝑛𝑠) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝒏 

3) Query generator: The query generators separate the 

processing logic from query components. To generate the 

native NoSQL queries for the prototype, the visitor pattern was 

employed. It is invoked by the query translator component. The 

native query elements are represented as "visitors" which 

directly correspond to elements of the tokens generated by the 

query parser. This pattern is highly effective, as it enables class 

instantiation to add functionality without altering the structure 

of the class, thereby ensuring scalability [22]. 
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Fig. 9. Query generator: visitor design pattern. 

In the context of this study, each supported NoSQL data 
storage model possesses its own distinct code generating 
implementation as shown in Fig. 9. This pattern empowers the 
prototype to traverse through various elements of the query 
expressions, constructing parts of the native query while 
retaining its internal state, referred to as the 'whole part' or native 
query. As the prototype progresses through the organized parts, 
it invokes other visitors, thereby facilitating the construction of 
complex query structures in a systematic and controlled manner. 

The query generator uniquely encompasses a collection of 
classes called visitors, each one responsible for generating a part 
relevant to native query; 𝑉𝑆 → {𝑣𝑠1, … , 𝑣𝑠𝑛}. In Table VI., rg 
represents  redis, cg cassandra, mg mongodb while ng neo4j. The 
supported NoSQL  categories are tied to a storage element which 
delegates deciding on which code generator to invoke based on 
the target models in the unpacked in the translation component, 
𝑆𝐸 → {𝑞𝑒1, … , 𝑞𝑒𝑛}. Each visitor represent a specific part within 
the broader query. The conversion of the unified query requires 
the visitor to be a specified order. The query generator then 
proceeds to systematically build each part of the native query, 
thus returning an executable query. 

TABLE VI.  VISITOR PATTERN PSEUDOCODE 

Algorithm : Query Generator 

𝐼 → 𝑄𝑢𝑒𝑟𝑦𝑃𝑎𝑡ℎ(𝑞 → 𝑄𝑢𝑒𝑟𝑦) 

≔ 𝑸𝒖𝒆𝒓𝒚𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓(𝒊) 

𝒊𝒇 𝑖 ⊢ 𝐼 𝒅𝒐 

𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑝𝑎𝑡ℎ →  𝑖. 𝐷𝑆 

𝑉𝑆 →  𝐵𝑢𝑖𝑙𝑑𝑉𝑖𝑠𝑖𝑡𝑜𝑟𝑠(𝑖. 𝑞𝑢𝑒𝑟𝑦_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) 

𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑝𝑎𝑟𝑡 𝑖𝑛 𝑉𝑆 𝒅𝒐 

𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑟𝑔  𝒅𝒐 

𝑟𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡) 

𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑐𝑔  𝒅𝒐 

𝑐𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡) 

𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑚𝑔  𝒅𝒐 

𝑚𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡) 

𝒊𝒇 𝑝𝑎𝑟𝑡 ∈ 𝑛𝑔  𝒅𝒐 

𝑛𝑔. 𝐴𝑐𝑐𝑒𝑝𝑡(𝑝𝑎𝑟𝑡) 

The prototype components and embedded features in tandem 
with the programming design patterns aids in producing a 
working artifact. Careful consideration was given to the 
middleware as an abstraction layer. By applying a separation of 
concerns approach, enabled components and features within the 
prototype to operated independently. Thus, delegating any tasks 
to the isolated components. Furthermore, compartmentalisation 
of the intents, the generators and executable paths supplied a 
clear route for the query processing system. 

D. Limitations 

The study encountered several limitations and challenges 
during the research endeavour, including. Initially, the study 
proposed an automated schema identifier capable of affecting 
the underlying native schemas through the prototype. However, 
due to time constraints, this feature was excluded from the scope 
of the research project. Manual schema updates were necessary, 
leaving the prototype susceptible to errors. The prototype 
struggled to handle complex data additions and updates, 
particularly in the case of nested query processing based on 
existing data models. Updates couldn't be performed on 
complex fields within the Cassandra database management 
system, as it required retrieving the entire object, updating the 
identified field(s), and then sending the entire field back for 
modification. The study was restricted to specific versions of the 
supported NoSQL data storage options. Any changes in versions 
of the respective NoSQL database management system may 
render the solution obsolete or cause previously successful 
unified queries to produce errors. The adaptors developed for the 
prototype relied on a rudimentary security mechanism for the 
respective NoSQL databases, requiring connections to be 
authenticated. 

V. EXPERIMENTAL APPROACH 

We’ve conducted an experiment to assess the complexity of 
key algorithms contained within the overarching design 
principles. The prototype was tested against varying workloads 
contained within threads to measure its scalability and 
robustness. In accordance with Hevner et al. (2004), it is 
imperative to meticulously demonstrate the effectiveness of an 
artifact through the appropriate evaluation methods. Therefore 
the prototype was subjected to ninety-one individual test cases, 
shown in Table VII. Each test cases were grouped to specific 
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query intents in order to isolated and identify potential errors or 
performance degradation. Furthermore, each test case represents 
a participant or user assigned to a predefined query to leverage 
control  over the experiment. This enable us to effectively 
automate the testing process. 

TABLE VII.  TEST CASE SUMMARY 

# Summary Test Cases 

1 Syntax and Sematic Validations. 87, 88, 89, 90, 91 

2 Retrieve complete dataset. 1, 9, 28, 45, 66 

3 
Retrieve dataset where a single filter 

was applied. 
2, 3, 4, 10, 16, 17, 54, 67, 77, 78, 79 

4 
Retrieve dataset where a multiples 

filters were applied. 

11,12, 15, 29, 30, 55, 56, 68, 69, 70, 

80, 81 

5 
Apply a limit to the dataset retrieval 
process. 

13, 31, 46, 47, 48, 49, 50, 51, 52, 53 

6 
Apply sorting to the dataset retrieval 

process. 
14, 32, 33, 34, 35, 36, 57, 71 

7 Aggregation on a datasets. 
18, 19, 20, 21, 22, 37, 38, 39, 40, 
41, 58, 59, 60, 61, 62, 72, 73, 74, 

75, 76 

8 Update existing dataset. 
5,  6, 23, 24, 25, 42, 43, 63, 64, 82, 
83, 84, 85 

9 Data inserts. 7, 8, 26, 27, 44, 65, 86 

We conduct the experiment using an Intel(R) Core(TM) i7-
10610U CPU running at 1.80GHz with a maximum frequency 
of 2.30GHz. The device is equipped with 16,0 GB (15,6 GB 
usable). The system operates on a 64-bit Windows operating 
system and is based on an x64 processor architecture. 

A. Participants 

We purposefully embedded a module within the prototype 
which comprised of participants. The participants within the 
context of this study served as human stakeholders with specific 
query intents. Each participant invoked the prototype’s query 
language, consisting of either data retrieval, modification, or 
insertion commands. The query workloads assisted in 
automating the experimental process and facilitating the 
capturing of performance metrics for analysis. In addition, we 
were able to control the expected outcomes in deterministic 
manner. Thus playing a crucial role in evaluating the prototype's 
performance. 

B. Metrics 

The data collected for each payload encompasses a number 
of varying metrics which includes the Apdex, CPU usage, 
memory usage, execution times for each individual component 
and error rates. The Apdex, CPU and memory usage enveloped 
the entire query’s execution path. While the execution times and 
error rates were logged at a granular level with respect to each 
component i.e. the query parser, translator and executor. 

1) Application performance index: The Apdex or 

Application Performance Index score is an industry standard, 

which was utilised to assess the users or participants 

satisfaction rate in terms of the responsiveness of the prototype. 

It’s a binary metric whereby 1 represents the best possible 

outcome, alternatively 0 represents the worst possible outcome. 

In this study, we’ve set benchmarks to classify the user 

experience as follows : 

 Satisfied - Response time less than 2 seconds 

 Tolerating - Response time between 2 and 8 seconds 

 Frustrating  - Response time greater than 8 seconds 

let’s say : 

 sr is satisfied requests 

 tr is tolerating requests 

 s is the total number of requests (i.e. sample size) 

∴ 𝐴𝑝𝑑𝑒𝑥 𝑆𝑐𝑜𝑟𝑒 =
(𝑠𝑟+

𝑡𝑟

2
)

𝑠
   (4) 

2) CPU usage : The prototype’s consumption of the 

Central Processing Unit (CPU) provided a multifaceted 

perspective on performance, functionality and viability of the 

solution. 

let’s say : 

 st  is the start time of CPU utilisation 

 et  is the end time of CPU utilisation 

 pa is the number of processors available to the  current 
process 

 pt  is the total processing time 

∴  𝐶𝑃𝑈 𝑈𝑠𝑎𝑔𝑒 =
(𝑒𝑡−𝑠𝑡)

(𝑝𝑎×𝑝𝑡)
   (5) 

3) Memory usage :The memory consumption of the 

prototype was evaluated from two perspectives, both the virtual 

and physical. In both instances the memory expenditure was 

calculated as follows : 

In the case of virtual memory: 

 ivm is the initial amount of virtual memory allocated. 

 fvm is the final amount of virtual memory allocated. 

∴  𝑣𝑚 = 𝑓𝑣𝑚 − 𝑖𝑣𝑚    (6) 

In the case of physical memory: 

 ipm is the initial amount of physical memory allocated. 

 fpm is the final amount of physical memory allocated. 

∴  𝑝𝑚 = 𝑓𝑝𝑚 − 𝑖𝑝𝑚       (7) 

4) Query execution times : The individual components of 

the prototype measured the respective execution times in 

milliseconds. The parser determines the time taken for the 

global parser to validate the unified query. The translator 

measures the time taken for the translator to generate the native 

queries. Whereas the executor measures execution time of the 

generated native query on the supported storage system. 

Elapsed time measurement: 

 st is start time 

 et is end time 
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∴  𝑒𝑙 = 𝑒𝑡 − 𝑠𝑡   (8) 

5) Error rate: The components, namely the parser, 

translator and executor reported the number of errors produced 

by each of the automated participants. 

VI. PROTOTYPE’S RESULTS 

The prototype’s architecture adheres to established design 
principles promoting modularity, extensibility, reusability and 
scalability. This section assesses the efficacy of those applied 
principles evaluating the varying algorithms employed in the 
query parsing, translation, and execution processes. 

1) Application performance index: In the instance of the 

Apdex data acquired, the queries executed when viewed from 

an overall perspective, demonstrates a minimal use of resources 

within the call stack, leading to an optimal execution path. This 

efficiency is further corroborated by the Apdex scores in Fig. 

10, which consistently indicated that the results were delivered 

within an acceptable timeframe. Therefore it is plausible to 

assert that the query parser, translator, and executor worked in 

harmony to ensure timely query responses from multiple 

storage mechanisms. However, the experimental results also 

indicated performance outlier’s whereby certain tests exceeded 

the satisfactory threshold. This was evident in the Neo4j storage 

system in test group 2, as a large amount of connected nodes 

degraded performance as observed  in Cox et al. (2020) study. 

The other notable observation relates to the use of the “OR” 
logical operator. The experiment revealed when applying 
deepened search criteria, it results in longer execution times, 
negatively affecting Apdex score. These compounding factors 
highlights a need to improve the metamodel in terms of 
enhanced cataloguing which affects the translation feature. 
Firstly, the metamodel requires an improved awareness of the 
with each targeted storage systems indexes. Secondly, it need to 
be aware of the capabilities for the individual storage systems to 
a certain extent. This should encompass the limitations of the 
supported models, thus aiding in the translation process to 
support efficient executable native queries. 

2) CPU usage: The objective was to assess whether the 

prototype excessively consumed the physical machine’s 

resources during the simulated tests. We deliberately 

overloaded the prototype with threaded workloads to monitor if 

it caused system instability or crashes during operations. The 

prototype demonstrated fluctuations in the CPU based on the 

query activities. Each query of the predefined queries induced, 

handled by a dedicated thread intentionally loaded the CPU 

with requests to measure the feasibility of the prototype. It 

proved to show peak activity during high query loads and 

effectively releases the processor at the appropriate time 

revealing the efficient design algorithms applied to the parser, 

translator and executor (Fig. 11). 

 
Fig. 10. Apdex scores. 

 

Fig. 11. Central process unit consumption. 
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3) Memory usage: We’ve observed the correlation between 

increased query workloads and memory consumption. This 

associative behaviour is expected, however more importantly, 

it was fundamental to ascertain how well the prototype releases 

memory. On start up, the prototype initially consumed more 

virtual memory than physical memory. Nonetheless, once the 

query workloads was imposed, the system virtual memory 

exceed the physical memory. This indicates that the query 

parser, translator and executor optimally utilises the available 

RAM to achieve effective performance rather than relying on 

slower disk-based memory i.e. vm. Furthermore, this implies 

the system ensured no excessive memory consumption which 

underscores the robustness of the prototype’s architectural 

design choices (Fig. 12). 

4) Query execution times: This applies to the prototype’s 

query parser, translator and executor to determine any 

bottlenecks in the query execution path illustrated in Fig. 13. 

The response times of each component generally produced 

favourable results. The granular results of each component 

enabled the authors to further assess the pertinency of the 

design principles applied to each component. Thus 

strengthening the findings of the CPU, memory and Apdex 

results. As discovered in the Apdex results, the executor 

highlighted inefficiencies in the translator component. The 

query executor performance explicitly depends on how well a 

native query is generated by the translator. We’ve observed 

apply sorting and logical operators has a significant impact on 

the overall responsiveness of the prototype. 

5) Error rates: The number of errors produced during the 

experiment signifies the stability and reliability of the 

prototype. In general the prototype exhibited low error rates 

under the varying workloads. The error rates were evaluated 

from two perspective, intentional to establish the boundaries of 

the system and unintentional to assess faults within the system. 

The data indicated, the prototype was able to distinguish 

between well-formed queries and non-conforming queries. It 

also highlighted shortcomings (Fig. 14) in the prototype 

revealing that the system is not aware of the full compatibilities 

of certain storage systems and date fields could not be parsed. 

In demonstrating its robustness, certain  unexpected errors 

produced was isolated to specific targeted storage system, thus 

not negatively impacting all facets of the unified query. 

 
Fig. 12. Physical and memory consumption. 

 
Fig. 13. Component execution times. 
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Fig. 14. Errors per component. 

VII. DISCUSSION 

During our experiment, the performance data revealed that 
the prototype utilizes the physical machine’s resources 
efficiently, even under load. Since excessive resource 
consumption can lead to a number significant challenges such 
system instability and degraded user experience; it important to 
identify and implement the optimal design patterns at inception. 
In certain instances, we observed fluctuations of high resource 
usage by the prototype which could have affected other 
applications running on the machine. However, the Apdex 
scores coupled with the query execution times and error rate 
demonstrated the stability of the prototype within it’s 
environment. Fortunately we could observed that these spikes 
occurred in short time-bursts, preventing the prototype from 
monopolizing CPU and memory which could have led to 
degraded  performance and overall user experience. We further 
attest to these insights as all of the participants were able to 
execute their respective unified queries to completion without 
any system interupts or fatal errors. 

On reflection of the emperical data produced by the 
experiment, it is evident that efficiency and robustness must be 
prioritized from the onset. The experiment highlighted potential 
inefficiencies in the query translator and executor which heavily 
relies on the metamodel to produce well-formed native queries. 
The data suggests that the ineffecienct queries produced by the 
translator results in longer running times on the executor 
component. By addressing these potential bottlenecks in the 
query path at an early stage, it reduces the need for extensive 
rework later. These findings emphasis the importance of  
effective and efficient components as an inadequate solution 
from the start will exponentially increase cost and reduce quality 
over time i.e. user experience. This is especially pertinent in 
today’s digital era where scalability and cost-effective solutions 
are at the forefront of innovation. An holistic approach to 
developing such polyglot systems is essential to demonstrating 
it’s utility. 

VIII. CONCLUSION AND FUTURE WORK 

In this article we presented an approach to design and 
develop a unified query system. The efficiency, scalability and 
robustness demonstrated by the prototype essentially advocates 
in favour of the design and architectural patterns applied to the 
system. A modular approach to the components supports the 
prototype to be easily extendable and adaptive to change, i.e. 

new storage systems should be easily added without having 
adverse effects on the existing integration. The results attained 
in relation to the query parser, translator and executor worked 
together to ensure the prototype achieved optimal performance. 
This is suggested in the Apdex scores achieved by the system as 
well as the efficient  utilisation  of the CPU and memory. The 
low error rates, affirmed the reliability of the developed 
prototype. 

In future, we propose a study that addresses the deficiencies 
of the prototype. The experiment results revealed it may be 
beneficial for the metamodel to be partitioned in a fashion that 
is responsible for different aspects of the unified query system. 
One such aspect relates to greater schema awareness, therefore 
an exhaustive catalogue of alternative mappings between unified 
fields and natives fields including complex data types. This will 
offer a wider range of query translation permutations are during 
the native query generation process as well as supporting 
advanced query parsing methods. Another aspect relates to a 
context awareness metamodel to identify use cases supporting 
the accurate interpretation of query intents. Recognising the 
limitations of the targeted storage models to improve query 
optimizing algorithms within the prototype. Thus providing 
improved indexing strategies and query rewriting techniques. 
The metamodel may also benefit from cataloguing each native 
storage systems supported operations. This will allow the 
prototype to delegate unsupported operations to the middleware 
or at least give context is to why the intent cannot be realised.   
Finally, the metamodel could benefit from machine learning by 
either automating the catalogue process, i.e. mapping new native 
fields to unified model or using historical log information to 
improve the query optimisation process. 
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APPENDIX A:  NOSQL DATABASE SCHEMAS 
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APPENDIX B: REPOSITORY MODEL 

 Property Neo4j Mongodb Cassandra Redis 

Models  pupil students student user 

student 

identifier pupilid student_id id user_id 

idnumber id id_number idno identity_number 

title title title title title 

preferredname alias  aka other_name 

initial initial init initials  

name name name firstname first_name 
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surname surname surname lastname last_name 

dateofbirth dob date_of_birth dob birth_date 

gender gender gender_identity gendered gender 

address    X 

contact    X 

register    X 

transcript    X 

  faculty faculty   

faculty 
code key short_code x X 

name description name registered.faculty X 

  course course   

course 
code key short_code x X 

name description name registered.course X 

  subject subject subject  

subject 

code key short_code x X 

name description name descr x 

cost cost price price x 

duration term duration period x 

   address address  

address 

streetno x x streetno x 

street x street streetname x 

postaladdress x x postalcode x 

postalcode x code postalcode x 

suburb x x suburb x 

city city.description city city user.city 

province x x province x 

country    x 

   contact   

contact 
email pupil.email email_addrress student.email x 

mobile pupil.mobile phone student.cellno x 

      

register studentno pupil.studentnum student.student_no student.studentno user.student_number 

 faculty faculty faculty faculty X 

 course course course course X 

 subject subject subject subject X 

 username x x x user.user_name 

 password x x x user.psw 

 type x enroll.enollment_type x X 

 ipaddress x x x user.ip_address 

 date x enroll.enrollment_date register.registerdate X 

  progress  grades  

transcript subject results.subject.description x subject X 

 result results.score x grades.mark X 

 symbol results.grade x grades.symbol X 

* Text in italics or bold denotes a class or complex object    
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APPENDIX C: UNIFIED QUERY LANGUAGE TEMPLATE 

Fetch Statement: 

FETCH { <property>, <function<property>,…} 

DATA_MODEL { <data>} 

FILTER_ON { <term> <operator> <term> <comparator>} 

RESTRICT_TO { <number> } 

ORDER_BY { <property>} 

TARGET {  <database vendors>,… } 

Add Statement: 

ADD { <data>} 

PROPERTIES { <property> <operator> <property> } 

TARGET {  <database vendors>,… } 

Modify Statement: 

MODIFY { <data>} 

PROPERTIES { <property> <operator> <property> } 

FILTER_ON { <term> <operator> <term> <comparator >} 

TARGET {  <database vendors>,… } 

APPENDIX D: AST SAMPLE 

Command Input Tokens 

FETCH 

FETCH { id, name, surname, idnumber, 

dateofbirth } 

DATA_MODEL { student } 

TARGET {  cassandra } 

{FETCH@0 (line 1, column 1): FETCH} 

{PROPERTY@8 (line 1, column 9): id} 

{COMMA@10 (line 1, column 11): ,} 

{PROPERTY@12 (line 1, column 13): name} 

{COMMA@16 (line 1, column 17): ,} 

{PROPERTY@18 (line 1, column 19): surname} 

{COMMA@25 (line 1, column 26): ,} 

{PROPERTY@27 (line 1, column 28): idnumber} 

{COMMA@35 (line 1, column 36): ,} 

{PROPERTY@37 (line 1, column 38): dateofbirth} 

{DATA_MODEL@72 (line 2, column 21): DATA_MODEL} 

{DATA@85 (line 2, column 34): student} 

{TARGET@115 (line 3, column 21): TARGET} 

{NAMED_VENDOR@125 (line 3, column 31): cassandra} 

ADD 

ADD { student } 

PROPERTIES { name = 'Chuck T'} 

TARGET { cassandra } 

{ADD@0 (line 1, column 1): ADD} 

{DATA@6 (line 1, column 7): student} 

{PROPERTIES@43 (line 2, column 27): PROPERTIES} 

{TERM@56 (line 2, column 40): name} 

{EQL@61 (line 2, column 45): =} 

{STRING@64 (line 2, column 48): Chuck T} 

{TARGET@101 (line 3, column 27): TARGET} 

{NAMED_VENDOR@110 (line 3, column 36): cassandra} 

MODIFY 

MODIFY { student } 

PROPERTIES { name = 'Chuck T'} 

TARGET { cassandra } 

{MODIFY@0 (line 1, column 1): MODIFY} 

{DATA@9 (line 1, column 10): student} 

{PROPERTIES@48 (line 2, column 29): PROPERTIES} 

{TERM@61 (line 2, column 42): name} 

{EQL@66 (line 2, column 47): =} 

{STRING@69 (line 2, column 50): Chuck T} 

{TARGET@108 (line 3, column 29): TARGET} 

{NAMED_VENDOR@117 (line 3, column 38): cassandra} 
 


