
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

656 | P a g e

www.ijacsa.thesai.org

A Predictive Model for Software Cost Estimation

Using ARIMA Algorithm

Moatasem M. Draz*1
, Osama Emam2, Safaa M. Azzam3

Department of Software Engineering-Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt1

Department of Information Systems-Faculty of Computers and Artificial Intelligence, Helwan University, Helwan, Egypt1, 2, 3

Abstract—Technology is a differentiator in business today. It

plays a different and decisive role by providing programs that

contribute to this. To build this software while avoiding risks

during the implementation and construction process, it is

necessary to estimate the cost. The cost estimation process is the

process of estimating the effort, time, and resources needed to

build a software project. It is a crucial process as it provides good

planning during the construction and implementation process

and reduces the risks you may be exposed to. Therefore, previous

studies sought to build models and methods to estimate this, but

they were not accurate enough to complete the process.

Therefore, this study seeks to build a model using the

Autoregressive integrated moving average (ARIMA) algorithm.

Five datasets the COCOMO81, COCOMONasaV1,

COCOMONasaV2, Desharnais, and China were used. The

dataset was processed to remove noise and missing values,

visualized to understand it, and linked using a time series to

predict the future values of the data. It will then be trained on the

ARIMA algorithm. To ensure the effectiveness and efficiency of

the model for use, four famous evaluation criteria were used:

mean magnitude of relative error (MMRE), root mean square

error (RMSE), mean magnitude of relative error (MdMRE), and

prediction accuracy (PRED). This experiment showed impressive

software cost estimation results, with MMRE, RMSE, MdMRE,

and PRED results being 0.07613, 0.04999, 0.03813, and 95% for

the COCOMO81 dataset, respectively. The results were high for

the COCOMONasaV1 dataset, reaching 0.02227, 0.02899,

0.01113, and 97.1%. The COCOMONasaV2 results were

0.01035, 0.00650, 0.00517, and 99.35%, respectively. The China

dataset showed good prediction results of 0.00001, 0.00430,

0.00008, and 99.57%, respectively. The results were impressive

and promising for the Desharnais dataset, showing 0.00004,

0.0039, 0.00002, and 99.6%. The results of this study are

promising and distinctive compared to recent studies, and they

also contribute to good business planning and risk reduction.

Keywords—Software cost estimation; software effort

estimation; promise repository; SCE; ARIMA

I. INTRODUCTION

Today, the software industry represents a differentiating
element in all fields, as business owners depend on technology
to conduct their business which is a strong pillar in business
speed. As a result, the pressure on software houses has become
very great [1]. This led to the production of software that was
expensive and had little or even poor efficiency at times. To
control this and produce highly efficient and optimal software,
it was necessary to estimate the software cost.

Estimating the cost of software is crucial and necessary to
ensure the efficiency of the project. It is also a differentiating

element for companies to calculate their advantages and
estimate their resources, as well as the effort expended to build
the project in addition to the time required for it [2]. It also
enables stakeholders to know what is needed to implement
their project as well. All of this contributes directly to customer
satisfaction.

The importance of estimating the cost of software lies in
good planning and effective management of the project. It also
gives a time estimate for delivery time, as well as estimating
the resources needed for this, which contributes to reducing
damage to the implemented projects, as well as reducing the
technical costs necessary for this, which earns the company a
good reputation [3].

The process of estimating the cost of software is carried out
through several inputs, which are the project requirements and
cost factors so that the process is completed and its output is
the time, effort, and resources required for this.

Many researchers have presented numerous studies over
the past years, some of which were based on their work on
mathematical equations and are called algorithmic methods,
the most famous of which are the Constructive Cost Model
(COCOMO) [4] and the Software Life Cycle Model (SLIM)
[5]. Others also presented methods that depend in their work on
the experiences of employees of software houses and are called
non-algorithmic methods, such as expert judgment [6].

In recent years, researchers have turned to using learning
algorithms such as machine learning [7-10], and some have
relied on deep learning techniques [11,12]. Despite the large
number of studies that have been conducted, these models are
not effective, and the prediction accuracy is not good enough to
use these models in the forecasting process. Software houses
face difficulty and complexity in the process of forecasting and
estimating the cost of software [13].

The map of this study is clear and multiple as it uses
software cost estimation, which is an important branch of
software construction that falls under the umbrella of software
engineering. Autoregressive integrated moving average
(ARIMA) [14] algorithm is also used, which is one of the
optimization algorithms within the umbrella of machine
learning within artificial intelligence and data science
techniques.

This study seeks to present a model based on machine
learning techniques to predict software cost estimates. Five
datasets, namely COCOMO81, COCOMONasaV1,
COCOMONasaV2, Desharnais, and China, were collected

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

657 | P a g e

www.ijacsa.thesai.org

from the promise repository [15]. The data was processed to
remove noise and missing values and represented to understand
them, as well as linking them to apply time series technology
to predict the future values of the data. ARIMA algorithm is
used to be trained on the datasets used. ARIMA algorithm is
used due to the efficiency and accuracy of its results. To
evaluate the proposed model, four famous evaluation criteria
are used for prediction: mean magnitude of relative error
(MMRE) [16], root mean square error (RMSE) [17], mean
magnitude of relative error (MdMRE) [18], and prediction
(PRED) [19].

This paper makes a significant contribution to the software
industry by:

 Processing to remove noise and missing values from
data, in addition to representing and analyzing to
understand the data, as well as linking it using time
series to predict future values.

 Using five data sets of medium and large sizes to train
and test the proposed model under the same conditions
according to the evaluation criteria used in previous
studies.

 Applying the ARIMA algorithm to datasets after
linking them to time series to produce the highest
possible efficiency and accuracy to reduce error rates
resulting in the forecasting process.

 The cost estimation prediction results are very
promising compared to previous studies.

This study represents a distinct model in the software
estimation process as the proposed model combines distinct
sets of results that prove the effectiveness of the model and its
efficiency in future studies.

The rest of this article is organized as follows: Section II
presents the literature review. Section III describes the
proposed methodology. Section IV elaborates on the evaluation
and di. Section V summarizes our findings and suggests future
research directions.

II. RELATED WORK

The software cost estimation process has been a puzzle for
researchers over recent years. Many researchers sought to
invent techniques that contributed to predicting this process,
some of which relied on mathematical equations in their work
and called them algorithmic methods. Some also relied on
elements of experience from developers and project managers
within programming houses, which are called non-algorithmic
methods. However, during the last two decades, many
researchers have relied on learning techniques, which are
considered a lifeline in this industry, as many have relied on
machine learning and deep learning techniques to estimate this
process.

Shukla et al. [20] presented a model called ANFIS which is
an intelligent model using AI to improve software cost
estimation forecasting and was trained and tested using the
Desharnais dataset collected from the PROMISE repository.
Model performance was evaluated by MAE and RMSE
metrics. It was compared to the regression model, where the

RMSE value was 780.97 compared to 3007.05 for the
regression model.

Posbiezny et al. [21] built a model using neural networks,
support vector machines with cross-validation, and generalized
linear models in which the described set of algorithms was
averaged using the ISBSG datasets. The effectiveness of the
model was verified using MAE, MMRE, mean square error
(MSE), RMSE, MMER, balanced mean relative error (MBRE),
and PRED. The model effectively predicted the program effort
estimate during the evaluation process according to a fixed
period.

Vijayvargiya et al. [22] presented several algorithms to
calculate the resources needed to build a Bermuda project and
the time needed. Linear regression, support vector regression,
artificial neural networks, decision trees, and bagging
algorithms were used. These algorithms were trained on the
ISBSG and Desharnais datasets. To compare them, three
evaluation criteria were used: the mean absolute error (MAE),
the mean square error (MSE), and the R square error. The
evaluation result demonstrated the superiority of the decision
tree and the random forest algorithm over other algorithms, as
these algorithms enhanced the cost-benefit analysis of
performance.

Kumar et al. [23] compared several algorithms for
predicting effort estimation using Stochastic Gradient, K-
Nearest Neighbor (KNN), Decision Tree, Bagging, Random
Forest, AdaBoost, and Gradient Neighbor Boosting. The
COCOMO'81 and China datasets were used to train the
algorithms, and three criteria were used to evaluate the
proposed algorithms: mean square error (MSE), root mean
square error (RMSE), and R2. The comparison results showed
the superiority of the gradient boosting regression algorithm
compared to other algorithms in predicting software cost
estimates.

Rahman et al. [24] compared decision tree, support vector
regression (SVR), and K-nearest neighbor (KNN) algorithms
for software cost estimation. They used Edusoft Consulted
LTD datasets. The data was processed and analyzed, and the
proposed algorithms were trained. The criteria of mean
absolute error (MAE), mean square error (MSE), and R-square
were used to test the proposed model. The results showed that
the decision tree algorithm was superior in prediction to other
algorithms.

Sharma et al. [25] compared algorithms for cost estimation
forecasting where they compared Local Neighborhood
Information-based Neural Network (LNI-NN), Fuzzy-based
Neural Network (NFL), GA-based Adaptive Neural Network
(AGANN), and GEHO-based NFN. To complete the
comparison, the COCOMO81, COCOMONasaV1,
COCOMONasaV2, China, and Desharnais datasets were used.
The effectiveness of the algorithms was tested using four
criteria: mean relative error (MMRE), root mean square error
(RMSE), mean magnitude relative error (MdMRE), and
prediction accuracy (PRED).

Zhang et al. [26] used the XGBoost algorithm to predict
software cost estimation using machine autoencoders on
COCOMO81 and Albrecht and Desharnais datasets. They

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

658 | P a g e

www.ijacsa.thesai.org

analyzed the data used to remove outliers and used regression
trees to fill in the missing features. To evaluate the proposed
model, three famous criteria were used: MMRE, MdMRE, and
PRED. The prediction results for the model were 0.21, 0.16,
and 0.71, respectively.

Many of the challenges faced by software houses lie in
forecasting and estimating the cost of software. From the
examination of previous studies, there are several challenges,
as the forecasting accuracy of software cost estimation was not
sufficient and effective enough to make an accurate forecast.
Also, the studies used a very small number of data sets to train
and test the proposed models. Therefore, this study seeks to
build a model to predict cost estimation through the ARIMA
algorithm using five datasets COCOMO81,
COCOMONasaV1, COCOMONasaV2, China, and
Desharnais. Data sets were collected from the PROMISE
repository to be displayed and analyzed, and the correlation
between them was found to predict future values using time
series, and then the proposed algorithm was applied to them.
The proposed model was evaluated using four evaluation
criteria: mean relative error (MMRE), root mean square error
(RMSE), and mean magnitude were used. Relative error
(MdMRE), and prediction accuracy (PRED). The study
showed promising results that avoided the challenges faced by
previous studies.

III. PROPOSED MODEL

The process of software cost estimation prediction is
crucial in the software industry, so many studies have sought to
predict it, but they have not been sufficient and effective in
completing this process. Therefore, this study seeks, through
the use of artificial intelligence algorithms, to build a model
that can predict cost estimates. The process is done by
collecting data from the Promise warehouse, displaying it,
visualizing it, and analyzing it to understand it. Then link them
together through time series to predict future values. The data
is divided in fixed proportions into two groups to conduct the
training process for the ARIMA algorithm. Followed by a
scaling process to make all values at one close level to avoid
the model ignoring values during the training process. The
algorithm is trained on data sets, followed by a testing process
to ensure the effectiveness and accuracy of the proposed
model. This process is done using four criteria, as shown in
Fig. 1.

The study faced several challenges during the
implementation process. The quality of the data was not
sufficient to complete the process and represented the biggest
challenge during the implementation process, as noise and
missing values were removed and the data was processed to
understand it. There were also values in the data that were
higher than the rest of the values, which represented another
challenge and were addressed using data scaling to keep all the
data at one level so that the model would not ignore them
during the training process.

Fig. 1. The proposed model for software cost estimation predication process.

A. Datasets

The experiment was conducted using very popular and
freely available datasets. They have been used previously in
numerous studies to predict cost estimation. Collected from the
Promise repository are the COCOMO81, COCOMONasaV1,

COCOMONasaV2, Desharnais, and China. Their sizes range
from 60 to 499. While the number of its features ranges
between 10 and 24. The effort of these groups is measured in
units of person-hour or person-month as shown in Table I.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

659 | P a g e

www.ijacsa.thesai.org

TABLE I. STATISTICS OF THE DATASETS

Datasets Source Repository No. of projects No. of Features No. of missing

values

Output Attribute-

Effort (Unit)

COCOMO81 PROMISE 63 17 0 Person-month

COCOMONasaV1 PROMISE 60 17 0 Person-month

COCOMONasaV2 PROMISE 93 24 0 Person-month

Desharnais PROMISE 81 10 4 Person- hours

China PROMISE 499 15 0 Person- hours

B. Data Analysis

The data analysis [27] process is an important element, as
data quality represents a major challenge in the training
process, so the study focused on every step of exploring the
data, as well as processing it to remove noise from it, and then
visualizing it. It also used time series technology to connect
them predict future values, and then divide the data into
training and test sets to train the ARIMA algorithm.

1) Data exploration: It is a very important process to

explore data, as it consists of understanding the data as it

represents a statistical distribution. This process was done by

uploading the data adding it to Google Drive and loaded to

Google Colab [28]. To be explored through the info() function.

The function gives the number of lines and columns for each

data set and also checks whether it contains null values. It also

indicates whether the values are numeric or textual. To

maintain the state of the data in that form, the data is copied

using the copy() function, and the original data is preserved.

2) Data preprocessing: The data processing process is an

important step used to remove noisy data and missing values

to prepare it for training from the raw data. First, noisy or

erroneous data is identified and removed or corrected to ensure

the quality of the data. Missing, anomalous, or extreme values

negatively affecting the model’s operation are discovered,

treated, or removed [29]. To convert data into numeric values,

text and non-numeric values are converted to numeric values.

The index value was also determined to be the basic feature on

which the prediction process depends.

3) Data visualization: Data representation plays an

important role in the data analysis process. Through graphics

such as graphs, animations, charts, and visual representations,

what the data presents can be understood more clearly and

confirm the structure and format of the data. Visual displays of

information convey complex data relationships and data-based

insights in an easy-to-understand manner. The Corr() function

is also used to confirm the format of the data and discover the

extent of correlation between features to produce values that

represent the extent of the correlation. If the result is 1, this

means that the correlation between the features is very high

and ideal, but if the value is zero, it means that there is no

correlation between them. If the value is negative, this means

that the relationship is inverse between the two properties. All

of this contributes to obtaining a deep understanding of the

data, making distinctive engineering decisions, and building a

highly efficient predictive model.
4) Time series forecasting: Time series is a basic

technique for data learning and is one of the most popular data

science techniques in the world of statistics and machine

learning. It aims to provide an analytical approach by

examining observations of past data to predict future values.

The idea of time series is based on taking advantage of the

time dimension as an essential factor for linking data points.

The time column is converted to a historical and chronological

format, where the data is indexed while maintaining the

original time order. This structured format allows time series

models to capture the temporal dynamics and inherent

autocorrelation between the data. It is used in various fields

such as finance, economics, and engineering. It involves a

comprehensive analysis of sequential data points to identify

underlying patterns, trends, and dependencies [30].

Forecasting is done through the time dimension as a basic

factor for linking data in the form of time series by converting

the time column into a historical and temporal format, where

the data is indexed while maintaining the temporal order

established as an indicator of the data sequence.

5) Data splitting and scaling: The datasets are split 80-

20% and are used for training and testing respectively. The

largest percentage is used in the training process to allow the

model to learn the basic patterns and relationships between the

data, ensuring its ability to make reliable predictions on new

samples that have not been seen before. While the rest of the

percentage is used in the testing process to ensure the accuracy

of the proposed model [31]. In addition, the data is scaled to

place it in a specific range or scale to ensure that all features

have equal importance in the analysis to avoid the dominance

of some features during the analysis process due to their high

values, to avoid overfitting and the model.

C. The Proposed ARIMA Algorithm

The Auto-Regressive Integrated Moving Average
(ARIMA) is a powerful statistical tool utilized in the field
of time series analysis and forecasting. It introduced by Box
and Jenkins in their seminal work, captures various temporal
structures by integrating three primary components: Auto
regression (AR), Differencing (I), and Moving Average (MA).
It is particularly powerful due to its flexibility in modeling a
wide range of time series behaviors, from simple trends to
complex seasonal patterns [32].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

660 | P a g e

www.ijacsa.thesai.org

The Autoregressive (AR) component of an ARIMA
specifies that the current value of the time series is a linear
function of its previous values. The term "autoregressive"
indicates that the model regresses the variable on its prior
values. The order of the AR component, denoted by p, signifies
the number of lagged observations included in the model. [33]
The general form of the AR(p) model is given by Eq. (1):

𝑋𝑡 = ∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 + ⋯ + ∅𝑝𝑋𝑡−𝑝 + ∈𝑡 (1)

Where 𝑋𝑡 represents the value of the time series at time t,
∅1, ∅2, … . , ∅𝑝 are the coefficients of the model, and ∈𝑡 is a

white noise error term, which is assumed to have zero mean
and constant variance.

The coefficients ∅1, ∅2, … . , ∅𝑝 determine the influence of

past values on the current value. For example, in an AR(1)
model (p=1), the current value 𝑋𝑡 is directly proportional to the
immediately preceding value 𝑋𝑡−1 plus a stochastic error term
∈𝑡.

The Integrated (I) component addresses the non-stationarity
in the time series by differencing the data. Stationarity is a key
property in time series analysis, implying that the statistical
properties of the series do not change over time [34]. Non-
stationary data can exhibit trends, seasonal patterns, or other
structures that make them unsuitable for traditional time series
models without transformation. Differencing is a technique to
remove these non-stationary components. The order of
differencing required to achieve stationarity is denoted by d.
The first differenced series is defined through Eq. (2):

∆𝑋𝑡= 𝑋𝑡 − 𝑋𝑡−1 (2)

For higher-order differencing, the operation is applied
recursively. For example, second-order differencing (d=2) is
given by Eq. (3):

∆2𝑋𝑡 = ∆(∆𝑋𝑡) = (𝑋𝑡 − 𝑋𝑡−1) − (𝑋𝑡−1 − 𝑋𝑡−2) = 𝑋𝑡 −
2𝑋𝑡−1 − 𝑋𝑡−2 (3)

Differencing transforms a non-stationary series into a
stationary one, making it suitable for modeling with AR and
MA components.

The Moving Average (MA) component models the
dependency between an observation and a residual error from a
moving average model applied to lag observations. The order q
of the MA model indicates the number of lagged forecast errors
included in the model. The general form of the MA(q) model is
expressed as shown in Eq. (4):

𝑋𝑡 =∈𝑡+ 𝜃1 ∈𝑡−1+ 𝜃2 ∈𝑡−2+ ⋯ + 𝜃𝑞 ∈𝑡−𝑞 (4)

Where 𝜃1, 𝜃2, … , 𝜃𝑞 are the parameters of MA, and ∈𝑡 is a

white noise term.

Unlike the AR model, which uses past values of the series,
the MA model uses past forecast errors. These errors capture
the unexpected movements in the time series, and the MA
component accounts for these by adjusting the model based on
past error terms.

Combining these three components, the ARIMA model is
denoted as ARIMA(p,d,q), where p is the number of lag

observations (autoregressive terms), d is the number of times
the raw observations are differenced, q is the size of the
moving average window.

The general form of the ARIMA(p,d,q) model is as Eq. (5):

∆𝑑𝑋𝑡 = ∅1∆𝑑𝑋𝑡−1 + ∅2∆𝑑𝑋𝑡−2 + ⋯ + ∅𝑝∆𝑑𝑋𝑡−𝑝 + ∈𝑡+

 𝜃1 ∈𝑡−1+ 𝜃2 ∈𝑡−2+ ⋯ + 𝜃𝑞 ∈𝑡−𝑞 (5)

Where ∆𝑑𝑋𝑡 represents the d-th differenced value of 𝑋𝑡.

Using an ARIMA model for time series forecasting
involves several critical steps. These steps ensure that the
model is appropriate for the data and that the predictions are
reliable. The process includes model identification, parameter
estimation, and model diagnostic checking.

1) Model identification:

a) Stationarity Testing: A key assumption of the

ARIMA model is that the time series data should be stationary.

Stationarity implies that the statistical properties of the series

(mean, variance) do not change over time.

 Visual Inspection: Plot the time series data to visually
inspect for trends or seasonality.

 Statistical Testing: Apply the Augmented Dickey-Fuller
(ADF) test to statistically verify stationarity.

b) Selecting p and q: Use the Autocorrelation Function

(ACF) and Partial Autocorrelation Function (PACF) plots to

identify potential values for p (AR terms) and q (MA terms).

 ACF Plot: Indicates the correlation between the time
series with its own lagged values.

 PACF Plot: Indicates the partial correlation of the time
series with its own lagged values, controlling for the
values of the time series at all shorter lags.

Significant spikes in the ACF and PACF plots suggest the
values for q and p, respectively. In this study the potential
values of p, q are 1, and also d is 1.

2) Parameter estimation: Estimate the parameters ϕ (AR

coefficients), θ (MA coefficients), and other model

coefficients using methods such as Maximum Likelihood

Estimation (MLE).

3) Model diagnostic checking: Analyze the residuals of

the fitted model to ensure they resemble white noise (i.e., they

have a constant mean, constant variance, and no

autocorrelation).

 Ljung-Box Test: Test for autocorrelation in residuals.

 Residual Plots: Plot the residuals to check for patterns.

D. Data Inverse Transformation

When analyzing the data at the beginning of the
experiment, the data are scaled such that large values are
rounded to the same range so that the proposed model does not
ignore some values or overfitting occurs [35]. The scale
transformation is reversed to return the model output to the
original data scale. This process is important in the real world,
as the measured data may not be interpretable in the original
context. Therefore, the data is carefully measured, the proposed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

661 | P a g e

www.ijacsa.thesai.org

algorithm is trained, and then the data is returned to its original
form. This process is done using the inverseTransform()
function. This process provides good, actionable insights into
their original field.

IV. EVALUATION AND DISCUSSION

After building the model and training it on the data sets that
were divided by 20-80%, the testing process is carried out to
ensure the effectiveness of the proposed model, where a
computer is used with precise specifications that are explained
in the experiment preparation section, by also evaluating it
using four famous standards, which are MMRE, RMSE,
MdMRE, and PRED are explained in the evaluation criteria
section. A section was also added explaining the results of the
experiment, as well as a section to discuss the results and
comparison with previous studies under the same conditions on
the same datasets.

A. Experimental Setup

The experiment was conducted on a laptop PC with an Intel
Core i7 CPU, 64GB of RAM, and an NVIDIA GTX 1050i
GPU. The datasets were also divided by 20-80%, with the
largest percentage being used in the model training process,
while the rest of the data was used in the model testing and
evaluation process. The experiment was conducted through
several tools. Google Drive was used to upload data sets for the
experiment to it and then uploaded to Google Colab to conduct
the experiment. This study used the Python language to
present, describe, represent, and analyze the data used, train the
algorithm, and then test it.

B. Evaluation Criteria

After completing training the model on the proposed
algorithm. The model testing process is a crucial step to ensure
the accuracy and effectiveness of the model. The estimation
process is done using four famous criteria, which are mean
magnitude of relative error (MMRE) [16], root mean square
error (RMSE) [17], mean magnitude of relative error
(MdMRE) [18], and prediction (PRED) [19].

1) Mean Magnitude Relative Error (MMRE): It is one of

the most popular forecasting benchmarks and is used in

software engineering forecasting to calculate the average

relative difference between actual and predicted values. It is

represented by Eq. (6) and Eq. (7):

MRE =
|Actual effort−Estimated effort|

Actual effort
 × 100 (6)

MMRE =
1

M
∑ MREM

1 (7)

Where m is the total data points and ∑ denotes the sum of
values in the entire dataset [16].

2) Root Mean Square Error (RMSE): It is widely used in

forecasting operations, as it represents the average size of the

difference between the actual and expected values, and it

needs the actual expected and corresponding values to

calculate it, and this is done through Eq. (8).

𝑅𝑀𝑆𝐸 = √∑(𝑃𝑖−𝑂𝑖)
2

𝑛
 (8)

Where n is the number of data points, P is the expected
value, O is the actual value, and ^2 denotes the squared
difference [17].

3) Mean Magnitude of Relative Error (MdMRE): It is a

statistical measure of prediction and is similar to the average

size, except that it calculates the absolute average and is

measured by determining the relative error for each prediction

and finding the absolute difference between the actual and

expected values. Then the relative error is arranged in

ascending order through the following equation, which is used

to calculate the error = |(P - A)| /A [18].
4) PRED: It is one of the most famous and widespread

metrics as it indicates the accuracy of the model and its value

increases as the accuracy of the model improves. It is

expressed as a percentage in projects where the percentage of

expected values matches the actual values and can be

measured through Eq. (9)

𝑃𝑅𝐸𝐷 =
1

𝑛
∑ |

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑜𝑟𝑡−𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡
| 𝐾%𝑛

𝑖=1 (9)

Where k% is the percentage of error between the actual
estimate and the effort estimate [19].

C. Experimental Results

The four criteria described in the previous section were
used to test the model to measure its effectiveness and accuracy
in predicting software cost estimates, as the experiment showed
promising results on the five datasets used as shown in Table
II.

TABLE II. THE RESULTS OF THE PROPOSED MODEL ON THE FIVE DATASETS

Method Metrics COCOMO81 COCOMONasaV1 COCOMONasaV2 China Desharnais

The proposed

model

MMRE 0.07613 0.02227 0.01035 0.00001 0.00004

RMSE 0.04999 0.02899 0.00650 0.00430 0.00339

MdMRE 0.03813 0.01113 0.00517 0.00008 0.00002

PRED 95.0 97.1 99.35 99.57 99.6

Table II displays the software cost estimation prediction
rates of the proposed model on the five datasets using the four
evaluation criteria, where the results show very promising
prediction and low value of error rates. The COCOMO81 and
COCOMONasaV1 datasets show very good percentages in
reducing error rates and also promising percentages in

prediction accuracy, reaching 95% for the COCOMO81 data
set and 97.1 for the COCOMONasaV1 data set. While the
ratios were very unique and significantly distinct for the
COCOMONasaV2, China, and Desharnais datasets. The error
rates recorded the lowest possible rates, almost noticeable,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

662 | P a g e

www.ijacsa.thesai.org

while the prediction accuracy recorded rates exceeding 99% for
the three datasets.

D. Comparison and Discussion

To ensure the effectiveness of the proposed model, it is
compared with other models under the same conditions
described, such as using the same datasets as well as the
evaluation criteria used. The model was compared with recent
studies. It was compared to the Sharma [25] model, which was

used by four algorithms in its study: local mutual information-
based neural network (LNI-NN), fuzzy-based neural network
(NFL), GA-based adaptive neural network (AGANN), and
GEHO-based NFN (GEHO-NN) for software cost estimation.
It was also compared with the model of Zhang et al. [26] who
used the XGBoost algorithm under the same conditions. Table
III shows a comparison between the proposed model and
previous models.

TABLE III. COMPARISON BETWEEN THE PROPOSED MODEL AND THE STATE-OF-THE-ART

Method Metrics COCOMO81 COCOMONasaV1 COCOMONasaV2 China Desharnais

LNI-based NN [25]

MMRE 0.224 0.243 0.225 0.240 0.32

RMSE 0.261 0.183 0.383 0.148 0.312

MdMRE 0.256 0.249 0.249 0.255 0.336

PRED 28.51 50 50 44 22.22

Neuro-fuzzy logic [25]

MMRE 0.213 0.236 0.196 0.220 0.296

RMSE 0.178 0.131 0.290 0.075 0.173

MdMRE 0.256 0.215 0.215 0.240 0.223

PRED 29.92 62 62 70 32

Adaptive GA-based NN

[25]

MMRE 0.199 0.231 0.174 0.192 0.197

RMSE 0.130 0.065 0.232 0.056 0.111

MdMRE 0.235 0.172 0.172 0.218 0.181

PRED 46.15 73.87 70 76 47.05

GEHO-based NFN [25]

MMRE 0.174 0.220 0.128 0.167 0.112

RMSE 0.055 0.060 0.960 0.39 0.060

MdMRE 0.223 0.130 0.130 0.168 0.100

PRED 57.14 83.14 83.14 84 88.23

XGBoost [26]

MMRE 0.21 0.37 - - 0.38

RMSE - - - - -

MdMRE 0.16 0.36 - - 0.37

PRED 71 37 - - 22

The proposed

model

MMRE 0.07613 0.02227 0.01035 0.00001 0.00004

RMSE 0.04999 0.02899 0.00650 0.00430 0.00339

MdMRE 0.03813 0.01113 0.00517 0.00008 0.00002

PRED 95.0 97.1 99.35 99.57 99.6

Table III highlights the comparison between the proposed
model and other models from previous studies during 2023 and
2024. The comparison shows the superiority of the proposed
model in predicting software cost estimation compared to

previous models. The model excelled in reducing the error
rates in the five datasets and increasing the prediction accuracy
of the software estimate, which ranged from 95 to over 99%.
The error rates also decreased on the MMRE, RMSE, and
MdMRE criteria.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

663 | P a g e

www.ijacsa.thesai.org

Fig. 2. Comparison between the proposed model and others on the MMRE measure.

Fig. 2 shows a comparison between the proposed model
and previous studies according to the MMRE standard, where
the results show significant superiority of the proposed
algorithm. The COCOMONasaV2 and China datasets were
excluded from the study since they were not used in Zhang's
[26] study. However, there is a big difference in reducing error
rates for the targeted study, as it showed a significant and
distinct absence of error rates with the Desharnais data set,

while the rates were very good and promising also for the
COCOMO81 and COCOMONasaV1 datasets. The percentages
were also clearly and prominently distinct according to the
MdMRE standard, as the error rate decreased significantly and
clearly for the three data sets. It decreased by a large and clear
percentage for the COCOMONasaV1 and Desharnais datasets,
and the decrease rates were also very good for the
COCOMO81 dataset as shown in Fig. 3.

Fig. 3. Comparison between the proposed model and others on the MdMRE measure.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

664 | P a g e

www.ijacsa.thesai.org

Fig. 4. Comparison between the proposed model and others on the PRED metric.

The most significant difference in explaining excellence
was the PRED standard, which is more commonly used in
detection and prediction processes. The results of the study
showed a very prominent and clear distinction compared to
previous studies, in which the prediction percentages ranged
between 22 as the lowest prediction percentage and 88.23 as
the highest percentage reached by the studies. However, the
results of the proposed model were very promising, as the
COCOMO81 data set recorded an accuracy rate for predicting
the software cost estimate of 95%, while the
COCOMONasaV1 data set recorded an accuracy rate of
97.1%, and the rate was very promising for the Desharnais data
set, which recorded the highest percentage so far at 99.6% as
shown in Fig. 4.

V. CONCLUSION

The software estimation process is one of the crucial steps
today in the software industry, which plays the main role in the
software production process. It represents the points of
connection between the client’s requirements and his budget, in
addition to the indicator of controlling the workflow within the
software houses on the desired projects. With the spread of the
software industry over the past few decades, stakeholders have
tended to accelerate the pace of their work to keep pace with
the times, which has increased pressure on software houses to
implement their work. Therefore, there was an urgent need for
models that can estimate the cost of software perfectly.
Researchers have created several models to evaluate this, some
of which relied on traditional methods or mathematical
equations and called them algorithmic methods. Some relied on
experts’ judgments and opinions and called them non-
algorithmic methods. However, some relied in their work on

learning techniques such as artificial intelligence, including
machine learning and deep learning methods. However,
previous studies have shown that prediction rates are not stable
and sufficient to complete the process, so the need to create
new models was very urgent. This study seeks to build and
present a model that can predict software cost estimation using
the ARIMA algorithm on five datasets, namely COCOMO81,
COCOMONasaV1, COCOMONasaV2, China and the
Desharnais dataset. The data was collected, presented, and
processed to remove noise and missing values. It was also
analyzed and visualized to identify and link them. The data is
linked using time series technology to predict the future values
of the data, and the process is very effective in increasing the
model’s performance. The data was split 80-20 for training and
testing. The proposed model will be trained and tested on data
sets. The model was evaluated using four popular prediction
criteria, namely MMRE, RMSE, MdMRE, and PRED. The
model shows a promising distinction in its results compared to
other models, which contributes to reducing risk levels and
contributes mainly to good project planning, which contributes
effectively to the cost estimation forecasting process.

Although the model is distinguished in its work, some
limitations must be addressed in the future, especially about
data sets, as the model was trained on five data sets. However,
we hope to train and test it on other data sets to ensure its
effectiveness and accuracy. We also hope to apply it in real-
time, which addresses Constant assumptions, computational
overhead, and secondary evaluation problems that are used to
enhance model response.

In future work, we seek to transform the model into a tool
through which the project data can be entered, which are the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

665 | P a g e

www.ijacsa.thesai.org

client’s requirements in addition to the cost factors so that the
user obtains an output estimating the effort and cost necessary
to build the project. We also seek to train the model and test it
on other data sets, as well as in real-time.

REFERENCES

[1] B. Khan, W. Khan, M. Arshad, and N. Jan, “Software Cost Estimation:
Algorithmic and Non-Algorithmic Approaches”, International Journal of
Data Science and Advanced Analytics, vol. 2, no. 2, 2022.

[2] M. M. Draz, O. Emam, and Safaa M. Azzam, “Software cost estimation
predication using a convolutional neural network and particle swarm
optimization algorithm”, Scientific Reports, vol. 14, no. 1, pp. 13129,
2024.

[3] W. Zhang, et al., “Dimensionality reduction and machine learning based
model of software cost estimation”, Frontiers in Physics, vol. 12, 2024.

[4] M. M. Draz, O. Emam, and S. Azzam, “Five Decades of Software Cost
Estimation Models: A survey”, FCI-H Informatics Bulletin, 2024.

[5] Ghafory, Hamayoon, and F. A. Sahnosh, “The review of software cost
estimation model: SLIM”, Int. J. Adv. Acad. Stud, vol. 2, pp. 511-515,
2020.

[6] R. Christopher and R. Roy, “Expert judgment in cost estimating:
Modelling the reasoning process”, Concurrent Engineering, vol.9, no. 4,
pp. 271-284, 2001.

[7] L. Jooon-kil and Ki-Tae Kwon, “Software cost estimation using SVR
based on immune algorithm”, 2009 10th ACIS International Conference
on Software Engineering, Artificial Intelligences, Networking, and
Parallel/Distributed Computing. IEEE, 2009.

[8] Corazza and Anna, “Using tabu search to configure support vector
regression for effort estimation”, Empirical Software Engineering,
vol. 18, pp. 506-546, 2013.

[9] M. Isa, L. Ebrahimi, and F. Gharehchopogh, “A hybrid approach of
firefly and genetic algorithms in software cost estimation”, MAGNT
Research Report, pp. 372-388, 2014.

[10] Ritu and Pankaj Bhambri, “Software effort estimation with machine
learning–A systematic literature review”, Agile software development:
Trends, challenges and applications, pp. 291-308, 2023.

[11] Sreekanth, “Evaluation of estimation in software development using
deep learning-modified neural network”, Applied Nanoscience, vol. 13,
no. 3, pp. 2405-2417, 2023.

[12] F. Nirodha, K. Dilshan, and H. Zhang, “An artificial neural network
(ANN) approach for early cost estimation of concrete bridge systems in
developing countries: the case of Sri Lanka”, Journal of Financial
Management of Property and Construction, vol. 29, no. 1, pp. 23-51,
2024.

[13] Ritu and P. Bhambri, “Software effort estimation with machine learning:
A systematic literature review”, agile software development: Trends,
challenges and applications, pp. 291-308, 2019.

[14] Shumway and H. Robert, “ARIMA models: Time series analysis and its
applications: with R examples”, pp. 75-163, 2017.

[15] Promise Repository. [Online]. Available:
http://promise.site.uottawa.ca/SERepository/datasets-page.html
(accessed: April. 12 2024).

[16] J. Magne, T. Halkjelsvik, and K. Liestol, “When should we (not) use the
mean magnitude of relative error (MMRE) as an error measure in
software development effort estimation?”, Information and Software
Technology, vol.143, 106784, 2022.

[17] Hodson and O. Timothy, "Root mean square error (RMSE) or mean
absolute error (MAE): When to use them or not.”, Geoscientific Model
Development Discussions, pp. 1-10, 2022.

[18] G. Somya and P. K. Bhatia, “A non-linear technique for effective
software effort estimation using multi-layer perceptrons, 2019
International Conference on Machine Learning”, Big Data, Cloud and
Parallel Computing (COMITCon). IEEE, 2019.

[19] A. Idri, I. Abnane, and A. Abran, “Evaluating pred (p) and standardized
accuracy criteria in software development effort estimation”, Journal of
Software: Evolution and Process, vol. 30, no. 4, 2018.

[20] S. V. Singh, L. U. BBDITM, H. K. Shukla, and R. B. Singh, “Cost
Estimation of Software by ANFIS based Artificial Intelligence
Approach”, IJRDASE, vol. 21, no. 1, 2021.

[21] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective
approach for software project effort and duration estimation with machine
learning algorithms”, J Syst Softw, vol. 137, pp.184–196, 2018.

[22] Vo., Van. et al. “Toward improving the efficiency of software
development effort estimation via clustering analysis”, IEEE Access,
vol. 10, pp. 83249-83264, 2022.

[23] P. Kumar, H. Behera, J. Nayak, and B. Naik, “A pragmatic ensemble
learning approach for effective software effort estimation”, Innovations
in Systems and Software Engineering, vol. 18, no. 2, pp. 283–299, 2022.

[24] M. Rahman et al., “Software effort estimation using machine learning
technique”, International Journal of Advanced Computer Science and
Applications, vol. 14, 2023.

[25] S. Sharma and S. Vijayvargiya, “Modeling of software project effort
estimation: a comparative performance evaluation of optimized soft
computing-based methods”, International Journal of Information
Technology, vol 14, no. 5, 2487-2496, 2022.

[26] Zhang et al., “Dimensionality reduction and machine learning based
model of software cost estimation”, Frontiers in Physics, vol. 12, 2024.

[27] Hazari and Animesh, “Data Analysis: Descriptive and Analytical
Statistics." Research Methodology for Allied Health Professionals: A
comprehensive guide to Thesis & Dissertation”, Singapore: Springer
Nature Singapore, pp. 79-98., 2024.

[28] Google Colab. [Online]. Available: https://colab.google (accessed:
April. 15 2024).

[29] A. Samer et al., “Artificial intelligence and machine learning overview
in pathology & laboratory medicine: A general review of data
preprocessing and basic supervised concepts”, Seminars in Diagnostic
Pathology, vol. 40, no. 2, 2023.

[30] J. Sanchez, “Time Series for Data Scientists: Data Management,
Description, Modeling and Forecasting”, Cambridge University Press,
2023.

[31] J. J. Faraway, “Does data splitting improve prediction?,”, Statistics and
Computing, vol. 26, pp. 49-60, 2016.

[32] I. V. Kontopoulou, et al., “A review of ARIMA vs. machine learning
approaches for time series forecasting in data driven networks”, Future
Internet, vol. 15, no. 8 , pp. 255, 2023.

[33] C. Liu, S. C. Hoi, P. Zhao, and J. Sun, “Online arima algorithms for time
series prediction”, In Proceedings of the AAAI conference on artificial
intelligence, vol. 30, no. 1, 2016.

[34] J. Fattah, L. Ezzine, Z. Aman, H. El Moussami and A. Lachhab,
“Forecasting of demand using ARIMA model”, International Journal of
Engineering Business Management, vol. 10, 2018.

[35] Yan and Yanjun, “Inverse data transformation for change detection in
wind turbine diagnostics”, 2009 Canadian Conference on Electrical and
Computer Engineering, IEEE, 2009.

http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://colab.google/

