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Abstract—Crop yield forecasting plays a key role in 

agricultural management and planning which is highly essential 

for food security and production in regional to global scales. 

However, a prediction of crop yield is considered a challenging 

task due to the difficulty in extracting spatial context and local 

semantic features, and difficulty in handling spatiotemporal 

relations. In order to address these issues, a comprehensive feature 

extraction is developed along with an effective deep-learning 

classifier. In this paper, the Residual Attention and Local Context 

Aware Classifier (RALCAC) is developed for obtaining 

appropriate features from the remote sensing crop yield images. 

The developed RALCAC helps to obtain the spatial context using 

Residual Attention (RA) module and local semantic information 

that are beneficial in understanding the detailed depiction of the 

crop. Further, the Convolutional Long Short Term Memory 

(ConvLSTM) is used to obtain the prediction of crop yield using 

the comprehensive features from the RALCAC. The RALCAC is 

analysed by means of Root Mean Squared Error (RMSE) and 

coefficient of determination. The existing research such as 

DeepYield, SSTNN and 3DCNN are used to compare the 

RALCAC method. The RMSE of RALCAC for the MODIS 

dataset is 3.257, and it is lesser when compared to the DeepYield. 

Keywords—Convolutional long short term memory; crop yield 

prediction; residual attention and local context-aware network; root 

mean squared error; spatial context data 

I. INTRODUCTION 

Agriculture is an enriching field which clears the way out of 
economic pressure and has a believable macro-economic part in 
various economies. Crop production is a complicated 
phenomenon which is influenced by parameters of agro-climatic 
information. An improvement in crop yield quality and 
production while minimizing the costs and environmental 
pollution is a key objective in the precision agriculture [1-3]. 
Crop yield is referred as a key representation of sustainable 
development in agricultural field. An appropriate management 
practices are required to be adopted for stable organisation of 
land for crop production [4]. The different climatic situations 
that influence the crop yield are landscapes, soil quality, climatic 
situations, water quality and availability, genotype, harvest 
activity planning, pest infestations and so on. Further, the 

processes and strategies of crop yield are altered along with time 
and is non-linear and complex, because of an extensive 
development combination of interrelated factors, categorised 
and influenced by external and non-arbitrate run aspects [5]. 

A precise and timely estimation of crop yield before 
harvesting in a large scale is challenging for administrative 
planning and food security, specifically in frequently varying 
global and international situations. Simultaneously, an earlier 
prediction of yield is frequently needed to accomplish the 
decision making in transportation, storage, processing, harvest 
and marketing of agricultural merchandises [6-9]. The crop 
monitoring is obtained via interviewing farmers, field visits and 
manual data collection in regional level before informing the 
local statistical officers. But this manual process is expensive, 
inconsistent and time-consuming, the data is available only after 
harvesting [10, 11]. Remote sensing data is primarily confined 
to perform crop identification and classification for an extended 
period [12]. Remote sensing technology is discovered as well 
appropriate to gather the information over agricultural areas in 
recurrent intervals with lesser amount of time. Thus, the remote 
sensing offers an important contribution to provide a rapid 
comprehensive image. These remote sensing images display the 
crop development circumstances in chronological and 
geographical way which denotes their own extraordinary ability 
[13-15]. 

The crop yield prediction can be applicable in the following 
applications: 1) Precision agriculture: The predictive insights is 
used to plan the field operations such as planting, irrigation and 
schedule for harvesting for enhancing the yield; 2) Agricultural 
planning and decision-making: Precise yield prediction helps the 
farmers and investors for managing the risks related to the 
climate and diseases. The following issues such as inappropriate 
feature extraction, restriction against the generalization and 
failure in handling dynamics among the data. The 
aforementioned issued are taken as motivation for this research. 
Therefore, the comprehensive feature extraction using 
RALCAC is developed along with the ConvLSTM for an 
effective prediction. 

The contributions of this research are concise as follows: 
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 The RALCAC uses the architecture of dual-encoder 
which improves the feature extraction capacity. The 
integration of spatial context data is achieved by using 
the residual attention, while local semantics also 
obtained that confirms the representation of local 
features and variations within the crop fields. Therefore, 
the combination of spatial context and local semantics is 
spatial features which used for detailed depiction of crop. 

 The ConvLSTM based classifier is used to enhance the 
prediction of crop yield based on the spatial context and 
local semantics extracted from remote sensing images. 
The capacity of handling spatiotemporal dependencies of 
ConvLSTM is used to achieve an effective 
generalization during prediction. 

The remaining paper is sorted as follows: The existing 
researches related to the crop yield estimation is given in Section 
II. The detailed information about RALCAC based feature 
extraction and ConvLSTM based prediction is provided in 
Section III. The outcomes of RALCAC are provided in Section 
IV, discussion is given in Section V and the paper is concluded 
in Section VI. 

II. RELATED WORK 

The existing researches related to the crop yield estimation 
is given in this section. 

Gavahi et al. [16] presented the DeepYield architecture for 
forecasting of crop yield, whereas the DeepYield was the 
combination of ConvLSTM and 3-Dimensional Convolutional 
Neural Networks (3DCNN). The intrinsic spatiotemporal 
patterns were considered in ConvLSTM to ensure the crop yield 
forecasting process. Further, the DeepYield was used to perform 
precise and robust crop yield forecasting, whereas the end-to-
end learning was utilized for an automatic process of input. The 
local semantics were required to be highlighted for enhancing 
the feature extraction process. 

Qiao et al. [17] developed Spatial-Spectral-Temporal Neural 
Network (SSTNN) to predict the crop yield which was the 
integration of 3D convolutional (Conv) and recurrent neural 
networks. The joint spatial-spectral-temporal representation was 
recognized by incorporating a spatial-spectral learning and 
temporal dependency, capturing modules in SSTNN. An effect 
of imbalanced dissemination of crop yield labels was eliminated 
by using a loss function. The crop yield prediction was high, 
when the SSTNN was processed with a huge amount of 
temporal information. 

Fernandez-Beltran et al. [18] presented large-scale rice crop 
dataset (RicePAL) which has the multi-temporal S2 and 
climate/soil information from Terai districts of Nepal. The 
inherent data restraints were adapted 3DCNN for precise 
estimation of rice crop yield. The developed Convolutional 
Neural Networks (CNN) was developed for controlling the 
amount of layers while the fixing 3D Conv blocks were used to 
minimize the over-fitting. Nonetheless, an extra temporal 
dimension increased the amount of network parameters that 
made it possible for the 3DCNN to operate well only for larger 
patches. 

Oikonomidis et al. [19] developed the hybrid deep learning 
approaches for predicting the crop yield. The developed models 
were XGBoost, XGBoost with scaling, integrated XGBoost 
with scaling and feature selection, hybrid CNN-XGBoost, 
CNN-Recurrent Neural Networks (RNN), CNN- Deep Neural 
Networks (DNN) and CNN-Long Short Term Memory (LSTM). 
The XGBoost was utilized as estimator to accomplish the feature 
selection. Here, the data dependencies and information were 
obtained by using the CNN. Next, the predictions were done by 
using the DNN as feed forward propagation approach. The 
developed XGBoost resulted in higher RMSE while performing 
the crop yield prediction. 

Abbaszadeh et al. [20] presented a framework for combining 
the deterministic outputs from two DNN for creating the 
probabilistic simulation. The developed framework was Copula-
Embedded Bayesian Model Averaging (COP-BMA) that 
combined the set of multivariate Copula operations into BMA. 
This COP-BMA reduced any consideration over the shape of 
conditional probability distribution function which used to offer 
precise and consistent predictive distributions. However, the 
contextual information was required for further improving the 
prediction. 

Mohan, A et al. [21] developed the Temporal Convolutional 
network (TCN) with a customized dilated convolution unit for 
forecasting the rice crop yield. The correlation among the 
temporal and spatial parameters was analyzed using the TCN 
and it minimized the prediction error. The TCN’s causal 
property and dilated convolution were resulted in the 
multivariate time-based evaluation and provided the enhanced 
prediction. The local features and changes within the crop were 
required to be extracted for further enhancing the prediction. 

Qiao, M et al. [22] presented the knowledge-guided temporal 
multi-head attention approach that combined the prior 
information and scores of multi-head self-attention for 
combining the dynamical temporal correlation. Specifically, the 
prior attention distribution was introduced in self-attention 
learning based on the dynamic temporal graph convolution 
transformer. The features of spatially nearby places were 
aggregated based on geospatial relations for enhancing the 
capacity of prediction. The temporal dynamics of the features 
was required to be considered during the prediction for handling 
the dependencies between the data. 

Boppudi, S. and Jayachandran, S [23] developed the hybrid 
mode according to the improved feature ranking fusion that 
fused the features from Relief, Recursive Feature Elimination 
(RFE) and Chi-Square method. The imbalanced data was 
handled by using an improved synthetic minority oversampling 
technique. Finally, the prediction was accomplished by 
integrating the LSTM with Deep Belief Network (DBN) 
classifiers. The selection of appropriate features was used to 
enhance the prediction by using the LSTM-DBN. However, the 
generalization with different datasets was required to be 
considered for an effective analysis. 

Kolipaka, V.R.R. and Namburu, A [24] presented the deep 
learning-based system for predicting the agricultural production. 
This research considered a Two-stage classifiers where stage 1 
performed pre-prediction and stage 2 performed the final 
classification for predicting the yield. The pre-prediction stage 
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was incorporated the LSTM, Recurrent Neural Network (RNN) 
and LSTM for pre-prediction while the improved Convolutional 
Neural Network (CNN) was used in classification stage. In 
improved CNN, the Dingo Optimized Sand Piper (DOSP) was 
used for fine tuning the CNN to improve the prediction. The 
spatial features were required to be considered for further 
enhancing the prediction performances. 

The limitations from the related works are specified as 
follows: inappropriate feature extraction, failed to obtain the 
generalization and ineffective in handling the spatiotemporal 
dependencies in prediction. In order to address these issues, the 
RALCAC is developed along with the ConvLSTM for an 
effective crop yield prediction. The encoders used in the 
RALCAC extracts the features of spatial context and local 
semantic information for effectively depicting the crop. Further, 
the capacity of handling the spatiotemporal dynamics of 
extracted features by ConvLSTM offers an effective prediction 
with generalization capacity. 

 

Fig. 1. Block diagram of proposed method. 

III. PROPOSED METHOD 

In this proposed method, the crop yield prediction using 
remote sensing images is achieved by using the RALCAC and 
ConvLSTM classifier. The main processes existing in the 
proposed method are dataset acquisition, data pre-processing, 
feature extraction using RALCAC and prediction using 
ConvLSTM. The residual attention unit existing in the 
RALCAC integrates residual linking and attention operation for 
retaining whole edge data, highlighting crucial semantics and 
improves the generalization capacity used to enhance the 
prediction. Fig. 1 shows the crop yield forecasting using 
RALCAC and ConvLSTM. 

A. Dataset Acquisition 

This research considers three different dataset such as 
MODIS dataset, MOD09A1 dataset and RicePAL dataset for 
evaluation. 

1) MODIS dataset 

a) Yield data: The measurements of soybean related to 

country are gathered from USDA NASS Quick Stat tool. For 

performing the model training, the yield information [25] 

between 2003 and 2019 is utilized as labels of ground truth. 

b) MODIS surface reflectance: A surface spectral 

reflectance with seven bands is obtained by MODIS/Terra 

Surface Reflectance (SR) [26] which is acquired at spatial 

resolution of 500m for every eight days. A finest possible SR 

observation exists in each pixel, but this SR observation is 

chosen from all the observations of the 8-day window. 

c) MODIS land cover: The MODIS Land Cover (LC) 

[27] type is combined by the Terra and Aqua which offers the 

yearly LC categories formulated from six recognition schemes. 

The cropland areas masking is done by annual University of 

Maryland (UMD). 

d) MODIS land surface temperature (LST): A time 

surface temperature of average of 8 day per pixel, day and night 

is provided by MODIS of Version 6 LST. A 7 thermal infrared 

bands are employed by LST approach for collecting the 

temperature data. 

2) MOD09A1 dataset: This MOD09A1 dataset [28] has 

seven spectral bands and a 500m spatial resolution is utilized 

for obtaining the required reflectance data. For wheat yield, this 

dataset includes a time series of 32 images obtained among 

October to July while time series of 20 images are obtained 

among May to October. 

3) RicePAL dataset: The RicePAL dataset [18] has 3-year 

multi-temporal S2 imagery acquired from Terai area of Nepal 

along with its ground truth. Moreover, a climate and soil 

information are incorporated in the data for supporting the yield 

forecasting. 

B. Pre-Processing 

The datasets considered in this proposed method comprised 
of SR, MODIS LST and Land Use LC have 7, 2 and 1 band. The 
latter is utilized for masking the cropland zones through each 
county. The tiles are mosaiced into a single image which 
encloses the degree of the CONUS. A clipping is done for 
mosaiced raster through each country and the images for the 
chosen time intervals are combined by generating 3D tensors. 
The MODIS SR and LC has a spatial resolution of 500m which 
is dissimilar from the MODIS LST. Therefore, the 500m images 
are scaled up to 1km resolution by employing linear 
interpolation. Further, the 4D tensors with the measurement of 
𝑇𝑖𝑚𝑒 ×  𝐻𝑒𝑖𝑔ℎ𝑡 ×  𝑊𝑖𝑑𝑡ℎ ×  𝑏𝑎𝑛𝑑  is developed by 
concatenating each product’s band to 3D tensors. The input 
image size is increased by including the rows and columns of 
zero in the zero padding process which is used to make the 
images in similar sizes before giving them to the RALCAC. 

C. Feature Extraction using RALCAC 

The RALCAC used in feature extraction utilizes the 
architecture of encoder and decoder for constructing the model. 
In that, the Residual Attention (RA) module is incorporated in 
encoders for obtaining the higher level semantic data from the 
pre-processed image, multi-scale spatial data is obtained by 
Multi-Scale Dilated Convolution (MSDV) and abstracted 
feature data is amplified by sing decoders that obtains the pixel-
by-pixel semantic segmentation. The spatiotemporal features of 
pre-processed image are extracted by using RA and MSDV. 

The developed RALCAC receives two different inputs such 
as pre-processed image and multi-feature information. The 
multi-feature information includes the features of color, texture 
and shape that made the complete utilization of rich feature 
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information. Here, the color moments are chosen as color 
features and texture features are extracted by Gray Level Co-
occurrence Matrix (GLCM), and the detection of edge according 
to contours are chosen as shape features. The information is 
extracted pixel by pixel while processing the color and texture 
features. 

1) Architecture of encoder and decoder: The encoder and 

decoder extracts comprehensive feature data of the input image. 

The adjusted RsNet-50 is considered as dual encoder baseline 

architecture that has a multi-layer residual mapping block. This 

mapping blocks are additionally separated as two main modules 

such as identity blocks and conv blocks, and each Conv block 

has 3 × 3 Conv layer and two 1 × 1 Conv layers. Further, the 

identity block contains additional 1 × 1  Conv layer when 

compared to the Conv block over the shortcut that is employed 

to modify the channel’s dimension. The architecture of decoder 

has Conv and up-sampling blocks. The feature map’s spatial 

size is increased by up-sampling, while the local feature 

extraction is accomplished by Conv layer in the amplified 

feature map. The RALCAC receives two different inputs and 

the allocation of two symmetrical encoders with different 

weight values improve the feature extraction ability. The given 

input is processed over various conv and identity blocks 

followed by the feature maps being obtained layer by layer. 

Accordingly, the multiple dimensionality reduction causes 

losses in the spatial and spectral data of input. Hence, the 

underlying feature data with in-depth features are combined 

based on the skipping connections among encoder and the 

decoder. This skipping connections are used for an effective 

extraction of crop data in complex situations. 

2) Residual attention unit: The attention methodology 

which replicates the human perception and obtains the features 

is developed. The developed RA uses various weight values for 

highlighting essential data while reducing unwanted data. 

Simultaneously, the RA solves the issues created by correlation 

among various feature channels, decrement in computational 

efficiency and the deficiency of abstraction and extraction for 

essential data in the network. The high and low weights are used 

in RA for highlighting the essential data and eliminating the 

unwanted data which in turn improves the generalization 

capacity and network’s robustness for obtaining beneficial 

information in various situations. 

The integration of RA and deep learning improves the deep 
learning performances. In feature mapping, the network 
frequently creates various residuals in encoder-decoder 
architecture. An amount of network layers deepens are 
maximized by using the residuals. The essential data is 
highlighted by using the various weights in RA which also offers 
a definite level of interpretability for the features of black box. 
Thus, the RA utilizes attention operation for highlighting the 
essential local data and residual links for integrating local 
context data, thereby obtaining the requirement of emphasising 
local contextual information. The developed RA has two 
portions such as, series Conv and shortcut, wherein the RA 
architecture is shown in Fig. 2. The convergence speed and 
generalization capacity are enhanced by using the Batch 

Normalization (BN) layer and ReLU after every Conv layer. In 
series Conv structure, an each Conv layer of Conv kernel is 

{2(𝑖+5), 2(𝑖+5), 2(𝑖+6)}, where RA module is denoted as 𝑖. Due to 

the difference in the amount of input and output channels, the 
architecture of shortcut includes 1 × 1  Conv, developed for 
varying the dimension of channel, while the amount of Conv 

kernels is 2(𝑖+6). 

 

Fig. 2. Architecture of RA. 

3) Process of MSDV: The MSDV unit is incorporated 

among the encoder and decoder in the overall model by using 

various dilation rates of dilated Conv 1 × 1  Conv layer for 

extracting the feature maps from multi-scale. The MSDV with 

5 channels is shown in Fig. 3. A 1 × 1 Conv layer is used in the 

1st channel for obtaining feature data and 3 × 3 Conv layer is 

incorporated in the 2nd channel. The dilated Conv with dilation 

rates of {1, 2, 3} are appended from the 3rd to 5th channel for 

increasing the limit of the receptive field without maximizing 

the model’s complexity. Eq. (1) shows the specific computation 

process of multi-scale dilated Conv. 

𝑥(𝑙0) = ∑ 𝑚𝑖(𝑙0)𝑁
𝑖=1                 (1) 

Where, MSDV of input feature map is denoted as 𝑙0, and 
multi-scale dilated Conv for layer 𝑖 is denoted as 𝑚𝑖(). Further, 
the outcomes of each layer is combined and multi scale feature 
data (𝑥) is achieved from RALCAC. 

 

Fig. 3. Architecture of MSDV with five channels. 
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D. Prediction using ConvLSTM 

In this phase, the ConvLSTM which is the integration of 
Conv filters and LSTM layers is developed for performing the 
crop prediction based on the features from RALCAC. Generally, 
the LSTM network has the capacity for maintaining the cell state 
from the preceding observation’s sequence during the unwanted 
data elimination. The aforementioned principle is ensured by 
preserving the information over three gates such as input, output 
and forget gates. The Conv filters are employed to the input to 
state, and state to state changes of the LSTM. Fig. 4 shows the 
inner architecture of ConvLSTM. The architecture of 
ConvLSTM is described in Eq. (2) to Eq. (6). 

 

Fig. 4. Inner architecture of ConvLSTM. 

𝑖(𝑡) = 𝜎(𝑊𝑥𝑖
∗ 𝑥(𝑡) + 𝑊𝑎𝑖

∗ 𝑎(𝑡−1) + 𝑊𝑐𝑖
° 𝑐(𝑡−1) + 𝑏𝑖) (2) 

𝑓(𝑡) = 𝜎(𝑊𝑥𝑓
∗ 𝑥(𝑡) + 𝑊𝑎𝑓

∗ 𝑎(𝑡−1) + 𝑊𝑐𝑓
° 𝑐(𝑡−1) + 𝑏𝑓) (3) 

𝑐(𝑡) = 𝑓(𝑡)°𝑐(𝑡−1) + 𝑖(𝑡)° tanh(𝑊𝑥𝑐
∗ 𝑥(𝑡) + 𝑊𝑎𝑐

∗ 𝑎(𝑡−1) + 𝑏𝑐) (4) 

𝑜(𝑡) = 𝜎(𝑊𝑥𝑜
∗ 𝑥(𝑡) + 𝑊𝑎𝑜

∗ 𝑎(𝑡−1) + 𝑊𝑐𝑜
° 𝑐(𝑡−1) + 𝑏𝑜) (5) 

𝑎(𝑡) = 𝑜(𝑡)° tanh(𝑐(𝑡))          (6) 

Where, 𝑖(𝑡), 𝑓(𝑡) and 𝑜(𝑡) are the variables returned by input, 
forget and output gate, respectively, cell output is denoted as 

𝑎(𝑡), weight matrices are denoted as 𝑊, elementwise product is 
denoted as (°), Conv operator is denoted as (∗) and sigmoid 
activation function is denoted as 𝜎. 

ConvLSTM is generally used to acquire the intrinsic 
spatiotemporal patterns of given data. For each required output, 
eight filters are needed in the architecture of ConvLSTM. The 
incorporation of Conv filters in LSTM minimizes the model 
parameters, than the single LSTM which is used to achieve 
training even deeper that helps to achieve better prediction. 

IV. RESULTS AND DISCUSSION 

The results and discussion of the proposed method are given 
in this section. The proposed method is analysed by using 
Python 3.6 software. Here, the Tensorflow 1.14 and Keras 
library are used for execution of the crop yield prediction. The 
system is configured with 1 TB memory 128 GB RAM, 
Windows 10 operating system, 22 GB RAM for RTX 2080 Ti 
GPU, and i9 processor. The performance measures analysed in 
this research are RMSE and coefficient of determination (𝑅2) 
which are expressed in Eq. (7) and Eq. (8). 

𝑅𝑀𝑆𝐸 = √
∑ (𝑀𝑖−𝑂𝑖)2𝑁

𝑖=0

𝑁
                            (7) 

𝑅2 = 1 −
∑ (𝑀𝑖−𝑂𝑖)2𝑁

𝑖=1

∑ (𝑀𝑖−�̅�)2𝑁
𝑖=1

                             (8) 

Where, the model forecast and observed yield value are 
respectively denoted as 𝑀𝑖 and 𝑂𝑖 , their respective mean values 

are represented as �̅� and �̅�, and the amount of predicting data 
points is denoted as 𝑁. 

A. Performance Analysis 

The primary objective of this research is evaluated using 
MODIS dataset for soybean forecasting. Further, the proposed 
method is evaluated in three different datasets such as 
MOD09A1 dataset for wheat corn yield prediction and RicePAL 
dataset. The RALCAC is assessed for different features and 
different classifiers. The different features are color, shape and 
texture, while the different classifiers are Random Forest (RF), 
Recurrent Neural Network (RNN) and LSTM. 

1) Evaluation of proposed method for MODIS dataset: The 

MODIS dataset is evaluated for different selection and 

classifiers as shown in the Table I and II, respectively. Further, 

the graphs for different features and classifiers are shown in the 

Fig. 5 and Fig. 6. From the analysis, it is determined that the 

RALCAC provides better performance than the individual 

color, texture and shape features. Therefore, the RALCAC uses 

the multi feature information and pre-processed image for 

extracting the beneficial data from the images, which further 

enhance the prediction. On the other hand, the ConvLSTM 

provides better classification than the RF, RNN and LSTM. The 

observation of intrinsic spatiotemporal patterns in ConvLSTM 

is enhances the prediction. 

TABLE I.  PROPOSED METHOD EVALUATION WITH MODIS DATASET 

FOR DIFFERENT FEATURES 

Features 𝑹𝑴𝑺𝑬 𝑹𝟐 

Color 5.942 0.82 

Texture 4.097 0.91 

Shape 7.005 0.87 

RALCAC 3.257 0.94 

TABLE II.  PROPOSED METHOD EVALUATION WITH MODIS DATASET 

FOR DIFFERENT CLASSIFIERS 

Classifiers 𝑹𝑴𝑺𝑬 𝑹𝟐 

RF 4.982 0.82 

RNN 5.743 0.77 

LSTM 4.226 0.89 

ConvLSTM 3.257 0.94 

 

Fig. 5. Proposed method graph of MODIS dataset for different features. 
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Fig. 6. Proposed method graph of MODIS dataset for different classifiers. 

2) Evaluation of proposed method for MOD09A1 dataset: 

In this section, the time series of 32 images obtained between 

October to July of the next year in MOD09A1 dataset are used 

for wheat yield prediction. Table III and IV show the proposed 

method’s evaluation of MOD09A1 dataset for different features 

and different classifiers. Further, the graph of the proposed 

method with MOD09A1 dataset for different features and 

different classifiers is shown in Fig. 7 and Fig. 8. From the 

analysis, it is found that the RALCAC obtains better 

performance than the individual features. Moreover, the 

ConVLSTM provides better performance than the RF, RNN 

and LSTM. The RALCAC achieves superior prediction 

because it highlights the required semantics and improves the 

generalization capacity. Also, the combination of Conv filters 

and LSTM block in ConvLSTM enhances the prediction. 

TABLE III.  PROPOSED METHOD EVALUATION WITH MOD09A1 DATASET 

FOR DIFFERENT FEATURES 

Features 𝑹𝑴𝑺𝑬 𝑹𝟐 

Color 0.77 0.83 

Texture 0.71 0.88 

Shape 1.23 0.77 

RALCAC 0.63 0.93 

TABLE IV.  PROPOSED METHOD EVALUATION WITH MOD09A1 DATASET 

FOR DIFFERENT CLASSIFIERS 

Classifiers 𝑹𝑴𝑺𝑬 𝑹𝟐 

RF 0.91 0.79 

RNN 0.98 0.73 

LSTM 0.72 0.81 

ConvLSTM 0.63 0.93 

 

Fig. 7. Proposed method graph of MOD09A1 dataset for different features. 

 

Fig. 8. Proposed method graph of MOD09A1 dataset for different 

classifiers. 

3) Evaluation of proposed method for RicePAL dataset: 

The RicePAL dataset is evaluated for different selection and 

classifiers as shown in Tables V and VI, respectively. Further, 

the graph of the proposed method with RicePAL dataset for 

different features and classifiers is shown in Fig. 9 and Fig. 10, 

correspondingly. From the analysis, it is determined that the 

RALCAC provides better performance than the individual 

color, texture and shape features. Moreover, the ConvLSTM 

provides better prediction than the RF, RNN and LSTM. 

TABLE V.  PROPOSED METHOD EVALUATION WITH RICEPAL DATASET 

FOR DIFFERENT FEATURES  

Features 𝑹𝑴𝑺𝑬 𝑹𝟐 

Color 3.986 0.88 

Texture 3.227 0.91 

Shape 5.025 0.84 

RALCAC 2.069 0.94 

TABLE VI.  PROPOSED METHOD EVALUATION WITH RICEPAL DATASET 

FOR DIFFERENT CLASSIFIERS 

Classifiers 𝑹𝑴𝑺𝑬 𝑹𝟐 

RF 3.217 0.84 

RNN 4.561 0.79 

LSTM 2.844 0.92 

ConvLSTM 2.069 0.94 

 

Fig. 9. Proposed method graph of RicePAL dataset for different features. 
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Fig. 10. Proposed method graph of RicePAL dataset for different classifiers. 

B. Comparative Analysis 

This section shows the comparative analysis of the 
RALCAC based crop yield prediction. The existing research 
such as DeepYield [16], SSTNN [17] and 3DCNN [18] are used 
to compare the RALCAC. Here, the comparison is done for 
three different datasets such as MODIS, MOD09A1 and 
RicePAL. Table VII shows the comparative analysis of 
RALCAC while the graph for MODIS dataset is shown in Fig. 
11. From the comparison, it is concluded that the RALCAC 
provides lesser RMSE than the DeepYield [16], SSTNN [17] 
and 3DCNN [18] methods. The integrated spatial context 
information along with the highlighting of local semantics in 
RALCAC improves the feature extraction which helps to 
achieve better prediction. 

TABLE VII.  COMPARATIVE ANALYSIS OF RALCAC 

Datasets Methods RMSE 

MODIS dataset 
DeepYield [16] 4.79 

RALCAC 3.257 

MOD09A1 dataset 
SSTNN [17] 0.67 

RALCAC 0.63 

RicePAL dataset 
3DCNN [18] 89.03 

RALCAC 2.069 

 

Fig. 11. Comparison graph for MODIS dataset. 

V. DISCUSSION 

This section provides the discussion about the crop yield 
prediction performed by the RALCAC and ConvLSTM. The 
different datasets used for evaluation are MODIS dataset, 
MOD09A1 dataset and RicePAL dataset. The RALCAC is 
evaluated with different feature extraction approaches such as 

Color, Texture and Shape while the ConvLSTM is evaluated 
with different classifiers such as RF, RNN and LSTM. The 
evaluation demonstrates that the RALCAC and ConvLSTM has 
better performance than the aforementioned state of art 
approaches. Moreover, this RALCAC outperforms well than the 
DeepYield [16], SSTNN [17] and 3DCNN [18]. The main 
reason of improved prediction is RALCAC based 
comprehensive feature extraction and handling of 
spatiotemporal dynamics using ConvLSTM. The developed 
RALCAC extracts the spatial context features using RA module 
and local semantic information during the extraction. Therefore, 
the RALCAC represents the extensive spatial features and 
relationships, and local features and changes in the crop fields 
which effectively depicts the crop. Additionally, the capacity of 
spatiotemporal handling using ConvLSTM is used for an 
effective prediction with generalization capacity. 

VI. CONCLUSION 

In recent times, the evolution of remote sensing offers huge 
accessibility for performing precise crop yield prediction. In this 
research, RALCAC based comprehensive feature extraction is 
developed along with a ConvLSTM classifier. An effective 
depiction of crop is obtained by extracting the spatial context 
and local semantic features using the RALCAC which denotes 
spatial features and its relationships, and local features and 
changes in the crop fields. Further, the ConvLSTM performs a 
prediction based on the spatial and local semantic features from 
the RALCAC. The capacity of handling the spatiotemporal 
dependencies using ConvLSTM helps to enhance the prediction 
with effective generalization. From the simulation, it is found 
that the RALCAC outperforms the DeepYield, SSTNN and 
3DCNN. The RMSE of RALCAC for MODIS dataset is 3.257, 
which is lesser when compared to the DeepYield. In future, a 
feature selection can be developed for further improving the 
prediction performances. 
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