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Abstract—Cloud computing has revolutionized how Software 

as a Service (SaaS) suppliers deliver applications by leasing 

shareable resources from Infrastructure as a Service (IaaS) 

suppliers. However, meeting users' Quality of Service (QoS) 

parameters while maximizing profits from the cloud 

infrastructure presents a significant challenge. This study 

addresses this challenge by proposing an Enhanced Harris Hawks 

Optimization (EHHO) algorithm for cloud task scheduling, 

specifically designed to satisfy Service Level Agreements (SLAs), 

meet users QoS requirements, and enhance resource utilization 

efficiency. Drawing inspiration from Harris's falcon hunting 

habits in nature, the basic HHO algorithm has shown promise in 

finding optimal solutions to specific problems. However, it often 

suffers from convergence to local optima, impairing solution 

quality. To mitigate this issue, our study enhances the HHO 

algorithm by introducing an exploration factor that optimizes 

parameters and improves its exploration capabilities. The 

proposed EHHO algorithm is assessed against established 

optimization algorithms, including Genetic Algorithm (GA), Ant 

Colony Optimization (ACO), and Particle Swarm Optimization 

(PSO). The results demonstrate that our method significantly 

improves the makespan for GA, ACO, and PSO by 19.2%, 17.1%, 

and 20.4%, respectively, while also achieving improvements of 

17.1%, 17.3%, and 17.2% for BigDataBench workloads. 

Furthermore, our EHHO algorithm exhibits a substantial 

reduction in SLA violations compared to PSO, ACO, and GA, 

achieving improvements of 55.2%, 41.4%, and 33.6%, 

respectively, for general workloads, and 61.9%, 23.1%, and 

52.7%, respectively, for BigDataBench workloads. 

Keywords—Cloud computing; scheduling; optimization; SLA; 

SaaS 

I. INTRODUCTION 

Cloud computing represents an approach that facilitates 
migrating or deploying users' current physical infrastructure into 
a cloud-based environment. Users can access a wide array of 
services within this paradigm, including network, storage, 
computing, and memory, per their on-demand requirements [1], 
[2]. Virtualization technology plays a crucial role in 
provisioning a virtual infrastructure for users within a cloud 
environment. Service Level Agreement (SLA) serves as the 
contractual agreement between users and cloud providers, 
outlining the terms of service subscription [3]. Based on the 
established SLA, the cloud provider provisions the necessary 
services to meet users' needs. A distinguishing feature of the 
cloud computing environment is its inherent scalability, 
enabling services to be dynamically scaled up or down as 
required [4]. Resource pooling is a significant attribute within 
the cloud computing paradigm, wherein resources are shared 
and assigned to users under their specific demands. The cloud 

provider employs an automated approach to allocate virtual 
resources to users in compliance with the established SLA and 
the pay-per-usage policy [5]. A well-designed scheduling 
scheme is essential to facilitate resource allocation, enabling the 
automatic distribution of virtual resources to users. Furthermore, 
establishing a relationship between user requests and virtual 
machines (VMs) becomes crucial for efficient resource 
allocation. Given the diverse user base in the cloud computing 
environment, the implementation of an optimal task-scheduling 
mechanism becomes imperative. Additionally, a reliable and 
scalable resource provisioning mechanism is necessary to 
allocate resources to a large number of users automatically [6]. 

In the cloud computing environment, user requests are 
diverse in terms of sizes and types, including streaming data, 
video, images, text, etc. These requests can originate from 
different heterogeneous resources [7]. Therefore, a robust task-
scheduling algorithm is required to schedule these 
heterogeneous, variable, and dynamic users’ requests onto 
suitable VMs. Effective task scheduling is crucial to prevent 
Quality of Service (QoS) degradation and ensure compliance 
with SLA parameters that establish trust between users and 
cloud providers. A well-designed task scheduling algorithm 
should maximize QoS while maintaining SLA requirements, 
thus enhancing trust between users and cloud providers[8]. In 
recent years, several research works have focused on task 
scheduling in the cloud computing domain, utilizing 
metaheuristic approaches. These metaheuristic optimization 
algorithms are employed because task scheduling is a complex 
problem categorized as NP-hard. Using metaheuristic 
algorithms helps find near-optimal or feasible solutions for 
scheduling tasks to appropriate VMs in the cloud computing 
environment. By leveraging metaheuristic optimization 
algorithms, researchers aim to address the challenges posed by 
the NP-hard nature of task scheduling in cloud computing, 
ultimately improving the efficiency and effectiveness of 
resource allocation and meeting user requirements. 

This paper proposes an innovative approach based on the 
Enhanced Harris Hawks Optimization (EHHO) algorithm. The 
EHHO algorithm draws inspiration from the hunting behavior 
of Harris's falcons in nature, which has shown remarkable 
abilities in finding optimal solutions for specific problems. By 
utilizing the EHHO algorithm, we aim to achieve improved task 
scheduling performance, enhanced resource utilization, and 
better compliance with SLAs and users' QoS requirements. The 
primary objective of this study is to investigate the efficacy of 
the EHHO algorithm in cloud task scheduling and assess its 
performance compared to existing optimization algorithms. We 
conduct extensive simulations and evaluations, considering both 
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general workloads and specific BigDataBench workloads, to 
comprehensively analyze the performance of the proposed 
algorithm. The remainder of this paper is organized as follows: 
Section II provides an overview of related work in cloud task 
scheduling and optimization algorithms. Section III presents the 
methodology and details of the Enhanced Harris Hawks 
Optimization algorithm, including the enhancements made to 
mitigate convergence issues. Section IV describes the 
experimental setup and evaluation metrics used to assess the 
performance of the EHHO algorithm. Section V presents the 
results and analysis of the simulations. Finally, Section VI 
summarizes the findings, discusses their implications, and 
outlines future research directions. 

II. RELATED WORK 

The paper in [9] proposed a novel algorithm called Interval 
Multi-objective Cloud Task Scheduling Optimization (I-
MCTSO) to effectively address uncertainty in cloud task 
scheduling. They transformed ambiguous variables into 
precisely defined interval parameters, considering factors such 
as makespan, task completion rate, load balancing, and 
scheduling cost. To implement the I-MCTSO approach, the 
researchers devised a new Interval Multi-objective Evolutionary 
approach (InMaOEA). They integrated a distinct interval 
credibility approach to enhance convergence performance and 
augmented population diversity by incorporating overlap and 
hyper-volume assessments alongside the interval congestion 
distance method. Empirical simulations were conducted to 
evaluate the performance of the InMaOEA algorithm against 
existing algorithms. The results provided compelling evidence 
supporting the high effectiveness and superiority of the 
proposed approach. The methodologies furnish a framework 
that provides decision-makers with robust guidelines for 
allocating cloud job scheduling, enabling well-informed 
decisions. These advancements represent a significant 
progression in cloud computing resource management and 
potentially elevate operational efficiency and effectiveness. 

This study [10] proposed an innovative enhancement to the 
initialization process of the PSO algorithm by integrating 
heuristic techniques. They incorporated the Minimum 
Completion Time (MCT) and Longest Job to Fastest Processor 
(LJFP) algorithms into the initialization phase of the PSO 
algorithm, aiming to improve its overall efficiency. The 
researchers comprehensively evaluated the formulated MCT-
PSO and LJFP-PSO algorithms, considering several crucial 
metrics. These metrics included the minimization of makespan, 
reduction in overall energy consumption, mitigation of 
imbalance, and decrease in total execution time. These metrics 
served as pivotal benchmarks to assess the effectiveness of the 
proposed algorithms in the context of task scheduling. Through 
extensive simulations, the researchers presented evidence 
demonstrating the notable superiority and efficacy of the 
suggested MCT-PSO and LJFP-PSO approaches compared to 
traditional PSO methods and other contemporary task-
scheduling algorithms. These findings underscored the potential 
of these enhancements to significantly improve the optimization 
capabilities of task scheduling methods based on the PSO 
algorithm. Consequently, this research contributes significantly 
to advancing the efficient and effective management of cloud 
computing resources. 

In research [11], it introduced a task scheduling method 
called Chemical Reaction PSO. This method offers a hybrid 
approach that efficiently allocates multiple independent tasks 
among a collection of VMs in cloud computing environments. 
The proposed method combines the advantages of traditional 
chemical reaction optimization and particle swarm optimization, 
creating a unique synergy that leads to an optimal sequence for 
task scheduling. This sequence considers both task demand and 
deadline considerations, thereby improving outcomes across 
various parameters such as cost, energy consumption, and 
makespan. To evaluate the effectiveness of the proposed 
algorithm, extensive simulation experiments were conducted 
using the CloudSim toolbox. The experimental results 
highlighted the benefits of the Chemical Reaction PSO 
algorithm. The average execution time was rigorously assessed 
by comparing studies involving different quantities of VMs and 
jobs. The results demonstrated substantial improvements in 
execution duration, ranging from 1% to 6%, with specific 
instances showing even more significant improvements 
exceeding 10%. The makespan results also exhibited 
noteworthy gains, ranging from 5% to 12%, while the overall 
cost factor demonstrated enhancements of 2% to 10%. 
Furthermore, there was a significant increase in the rate of 
energy consumption, ranging from 1% to 9%. 

The paper in [12] developed the Enhanced Sunflower 
Optimization (ESFO) algorithm as an innovative methodology 
to enhance the effectiveness of existing job scheduling 
techniques. The ESFO algorithm aims to achieve optimal 
scheduling within polynomial time complexity. The proposed 
ESFO approach underwent comprehensive scrutiny and was 
subjected to a battery of task scheduling benchmarks to evaluate 
its strengths and limitations. Simulation studies were conducted 
to assess the performance of the ESFO algorithm compared to 
existing algorithms. The outcomes of these studies demonstrated 
the superior performance of the ESFO algorithm. It exhibited 
significant proficiency in optimizing task scheduling outcomes, 
particularly in critical parameters such as energy usage and 
makespan. The algorithm's robust performance across these 
parameters highlighted its effectiveness in improving resource 
allocation and system efficiency. 

The authors in [4] introduced the Enhanced Marine Predator 
Algorithm (EMPA) as a means to enhance scheduling 
efficiency. The proposed methodology consists of several 
crucial stages, including formulating a task scheduling model 
that considers both makespan and resource utilization. Each 
element within the algorithm represents a potential solution for 
task scheduling, aiming to identify the most favorable 
scheduling solution. To improve its performance, the EMPA 
algorithm integrates various components derived from the 
Whale Optimization Algorithm (WOA), incorporating operator 
functions, nonlinear inertia weight coefficients, and the golden 
sine function. To evaluate its effectiveness, the EMPA algorithm 
undergoes extensive comparative assessments against 
established optimization algorithms, such as WOA, PSO, SCA, 
and GWO, across diverse settings considering different 
workloads in the GoCJ and synthetic datasets. The empirical 
evaluation conducted in this study highlights the advantages of 
the EMPA algorithm, demonstrating notable strengths in 
resource utilization, degree of imbalance, and makespan. These 
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findings provide empirical evidence supporting the efficacy of 
the Enhanced Marine Predator Algorithm in optimizing task 
scheduling outcomes. As a result, these results contribute 
significantly to the field of scheduling approaches and can 
potentially enhance resource management in various 
applications. 

The paper in [13] proposed a multi-objective scheduling 
algorithm called MSITGO, which aims to optimize three 
conflicting objectives: idle resource costs, energy consumption, 
and batch task completion time. Drawing inspiration from 
Invasive Tumor Growth Optimization (ITGO), the MSITGO 
algorithm incorporates tumor cell growth modeling principles 
and integrates Pareto optimum and packing problem models. 
This integration enables a comprehensive and efficient 
exploration of potential solutions, expanding the range of ideas 
and accelerating the consensus-building process. Moreover, the 
MSITGO framework encompasses the entire task-processing 
operation by dividing it into two distinct stages: machine 
assignment and timeslot allocation. This refined framework 
enhances job scheduling efficiency and mitigates improper 
allocations. To validate its practical application, MSITGO 
undergoes empirical validation using real cluster data obtained 
from Alibaba. The experimental results demonstrate the 
superiority of MSITGO over existing techniques in addressing 
the multi-objective task scheduling problem. The framework 
exhibits its ability to provide more efficient solutions, 
highlighting its potential to make significant contributions to 
optimizing task scheduling across various applications. 

III. PROBLEM STATEMENT AND SYSTEM MODEL 

In this section, we define the problem statement and 
introduce the proposed architecture for task scheduling. The 
problem at hand revolves around the mapping of a set of n tasks, 
represented as tn = {t1, t2, ..., tn}, onto the m VMs vmm = {vm1, 
vm2, ..., vmm}, exist within the Hk hosts Hk = {H1, H2, ..., Hk}, 
which are situated within the Dn datacenters Dn = {D1, D2, ..., 
Dn}. During this mapping process, the priorities of both VMs 
and tasks are taken into account. The primary objectives of this 
mapping are to minimize the makespan and prevent SLA 
violations. 

Fig. 1 provides a visual representation of the proposed 
system architecture. The process begins with simultaneous user 
queries being submitted to the cloud administration dashboard 
and broker, which act as users' agents. The task manager then 
validates these requests, which considers the specified SLA 
requirements. If the requests meet the criteria and are deemed 
valid, they are placed in a waiting queue and subsequently 
forwarded to the task scheduler. Within this architecture, the 
task manager is crucial in calculating the priorities of diverse and 
heterogeneous tasks. These priorities are determined based on 
factors such as task size, run-time capacity, and the preferences 
of the VMs. 

Additionally, the VM priorities are determined by 
considering the unit cost of electricity associated with each VM. 
After determining the priorities of tasks and VMs, they are 
placed in a waiting line. The task scheduler then assigns the 
highest-priority task to the highest-priority VM.   The scheduler 
tries to reduce the makespan and prevent SLA breaches by 
categorizing the requests based on these priorities. The task 

scheduler plays a crucial role in efficiently mapping tasks to 
VMs while considering their priorities. It takes into account the 
optimization objectives of minimizing the makespan and 
ensuring compliance with SLAs. By intelligently assigning tasks 
to VMs based on their priorities, the scheduler aims to achieve 
an optimal task scheduling assignment, leading to improved 
system performance and user satisfaction. 

 
Fig. 1. System architecture. 

To evaluate the priorities of tasks, the workload on all VMs 
is calculated using Eq. (1), where lom represents the workload 
on m VMs residing in the set of Hk hosts. Consequently, the 
total workload on hosts is calculated using Eq. (2). 

𝑙𝑜𝑣𝑚𝑚
= ∑ 𝑙𝑜𝑚   (1) 

𝑙𝑜𝐻𝑘
=

𝑙𝑜𝑣𝑚𝑚

∑ 𝐻𝑘
   (2) 

To determine whether user requests or tasks can be 
processed on a specific VM, the processing capacity of a VM 
needs to be defined. This is indicated by Eq. (3), where prono 
represents the number of processing elements and proMIPS 
stands for the processing capacity based on the number of 
instructions processed per second. 

𝑝𝑟𝑜𝑐𝑎𝑣𝑚
= 𝑝𝑟𝑜𝑀𝐼𝑃𝑆 × 𝑝𝑟𝑜𝑛𝑜  (3) 

For the task scheduler to map tasks to specific VMs, it 
requires knowledge of the task size, which is calculated using 
Eq. (4). Subsequently, the priorities of all tasks are calculated 
using Eq. (5), while the priorities of VMs, based on unit 
electricity cost, are determined using Eq. (6). 

𝑡𝑘
𝑙𝑒𝑛 = 𝑡𝑝𝑟𝑘

× 𝑡𝑀𝐼𝑃𝑆  (4) 

𝑡𝑝𝑟𝑘
=

𝑡𝑘
𝑙𝑒𝑛

𝑝𝑟𝑜𝑘𝑣𝑚

   (5) 

𝑣𝑚𝑝𝑟𝑛
=

𝑒𝑙𝑒𝑐𝑜𝑠𝑡ℎ𝑖𝑔ℎ

𝑒𝑙𝑒𝑐𝑜𝑠𝑡𝑑𝑖

  (6) 

The primary goals of this research endeavor encompass the 
proper mapping of tasks to virtual resources, with a focus on 
minimizing the makespan and avoiding any violations of service 
level agreements (SLAs). To evaluate the makespan, Eq. (7) is 
employed as the metric. Subsequently, the determination of SLA 
violations becomes the next objective. SLA violations are 
influenced by two key factors: the active time of a host and 
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performance degradation. These factors are quantified using Eq. 
(8) and (9), respectively. By utilizing these equations, the 
calculation of SLA violations can be performed, as expressed in 
Eq. (10). 

𝑚𝑠𝑘 = 𝑒𝑘 + 𝑎𝑣𝑎𝑛  (7) 

𝐴𝑇𝐻𝑖
=

1

𝑝
∑

𝑣𝑖𝑜 𝑡𝑖𝑚𝑒𝐻𝑖

𝐴𝑇𝐻𝑖

𝑝
𝑠=1   (8) 

𝑝𝑒𝑑𝑔 =
1

𝑛
∑

𝑝𝑒𝑑𝑔
𝑝

𝑡𝑜𝑣𝑚
𝑝

𝑛
𝑎=1   (9) 

𝑆𝐿𝐴𝑣𝑖𝑜 = 𝑝𝑒𝑑𝑔 × 𝐴𝑇𝐻𝑖
  (10) 

IV. ENHANCED HHO FOR TASK SCHEDULING 

The HHO algorithm draws inspiration from the cooperative 
hunting and pursuit behaviors observed in Harris’s hawks, 
specifically their strategic hunting tactics like "surprise 
pounces" or "the seven kills"[14]. In cooperative attacks, 
multiple hawks collaborate to pursue a rabbit that has revealed 
itself, aiming to catch the prey swiftly. However, the hunt might 
include repeated rapid dives near the prey, depending on the 
prey's reactions and its potential to escape. Harris’s hawks 
display various hunting strategies based on the changing 
circumstances and the prey's escape patterns. Tactics are often 
altered if the lead hawk fails to pursue the prey, allowing another 
team member to continue the chase, often used to confuse 
escaping rabbits. Notably, the rabbit is unable to regain its 
defensive skills when a new hawk initiates the chase, and it 
cannot escape the attacking team as the most experienced hawk 
captures and shares the exhausted rabbit. 

The different phases of the HHO are depicted in Fig. 2, 
illustrating how hawks trace, encircle, and ultimately attack their 
prey. The mathematical model mirrors these hunting behaviors, 
encompassing three phases: exploration, transition between 
exploration and exploitation, and exploitation. Throughout each 
phase, Harris’s hawks represent potential solutions, and the 
target prey represents the optimal solution. Hawks use two 
exploration techniques to locate the prey. In one, they select a 
location based on other hawks' positions and the prey's location. 
In the second strategy, hawks perch randomly on tall trees. Eq. 
(11) simulates these methods with equal probabilities using 
random numbers. 

 
Fig. 2. HHO steps. 

𝑥(𝑡 + 1) = 

{
𝑥𝑟𝑎𝑛𝑑𝑜𝑚(𝑡) − 𝑥1|𝑥𝑟𝑎𝑛𝑑𝑜𝑚(𝑡) − 2𝑟2𝑥(𝑡)|, 𝑞 ≥ 0.5

𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥𝑚𝑒𝑎𝑛(𝑡) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)), 𝑞 < 0.5

 (11) 

Eq. (12) calculates the average hawk population position. 
The algorithm switches from exploration to exploitation based 
on the rabbit's energy, as expressed in Eq. (13). When the 
rabbit's escaping energy |𝐸|⩾1, hawks explore more areas; 
otherwise, exploitation begins. Eq. (14) - Eq. (17) determine 
whether hawks perform a soft or hard siege based on the rabbit's 
energy and escape success. A soft siege involves repeated dives, 
simulating the rabbit's successful escape, while a hard siege is 
calculated differently. 

𝑥𝑚𝑒𝑎𝑛(𝑡) =
1

𝑁
∑ 𝑥𝑖(𝑡)𝑁

𝑖=1   (12) 

𝐸 = 2𝐸0(1 −
𝑡

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
)  (13) 

𝑥(𝑡 + 1) = 𝛥𝑥(𝑡) − 𝐸|𝐽.𝑥𝑟𝑎𝑏𝑏𝑖𝑡 (𝑡) − 𝑥(𝑡)| (14) 

𝛥𝑥(𝑡) = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡)  (15) 

𝐽 = 2(1 − 𝑟𝑎𝑛𝑑𝑜𝑚)  (16) 

𝑥(𝑡 + 1) = 𝑥(𝑡) − 𝐸|𝛥𝑥(𝑡)| (17) 

Eq. (18) - Eq. (21) governs the soft-siege rapid dives, 
utilizing Lévy flights to mimic the prey's behaviour. Eq. (18) and 
(19) calculate the hawks' actions during the dive, while Eq. (20) 
and Eq. (21) reflect the final soft-siege rapid dives and the 
parameters k and z during a hard siege, respectively. 

𝑘 = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡)| (18) 

𝑧 = 𝑘 + 𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑐𝑡𝑜𝑟. 𝐿(𝑑𝑖𝑚)  (19) 

𝑥(𝑡 + 1) = {
𝑘, 𝑖𝑓𝑓(𝑘) < 𝑓(𝑥(𝑡))
𝑧, 𝑖𝑓𝑓(𝑧) < 𝑓(𝑥(𝑡))

  (20) 

𝑘 = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥𝑚𝑒𝑎𝑛(𝑡)| (21) 

In the exploration phase of the HHO algorithm, the 
calculations pertaining to positions, specified in Eq. (11) and Eq. 
(12), are influenced by random values r1 and r3 within the range 
of (0, 1). While this stochastic approach fosters randomness in 
each step during the global search, it lacks the necessary 
variability. During this phase, the original HHO algorithm 
operates under the assumption that hawks, with their keen eyes, 
can generally track and detect prey; however, there are moments 
when prey is elusive and might not be detected easily, 
sometimes even after several hours. In light of these 
observations, it seems plausible to consider adjusting these 
parameters to render them more adaptable. 

We propose to conceptualize r1 and r3 as indicative of the 
step length, where larger values imply swifter movement for the 
hawks, and conversely, smaller values correspond to slower 
movement. There exist two scenarios for a hawk to find prey: 
one scenario involves immediate detection, while the other 
involves a prolonged search. In the former, it is essential to 
account for the variability in step length, whereas, in the latter 
scenario, the overall variability of the step length should 
diminish. As time progresses, the likelihood of a hawk finding 
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prey increases; therefore, initially, hawks should explore a wider 
range with larger steps, gradually transitioning to a more 
methodical search in later iterations. Thus, we propose an update 
to r1 and r3 using an exploration factor represented by Eq. (17). 
Consequently, the modified Eq. (11) is updated as follows Eq. 
(18): 

𝑒𝑓 = (𝑏 × 𝑟𝑎𝑛𝑑 −
𝑏

2
) × 𝑐𝑜𝑠(

𝜋

2
× (

𝑡

𝑇
)2)      (22) 

𝑋(𝑡 + 1) = 

{
𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑒𝑓|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|, 𝑞 ≥ 0.5

(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑒𝑓(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)), 𝑞 < 0.5
 (23) 

Here, the value of b is set to 2 based on favorable results 
from experimental tests. The term (b ∗ rand − b/2) introduces 
randomness in the step length by generating random numbers 
within the interval of (−b/2, b/2). In essence, the exploration 
factor initially widens the step length range from (0, 1) to (−b/2, 
b/2) to support expansive exploration. As the number of 
iterations increases, it gradually shifts the exploration process 
from a broad range to a more constrained one. Ultimately, this 
approach maintains the essential randomness in the step length 
while adapting it dynamically over the course of iterations. 

The choice of parameters in EHHO algorithm is critical for 
optimizing its performance in task scheduling within cloud 
environments. The parameter b is set to 2 based on favorable 
outcomes from preliminary experimental tests, which suggests 
that this value effectively balances the exploration and 
exploitation phases of the algorithm. The exploration factor (ef), 
introduced in Eq. (22), modifies the step length of hawk 
movements, thereby enhancing the algorithm's ability to search 
for optimal solutions dynamically. The term (b×rand−b/2) adds 
randomness within the interval (−b/2, b/2), initially broadening 
the step length to support wide-ranging exploration and then 
gradually narrowing it to facilitate a more focused search as 
iterations progress. This adaptation ensures the algorithm 
maintains its stochastic nature while becoming more methodical 
over time. The experimental design rationale involves 
simulating the EHHO algorithm against established 
optimization algorithms like GA, ACO, and PSO, across 
varying workloads to evaluate its efficacy. The validation 
process entails comparing key performance metrics, such as 
makespan and SLA violations, demonstrating significant 
improvements in both general and BigDataBench workloads. 

V. EXPERIMENTAL RESULTS 

This section discusses the configuration settings for 
simulation and presents the simulation results. The simulation 
was conducted using the CloudSim toolkit, which provides an 
accurate environment for simulating the cloud paradigm. The 
simulation environment utilized in this study was implemented 
on a machine with an Intel Core i5 processor and 8 GB of RAM. 
Table I shows configuration settings for simulation. Table III 
outlines the specific standard configuration settings utilized in 
the simulation. 

Table II presents the computation of SLA violations for 
different algorithms, including PSO, ACO, GA, and our 

proposed algorithm (EHHO), considering varying task 
quantities. 

TABLE I.  CONFIGURATION SETTINGS FOR SIMULATION 

Parameter Value 

Datacenter count 5 

Operating system Linux 

Virtual machine monitor Xen 

VM bandwidth 5 Mbps 

VM memory 1024 MB 

VM count 20 

Network bandwidth 1000Mbps 

Host storage capacity 5 TB 

Host memory 16 GB 

Task length 780,000 

Task count 100-1000 

TABLE II.  SLA VIOLATIONS FOR RANDOMLY GENERATED WORKLOADS 

Task count GA ACO PSO EHHO 

100 15 12 17 7 

500 12 18 25 9 

1000 21 22 28 18 

The selection of GA, ACO, and PSO for comparison against 
our proposed EHHO algorithm is rooted in the distinct strengths 
and prevalent application of these algorithms in the field of 
optimization and task scheduling. Each of these algorithms 
represents a different heuristic approach to solving complex 
optimization problems, making them ideal benchmarks for 
assessing the performance of EHHO. The Genetic Algorithm 
(GA) is an evolutionary algorithm that simulates the process of 
natural selection. It operates through mechanisms inspired by 
biological evolution, such as selection, crossover, and mutation. 
GA's robustness in exploring large search spaces and finding 
near-optimal solutions is well-documented, making it a common 
choice for various scheduling and optimization tasks. By 
comparing EHHO to GA, we can evaluate how well our 
algorithm performs in terms of scalability and efficiency, 
especially in complex environments where traditional methods 
might struggle. 

The ACO and PSO were chosen due to their distinct nature 
and widespread use in optimization problems. ACO is inspired 
by the foraging behavior of ants and is particularly effective in 
finding optimal paths and solutions through a collaborative 
approach. Its performance in scheduling tasks is noteworthy, 
making it a suitable candidate for comparison. PSO, on the other 
hand, simulates the social behavior of birds flocking or fish 
schooling. It is known for its simplicity and fast convergence 
rates, making it a popular choice for various optimization 
problems, including resource scheduling and allocation. By 
including ACO and PSO in our comparative analysis, we cover 
a broad spectrum of heuristic optimization techniques. This 
allows us to comprehensively assess the efficiency, scalability, 
and robustness of EHHO in minimizing SLA violations and 
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makespan across different workload scenarios, thereby 
highlighting its potential advantages and areas of improvement 
in real-world applications. 

When subjected to randomly generated workloads, the SLA 
violations recorded for the PSO algorithm were 17%, 25%, and 
28%, respectively. For ACO, the corresponding SLA violations 
are 12%, 18%, and 22%. GA yields SLA violations of 15%, 
12%, and 21%, while EHHO results in SLA violations of 7%, 
9%, and 18%. In Table III, we present the assessment of SLA 
violations incurred by different algorithms across varying task 
quantities. These evaluations were conducted using the 
BigDataBench workload as the basis for generating tasks. For 
PSO, the SLA violations are 18%, 21%, and 29%. ACO yields 
SLA violations of 10%, 12%, and 18%. GA generates SLA 
violations of 18%, 21%, and 29%. EHHO results in SLA 
violations of 9%, 11%, and 13%. It is evident that EHHO 
significantly reduces SLA violations over other algorithms. By 
considering the priority of VMs and tasks, our algorithm 
efficiently schedules the tasks, resulting in a minimized 
makespan. 

TABLE III.  SLA VIOLATIONS FOR BIGDATABENCH WORKLOADS 

Task count GA ACO PSO EHHO 

100 18 10 18 9 

500 21 12 21 11 

1000 29 18 29 13 

 
Fig. 3. Visual representation of SLA violations for randomly generated 

workloads. 

 

Fig. 4. Visual representation of SLA violations for bigdata bench workloads. 

Table IV presents the calculated makespan values for 
different algorithms for three task quantities. In the case of 
randomly generated workloads, the makespan values obtained 
for PSO were 1289, 1678, and 1989, respectively, for the three 
task quantities 100, 500, and 1000. For ACO, the corresponding 
makespans are 1156, 1563, and 2146. GA yields makespans of 
1543, 1475, and 1934, while the proposed algorithm results in 
makespans of 976, 1281, and 1814. Table V presents the 
calculated makespan values for different algorithms using the 
BigDataBench workload, considering task quantities of 100, 
500, and 1000. For PSO, the makespans are 1367, 1747, and 
2045. ACO yields makespans of 1243, 1643, and 2387. GA 
generates makespans of 1437, 1532, and 2243, while the 
proposed algorithm results in makespans of 1087, 1407, and 
1882. Fig. 3, 4, 5 and 6 show visual representation for different 
workloads. 

TABLE IV.  MAKESPAN FOR RANDOMLY GENERATED WORKLOADS 

Task count GA ACO PSO EHHO 

100 1543 1156 1289 976 

500 1475 1563 1678 1281 

1000 1934 2146 1989 1814 

TABLE V.  MAKESPAN FOR BIGDATABENCH WORKLOADS 

Task count GA ACO PSO EHHO 

100 1437 1243 1367 1087 

500 1532 1643 1747 1407 

1000 2243 2387 2045 1882 

 
Fig. 5. Visual representation of makespan for randomly generated 

workloads. 

 
Fig. 6. Visual representation of makespan for bigdatabench workloads. 
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VI. DISCUSSION 

The EHHO algorithm has shown significant improvements 
over traditional algorithms like GA, ACO, and PSO in 
optimizing makespan and reducing SLA violations, which 
suggests it has a strong foundation for handling larger and more 
complex workloads. The inherent design of the EHHO, which 
draws from the cooperative hunting strategies of Harris's hawks, 
allows it to dynamically adjust its exploration and exploitation 
phases. This dynamic adjustment is crucial for scalability 
because it enables the algorithm to maintain efficiency as the 
number of tasks and VMs scales up. The exploration factor 
introduced in the EHHO enhances its capability to search a 
wider solution space initially and then focus on more promising 
areas, which is beneficial when dealing with large-scale 
environments. 

Cloud computing environments are highly dynamic, with 
workloads and resource availability fluctuating rapidly. The 
adaptability of the EHHO algorithm in such conditions is 
supported by its enhanced exploration mechanism, which allows 
for a more flexible search process. The algorithm can adjust its 
step lengths and exploration range based on the iteration 
progress and current solution quality, helping it adapt to sudden 
changes in workload patterns and resource distribution. 

The scalability of the proposed EHHO algorithm is a critical 
factor for its practical application in diverse cloud computing 
environments, characterized by varying loads and resource 
distribution patterns. Scalability in this context refers to the 
algorithm's ability to maintain or improve its performance as the 
size of the cloud environment increases and as it adapts to 
changing conditions. 

Moreover, the use of random values in the EHHO's 
exploration phase fosters a level of stochasticity that can be 
beneficial in diverse environments. This randomness ensures 
that the algorithm does not become overly dependent on specific 
patterns and can handle unexpected changes more effectively. 
While the EHHO algorithm has demonstrated improved 
performance metrics, its scalability also depends on managing 
computational overhead. The algorithm's complexity, 
particularly in large-scale environments, could potentially 
introduce significant computational costs. To mitigate this, the 
EHHO can be parallelized and optimized to run on distributed 
cloud infrastructure, leveraging the parallel processing 
capabilities of modern cloud systems. This parallelization can 
distribute the computational load, ensuring that the algorithm 
remains efficient even as the scale of the environment increases. 

For addressing real-world scenarios challenges, 
implementing the EHHO algorithm for cloud task scheduling in 
real-world scenarios presents several potential challenges. One 
of the primary challenges is the dynamic and unpredictable 
nature of cloud environments. Cloud infrastructures often 
experience varying workloads and resource availability, making 
it difficult to maintain consistent performance and SLA 
adherence. The EHHO algorithm, although optimized for 
exploration and preventing convergence to local optima, may 
still need continuous adjustments and fine-tuning to handle these 
dynamic changes effectively. Additionally, integrating the 
EHHO algorithm with existing cloud management platforms 
can be complex, requiring significant modifications to 

accommodate its unique optimization processes. This 
integration process must ensure minimal disruption to ongoing 
services and avoid introducing new inefficiencies. 

Another challenge is the potential computational overhead 
introduced by the EHHO algorithm. While EHHO aims to 
optimize resource utilization and task scheduling, the algorithm 
itself can be computationally intensive, especially when 
handling large-scale cloud environments with numerous tasks 
and VMs. This computational demand can offset some of the 
performance gains achieved through optimized scheduling. 
Moreover, real-world applications often involve multi-tenant 
environments where multiple users and applications compete for 
resources. Ensuring fairness and effective resource allocation 
while using EHHO to maximize efficiency can be challenging. 
The algorithm must be designed to respect priority levels, 
application-specific QoS requirements, and user-specific SLAs, 
which can add layers of complexity to its implementation. 

To address these challenges, several adaptations and 
enhancements can be incorporated into the EHHO algorithm. 
Firstly, implementing a feedback mechanism that continuously 
monitors the cloud environment and dynamically adjusts the 
EHHO parameters can help maintain optimal performance 
despite changes in workload patterns and resource availability. 
This adaptive approach can involve machine learning techniques 
that predict workload trends and preemptively adjust the EHHO 
algorithm's exploration and exploitation balance. 

Secondly, to mitigate the computational overhead, the 
EHHO algorithm can be parallelized and optimized to run 
efficiently on distributed systems. Leveraging the inherent 
parallelism in cloud infrastructures can distribute the 
computational load of the EHHO algorithm, ensuring that it 
scales effectively with the size of the cloud environment. 
Additionally, introducing a hybrid approach that combines 
EHHO with other less computationally intensive algorithms can 
help balance the trade-offs between optimization quality and 
computational efficiency. For instance, using simpler heuristic 
methods for initial task scheduling and applying EHHO for fine-
tuning can achieve a balance between performance and 
overhead. 

Lastly, ensuring fairness and effective resource allocation in 
multi-tenant environments requires incorporating priority-based 
and QoS-aware scheduling policies into the EHHO algorithm. 
This can involve designing custom fitness functions that account 
for user-specific SLAs and QoS requirements, ensuring that the 
algorithm not only optimizes for overall resource utilization but 
also respects individual application needs. Regular audits and 
evaluations of the algorithm's performance in meeting SLAs and 
QoS parameters can help in making necessary adjustments and 
improvements, ensuring that EHHO remains effective in real-
world cloud environments. 

VII. CONCLUSION 

The scheduling of tasks in cloud computing environments 
presents substantial issues for both cloud providers and 
customers. In the absence of an efficient scheduler, the diverse 
and heterogeneous workload can result in prolonged makespan 
and violations of SLAs, thereby compromising the overall QoS. 
To tackle these challenges, this study presented a novel task-
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scheduling algorithm that incorporates the priority of VMs and 
tasks to achieve optimal task-to-resource mapping. Our 
scheduling strategy builds upon the existing HHO algorithm, 
incorporating enhancements to improve its effectiveness. To 
evaluate and validate our proposed algorithm, we conducted 
comprehensive simulations and experiments using the 
CloudSim framework. The efficacy of the suggested algorithm 
is evaluated in comparison to established methodologies such as 
PSO, ACO, and GA. Initially, we used randomly generated 
workloads in the simulation, and later, we utilized a real-time 
dataset called BigDataBench. The results of our evaluation 
provide compelling evidence that our proposed algorithm 
surpasses the previous methods by optimizing SLA violations 
and makespan. 

Despite these promising results, our study has some 
limitations. Firstly, the algorithm's performance has been tested 
primarily within simulated environments, which may not fully 
capture the complexities and variabilities of real-world cloud 
infrastructures. The computational overhead introduced by the 
enhanced HHO algorithm also needs further analysis to ensure 
scalability and efficiency in large-scale cloud deployments. 
Additionally, the algorithm currently focuses on optimizing 
makespan and SLA violations but does not explicitly address 
other crucial factors such as energy consumption, cost 
efficiency, and fairness in resource allocation among multiple 
tenants. Future research should aim to address these limitations 
by conducting real-world implementation and testing, exploring 
hybrid optimization techniques to balance computational 
efficiency, and integrating additional optimization objectives 
such as energy and cost savings. Expanding the algorithm's 
adaptability to diverse and evolving cloud environments will 
also be essential for its broader applicability and robustness. 
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