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Abstract—Paddy rice, an essential food source for millions, is 

highly susceptible to various leaf diseases that threaten its yield 

and quality. This study introduces a cutting-edge hybrid deep 

learning model designed to address the critical need for accurate 

and timely identification and classification of paddy leaf diseases. 

Traditional methods often lack the precision and efficiency 

required for effective disease detection, necessitating the 

development of more sophisticated approaches. Our proposed 

model leverages the feature extraction capabilities of 

EfficientNetB0 and the hierarchical relationship capturing 

abilities of the Capsule Network, resulting in superior disease 

classification performance. The hybrid model demonstrates 

outstanding accuracy, achieving 97.86%, along with precision, 

recall, and F1-scores of 97.98%, 98.01%, and 97.99%, 

respectively. It effectively differentiates between diseases such as 

Narrow Brown Spot, Bacterial Leaf Blight, Leaf Blast, Leaf Scald, 

Brown Spot, and healthy leaves, showcasing its robustness in 

practical applications. This research highlights the importance of 

advanced technological interventions in agriculture, providing a 

scalable and efficient solution for disease detection in paddy crops. 

The hybrid deep learning model offers significant benefits to 

farmers and agricultural stakeholders, facilitating timely disease 

management, optimizing resource use, and improving crop 

management practices. Ultimately, this innovation supports 

agricultural sustainability and enhances global food security. 

Keywords—Paddy rice; leaf diseases; hybrid deep learning; 

efficientnetb0; capsule network 

I. INTRODUCTION 

Paddy rice, often referred to simply as "paddy," denotes the 
raw, unhulled grains of rice, encased within their protective 
husks. Cultivated extensively across the globe, particularly in 
regions with flooded fields conducive to rice growth, such as 
Asia, paddy forms the backbone of numerous cuisines and diets. 
Boasting a diverse array of varieties, paddy rice encompasses a 
spectrum of characteristics, from grain size and color to taste and 
texture. Its cultivation entails meticulous processes, including 
land preparation, seed selection, and often, transplanting into 
flooded paddy fields. Rich in carbohydrates and supplemented 
by proteins, fiber, and various nutrients, paddy rice serves as a 
vital source of nutrition for a substantial portion of the whole 
population [1]. Post-harvest, paddy undergoes processing to 
yield different rice types, from polished white grains to nutrient-
rich brown rice variants. This processed rice, in its myriad 
forms, finds its way into an extensive array of culinary creations, 
from simple staples to intricate delicacies like sushi and biryani. 
Economically, rice cultivation and trade represent a cornerstone 
of many nations' economies, supporting millions of livelihoods 
and playing a vital role in food security and economic stability. 
Thus, paddy rice stands as not only a dietary staple but also a 

symbol of cultural heritage, economic vitality, and agricultural 
resilience. 

Paddy leaf diseases present a formidable challenge to rice 
cultivation globally, encompassing a spectrum of fungal, 
bacterial, and viral pathogens that afflict the leaves of the rice 
plant. These diseases manifest through a variety of symptoms 
including lesions, spots, discoloration, and wilting, ultimately 
impairing the plant's ability to photosynthesize effectively and 
thereby compromising yield and quality. Spread through diverse 
vectors such as wind, water, contaminated seeds, and insect 
carriers, the transmission of these diseases is facilitated by 
environmental factors like temperature, humidity, and cultural 
practices [2]. Combatting paddy leaf diseases requires a multi-
faceted approach involving cultural, chemical, and biological 
strategies. Farmers employ techniques like crop rotation and the 
use of disease-resistant varieties alongside chemical treatments 
and biological control agents to mitigate disease spread and 
severity. 

The spectrum of paddy leaf diseases includes bacterial leaf 
blight, leaf blast, brown spot, leaf scald, and narrow brown spot. 
Bacterial leaf blight, caused by Xanthomonas oryzae pv. 
Oryzae, leads to water-soaked lesions and plant wilting. Brown 
spot, from Cochliobolus miyabeanus, shows small lesions with 
yellow halos. Leaf blast, by Magnaporthe oryzae, produces 
lesions shaped like diamonds with gray centers. Leaf scald, 
caused by Rhizoctonia oryzae, results in elongated, pale streaks 
on leaves. Narrow brown spot, linked to Cercospora janseana, 
shows elongated brown lesions with yellow borders [3]. And a 
healthy foliage exhibits vibrant green coloration and intact leaf 
structure. Vigilant monitoring and management strategies are 
crucial for mitigating these conditions and ensuring crop 
productivity and food security. 

Paddy leaf disease detection and recognition hold 
importance in modern agricultural practices for several 
compelling reasons. Firstly, early detection allows for timely 
intervention, which is pivotal in curbing the spread of diseases 
and minimizing crop damage. By swiftly identifying diseased 
plants, farmers can implement targeted control measures, 
thereby mitigating yield losses and preserving crop quality. 
Moreover, accurate disease detection facilitates precision 
agriculture, enabling farmers to adopt site-specific management 
practices tailored to the needs of individual fields [4]. This 
approach optimizes resource utilization, reduces input costs, and 
minimizes environmental impact. Staying ahead of disease 
outbreaks optimizes yields and enhances food security, vital for 
rice-dependent communities. Technological advancements aid 
research into disease dynamics and resilient crop development. 
Accurate disease detection is essential for sustaining 
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productivity and fostering eco-friendly farming. The important 
contribution of this study is given below: 

 To create a robust model for detecting paddy leaf 
diseases utilizing a hybrid deep learning approach. 

 To effectively identifies and classifies multiple paddy 
leaf diseases. 

 To minimize error rates and false positive occurrences in 
the detection process. 

 To evaluate and contrast the efficacy of the proposed 
method with existing models for detecting paddy leaf 
diseases. 

 To support for Sustainable Agriculture 

The remaining of the paper is structured as: Section II 
provides an overview of existing methodologies for detecting 
paddy leaf disease, laying the foundation for the proposed 
research. Section III outlined the method details of the proposed 
approach. The outcomes of the study, including the efficiency of 
the suggested approach in detecting diseases, are discussed in 
Section IV. At last, Section V offers remarks summarizing the 
findings and implications of our work. 

II. LITERATURE REVIEW 

Kulkarni and Shastri [5] emphasized the significance of 
early diagnosis by outlining a methodical strategy to use 
machine learning for paddy leaf disease identification. Training 
a convolutional neural network (CNN) based on the VGG-16 
model involved preprocessing methods using a Kaggle dataset. 
After training, a successful model was obtained with an 
accuracy rate of 95%. A hybrid CNN model was introduced by 
Jesie et al. [6] for the categorization of paddy leaf diseases. The 
hybrid CNN model performed better than other techniques such 
as Deep Neural Network (DNN), Deep Belief Neural Network 
(DBN), and Recurrent Neural Network (RNN). Notable 
outcomes included accuracy of 97%, under 5% error, F-measure 
of 92.3%, 93.1% precision, 92.1% recall value. 

Trinh et al. [7] detailed a methodology for detecting paddy 
leaf diseases by the YOLOv8 model, focusing on leaf folder, leaf 
blast, and brown spot. It collected a dataset of 1634 images from 
rice fields at the Vietnam National University of Agriculture 
with data augmentation techniques applied for improved model 
adaptability. The YOLOv8n architecture was chosen for its 
balance of accuracy, speed, and efficiency, with modifications 
to the loss function incorporating Efficient IoU (EIoU) and 
Alpha-IoU to enhance bounding box regression. Parameter 
settings were optimized to achieve high precision (89.6), recall 
(83.5), F1-score (86.4), and mAP (88.9) during model training. 
Evaluation showed significant improvements over the baseline 
YOLOv8 model, with enhancements in accuracy across disease 
classes. 

Bi and Wang [8] presented a method for paddy leaf disease 
detection using a double-branch DCNN (DBDCNN) model 
integrated with a convolutional block attention module 
(CBAM). The methodology involved training the DBDCNN 
model on a dataset comprising annotated rice leaf images. Also 
compared the performance of the model with established ones 
like VGG-16, ResNet-50, and MobileNet-V2. Results showed 

the model achieved a remarkable accuracy of 97.73%, 
surpassing all comparative models. This high accuracy 
underscores its potential for accurate disease classification in 
agricultural settings. 

Bharanidharan et al. [9] used a Modified Lemurs 
Optimization (MLO) Algorithm as a filter-based feature 
transformation technique to increase the efficiency of 
recognizing different paddy diseases in thermal pictures of 
paddy leaves. The authors created the proposed Modified 
Lemurs Optimization Algorithm by modifying the original 
Lemurs Optimization, taking influence from the Sine Cosine 
Optimization. Studying 636 thermal photos of both healthy and 
sick paddy leaves is part of the analysis. Four machine learning 
methods are evaluated: the RF, the Linear Discriminant 
Analysis, the K-Nearest Neighbor, and the Histogram Gradient 
Boosting. At first, these classifiers show balanced accuracies of 
less than 65%; however, they perform better when using feature 
transformation based on MLO. The achievement of an accuracy 
of 90% using the K-Nearest Neighbor classifier with the 
suggested feature modification is quite noteworthy. 

Iqbal et al. [10] examined a database of paddy leaf diseases, 
including Brown Spot and Bacterial Blight, utilizing images of 
healthy and infected leaf for classification. The system predicted 
and classified rice leaf diseases, aiding both farmers and 
exporters by estimating disease occurrences and vital production 
parameters. Prototype picture acquisition and machine vision 
models enabled real-time detection and categorization in rice 
cultivation. Notably, KNN achieved 67.18%, Inception V3 
reached 93.57%, and VGG19 attained 97.94% accuracy. The 
study emphasized dataset quality and size in deep learning, 
highlighting the methodology's potential to enhance rice 
cultivation and exports. 

A CNN-based DL architecture, incorporating transfer 
learning (TL) techniques, was proposed and implemented by 
Gautam et al. [11], focused on the significant impact of leaf 
diseases on paddy crop health. TL models such as VGG19, 
ResNet, VGG16, SqueezeNet, and InceptionV3 were utilized. 
The methodology involved preprocessing of leaf images 
followed by semantic segmentation to isolate regions of interest 
for fine-tuning TL models. The model specifically targeted 
biotic diseases affected by bacteria and fungi, achieving an 
impressive accuracy rate of 96.4%. The model demonstrated 
superior performance compared to existing approaches. 

Advanced deep learning techniques were employed by 
Yakkundimath et al. [12] to classify rice plant disease symptoms 
using VGG-16 and GoogleNet CNN models through TL. After 
rigorous threefold cross-validation, GoogleNet and VGG-16 
achieved average accuracies of 91.28% and 92.24%, 
respectively. The dataset used consisted of 12,000 labeled 
images representing 24 distinct symptoms across three types of 
rice diseases. Notably, VGG-16 showed slightly better 
performance compared to GoogleNet in disease classification. 
These results suggest promising applications for automating 
disease identification in rice plants, benefiting agricultural 
practices and policymaking. 

Various machine learning and deep learning techniques were 
examined by Tejaswini et al. [13] to identify diseases affecting 
rice leaves, aiming to enhance crop yield for farmers. The study 
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evaluated the effectiveness of different approaches by analyzing 
metrics like accuracy, recall, and precision. It was found that 
deep learning models outperformed traditional machine learning 
methods in disease detection. Notably, a 5-layer convolutional 
network exhibited the highest accuracy at 78.2%, surpassing 
models like VGG16, which achieved an accuracy of 58.4%. 
Additionally, involved classifying rice leaf diseases using 
various deep learning methods, including VGG19, VGG16, 
Xception, ResNet, and a custom 5-layer convolutional network. 
Results indicated that the custom 5-layer convolutional network 
performed the best, achieving approximately 6% higher 
accuracy than standard deep learning models. 

Haque et al. [14] addressed the issue of rice leaf diseases, 
which had been a significant concern for global rice cultivation. 
Recognizing farmers' limited ability to accurately diagnose these 
diseases, the research opted for YOLOv5, identified as a 
promising approach. An extensive dataset comprising 1500 
annotated images was utilized for training the YOLOv5 model, 
covering a wide range of disease manifestations. The 
methodology involved training and evaluating the model to meet 
specific performance metrics, including recognition precision 
(90%), recall (67%), mean Average Precision (mAP) value 
(76%), and F1 score (81%). While the YOLOv5 model 
demonstrated promising results, certain limitations persisted, 
such as the need for further validation across diverse datasets 
and potential challenges in real-world deployment due to 
computational resource requirements. 

Rani et al. [15] undertook a comprehensive exploration of 
methods for detecting rice leaf diseases. Among various 
approaches considered, the deep CNN with ResNet-50 was 
selected for its efficacy in identifying plant diseases. Given the 
global significance of rice cultivation, safeguarding crops 
became a priority, necessitating proactive measures against 
diseases and threats. Utilizing the deep CNN method facilitated 
the processing of extensive datasets, resulting in disease 
identification with an impressive accuracy of 97.3%. 

In the pursuit of improving paddy disease detection and 
classification, Almasoud et al. [16] introduced an Efficient DL 
based Fusion Model (EDLFM-RPD). The methodology 
incorporated preprocessing steps like median filtering and K-
means segmentation to identify affected areas, while feature 
extraction combined handcrafted Gray Level Co-occurrence 
Matrix (GLCM) and Inception-based deep features. 
Classification utilized Salp Swarm Optimization with Fuzzy 
SVM. A series of simulations were conducted to verify the 
efficacy of the EDLFM-RPD model, which yielded promising 
results, achieving a maximum accuracy of 96.170%. 

Recognizing the paramount importance of timely disease 
detection and classification, the Bracino et al. [17] centered on 
utilizing DL algorithms, including EfficientNet-b0, Places365-
GoogLeNet and MobileNet-v2, for this purpose. The targeted 
diseases encompassed bacterial leaf blight, hispa, bacterial 
panicle blight, bacterial leaf streaks, downy mildew, and rice 
tungro disease, reflecting the diverse range of threats to rice 
cultivation. Through extensive experimentation, it was 
discerned that EfficientNet-b0 is the most efficient model with 
accuracy of 97.74%. 

Prathima and Nath [18] examined the classification efficacy 
of various CNN architectures in identifying rice plant diseases. 
Results revealed that AlexNet achieved the highest accuracy at 
89.4%, closely followed by VGG-16, VGG-19, and ResNet-50, 
which exhibited comparable performance. MobileNet emerged 
as a viable option for mobile apps development due to its 
efficiency. The developed Generic Paddy Plant Disease 
Detector (GP2D2) aimed to equip novice farmers with digital 
disease detection capabilities akin to expert farmers. 
Conventional disease identification methods were deemed less 
effective over large agricultural areas, underscoring the 
importance of the mobile application. Drones equipped with 
cameras were proposed for capturing paddy images for disease 
identification via the app. The study offered valuable insights for 
selecting appropriate architectures for real-time disease 
identification applications in paddy plants. The mobile 
application framework's flexibility allowed for easy 
customization by updating or replacing the existing model as 
necessary. 

A critical gap exists in the development of DL models that 
can effectively detect and classify paddy leaf diseases under 
real-world conditions, addressing challenges such as variability 
in background, color issues, and the presence of contaminated 
elements in images. Existing methods, including unsupervised 
approaches and traditional machine learning algorithms like 
SVM, KNN, and Back Propagation Neural Network, encounter 
limitations such as complexity, time consumption, and difficulty 
in handling noise and lighting problems. Moreover, these 
methods may struggle with diseases exhibiting similar 
morphology and color, limiting their applicability across diverse 
environmental conditions and stages of crop growth. Therefore, 
there is a pressing need for research focused on enhancing the 
robustness and scalability of DL models for paddy leaf disease 
detection and classification, considering aspects such as variable 
lighting conditions, weather fluctuations, and the presence of 
multiple disease types simultaneously. Additionally, research 
efforts should aim to bridge the gap between theoretical 
advancements and practical deployment in agricultural settings, 
particularly in resource-constrained environments where 
computational resources and technical expertise may be limited. 
Tackling these obstacles will help create better tools to monitor 
and control paddy leaf diseases, leading to higher crop yields 
and improved food security. 

III. MATERIALS AND METHODS 

Efficient detection and classification of paddy leaf diseases 
are imperative to optimize agricultural yield and ensure food 
security, emphasizing the urgency for the development of a 
robust and scalable deep learning model tailored for real-world 
applications. A detailed visualization of the proposed method is 
given in Fig. 1. 

A. Dataset 

The dataset containing paddy leaf diseases was acquired 
from Kaggle repository, [23] comprising a total of 2627 images 
distributed across the training and validation folders. It 
encompasses six distinct rice leaf diseases, namely Brown Spot, 
Bacterial Leaf Blight, Healthy, Leaf Scald, and Narrow Brown 
Spot, Leaf Blast. Some sample images of paddy leaf disease 
from the dataset are represented by Fig. 2. 
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Fig. 1. Schematic illustration of the proposed model. 

 
Fig. 2. Dataset sample images. 

B. Image Preprocessing and Data Augmentation 

Following the dataset collection phase, the images 
underwent a series of preprocessing and augmentation steps to 
prepare them for training. Preprocessing involves standardizing 
the images, ensuring consistent pixel values and dimensions. In 
this case, pixel values were rescaled to fall within the range of 0 
to 1, to aid in model convergence during training. Augmentation 
methods were then applied to boost the variability of the dataset, 
enhancing the capability to generalize to unseen data. These 
techniques included shear transformations, zooming, flipping 
(both horizontally and vertically), and rotation (up to 30 
degrees). These augmentations mimic real-world variations that 
might occur in the images, such as changes in perspective or 
orientation. Subsequently, the images were scaled down to a 
target size of 224x224 pixels, a standard input size. This resizing 
ensures uniformity in input dimensions across all images, 
facilitating model training. To optimize memory usage during 

training, the images were batched into groups of 64. 
Additionally, the class labels associated with each image were 
encoded in categorical format. This encoding represents each 
class label as a binary vector, where each element corresponds 
to a specific class and indicates its presence or absence of the 
paddy leaf disease in the image. 

C. Architecture of Proposed Model 

The pre-processed images are input into the hybrid deep 
learning architecture proposed in this study. This model 
combines the EfficientNetB0 model with a Capsule network for 
enhanced performance in disease classification. 

1) EfficientNetB0: EfficientNetB0 is a highly efficient 

CNN architecture. It balances model depth, width, and 

resolution through compound scaling, offering advanced 

performance across various computer vision tasks while 
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minimizing computational demands. EfficientNetB0 is 

renowned for its modular design, featuring a stem 

convolutional layer that serves as the initial processing stage for 

input images as Fig. 3. 

Following the stem layer, the architecture comprises 
multiple sequences of MobileNetV2-like MBConv blocks, 
which have squeeze-and-excitation mechanisms, shortcut 
connections, and depth wise separable convolutions [19]. These 
components collectively contribute to the model's efficiency by 
reducing computational complexity while preserving 
representational capacity. The number of MBConv blocks in 
each sequence, as well as the scaling factors applied to network 
dimensions, are determined through a compound scaling 
method. This approach ensures a balanced adjustment of 
network width, depth, and resolution, thereby optimizing the 
model's performance across various computational constraints. 
The layers in the network are scaled by a factor 𝛼. If the original 
network has L layers, the scaled network has approximately 𝛼 ∗
 𝐿 layers. The width of each layer (number of channels) is scaled 
by a factor β. If the original network has W channels in a layer, 
the scaled network has approximately 𝛽 ∗  𝑊 channels. The 
input image resolution is scaled by a factor 𝛾. If the original 
input resolution is 𝑅 𝑥 𝑅 pixels, the scaled input resolution is 
approximately 𝛾 ∗  𝑅 𝑥 𝛾 ∗  𝑅  pixels. The compound 
coefficient 𝜑 is defined as the geometric mean of 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 
given by Eq. (1). 

𝜑 =  √(𝛼 ∗  𝛽 ∗  𝛾)          (1) 

One of the notable features of the EfficientNetB0 
architecture is its utilization of global average pooling, which 
facilitates dimensionality reduction by summarizing spatial 
information across feature maps. This pooling operation aids in 
capturing essential features while mitigating the possibility of 
overfitting, thereby boosting the capacity of generalization. The 
architecture consists of nine stages, each with specific operators, 
resolutions, channels, and layers, designed to process input data 
at different levels of complexity and abstraction. EfficientNetB0 
is typically pretrained on large-scale image datasets such as 
ImageNet, enabling it to learn generic features from diverse 
visual data [20]. This pretrained model can then be fine-tuned 

on smaller, task-specific datasets to adapt its learned 
representations to the nuances of the target domain, making it 
highly versatile for various image classification task. 

2) Capsule network: Drawing inspiration from the 

hierarchical organization of biological neural structures, 

Capsule Neural Networks, or CapsNets, represent a type of 

artificial neural network (ANN) designed to mimic these 

hierarchical relationships. Unlike conventional neural 

networks, CapsNets introduce capsules, termed as digit 

capsules, as fundamental units to better handle hierarchical 

structures and variations in data [21]. These capsules 

encapsulate activation information and spatial relationships, 

outputting pose parameters alongside activations to represent 

specific entities or object parts. CapsNets employ dynamic 

routing to refine coupling coefficients based on pose parameter 

agreement, enhancing recognition of intricate data patterns and 

capturing complex spatial hierarchies. The CapsNet 

architecture includes an encoder network, consisting of layers 

like Convolutional, PrimaryCaps, and DigitCaps, to convert 

image inputs into vectors containing essential parameterization 

parameters as shown in Fig. 4. 

The PrimaryCaps layer clusters neurons into capsules to 
capture important patterns, while the DigitCaps layer represents 
specific entity types and encodes their instantiation parameters. 
Capsule networks utilize dynamic routing to update coupling 
coefficients between lower-level and higher-level capsules, 
aiming to increase agreement between predictions and input 
vectors [22]. Additionally, CapsNets feature a Decoder Network 
as illustrated in Fig. 5, responsible for reconstructing input 
images from the data stored in DigitCapsules, facilitating 
faithful image reconstruction using instantiation properties. This 
reconstruction process contributes to both classification 
accuracy and meaningful image reconstruction, aligning with 
the training objective of Capsule Networks. It calculates the loss 
for each training example and output class using Eq. (2). 

𝐿𝑛 = 𝑇𝑛𝑚𝑎𝑥(0, 𝑚+ − ‖𝑣𝑛‖)2 + 𝜆(1 − 𝑇𝑛)𝑚𝑎𝑥(0, ‖𝑣𝑛‖ −
𝑚−)2   (2) 

 
Fig. 3. Fundamental architecture of EfficientNetB0. 
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Fig. 4. Encoder network of CapsNet. 

 
Fig. 5. Decoder network of CapsNet. 

where 𝐿𝑛 denotes the margin loss for the n-th digit capsule. 
The binary indicator 𝑇𝑛represents the activity vector for the n-th 
digit capsule as 𝑣𝑛 , with its length indicated as ‖𝑣𝑛‖ .The 
positive and negative margins are represented as 𝑚+ and 
𝑚−respectively. Additionally, 𝜆 signifies the down-weighting 
factor for the loss from inaccurate digit capsules. Dynamic 
routing in capsule networks updates coupling coefficients 
between lower-level and higher-level capsules to enhance 
agreement. This iterative update process is governed by Eq. (3), 

𝑐𝑖𝑗 =
𝑒𝑥𝑝(𝑏𝑖𝑗)

∑ 𝑒𝑥𝑝(𝑏𝑖𝑘)𝑘
   (3) 

where 𝑏𝑖𝑗 denotes the log prior probabilities of the coupling 

coefficients 

3) Proposed hybrid model: The proposed hybrid deep 

learning model combines the strengths of EfficientNetB0 and a 

Capsule Network to effectively detect and classify diseases in 

paddy plants. EfficientNetB0 serves as the backbone of the 

model, leveraging its pretrained weights from ImageNet to 

capture intricate hierarchical features from input images. This 

pretrained model is adept at extracting meaningful patterns, 

edges, and textures from images, providing depiction of the 

input data. To further process the features extracted by 

EfficientNetB0, a Global Average Pooling layer is induced. 

This layer preserves crucial information while minimizing 
the feature maps' spatial size, facilitating computational 
efficiency and preventing overfitting. Following the Global 
Average Pooling layer, Dense layers are introduced for 
additional feature extraction and combination. ReLU activation 
functions, which are fitted to every Dense layer, add non-
linearity to the model and improve its ability to represent 
intricate correlations found in the data. After the Dense layers, 

the output is reshaped to prepare the data for integration with the 
Capsule Network. This reshaping step ensures that the features 
extracted by the preceding layers are appropriately formatted 
and compatible with the initial requirements of the Capsule 
Network. 

The Capsule layer receives the reshaped output from the 
Dense layers and performs a series of operations to learn 
hierarchical features. This includes applying a 2D convolution 
to the input, reshaping the resulting feature maps, and applying 
a squashing activation function to encapsulate the activation 
information and spatial relationships within the data. By doing 
so, the Capsule layer can effectively encode complex patterns 
and variations present in the input images. Finally, a dense layer 
with softmax activation function is employed at the output layer 
for disease detection. This layer computes the probability 
distribution over the different disease classes, allowing the 
model to classify input images into the corresponding category 
of disease with high accuracy. Thus, the hybrid deep learning 
model seamlessly integrates the strengths of EfficientNetB0 and 
Capsule Network, enabling robust and efficient detection and 
classification of diseases in paddy plants. 

4) Hardware and software setup: The model utilized for 

this study includes an Intel Core i7-6850K 3.60 GHz 12-core 

processor and a NVIDIA GeForce GTX 1080 Ti GPU with 

2760 4MB memory. Google Collaboratory served as the 

workstation platform. The implementation of the proposed 

work was done using Python, a widely-used programming 

language recognized for its readability and ease of use. Python's 

extensive library ecosystem and dynamic typing, coupled with 

strong community support, have led to its broad acceptance 

across diverse industries and fields. Table I outlines the 

specifications of the hyperparameters utilized in the study. 
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TABLE I. SPECIFICATIONS OF HYPERPARAMETERS 

Hyperparameter Values  

Routings 3 

Loss Function Categorical Cross entropy 

No. of epochs 30 

Optimizer Adam 

Batch Size 64 

Activation Function ReLu, Softmax 

IV. RESULT AND DISCUSSION 

A. Performance Evaluation 

The assessment metrics given in Table II are utilized to 
determine the effectiveness of the suggested hybrid architecture. 

TABLE II.  EVALUATION METRICS 

Performance Metrics Equations 

Accuracy 
(𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 

+  𝐹𝑁) 

Precision 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃) 

Recall 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁 ) 

F1 Score 

2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙 ) 
/ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  
+  𝑟𝑒𝑐𝑎𝑙𝑙 ) 

where, 𝑇𝑃-true positives, 𝑇𝑁 -true negatives, 𝐹𝑃 -false positives and 𝐹𝑁 -

false negatives 

Table III represents the performance evaluation of the 
proposed model for the detection of paddy leaf disease with 
respect to accuracy, recall, precision, and f1 score. 

TABLE III. EVALUATION REPORT OF PROPOSED METHOD 

Performance Metrics  Results Obtained 

Accuracy 97.86% 

Precision 97.98% 

Recall 98.01% 

F1- Score 97.99% 

The provided analysis examines the effectiveness of the 
model using various metrics. The accuracy score, at 97.86%, 
indicates the percentage of instances that were correctly 
identified out of all. Precision, measuring the accuracy of 
positive predictions, is exceptionally high at 97.98%, suggesting 

that the model has a high probability of being accurate when it 
predicts a favorable result. Similarly, the recall value, indicating 
the ability to capture true positive cases, is also impressive at 
98.01%, implying that the model effectively identifies a 
significant portion of the actual positive cases. This high 
precision and recall values collectively represent that the model 
achieves good equilibrium between minimizing false positives 
(incorrectly identified positives) and false negatives (missed 
positives). The F1-Score, a combined measure of precision and 
recall, further validates the model's performance, yielding a high 
score of 97.99%. This metric confirms the model's ability to 
maintain a harmonious trade-off between precision and recall, 
emphasizing its robustness in classification tasks. Table IV 
illustrates the classification report of the suggested model which 
effectively detect the paddy leaf disease. 

TABLE IV. CLASSIFICATION REPORT OF SUGGESTED METHOD 

Paddy Leaf 

Disease 
Precision F1-Score Recall 

Leaf Scald 0.97 0.98 0.98 

Leaf Blast 0.96 0.98 0.97 

Narrow Brown 

Spot 
0.98 0.97 0.97 

Brown Spot 0.97 0.98 0.97 

Bacterial Leaf 

Blight 
0.97 0.97 0.97 

Healthy 0.98 0.97 0.98 

Accuracy and loss plots are essential visualizations for 
evaluating model performance during training. The accuracy 
plot depicts how the model's predictive accuracy changes over 
training epochs, while the loss plot shows variations in the 
model's loss function. These plots offer insights into aspects like 
model convergence, overfitting, or underfitting, helping to 
refine the model for better performance. Fig. 6 presents these 
plots, indicating trends in accuracy and loss across epochs. Fig. 
7 presents the confusion matrix, to evaluate the classification 
model's accuracy. It displays true positives, false negatives, true 
negatives, and false positives, providing a comprehensive view 
of classification outcomes. Each cell in the matrix represents a 
combination of true and predicted labels, highlighting the 
model's classification performance. The main diagonal 
represents correct classifications, while off-diagonal elements 
indicate misclassifications. 

The detection output of the suggested hybrid model that 
effectively detect the paddy leaf disease is shown by Fig. 8. 

 

Fig. 6. Accuracy and loss plot of the hybrid model. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 15, No. 7, 2024 

835 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 7. Confusion matrix of the hybrid method. 

 
Fig. 8. Detection output. 

B. Performance Comparison 

Table V compares the performance of the proposed hybrid 
network with conventional methods based on ML and DL, 
providing a comprehensive analysis of their effectiveness. The 
analysis of various deep learning methodologies highlights the 
superior performance of the proposed hybrid model. While 
Convolutional Neural Networks (CNNs) such as VGG-16 and 
advanced hybrid CNN models demonstrated high accuracy, 
reaching up to 97%, and other models like YOLOv8 and 

Double-branch DCNN with CBAM also performed well with 
accuracies of 97.73% and solid precision and recall metrics, the 
proposed model stands out. By integrating EfficientNetB0 with 
a Capsule Network, it achieved the highest accuracy of 97.86%, 
surpassing other approaches. It also excelled in precision, recall, 
and F1-score, demonstrating its robust capability in delivering 
superior overall performance compared to existing methods. 
This suggests that the hybrid model not only achieves better 
accuracy but also provides enhanced reliability and 
effectiveness in its predictions. 
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TABLE V. CLASSIFICATION REPORT OF PROPOSED METHOD 

Author Methodology Used Results 

Kulkarni and Shastri [5] 
CNN based on VGG-16 model, preprocessing with 

Kaggle dataset 
Accuracy: 95% 

Jesie et al. [6] 
Hybrid CNN model outperforming DNN, DBN, LSTM, 

and RNN 

Accuracy: 97%, F-measure: 92.3%, Precision: 93.1%, Recall: 

92.1%, Sensitivity: 93.4%, Specificity: 94.27% 

Trinh et al. [7] YOLOv8 model with data augmentation techniques  Precision: 89.6, Recall: 83.5, F1-score: 86.4, mAP: 88.9 

Bi and Wang [9] 
Double-branch DCNN (DBDCNN) model integrated with 

CBAM 
Accuracy: 97.73% 

Bharanidharan et al. [10] 
Modified Lemurs Optimization Algorithm with machine 

learning methods 
Balanced accuracy: 90% 

Iqbal et al. [11] 
Utilized KNN, Inception V3, and VGG19 with varying 

accuracies 
KNN: 67.18%, Inception V3: 93.57%, VGG19: 97.94% 

Gautam et al. [12] 

TL models such as InceptionV3, VGG16, ResNet, 

SqueezeNet, and VGG19 with preprocessing and 

segmentation 

Accuracy: 96.4% 

Yakkundimath et al. [13] 
Transfer learning using VGG-16 and GoogleNet CNN 

models 
VGG-16: 92.24%, GoogleNet: 91.28% 

Tejaswini et al. [14] 
Various deep learning models including VGG19, VGG16, 

Xception, ResNet, and custom 5-layer CNN 

Custom CNN: 6% higher accuracy than standard deep learning 

models 

Haque et al. [15] 
Utilized YOLOv5 model with specific performance 

metrics 

Recognition precision: 90%, Recall: 67%, mAP: 76%, F1 

score: 81% 

Rani et al. [16] Deep CNN with ResNet-50 Accuracy: 97.3% 

Almasoud et al. [17] 
Efficient Deep Learning based Fusion Model (EDLFM-

RPD) with preprocessing and feature extraction 
Maximum accuracy: 96.170% 

Bracino et al. [18] 
DL algorithms including MobileNet-v2, EfficientNet-b0, 

and Places365-GoogLeNet 
Average accuracy: 97.74% 

Proposed Model 
Hybrid Deep learning model combining 

EfficientNetB0 and Capsule Network 

Accuracy of 97.86% , Precision of 97.98% , Recall of 

98.01% , and F1-Score of 97.99%. 
 

V. CONCLUSION 

The detection and classification of paddy leaf diseases are 
critical aspects of modern agricultural practices, contributing 
significantly to crop management, yield optimization, and food 
security. This study presents a comprehensive exploration of the 
suggested hybrid DL model for the effective identification of 
paddy leaf diseases, addressing the limitations of existing 
methodologies. Using a combination of the EfficientNetB0 
architecture and Capsule Network, the proposed model 
demonstrates remarkable performance in terms of accuracy, 
precision, recall, and F1-Score, as evidenced by the evaluation 
metrics. With an accuracy of 97.86% and precision, recall, and 
F1-Score values all exceeding 97%, the model demonstrates its 
capability to precisely detect and classify paddy leaf diseases, 
including Brown Spot, Leaf Scald, Narrow Brown Spot, Leaf 
Blast, Bacterial Leaf Blight, and Healthy leaves. Moreover, the 
hybrid reliability is further underscored by its comparison with 
conventional approaches, where it consistently outperforms 
existing methods in terms of accuracy and efficacy. The 
suggested hybrid DL model represents advancement in the field 
of agricultural technology, offering an efficient solution for 
identification and classification of paddy leaf diseases. This 
model holds immense potential to revolutionize crop 
management practices, contribute to global food security efforts, 
and empower farmers with actionable insights for sustainable 
agriculture. Future work will involve expanding the model to 
detect a broader range of paddy leaf diseases and integrating it 
with real-time processing for on-field use. Efforts will also focus 
on combining the model with environmental data to enhance 
diagnostic accuracy. Additionally, validating the model through 

practical field trials will be essential for ensuring its 
effectiveness in real-world agricultural settings. 
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