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Abstract—Depression is common and dangerous if untreated. 

We must detect depression patterns early and accurately to 

provide timely interventions and assistance. We present a novel 

depression prediction method (depressive -deep), which combines 

preprocess brain electroencephalogram (EEG) and ECG-based 

heart-rate variability (HRV) signals into a 2D scalogram. Later, 

we extracted features from 2D scalogram images using a fine -

tuned MobileNetV2 deep learning (DL) architecture. We 

integrated an AdaBoost ensemble learning algorithm to improve 

the model’s performance. Our study suggested ensemble  learning 

can accurately predict asymmetric and symmetric depression 

patterns from multimodal signals such as EEG and ECG. These 

patterns include major depressive state (MDS), cognitive and 

emotional arousal (CEA), mood disorder patterns (MDPs), mood 

and emotional regulation (MER), and stress and emotional 

dysregulation (SED). To develop this depressive-deep model, we 

have performed a pre-trained strategy on two publicly available 

datasets, MODMA and SWEEL-KW. The sensitivity (SE), 

specificity (SP), accuracy (ACC), F1-score, precision (P), 

Matthew’s correlation coefficient (MCC), and area under the 

curve (AUC) have been analyzed to determine the best 

depression prediction model. Moreover, we used wearable 

devices over the Internet of Medical Things (IoMT) to extract 

signals and check the depressive-deep system’s generalizability. 

To ensure model robustness, we use several assessment criteria, 

including cross-validation. The depressive-deep and feature 

extraction strategies outperformed compared to the other 

methods in depression prediction, obtaining an ACC of 0.96, 

IOTSE of 0.98, SP of 0.95, P of 0.95, F1-score of 0.96, and MCC 

of 0.96. The main findings suggest that using 2D scalogram and 

depressive-deep (fine-tuning of MobileNet2 + AdaBoost) 

algorithms outperform them in detecting early depression, 
improving mental health diagnosis and treatment. 
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I. INTRODUCTION 

Mental depression is a global health issue that affects 
people of all ages and genders [1]. Especially during the 
COVID-19 epidemic, stress and anxiety have widely affected 
the health of humans. Early depression pattern detection can 
improve treatment outcomes, prevent suicidal tendencies, and 
improve mental health care [2, 3]. Traditional depression 
diagnosis uses clinical examinations, questionnaires, and 

interviews [4]. While these methods are useful, they are often 
subjective and constrained by healthcare providers’ biases and 
expertise [5]. Technology and machine learning have shown 
promise in improving diagnostic procedures in recent years [6]. 
Most importantly, based on current data, CAD systems can 
forecast patient health outcomes [7]. AI has transformed 
pathology identification using these data. Previous research has 
proposed EEG and HRV models for early neurological disease 
identification [8]. 

Enhanced alpha power, decreased beta power, frontal 
asymmetry, and diminished connectivity are EEG features [9]. 
HRV patterns show reduced HRV, increased sympathetic 
activity, and decreased parasympathetic activity. Some 
elements may not apply to EEG and ECG patterns since they 
are distinct [10]. Fig. 1 visualizes EEG and ECG-based HRV 
signals. Our analysis reveals specific patterns like MDS with 
marked asymmetry in brain wave activities, while CEA 
exhibits more symmetrical features. The model discerns 
depression states using both symmetrical and asymmetrical 
signal patterns as biomarkers for accurate diagnosis. 

EEG patterns (alpha and beta power, frontal asymmetry, 
and connectivity) indicate brain activity linked to depression. 
Higher frontal alpha power suggests lower brain activity, while 
beta power indicates tension or worry. Frontal asymmetry 
relates to affective and motivational dysregulation. Depressed 
individuals may show altered brain connectivity. HRV patterns 
reflect the stress-relaxation balance, with depression causing 
increased sympathetic or decreased parasympathetic activity. 
These representations go beyond ‘cosine signals’ to depict 
depression’s physiological alterations and biological 
relationships. 

EEG and ECG are multimodal data valuable for mental 
health assessment. EEG non-invasively records brain activity, 
revealing cognitive and emotional processes [11]. HRV 
measures autonomic nervous system activity and emotional 
modulation through heartbeat intervals. EEG and HRV are 
objective indicators for depressive patterns [12]. Mobile crowd 
sensors (MCSs) use mobile device sensors for data sharing and 
behavior tracking, essential for Internet of Medical Things 
(IoMT) applications. This study uses MCS to quantify 
symptoms and diagnose depression patterns from EEG and 
ECG-based signals, analyzing smartphone usage for behavioral 
insights. 
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TABLE I.  COMPARISON STUDIES ON DETECTING DEPRESSION PATTERNS USING MACHINE LEARNING AND DEEP LEARNING TECHNIQUES, INCLUDING THE 

DATASET , ACCURACY, AND LIMITATIONS OF EACH APPROACH 

Study Methodology Dataset Accuracy (% ) Limitations 

[22] 
Machine Learning (Nonlinear Features + 

Logistic Regression) 
EEG signals 90.00 

Limited to EEG data, may not generalize  

widely. 

[23] Deep Learning (CNN + LSTM) EEG signals 99.07 (Right) / 98.84 (Left) 
Complex model, computationally  

intensive. 

[24] 
Ensemble Learning + Deep Learn ing 

(Power Spectral Density) 

EEG data from emotional 

face stimuli task 
89.02 

Performance may vary with different  

features. 

[25] Machine Learning (SVM, LR, NB) 
EEG-based functional 

connectivity 

SVM: 98.00, LR: 91.70, 

NB: 93.60 
Limited to functional connectivity features. 

[26] Deep Learning (CNN-LSTM) EEG signals 99.12 (Right) / 97.66 (Left) Computationally intensive, deep model. 

[27] Deep Learning (CNN) EEG signals 93.50 (Left) / 96.00 (Right) Focus on specific hemisphere EEG signals. 

[28] Deep Learning (DWSN) EEG signals 
GMC: 99.95, MODMA: 

99.30 

May require substantial computational 

resources. 

[29] Deep Learning (GCN + Attention) EEG signals 92.87 / 83.17 May require significant training data. 

[30] 
Machine Learning (VMD + EEG Channel 

Selection) 
EEG signals 

Varies based on channel 

selection 
Dependent on channel selection method. 

[31] Deep Learning (MFCC + CNN) 
Audio Data (DAIC-WOZ, 

MODMA, RAVDESS) 
Over 90% 

Limited to audio-based depression 

detection. 

[32] 
Handcrafted Classification Model (TPTLP 

+ KNN) 
EEG signals 

76.08 (Channel 1) / 83.96 

(Top 13 Channels) 

May not achieve as high accuracy as deep 

learning. 

[33] Machine Learning (CNN) EEG signals 97.00 
May not capture complex patterns in EEG 

data. 

[34] 
Machine Learn ing (Decision Tree, Random 

Forest, etc.) 
EEG signals 98.13 (CNN + Band Power) 

Limited to EEG data, may not generalize  

widely. 

[35] Deep Learning (Self-Attention + CNN) EEG signals 91.06 May require substantial training data. 
 

We combine deep and ensemble learning to predict 
depression using EEG and HRV data. The MobileNetV2 deep 
learning model analyzes 2D arrays, and AdaBoost ensemble 
learning improves predictive power. We aim to test EEG and 
ECG-based HRV as depression biomarkers, evaluate the 
model, and identify relevant features for accurate predictions. 
Our model is an auxiliary tool for mental health assessment 
and should complement healthcare experts’ experience. This 
depressive-deep system transforms 1D multimodal signals into 
2D scalograms using HRV and EEG datasets. After 
preprocessing, useful features are extracted by fine-tuning 
MobileNetV2, addressing the challenge of feature selection 
without overfitting. 

The main contributions using fine-tuned MobileNetV2 and 
AdaBoost to recognize multiple depression patterns from HRV 
and EEG data are: 

1) This work uses MobileNetV2, a lightweight deep 

learning model, and AdaBoost, an ensemble learning method. 

2) This new approach improves depression pattern 

identification from multimodal ECG and EEG data by 

combining their capabilities into one 2D scalogram. 

3) This research shows depression pattern prediction 

outperforms existing methods. The MobileNetV2 and 

AdaBoost models outperform earlier methods in mental health 

diagnosis, demonstrating the potential of sophisticated 

machine learning. 

4) The model’s potential for early depression diagnosis 

and treatment is highlighted. This strategy could improve 

mental health by monitoring and supporting depressed people 

via wearable gadgets or smartphone apps. 

Our developed model is detailed in the subsequent article 
sections. In Section II, we described the literature review. 
Afterwards, the article begins with a full discussion of EEG 
and ECG signal preprocessing procedures to create 2D 
scalograms in Section III. Next, we present the MobileNetV2 
deep learning model's design and fine-tuning, then integrate the 
AdaBoost ensemble learning method to improve prediction 
performance. The study presents MODMA and SWEEL-KW 
datasets in Section IV with assessment metrics for model 
accuracy, sensitivity, specificity, precision, F1-score, MCC, 
and AUC. We also address IoMT-based wearable device 
deployment to test the model's generalizability. Finally, we 
compare our technique to others and show that the depressive-
deep model is better at early depression identification. Section 
V describes the discussion of this paper and finally, the paper 
concludes in Section VI. 

II. LITERATURE REVIEW 

The literature on depression diagnosis using ECG-based 
HRV and EEG data explores deep learning and ensemble 
learning in mental health diagnoses, highlighting research gaps 
and new methodologies. Depression has serious social and 
economic effects. Researchers have used HRV and EEG data 
to detect depression patterns. This section reviews experiments 
using MobileNetV2 and AdaBoost to analyze HRV and EEG 
data. 

In study [13], a novel EEG-based depression detection 
method employs MobileNetV2 deep learning and SVM 
classifiers to analyze EEG spatial and temporal patterns. In 
study [14], HRV data predicts depression using AdaBoost, 
combining weak classifiers for reliable predictions. 
MobileNetV2’s architecture in study [15] addresses deep 
learning on mobile devices with minimal complexity and 
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improved performance. In study [16], HRV-based depression 
diagnosis using AdaBoost improves model performance and 
recognition accuracy. The literature shows increasing use of 
MobileNetV2 and AdaBoost for diagnosing depression from 
HRV and EEG data. These strategies could improve mental 
health diagnoses. More research is needed to address data 
availability, interpretability, and real-world applicability issues, 
enhancing depression detection technologies. Relevant papers 
on HRV and EEG data in machine learning include studies on 
model evaluation metrics like RMSE and MAE [17]. 

Sathyanarayana and Krishnan propose a hybrid deep 
learning model using CNNs and LSTM networks to assess 
EEG and HRV data [18]. Shi et al. use a brain-functional 
network-based EEG feature selection method for depression 
recognition [19]. This study examines nonlinear complexity in 
brain functional fMRI signals in schizophrenia [20], while 
Subhani et al. assess brain functional connectivity using deep 
learning with resting-state fMRI data [21]. Previous systems 
[22–27] using deep learning architectures like CNN and LSTM 
with 1D EEG signals recognized limited depression patterns. 
Sharma et al. (2024) proposed a Deep Wavelet Scattering 
Network (DWSN) for automated depression identification 
using EEG signals [28], achieving high accuracy. Zhang et al. 
(2024) used a graph convolution network with an attention 
mechanism for depression detection in public datasets [29]. 

Aljalal et al. (2024) detected minor cognitive impairment 
using variational mode decomposition and machine learning 
with few EEG channels [30]. Das and Naskar (2024) proposed 
an MFCC-CNN model for depression identification from audio 
signals, achieving over 90% accuracy [31]. Tasci et al. (2023) 
used cross-validation for identifying MDD with EEG signals 
[32]. Ksibi et al. (2023) employed CNN and machine learning 

for detecting depression patterns in EEG data [33]. Khadidos et 
al. (2023) used band power features for depression 
identification, achieving high accuracy with CNN models [34]. 
Xia et al. (2023) used an end-to-end deep learning model for 
EEG-based depression classification, achieving high accuracy 
[35]. These studies advance mental health diagnosis through 
various EEG signal processing methods and machine learning 
models. Table I compares these state-of-the-art studies. 

III. PROPOSED METHODOLOGY 

Fig. 1 displays the systematic flow diagram. This study 
used numerous essential phases. First, we obtained ECG-based 
HRV and EEG data from both depressed and non-depressed 
individuals using wearable heart rate monitors and specialist 
devices. We protected data privacy through ethical approval 
and informed permission. Preprocessing included HRV data 
normalization, artifact removal, and EEG data filtering and 
artifact removal. Next, we transform the preprocessed ECG 
and EEG data into 2D scalogram images. We fine-tuned 
MobileNetv2 to extract features from HRV dynamics and brain 
activity patterns. The suggested model architecture integrated 
MobileNetV2, a lightweight deep learning model, with 
AdaBoost ensemble learning. We assessed the model 
performance using cross-validation metrics such as accuracy, 
sensitivity, specificity, precision, F1-score, and AUC. SMOTE 
created synthetic depressed samples to correct the class 
imbalance. We used Python, scikit-learn, and TensorFlow for 
hyperparameter tuning and optimization. The study noted 
limitations like the short dataset and potential overfitting and 
advised caution when interpreting model results. The study 
used ECG-based HRV and EEG data and advanced machine 
learning to improve depression pattern recognition and mental 
health diagnoses. 

 
Fig. 1. A systematic flow diagram of the proposed system for detecting multiple depression patterns from EEG and HRV signals . 

TABLE II.  DATA DESCRIPTION CAPTURED FROM MODMA AND SWELL-KW DATASETS 

Dataset Properties  Values  

MODMA [36] 

Subjects with depression 30 

Channels  128 

Sampling rate (Hz) 1000 

SWELL-KW [37] 

Subjects  32 

Subjects with depression 25 

Male/female ratio 8/17 

ECG 6 

Sampling rate (Hz) 0.0 to 1000 

Total Number of Subjects  45 
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A. Data Acquisition 

We collected heart rate variability (HRV) based on ECG 
and brain activities through EEG data from a diverse group of 
participants, which included individuals with different patterns 
of depression and those without depression. We obtained the 
HRV data using wearable heart rate monitors and captured the 
EEG data using a specialized electroencephalogram (EEG) 
device. The EEG [36] and ECG data [37] are available online. 
People commonly use a heart rate monitor or an 
electrocardiogram (ECG) device to capture HRV signals. 
These devices are non-invasive and can accurately measure 
variations in time intervals between successive heartbeats. The 
remaining paragraphs describe the details of the datasets in 
Table II. 

EEG signal data utilized in this study are sourced from the 
MODMA dataset [36], a multi-modal open dataset designed 
for research on mental disorders. The dataset includes EEG 
data obtained from individuals wearing a conventional 128-
electrode elastic cap or a newly developed wearable EEG 
collector with three electrodes, suitable for a broader 
application. Specifically, this investigation focuses on 
analyzing resting-state EEG signals collected from individuals 
equipped with the 128-channel cap. Inclusion criteria for 
participants in the MODMA dataset require them to be aged 
between 18 and 55, have normal or corrected-to-normal vision, 
and possess at least an elementary level of education. Some 
patients were diagnosed with major depressive disorder 
(MDD). Moreover, patients with MDD should not have used 
psychotropic drugs within the two weeks preceding data 
collection, and control group participants should have no 
history of mental illness in their families. To maintain sample 
integrity and enhance the generalizability of results, individuals 
with pre-existing mental illnesses, brain injuries, significant 
physical ailments, or severe suicidal tendencies were excluded 
from the MODMA dataset. 

For MODMA and SWELL-KW signal average durations, 
our study used EEG- and ECG-based HRV data with 5 min 
sessions. This length is the same as resting-state EEG and 
short-term HRV methods. It gives us a balanced way to obtain 
useful physiological information about depressed states while 
still making sure the participants are comfortable. These 5 min 
sessions often capture a complete image of brain activity and 
heart rate variability, laying the groundwork for our 
depression-related pattern analysis without burdening subjects. 
Fig. 2 shows the visual representation of EEG and ECG-based 
HRVE signals. 

B. Signal Preprocessing 

Preprocessing steps on multimodal (EEG, ECG) signals is 
performed to remove noise and accurately extract depression 
patterns. EEG data are initially preprocessed for depression 
pattern analysis using a bandpass filter. This filter isolates 
frequency components linked to depression-related brain 
activity. A typical filter, the Butterworth bandpass filter, 
focuses on a specified frequency range, usually 1–30 Hz. This 
filtering stage reduces noise and highlights important 
frequencies. The EEG data are then used to determine 
connection characteristics. Coherence or phase synchronization 
analysis yields these traits. The outcome is a connection 

matrix, with each member representing EEG channel 
connectivity strength. These findings show complicated brain 
area relationships, which might help explain depression. EEG 
characteristics are normalized by the algorithm for uniformity 
and comparability. This step centers the data at zero mean and 
scales them to unit variance. The method standardizes the 
features by determining the mean and standard deviation for 
each feature over all EEG samples. Normalization removes 
biases and guarantees that all characteristics contribute equally 
to the analysis. 

ECG signal preprocessing begins with data preparation for 
analysis. Depending on the dataset and needs, these processes 
may involve resampling HRV signals to a specified sampling 
frequency and applying low-pass filters to reduce noise and 
artifacts. Resampling synchronizes ECG and EEG data for 
useful analysis. After preparing ECG data, the system extracts 
depression-related HRV characteristics. Autonomic nervous 
system components like sympathetic and parasympathetic 
activity are routinely measured. These measurements are 
calculated for each ECG segment using feature extraction. 
These traits reveal depression’s physiological elements. The 
preprocessed EEG and ECG characteristics are saved 
separately for analysis in the final stage, as shown in Fig. 3. 
These characteristics are now ready for machine learning or 
statistical analysis to discover depressive tendencies. We can 
construct models or conduct statistical studies using these 
processed characteristics to better understand depression 
patterns and enhance diagnosis and therapy. 

 

Fig. 2. A sample EEG- and ECG-based HRV multimodal signals from 
MODMA and SWELL-KW datasets. 
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Fig. 3. A visualized diagram of EEG- and ECG-based HRV original and 

preprocess signals. 

C. Signal Transformations 

This modified algorithm takes preprocessed EEG and ECG 
signals as input and generates 2D scalogram-like images by 
applying continuous wavelet transform (CWT) to both signals, 
as shown in Fig. 4. It then combines the resulting images to 
form a single scalogram-like depression pattern. The following 
paragraphs explain the process. The first stage is preprocessing 
EEG and ECG signals. This preprocessing involves noise 
filtering, signal normalization, and segmenting continuous data 
into digestible parts. This cleans and standardizes signals for 
analysis. We separate the signals into time-window-sized parts 
after preprocessing. Zero-padding standardizes these segments’ 
lengths. Standardization is essential for fair segment 
comparison and analysis. The next stage applies the continuous 
wavelet transform to each EEG and ECG segment. The CWT 
uses a scaled and shifted dynamic window (the main wavelet) 
to assess these segments’ frequency content over time. This 
approach is ideal for EEG and ECG signals because it can 
analyze high and low frequencies with acceptable resolution 
and capture the temporal evolution of multiple frequency 
bands. The CWT produces EEG and ECG scalograms. 

Scalograms are 2D image patterns that show a signal’s 
frequency components across time. The intensity of the image 
corresponds to the amplitude of these components at different 
frequencies and periods. Combining EEG and ECG scalograms 
creates a single, complete pattern in a 2D image. This image 
shows probable depression patterns by combining EEG and 
ECG data. We normalize the combined scalogram pictures for 
size, brightness, and contrast to facilitate comparison and 
study. This standardization lets scalogram patterns be seen, 
algorithmically evaluated, and compared, as shown in Fig. 4. 
We divide EEG and ECG data into small patches. Each 
component represents a short data period. We add zeros to 
short bits to make them all the same size. This guarantees fair 
comparisons of all components. Over time, we examine how 
frequencies like high and low pitches change in each piece of 
data. This reveals depressive tendencies. Each data point is 
transformed into a “scalogram” using the CWT transform. We 
mix EEG and HRV scalograms to create one image. This 

graphic depicts depression’s effects on brain activity and heart 
rate. For simple comparison, we keep our photographs the 
same brightness and blackness. After performing this for all 
our data, we have 2D depression pattern images. Each 2D 
image illustrates patterns from our EEG and ECG data that 
might help us understand depression. Preprocessed EEG and 
HRV data are converted into 2D images for image. 

The continuous wavelet transform (CWT) uses a dynamic 
window called the main wavelet to distinguish it from the 
short-time Fourier transform (STFT). This wavelet is scaled 
and shifted during transformation, providing large low-
frequency and short high-frequency time intervals. The STFT 
uses constant window sizes, whereas the CWT can adapt to 
different window sizes to evaluate both high- and low-
frequency components in a time series [34]. CWT is ideal for 
EEG analysis due to its versatility. To maximize resolution, the 
approach uses smaller scales for high frequencies and bigger 
scales for low frequencies. In practice, CWT or STFT depends 
on signal properties and analytic aims. The CWT advantages 
include great flexibility, accurate frequency localization, and 
thorough time-frequency information. STFT is more 
economical and may be suited for simpler applications where 
fine-grained time-frequency analysis is not necessary. The 
CWT transform technique is calculated by Eq. (1) as: 

W𝑥(s,τ) =
1

√𝑠
∫ 𝑥(𝑡)

∞

−∞
ψ′ (

t−τ

𝑠
)𝑑𝑡 

The continuous Wavelet Transform (CWT) is a technique 
that creates scalograms from EEG and ECG data. It analyzes 
data, typically a continuous-time signal, using multiple wavelet 
expansions and time offsets, notably the Morlet Continuous 
Wavelet. The resulting CWT scalograms provide an 
interpretable view of the local time-frequency energy density in 
the signal. Each signal segment is transformed into a scalogram 
picture, making the data more accessible for examination. Our 
work involved the production of 500 photos, 100 for each 
segment, demonstrating the interpretability of the analysis. 
These scalogram pictures, with their detailed frequency 
components, unveil the temporal and frequency properties of 
blood volume changes throughout cardiac cycles, engaging the 
viewer in the analysis process. Finally, the example scalogram 
pictures of three individuals, possibly demonstrating the post-
CWT transformation data, may reveal signal differences or 
distinctive characteristics. 

A major step in developing scalogram-based images was 
using the Morlet wavelet as a continuous wavelet transform 
(CWT). Next, the algorithm requires a list of pre-processed 
EEG and ECG signal segments representing data time 
intervals. Each segment has values indicating signal amplitudes 
at discrete times. The approach initializes an empty 2D NumPy 
array named “image_matrix”. The scalogram information for 
each signal segment will be stored in this array, with rows 
representing segments and columns indicating time or 
frequency bins. Steps taken by the algorithm for each EEG and 
ECG segment in the input list: (1) Based on segment duration 
and sampling rate, calculate segment data points. (2) To 
guarantee consistency, pad the segment with zeros if it is 
shorter than required. (3) Calculate the segment scalogram 
using CWT. The transformation depends on the Morelet 
wavelet type. (4) Use the scalogram absolute value to measure 
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frequency component magnitude. (5) Resize the scalogram to 
fit the picture length provided by desired_length. This method 
creates a 2D scalogram as shown in Fig. 4 to show the 

frequency content of several signal segments. Time-varying 
frequency components of data can be analyzed. The overall 
algorithm steps are shown in Algorithm 1. 

Algorithm 1:  Generating 2-D scalogram image from Preprocessed EEG and ECG signals 
 Input: x:  Preprocessed EEG and ECG signals 

 Output: 𝑖𝑚𝑎𝑔𝑒𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚: frequency content of EEG and ECG signal segments 

 

 [Initialize Parameters] 
 desired_length = 256×256 
 segment_duration = 5s  
 sampling_rate = 250 Hz 

 wavelet = 'Morlet' 

Function generate-scalogram ( 𝑁𝑒𝑒𝑔, 𝑁ℎ𝑟𝑣): 

𝑖𝑚𝑎𝑔𝑒𝑠𝑐𝑎𝑙𝑜𝑔𝑟𝑎𝑚  =  𝑝𝑎𝑑𝑑𝑖𝑛𝑔(desired_length ,0); 

For each  𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑒𝑒𝑔 , ℎ𝑟𝑣) in zip(𝑁𝑒𝑒𝑔, 𝑁ℎ𝑟𝑣) do 

 D =  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠(𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∗  𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑟𝑎𝑡𝑒) ; 

  𝑒𝑒𝑔 −scalogram, frequencies  = 𝐶𝑊𝑇(𝑒𝑒𝑔_𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑠𝑐𝑎𝑙𝑒𝑠, 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠); 
 ℎ𝑟𝑣 −scalogram, frequencies  = 𝐶𝑊𝑇(ℎ𝑟𝑣_𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑠𝑐𝑎𝑙𝑒𝑠, 𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑠); 

 eeg − r =  𝑅𝑒𝑠𝑖𝑧𝑒(𝑎𝑏𝑠𝑒𝑒𝑔 − 𝑠𝑐𝑎𝑙𝑜𝑔𝑟𝑎𝑚, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑙𝑒𝑛𝑔𝑡ℎ) ; 

 hrv − r =  𝑅𝑒𝑠𝑖𝑧𝑒(𝑎𝑏𝑠ℎ𝑟𝑣 − 𝑠𝑐𝑎𝑙𝑜𝑔𝑟𝑎𝑚, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑙𝑒𝑛𝑔𝑡ℎ) ; 

  𝑖𝑚𝑎𝑔𝑒𝑠𝑐𝑎𝑙𝑜𝑔𝑟𝑎𝑚 = 𝑖𝑚𝑎𝑔𝑒𝑠𝑐𝑎𝑙𝑜𝑔𝑟𝑎𝑚 +  eeg − r +  hrv − r 

 end 
 Return (𝑖𝑚𝑎𝑔𝑒𝑠𝑐𝑎𝑙𝑜𝑔𝑟𝑎𝑚); 

 End of algorithm 

 

(a)    (b)    (c) 

Fig. 4. Scalograms visualize EEG and ECG signals, where figure (a) shows the preprocessed EEG scalogram, (b) presents the ECG scalogram, and then figure (c) 

combines 2D scalogram representing depression patterns.

D. Features Extraction 

This table lists the MobileNetV2 and AdaBoost 
hyperparameters needed to train and optimize the models for 
early depression diagnosis using EEG- and ECG-based HRV 
inputs. The dataset, challenge, and computational resources for 
the research will determine these hyperparameter values. 
Tuning these hyperparameters can greatly affect model 
performance and generalizability. In our approach, we use 
scalograms extracted from EEG- and ECG-based HRV to input 
a fine-tuned MobileNetV2 model for depression pattern 
recognition. Freezing several basic MobileNetV2 layers, 
adding a classification layer, tweaking hyperparameters like 
learning rate and dropout rate, and training on the fine-tuning 
dataset are carried out by the algorithms. This method refines 
hyperparameters until performance is attained. The depression 
pattern detection model is generated by testing the fine-tuned 
MobileNetV2 model on a test set. 

Specifically optimized for mobile devices, MobileNetV2 is 
a CNN architecture with a unique structure as shown in Fig. 5 

that establishes connections between bottleneck layers. 
Moreover, it employs deep folds in the intermediate expansion 
layer to extract nonlinear features effectively. The 
MobileNetV2 architecture comprises 32 layers of initial 
convolution followed by 19 bottleneck layers. In this research, 
we introduce a customized MobileNetV2 design incorporating 
two innovative fine-tuning strategies for the identification of 
2D depression images. 

MobileNetV2 has various benefits over other deep learning 
systems. It thrives on tiny datasets with difficult training and 
substantial overfitting risk. MobileNetV2 reduces overfitting, 
making it a good visual classification algorithm. It optimizes 
memory utilization and reduces errors, making it fast and 
efficient. The MobileNetV2 architecture speeds transaction 
execution, facilitating testing and parameter tuning. The 
transfer learning method of fine-tuning uses pre-trained CNN 
models to classify new tasks efficiently. While constructing a 
CNN model from the start is time-consuming and 
computationally costly, fine-tuning is an efficient option. Main 
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strategies for using pre-trained transfer learning models include 
feature extraction, categorization, and fine-tuning. This method 
uses the pre-trained CNN model to extract features. New layers 
tailored for the destination dataset’s classes replace the model’s 
final, completely linked layers. The pre-trained model collects 
key information and classifies additional layers. Fine-tuning is 
achieved by changing and training selected top layers of the 
pre-trained CNN model and adding classifier layers. This 
method lets the model tailor its high-level feature 
representations to the task. Later layers in the model are more 
specialized, and fine-tuning modifies them for the new dataset 
without losing generic in-formation from pre-training. In time-
sensitive applications like depression pattern identification with 
limited training data, fine-tuning is crucial. It optimizes pre-
trained models, saving time and effort by building on past 
information. Deep learning and model training for specific 
tasks are optimized using this method, even with a smaller 

dataset. Fine-tuning adapts the pre-trained model’s general 
knowledge to the new classification task, yielding results like 
training from the start with less data. Fine-tuning 
hyperparameters for MobileNetV2 involves optimizing the 
model’s performance by selecting the best combination of 
hyperparameters based on the specific dataset and task at hand, 
as visually displayed in Fig. 6. 

MobileNetV2 comprises two types of blocks: residual 
blocks with a stride of 1 and non-residual blocks with a stride 
of 2, primarily used for downsizing. The model consists of 155 
layers, including the classification layer. Our approach utilizes 
this model to extract features from 2D depression images. In 
our proposed model, we leverage 154 pre-trained network 
layers from the convolutional base, with the addition of two 
extra layers—one at the start for preprocessing and one at the 
end for task-specific classification—using the Adaboost 
classifier. 

 
Fig. 5. A MobileNet-based CNN model with a novel fine-tuning mechanism for depression patterns detection. 

The classification process, illustrated in Fig. 6, involves 
passing inputs through the layers obtained during the fine-
tuning process. Initially, we train the entire model for 50 
epochs before fine-tuning. In the first fine-tuning step, we 
unfreeze the last 50 layers of the convolutional base and create 
new training loops, totaling 80 epochs (as indicated by green 
bars in Fig. 7). For the second fine-tuning phase, we 
progressively unfreeze layers from the end of the convolutional 
base using a step function. We reduce the number of unfrozen 
layers by five for every eight cycles, shown in green bars in 
Fig. 7. In our last approach, instead of following a predefined 
order, we determined the number of epochs and which layers to 
unfreeze based on a predefined exponential equation (Eq. (2)). 
This equation allows us to adaptively decrease the number of 
training cycles from the last layer to a specified depth during 
training. 

𝜎(𝑥)  =
1

1+𝑒−𝑥 (2)

Using this approach, we can preserve more pre-trained 
generic information. CNN models’ later layers often possess 
specialized learned properties, while the initial layers focus on 
generic properties like edges, shapes, and textures. We use a 
learning rate of 0.0001 and the Adam optimizer for training. 
The fine-tune stage minimizes model size and speeds up 
detection; however, MobileNetV2’s conventional layer is 

limited. The model’s accuracy matches CNN’s. Thus, 
MobileNetV2 network optimization is essential. This study 
replaces standard convolutions with "depth-wise separable 
convolution" to improve the MobileNetV2 architecture. Depth-
wise separable convolution reduces training weight factors and 
floating-point workloads, making the model lighter, quicker, 
and more accurate. Standard convolution extracts 
characteristics using different convolution kernels by 
simultaneously controlling the input channel and convolution 
window. In depth-wise separable convolution, two jobs are 
carried out separately. To ensure equal input and output 
channels, the initial convolution in space is performed 
individually on each input channel using a single 1-
dimensional kernel. To project the calculated channels onto a 
new channel space, point-based convolution with a 1 × 1 kernel 
(PointwiseConv) is used, as shown in Fig. 7. The classical 
convolution is represented by Eq. (3). While the depth-wise 
separable convolution is mathematically represented by Eq. 
(3)–(6): 

𝐵𝑎𝑠𝑖𝑐 − 𝐶𝑜𝑛𝑣(𝜃, 𝑥)(𝑖,𝑗) = ∑ 𝜃(ℎ, 𝑤, 𝑐).𝑥(𝑖 + ℎ, 𝑗 +𝐻,𝑊,𝐶
ℎ,𝑤,𝑐

𝑤, 𝑐)

𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝜃,𝑥)(𝑖,𝑗) = ∑ 𝜃(ℎ, 𝑤) ∗ 𝑥(𝑖 + ℎ, 𝑗 +𝐻,𝑊
ℎ,𝑤

𝑤)
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𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝜃, 𝑥)(𝑖,𝑗) = ∑ 𝜃𝑐  × (𝑖, 𝑗, 𝑐)𝐶
𝑐 

𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑣(𝜃𝑝, 𝜃𝑑 ,𝑥)
(𝑖,𝑗)

=

𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝑖,𝑗)(𝜃𝑝,𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝑖,𝑗)(𝜃𝑑 ,𝑥))

Fine-tuning hyperparameters often involves conducting a 
grid search or random search over the hyperparameter space 
and evaluating the model’s performance on a validation set. 

The hyperparameter values that result in the best 
performance are then selected for the final model as described 
in Algorithm 2, ensuring MobileNetV2 is well-suited for the 
early detection of depression patterns using EEG and HRV 
signals. To detect depression patterns early, utilizing EEG and 
HRV data, MobileNetV2’s parameters and design must be 
fine-tuned. Customizing pre-trained models for broad computer 
vision applications on big datasets is common. Fine-tuning 
MobileNetV2 involves these steps: 

Algorithm 2:  Fine-tunning MobileNet architecture for features extraction 

 

Input: M:   Pre-trained MobileNetV2 model with weights 

[Initialize Parameters] 
Fine-tuning dataset: D 
Number of classes: C 

Learning rate: LR 

Number of epochs: epochs 
Batch size: batch-size 
Dropout rate: dropout-rate 

 Output: 𝑀_𝑓𝑖𝑛𝑒 − 𝑡𝑢𝑛𝑒𝑑:  fine-tuned MobileNetV2 model 

 

 𝑀 =  Pre − trained (MobileNetV2 , 𝑊); 
𝐹 =  Freeze (𝑀, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑙𝑎𝑦𝑒𝑟𝑠 = 100); 
𝑈 =  Update − classification − layer (𝑀, 𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡 − 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟, 𝐶); 
O =  optimizer =  Adam(M, learning_rate = LR); 
For each validation-accuracy is not satisfied do 

D =  Dropout (𝑀, dropout − rate); 
C =  Compile(optimizer = optimizer, loss = 𝜎(𝑥), metrics = [′accuracy′]); 
E =  Model. fit(D, epochs = epochs, batch_size = batch_size, validation_split = 0.2); 
R =  LR × 0.1; Reduce the learning rate 
dropout − rate =  dropout − rate × 0.9; Reduce the dropout for regularization 

epochs =  epochs + 5; Increase epochs for further training 

[End for Loop] 

Function Improve-Fine-tune ( 𝑀): 
𝐹 =  UnFreeze (𝑀, 𝑙𝑎𝑦𝑒𝑟𝑠 = 100); 
𝑈 =  Update − classification − layer (𝑀, 𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡 − 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟, 𝐶); 
O =  optimizer =  Adam(M, learning_rate = LR); 
For each validation-accuracy is not satisfied do 

C =  Compile(optimizer = optimizer, loss = 𝜎(𝑥), metrics = [′accuracy′]); 
E =  Model. fit(D, epochs = epochs, batch_size = batch_size, validation_split = 0.2); 
epochs =  epochs + 5; Increase epochs for further training 

[End for Loop]  
Return ( 𝑀_𝑓𝑖𝑛𝑒 − 𝑡𝑢𝑛𝑒𝑑); 

End of algorithm 

 
Fig. 6. A MobileNet-based CNN model with a novel fine-tuning mechanism for depression pattern detection. 
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Load ImageNet weights into the pre-trained MobileNetV2 
model. These pre-trained weights provide a foundation for 
fine-tuning visual elements. Freeze Mo-bileNetV2’s earliest 
layers to avoid overfitting and preserve low-level feature 
knowledge. These layers record basic patterns and textures that 
are transportable be-tween activities. Change MobileNetV2’s 
classification layer to identify depressive patterns. This new 
layer may have fully linked (dense) layers, dropout layers for 
regularization, and an output layer with enough classes 
(depressed and non-depressed), depending on the job. Set a 
slower, fine-tuning learning rate. Fewer learning rates allow the 
model to make fewer alterations to pre-trained weights, 
eliminating abrupt changes that might damage learned features. 

We train the improved MobileNetV2 model using EEG- 
and ECG-based HRV measurements with depression labels. 
Batch normalization and data augmentation promote 
generalization and prevent overfitting. Based on validation 
findings, alter hyperparameters such as learning rate, dropout 
rate, and the number of neurons in the new classification layer. 
Unfreeze more layers. If the fine-tuned model performs poorly 
on the validation set, unfreeze more MobileNetV2 layers to let 
it adjust its learned features to the job. Fine-tune the model 
until the validation set achieves the required accuracy and 
generalization. Assess the fine-tuned model: Finally, test the 
fine-tuned Mo-bileNetV2 model on a second test set to detect 
depression patterns from EEG and HRV signals. To assess the 
model’s performance, provide accuracy, sensitivity, specificity, 
and AUC. Following these processes, the fine-tuned 
MobileNetV2 network uses its pre-trained information and 
adapts to fresh data to detect depression tendencies early, 
utilizing EEG and ECG signals. 

E. Patterns Recognition 

In our second experimental approach, we replaced the 
softmax classifier, which serves as the top layer of the 
MobileNet V2 model, with a dropout AdaBoost classifier. We 
made this substitution to explore an alternative to the 
traditional deep CNN with a softmax top layer. Our objective 
was twofold: first, to potentially enhance performance, and 
second, to mitigate the risk of overfitting during classification 
testing. 

The complete MobileNet V2 architecture comprises 17 
consecutive bottleneck residual blocks, followed by a standard 
1 × 1 convolution layer, a global average pooling layer, and a 
softmax classification layer. Consequently, a set of valuable 
features was extracted from 2D scalogram patterns using the 
output of the global average pooling layer within the 
MobileNet V2 base model. Once this feature extraction process 
was finalized, the extracted features were inputted into an 
AdaBoost classifier. 

AdaBoost is a linear model employed to address data 
classification challenges. AdaBoost excels at solving both 
linear and non-linear classification problems. In essence, 
AdaBoost’s primary role is to determine or compute a 
separating line that effectively distinguishes multiple classes 
for any given case. It operates by taking input data and 
producing an optimal line that effectively separates these 
classes. This optimal line signifies a generalized separator that 
accommodates all classes as a well-rounded classification 

boundary. The Adaboost must handle multi-class classification 
in our study. In other words, we required AdaBoost to classify 
five depression patterns, each containing 500 distinct 
depression classes. AdaBoost resolves multi-class 
classification problems by transforming the single multi-class 
problem into numerous binary classification problems, 
processing them using a standard AdaBoost linear 
classification approach via the one-versus-all methodology. 
The one-versus-all approach involves building binary 
classifiers that distinguish between one specific label and all 
other labels. It is important to note that AdaBoost predictions 
yield outcomes similar to those obtained using the softmax 
function. However, the distinction lies in AdaBoost’s emphasis 
on finding the maximum margin between data points from 
different classes, whereas the softmax function minimizes 
cross-entropy or maximizes log-likelihood. 

Our approach uses an ensemble learning approach based on 
a fine-tuned MobileNet architecture with an AdaBoost 
classifier to accurately predict depression patterns like major 
depressive state (MDS), cognitive and emotional arousal 
(CEA), mood disorder patterns (MDP), mood and emotional 
regulation (MER), and stress and emotional dysregulation 
(SED). These depression patterns have been gathered from two 
publicly available datasets, MODMA and SWEEL-KW. Real-
time signal processing on wearable IoT devices requires 
computational efficiency, which MobileNetV2 provides due to 
its lightweight architecture. Therefore, this model balances 
processing speed and prediction accuracy with depth-wise 
separable convolutions. AdaBoost, an ensemble learning 
technique, improves the model’s predictive accuracy by 
combining numerous weak learners to produce a strong 
predictive model, minimizing bias and variation to assure 
prediction dependability. This methodological fusion 
outperformed other depressive pattern prediction methods. 

It is also important to discuss how the amount of the 
extracted pattern affects model performance. Our ensemble 
learning-enhanced model may steadily improve its prediction 
ability by absorbing more patterns. While a limited number of 
patterns may initially limit performance, the model’s design 
enhances its predictive abilities with increased data exposure, 
thereby improving its ability to identify depressive states. 

IV. EXPERIMENTAL RESULTS 

Several important parts make up the experimental setup for 
finding early signs of depression using machine learning and 
deep learning with scalogram-like patterns. This section 
outlines the experimental design, model training, evaluation, 
and performance metrics used in the study. To detect 
depression patterns early, utilizing machine learning and deep 
learning using EEG and ECG-based HRV inputs in the form of 
a 2D scalogram, software libraries, frameworks, and hardware 
must be configured. Here are the main environment setup 
tasks: Create a Python environment, ideally virtual, to separate 
project dependencies. Install Python 3.6.15. Download 
TensorFlow or PyTorch, a deep learning framework for neural 
network training. These frameworks provide MobileNetV2 
pre-trained models and fine-tuning tools. Jupyter Notebook 
provides interactive and repeatable research. You can combine 
code, graphics, and markdown in one document. CPU, RAM, 
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and storage must fulfill the computational needs of training 
deep learning models on the given dataset. Consider GPUs for 
quicker training if available. 

Table III lists the study’s MobileNetV2 and AdaBoost 
hyperparameters for depression detection. MobileNetV2 
settings include learning rate (0.001), batch size (128), epochs 
(40), dropout rate (0.3 or 0.5), optimizer (Adam), convolutional 
layer filters (128), alpha (width multiplier, 0.75), and input 
picture size (224 × 224). The base estimator (logistic 
regression), number of estimators (200), learning rate (0.1), 
loss function (exponential), and maximum depth of weak 
learners (5) are AdaBoost settings. The model’s learning and 
depression pattern recognition depend on these 
hyperparameters. 

Image classification requires loss function and accuracy 
during transfer learning (TL) training. Optimizers optimize 
network weights and learning. This step minimizes DL layer 
training loss functions. In this work, ADAM, SGD, Adadelta, 
AdaBelief, and RMSprop optimizers changed each pre-trained 
TL model layer's weight and acceleration time. The optimizer 
in DL algorithms controls weight and bias during network 
fitting. The optimizer prioritizes this. We choose the best layer 
feature map, filter size, activation function, pool size, dropout, 
and fine-tuning hyperparameters. To get the best settings, 
optimization was done. The role of each optimizer in deep 
learning is explained. In contrast, AdaBelief optimization 
chooses deep learning framework assessment hyperparameters. 
This research employs 12 hyperparameters. Studying 
hyperparameters and fine-tuning layers, including freezing the 
top or bottom network layer. To find the best layers and 

hyperparameters, automated and fine-tuning approaches are 
being tested. When assessing the hyperparameter and fine-
tuning pre-trained layers, AdaBelief sets a default value. The 
second stage analyzes transfer learning (TL) models after 
automatic hyperparameter tweaking and fine-tuning against all 
TL models using different optimizations. The third section 
evaluates TL with frozen layers during automated 
hyperparameter adjustment. Every TL model has 
hyperparameters and fine-tuning. 

Table IV compares the average processing time for transfer 
learning (TL) algorithm stages and the suggested architecture 
on the MODMA and SWELL-KW datasets. We tested 
VGG16, AlexNet, Xception, MobileNet, Inception, and 
MobileNet-Finetune. We present preprocessing, feature 
extraction, training, prediction, and processing time for each 
approach. This stage prepares the data for analysis. AlexNet 
(20.4 s), Xception (19.2 s), MobileNet (15.3 s), Inception (12.7 
s), and MobileNet-Finetune (2.8 s) preprocess faster than 
VGG16 (24.9 s). Data feature extraction selects relevant 
characteristics. VGG16 has the longest feature extraction time 
at 17.4 s, followed by AlexNet (15.5 s), Xception (16.2 s), 
MobileNet (14.2 s), Inception (12.5 s), and MobileNet-
Finetune (2.3 s), the last being the fastest. 

This stage trains the model with the extracted 
characteristics. At 220.5 s, VGG16 takes the longest to train, 
followed by AlexNet (230.5 s), Xception (235.5 s), MobileNet 
(230.5 s), Inception (268.5 s), and MobileNet-Finetune (120.5 
s). Prediction relies on the training model. VGG16 takes 12.8 s 
to forecast, followed by AlexNet (10.8 s), Xception (7.8 s), 
MobileNet (9.8 s), Inception (8.8 s), and MobileNet-Finetune  

TABLE III.  HYPERPARAMETERS USED IN THIS STUDY ARE OUTLINING MOBILENETV2 AND ADABOOST FOR IDENTIFICATION OF DEPRESSION PATTERNS 

Model Hyperparameter Description Possible Values 

MobileNetV2 Learning rate Step size for updating model parameters  0.001 

 
Batch size Number of samples used in each training batch 128 

 
Number of epochs Number of times the model iterates over dataset 40 

 
Dropout rate Fraction of neurons to randomly drop during training 0.3, 0.5 

 
Optimizer Algorithm for optimizing model weights  Adam 

 
Number of filters Number of filters in convolutional layers  128 

 
Alpha Width multiplier to reduce model size 0.75 

 
Input image size Dimensions of the input image 224 × 224 

AdaBoost Base estimator The weak learning model used in boosting Logistic Regression 

 
Number of estimators Number of weak learners in the ensemble 200 

 
Learning rate Weight of each weak learner in the ensemble 0.1 

 
Loss function The loss function used for boosting Exponential 

 
Maximum depth Maximum depth of the weak learners (trees) 5 

TABLE IV.  AVERAGE PROCESSING TIME ON TRANSFER LEARNING (TL) ALGORITHMS COMPARED TO PROPOSED ARCHITECTURE BASED ON ALL SELECTED 

PATTERNS (MAJOR DEPRESSIVE STATE (MDS), COGNITIVE AND EMOTIONAL AROUSAL (CEA), MOOD DISORDER PATTERNS (MDPS), MOOD AND EMOTIONAL 

REGULATION (MER), AND STRESS AND EMOTIONAL DYSREGULATION (SED)) FROM MODMA AND SWEEL-KW DATASETS 

Method Preprocessing 
Feature 

Extraction 
Training Prediction Overall 

VGG16 24.9 s  17.4 s 220.5 s 12.8 s 275.6 s 

AlexNet 20.4 s  15.5 s 230.5 s 10.8 s 277.2 s 

Xception 19.2 s  16.2 s 235.5 s 7.8 s 278.7 s 

MobileNet 15.3 s  14.2 s 230.5 s 9.8 s 269.8 s 

Inception 12.7 s  12.5 s 268.5 s 8.8 s 302.5 s 

MobileNet-Finetune 2.8 s 2.3 s 120.5 s 2.6 s 128.2 s 
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TABLE V.  THIS TABLE REPRESENTS THE COMPUTATIONAL COMPLEXITY BASED ON TYPICAL ASPECTS LIKE THE NUMBER OF PARAMETERS, FLOATING-POINT 

OPERATIONS PER SECOND (FLOPS), AND MEMORY REQUIREMENTS 

Model Number of Parameters  FLOPs  Memory Requirement 

VGG16 138 million 15.5 billion High 

AlexNet 60 million 1.5 billion Moderate 

Xception 22 million 8.4 billion Moderate 

MobileNet 4.2 million 569 million Low 

Inception 23 million 5.7 billion Moderate 

MobileNet-Finetune 3.2 million 1.3 billion Low 
 

(2.6 s), the fastest. All stage processing times are in this 
column. The longest processing time is 275.6 s for VGG16, 
followed by AlexNet (277.2 s), Xception (278.7 s), MobileNet 
(269.8 s), Inception (302.5 s), and MobileNet-Finetune (128.2 
s), the shortest. This table shows that MobileNet-Finetune is 
the most efficient solution for the investigated datasets due to 
its faster processing time across all stages. 

It is vital to note that computational complexity depends on 
model architecture, implementation, and evaluation hardware. 
Based on the above hardware characteristics, we are 
calculating explicit computational processes. 

Table V shows that earlier, more parameterized models like 
VGG16 and AlexNet had higher computational complexity and 
memory needs. Modern models like MobileNet are efficient, 
reducing computational and memory needs. The proposed 
“MobileNet-Finetune” denotes a custom-tuned version of 
MobileNet with computational complexity and memory 
demand tailored to specific workloads to maintain efficiency 
and optimize performance. FLOPs and memory needs are 
described in this table. 

 
(a)       (b) 

Fig. 7. Loss versus accuracy curves for training and validation with respect to epochs for pro-posed depressive-deep system, where figure (a) shows the training 

and validation loss curves, (b) represents the training and validation accuracy curves. 

 

(a)       (b) 

Fig. 8. Area under the curve (AUC) for depression patterns identification based on collected scalogram, where depressive -deep AUC (a) without fine-tune curve, 

and (b) with fine-tune net-work. 
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By following these steps, the proposed system is ready for 
the early detection of depression patterns using ML and DL 
with an ensemble of scalogram-like EEG- and ECG-based 
patterns. This setup allows researchers to experiment with 
different models and hyperparameters systematically, ensuring 
reproducibility and facilitating further research in the field of 
mental health diagnostics. We evaluated the proposed system 
using these criteria and compared it to pre-trained transfer 
learning techniques. We also utilized AUC to demonstrate the 
training and validation dataset’s efficacy with a 10-fold cross-
validation test. Fig. 7 shows the proposed SqueezeNet-Light 
model’s best plot loss, accuracy, AUC, and recall on the train 
and validation sets with data augmentation across 40 epochs. 

Fig. 8 illustrates the loss and accuracy trends concerning 
the epochs during the training and validation phases of the 
proposed depressive-deep system. The loss curve shows model 
parameter optimization as the loss function decreases after 
training. The model’s prediction performance on both the 
training and validation datasets improves as the accuracy curve 
rises across epochs. These graphs reveal Deep’s training 
dynamics and generalization capabilities in recognizing 
depressed patterns. This study trains its deep learning model 
via backpropagation. The right optimizer is chosen to 
guarantee this deep learning model converges. The deep 
learning literature uses optimizers like SGD, RMSprop, and 
adaptive moment estimation (Adam). Because adaptive 
optimizers are beneficial, the Adam optimizer with an initial 
learning rate of 10–4 was used for this investigation. Due to 
computer memory limits, the batch size was twenty, with 29 
steps. Model training lasted 40 epochs. 

Fig. 9 illustrates the confusion matrix depicting the results 
obtained by the proposed depressive-deep model in comparison 
to normal human assessments for the identification of various 
depression patterns, including major depressive state (MDS), 
cognitive and emotional arousal (CEA), mood disorder patterns 
(MDPs), mood and emotional regulation (MER), and stress and 
emotional dysregulation (SED). This matrix shows how the 
model performs across different depression patterns, allowing 
comparisons with human assessments and revealing areas of 
agreement and disagreement. In this figure, our study includes 
a ‘normal’ class with depression patterns to evaluate the 
depressive-deep model’s diagnostic skills. This categorization 
helps the model discriminate between depressed states and 
non-depressive states. This class dataset, with the same size as 
other depression patterns, was collected from publicly 
available datasets (MODMA and SWEEL-KW). By comparing 
the model’s predictions to human evaluations, we want to show 
that it may help mental health practitioners identify people 
without depression for early intervention and individualized 
therapy. 

The confusion matrix in Fig. 10 shows the results of the 
suggested depressive-deep model for identifying MDS, CEA, 
MDP, MER, and SED depression patterns compared to non-
depressive or normal patterns. This matrix provides a detailed 
analysis of the model’s predicted accuracy and opportunities 
for improvement across depression categories. 

Table VI presents the performance evaluation of the 
proposed depressive-deep model for the identification of five 

distinct depression patterns. Each row represents a different 
combination of feature extraction (f) and classification (c) 
methods. The metrics assessed include accuracy (ACC), 
sensitivity (SE), specificity (SP), precision (P), F1-score, and 
Matthew’s correlation coefficient (MCC). The results indicate 
that the depressive-deep model, utilizing fine-tuned MobileNet 
V2 for feature extraction and AdaBoost for classification, 
achieved the highest performance across all metrics, with an 
accuracy of 0.96, sensitivity of 0.98, specificity of 0.95, 
precision of 0.95, F1-score of 0.96, and MCC of 0.96. 
Currently employed clinical diagnostic tests exhibit significant 
limitations, particularly in terms of the false negative rate. The 
false positive and false negative rates of a model can be 
visualized using specificity and sensitivity scores. 

Table VII for depression pattern identification reveal 
notable trends. The SOTA comparisons were performed on 
various current studies, which we had implemented and tested 
on selected depression patterns. While traditional machine 
learning approaches like those in [22] achieve respectable 
accuracies (90.00%) with nonlinear features and logistic 
regression on EEG data, they may lack generalizability. Deep 
learning models such as the CNN + LSTM model in [23] 
achieve impressively high accuracies (99.07% right, 98.84% 
left) on EEG signals but are complex and computationally 
intensive. Similarly, ensemble learning coupled with deep 
learning, as seen in [24], achieves competitive accuracies 
(89.02%) but may be sensitive to feature selection. Methods 
focusing on specific EEG features like functional connectivity 
in [25] or specific patterns in [27] yield high accuracy (up to 
96.00%) but may be limited in scope. Meanwhile, more 
advanced deep learning architectures like the DWSN model in 
[28] achieve near-perfect accuracy (up to 99.95%) but may 
require substantial computational resources. In contrast, the 
proposed depressive-deep architecture achieves competitive 
accuracy (up to 96.00%) while potentially addressing issues of 
computational complexity and feature scope present in some 
state-of-the-art methodologies. 

 
Fig. 9. Confusion matrix for results obtained by a proposed depressive-deep 

model with various identification of depression patterns such as major 

depressive state (MDS), cognitive and emotional arousal (CEA), mood 

disorder patterns (MDPs), mood and emotional regulation (MER) and stress 
and emotional dysregulation (SED) patterns. 
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However, when we applied these state-of-the-art systems to 
five different depression patterns and utilized our dataset, they 
achieved very low accuracy, as described in Table VII. For 
comparison, we have selected a diverse set of studies 
representing different methodologies for depression pattern 
identification. These include traditional machine learning 
approaches such as machine learning with nonlinear features 
and logistic regression [22], as well as more advanced deep 
learning architectures like deep learning with CNN and LSTM 
[23] and deep learning with DWSN [28]. Studies focusing on 
specific EEG features like functional connectivity [25] and 
specific hemispheres [27] also include ensemble learning 
methods. Additionally, the comparison encompasses various 

combinations of machine learning algorithms such as SVM, 
LR, and NB [25], as well as hybrid models like CNN-LSTM 
[26]. This selection provides a comprehensive overview of the 
methodologies employed in the field of depression pattern 
identification, allowing for a thorough evaluation of the 
proposed depressive-deep architecture against state-of-the-art 
approaches. The table compares different models used for 
identifying depression patterns based on their performance 
metrics. Each model is assessed for its accuracy, sensitivity, 
average processing time, and number of parameters. Among 
the models, the proposed depressive-deep architecture, 
employing MobileNet V2, stands out with a high accuracy 
score of 0.96 and sensitivity of 0.98. Importantly, it achieves 

 
Fig. 10. Confusion matrix for results obtained by a proposed Depressive-Deep model with various identification of depression patterns compared to normal 

human. Those patterns are major depressive state (MDS), cognitive and emotional arousal (CEA), mood disorder patterns (MDP),  mood and emotional regulation 
(MER) and stress and emotional dysregulation (SED). 
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these impressive results while requiring substantially fewer 
parameters (12.54 million) compared to other models. This 
suggests that the proposed architecture offers a promising 
approach for accurately detecting depression patterns with 
efficiency. The NeuroSky Mind Wave headset serves as the 
primary brain–computer interaction (BCI) device [38,39] 
utilized in this study, offering a single-channel interface for 
EEG signal acquisition. Coupled with a Raspberry Pi board, an 
example of an IoT device, the MindWave headset enables the 
capture of EEG signals, while ECG signals are obtained using 
the MikroElektronika Heart Rate Variability (HRV) ECG 

sensor. To check model generalizability, we have included five 
patient signals. These devices are lightweight and non-
invasive, making them suitable for continuous monitoring 
throughout the day. Our first findings indicate that shorter, 
carefully planned sessions might provide substantial predictive 
utility, while longer monitoring periods may improve model 
performance by recording a wider variety of physiological 
responses. We observed that several-hour sessions can produce 
enough data to uncover depressive trends in this investigation. 
This period balances comprehensive data with gadget wear in 
daily living. 

TABLE VI.  PERFORMANCE OF PROPOSED DEPRESSIVE-DEEP FOR IDENTIFICATION OF FIVE HEART AND BRAIN PATTERNS BASED ON ENSEMBLE-BASED 

SCALOGRAM IMAGES 

Model (Features Extraction (f) + Classification(c) * ACC * SE  * SP * P * F1-Score * MCC 

f = MobileNet V2, c = Softmax 0.90 0.87  0.88 0.87 0.88 0.90 

f = CNN, c = MobileNet2 0.91 0.89  0.88 0.90 0.89 0.90 

f = MobileNet V2, c = AdaBoost 0.92 0.88  0.89 0.90 0.91 0.91 

Depressive-Deep: f = Fine-tune MobileNet 2,c = AdaBoost 0.96 0.98  0.95 0.95 0.96 0.96 

TABLE VII.  STATE-OF-THE-ART COMPARISONS FOR IDENTIFICATION OF BRAIN AND HEART PATTERNS 

Study Model * ACC * SE Average Time (s) Parameters 

[22] Logic Regression 0.74 0.76 5.242 -- 

[23] CNN + LSTM 0.86 0.80 3 20.24 M 

[24] Ensemble DL 0.97 0.91 2.5 248.35 M 

[25] SVM-LR-NB 0.86 0.96 6.5 -- 

[26] CNN-LSTM 0.88 0.88 3.136 24.56 M 

[27] CNN 0.91 0.91 4.5 267.20 M 

[28] DWSN 0.90 0.90 4 343.67 M 

Proposed MobileNet V2 0.96 0.98 0.043 12.54 M 

* SE: sensitivity, ACC: accuracy. 

These signals are then processed to extract patterns 
indicative of depression. For the classification of depression 
patterns, a fine-tuned and lightweight MobileNetV2 model, 
integrated with an Adaboost network, was employed. The 
model was trained and evaluated using TensorFlow on the 
Colab Google platform. To enable deployment on IoT devices 
[40], like Raspberry Pi boards, the TensorFlow model was 
further optimized into a TensorFlow Lite model. 

The described study focuses on the use of IoMT-based 
wearable devices for identifying depression patterns through a 
proposed model called depressive-deep. This model is 
designed to detect various types of depression patterns, 
including major depressive state (MDS), cognitive and 
emotional arousal (CEA), mood disorder patterns (MDPs), 
mood and emotional regulation (MER), and stress and 
emotional dysregulation (SED). The results obtained from the 
depressive-deep model are visualized in two figures. Fig. 11 
illustrates the distribution of each category of depression 
patterns, providing insights into the prevalence or occurrence 
of different types of depression. This result helps researchers 
and practitioners understand the depressive-deep model’s 
performance and effectiveness in identifying depression 
patterns using IoMT-based wearable devices. On average, 96% 
accuracy is achieved by the proposed system. 

 
Fig. 11. IoMT-based wearable identification depression patterns results 

obtained by proposed depressive-deep model with various identification of 

depression patterns such as major depressive state (MDS), cognitive and 

emotional arousal (CEA), mood disorder patterns  (MDPs), mood and 

emotional regulation (MER) and stress and emotional dysregulation (SED). 

Figure (a) shows the distribution of each category of brain and heart 

depression patterns. 
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V. DISCUSSIONS 

This work used an ensemble of EEG and HRV data in 2-D 
scalogram pictures to detect depressive patterns using machine 
learning and deep learning. These new computational tools can 
help diagnose and treat depression early, improving mental 
health outcomes. 

MobileNetV2 and AdaBoost ensemble learning showed 
promising depression prediction results. The lightweight 
MobileNetV2 architecture handled HRV and EEG data and 
performed well. Using AdaBoost in ensemble learning made 
the model more accurate, sensitive, specific, precise, and 
higher in F1-score and AUC, making it a strong depression 
classifier. The 96% accuracy shows that these methods may 
early detect depression and provide therapy. Fig. 4 shows the 
suggested Depressive-Deep model's scalogram. This scalogram 
shows major depressive state (MDS), cognitive and emotional 
arousal (CEA), mood disorder patterns (MDP), mood and 
emotional regulation (MER), and stress and emotional 
dysregulation. The scalogram shows these different depression 
patterns holistically by integrating EEG and HRV data, 
revealing the intricate relationships and dynamics of depressed 
states. 

The data analysis section describes how machine learning 
and deep learning using an ensemble of scalogram-like EEG 
and HRV patterns may detect depressive patterns early. This 
method allows researchers to systematically test different 
models and hyperparameters, ensuring repeatability and 
advancing mental health diagnosis. Fig. 5 shows the loss and 
accuracy trends during training and validation of the proposed 
Depressive-Deep system, demonstrating model parameter 
optimization and prediction performance improvement. The 
discussion also covers deep learning model training, stress 
optimizer selection, and model convergence. In Fig. 8, the 
AUC values for recognizing depression patterns from 
scalograms show the Depressive-Deep system's discriminatory 
capability before and after network fine-tuning. Confusion 
matrices in Fig. 9 an Fig. 10 show how well the model 
identifies depressive patterns, allowing comparisons with 
human judgments. Table V further compares the suggested 
Depressive-Deep model's accuracy and sensitivity across 
feature extraction and classification approaches, showing its 
superiority. Comparing the proposed Depressive-Deep 
architecture to state-of-the-art depression pattern identification 
methods shows that it achieves competitive accuracy while 
addressing computational complexity and feature scope issues. 
Finally, Table VII compares model performance 
characteristics, showing that the Depressive-Deep architecture 
is more accurate and efficient. These findings demonstrate the 
depressive-deep system's ability to detect depressive patterns 
early, advancing mental health diagnoses. 

Despite the encouraging results, this study admits some 
limitations that should be addressed when interpreting the data. 
Small datasets may limit the model's generalizability; 
therefore, validation on bigger, more diverse datasets is 
necessary. Deep learning models like MobileNetV2 are 
difficult to comprehend, requiring greater study into ways to 
explain their judgments. 

Future studies can use neuroimaging and self-report 
questionnaires to better understand depression trends. 
Additional deep learning architectures and transfer learning 
methods may increase model performance and interpretability. 
Actual specialists and mental health professionals will help 
translate the suggested model into actual practice to improve 
depression identification and treatment. The new study re-fines 
the machine learning and deep learning models for early 
depression identification, utilizing EEG and HRV data. The 
research team is optimizing hyperparameters, im-proving 
feature selection, and testing the interpretation of model 
predictions. We are also validating the model on larger and 
more diverse datasets to ensure its resilience and 
generalizability across populations. To assess the model's 
clinical applicability, mental health specialists and clinical 
experts are working together. The study team is using domain 
expert comments to make the model more practical and 
adaptable to clinical situations. This iterative approach 
guarantees that the model meets clinical demands and 
integrates seamlessly into the healthcare system. 

Future studies will go beyond EEG and HRV depression 
identification. The team wants to use neuroimaging, self-
reported questionnaires, and wearable sensor data to measure 
mental health holistically. The model can capture more 
physiological and behavioral indicators related to mental health 
issues by using several data modalities, resulting in a more 
accurate and tailored diagnosis. To increase model 
performance and interpretability, transfer learning and deep 
learning architectures are another possibility. We can fine-tune 
pre-trained models for depression identification using EEG and 
HRV data, potentially enhancing efficiency and accuracy. 

Implementation of the suggested concept into user-friendly 
applications or tools for mental health professionals and 
individuals is underway. The objective is to create an accurate 
and easy-to-use tool for early depression identification and 
continuous monitoring to enhance mental health outcomes and 
reduce the burden of global mental health problems. The study 
team also plans to undertake longitudinal studies to test the 
model's ability to forecast depression onset and track treatment 
success. Understanding the model's predictive powers beyond 
diagnosis will help identify depression risk fac-tors and enable 
focused therapy. 

Current and future work aims to transform mental health 
diagnosis using machine learning and deep learning. The 
research aims to produce a tool that aids early diagnosis and 
provides mental health providers with significant information 
for tailored treatment planning by refining and expanding the 
model. The ultimate objective is to enhance mental health 
diagnosis, management, and treatment worldwide to improve 
well-being and results. The model was accurate, although the 
study acknowledged a tiny dataset. The model needs additional 
validation on larger and more diverse datasets to be more 
generalizable. Exploring various deep learning architectures 
and transfer learning methods may increase model performance 
and interpretability. Smartphones are essential for people. 
Mobile Crowd Sensors (MCS) uses mobile device sensors and 
computing [12]. MCS lets users exchange data and get insights 
to measure and track shared activities. This strategy is essential 
for the development of IoT applications. MCS will be used to 
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identify depression-like characteristics in the future. Moreover, 
a future study will compare multi-day and single-day 
observations to determine the minimal time for reliable 
forecasts. We want to find the best balance between model 
accuracy and user convenience. We appreciate your ideas and 
believe that studying measurement length and prediction 
accuracy is essential for BCI and IoT-based mental health 
monitoring system implementation. 

Our research compares accuracy, sensitivity, specificity, 
precision, F1-score, MCC, and AUC of the proposed 
depressive-deep model to state-of-the-art depression detection 
techniques to demonstrate its benefits. Our model outperforms 
existing approaches with a 96% accuracy rate using the 
lightweight and efficient MobileNetV2 architecture and the 
AdaBoost ensemble learning algorithm. EEG and HRV data 
integrated into 2D scalograms provide a holistic view of 
depressive patterns, allowing the model to capture intricate 
relationships and dynamics in the data, making early 
depression detection more comprehensive and effective. 

The findings suggest that machine learning and deep 
learning can detect depression patterns in EEG and HRV data 
early. A visual diagram of a scalogram generated by a 
proposed Depressive-Deep model to embed all depression 
patterns such as major depressive state (MDS), cognitive and 
emotional arousal (CEA), mood disorder patterns (MDP), 
mood and emotional regulation (MER), and stress and 
emotional dysregulation (SED) into one scalogram using EEG 
and ECG-based HRV signals. The model's accuracy and 
interpretability make it a viable tool for mental health providers 
to diagnose depression quickly and individually. The study lays 
the groundwork for mental health diagnostics research and 
stresses the worldwide impact of AI-based technologies. This 
work shows that machine learning and deep learning may 
detect depression patterns in EEG and HRV data early. The 
model uses MobileNetV2 and AdaBoost and is accurate and 
interpretable, revealing depression's physiological signs. While 
there are still issues, this research sets the groundwork for 
mental health diagnostics and shows how AI-based tools might 
improve global mental health outcomes. 

VI. CONCLUSION 

In this study, we introduce depressive-deep, a novel 
approach for predicting depression using a combination of 
preprocessed EEG and ECG-based HRV signals. We generated 
a 2D scalogram by combining ECG and EEG signals. These 
accurate predictions were made using the MobileNetV2 deep 
learning architecture and AdaBoost ensemble learning. They 
were for major depressive state (MDS), cognitive and 
emotional arousal (CEA), mood disorder patterns (MDPs), 
mood and emotional regulation (MER), and stress and 
emotional dysregulation (SED). We made sure the system 
could be used by anyone by pre-training the depressive-deep 
model on the MODMA and SWELL-KW datasets and using 
wearable IoMT devices to collect signals. Rigorous validation 
through cross-validation and other criteria demonstrated the 
robustness of our model. With a remarkable 96% accuracy in 
depression prediction, surpassing previous methods, our 
approach highlights the potential of machine learning in early 
depression detection, thereby enhancing mental health 

diagnosis and treatment outcomes. We require further research 
and validation to enhance our strategy and guarantee its clinical 
effectiveness. 

Small datasets may limit the model's generalizability, 
requiring validation on bigger and more diversified datasets. 
DL models like MobileNetV2 are difficult and require further 
study to enhance forecast interpretability. 
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