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Abstract—This study addresses the imperative task of 

predicting and evaluating students' academic performance by 

amalgamating qualitative and quantitative factors, crucial in light 

of the persisting challenges undergraduates encounter in 

completing their degrees. Educational institutions wield 

significant influence in prognosticating student outcomes, 

necessitating the application of data mining (DM) techniques such 

as classification, clustering, and regression to discern and forecast 

student study behaviors. Through this research, the potential of 

deriving demonstrates valuable insights from educational data, 

empowering educational stakeholders with enhanced decision-

making capabilities and facilitating improved student outcomes. 

Employing a hybrid approach, models developed within the realm 

of educational DM, leveraging the CATBoost Classifier (CATC) in 

conjunction with two cutting-edge optimization algorithms: 

Victoria Amazonica Optimization (VAO) and Artificial Rabbits 

Optimization (ARO). Initially, the models undergo partitioning 

into training and testing sets for performance evaluation utilizing 

statistical metrics. After classifying 649 students according to their 

final scores, VAO outperformed ARO in terms of maximizing 

CATC's classification ability, resulting in an approximate 6% 

enhancement in accuracy and precision. Moreover, the VAO 

model adeptly categorizes 606 out of 649 students accurately. This 

research furnishes invaluable predictive models for educators, 

researchers, and policymakers endeavoring to enrich students' 

educational journeys and foster academic success. 

Keywords—Academic performance; hybridization; CATBoost 

classifier; meta-heuristic algorithms; educational institutions 

Nomenclature 

CATC CATBoost classifier ARO Artificial Rabbits 

Optimization 

VAO Victoria Amazonica 

Optimization 

CAAR CAT+ARO 

CAVA CAT+VAO DM Data Mining 

AUC Area Under the Receiver 

Operating Characteristic 
Curve 

MCC Matthews Correlation 

Coefficient 

Pstatus Parents' Cohabitation 

Status 

Medu  mother's education 

Mjob Mother's employment  Fedu Father's Education 

Fedu Father's employment G3 Grade 3 

I. INTRODUCTION 

The educational processes generate vast quantities of data, 
including information related to academic grades, enrollment, 
and student performance. The increasing volume of this data has 
prompted consideration of its utilization beyond mere 

accountability, aiming to extract valuable insights and facilitate 
informed decision-making within the academic domain, 
ultimately fostering advancements in the educational sector [1–
3]. 

In order to extract useful information from students, a broad 
variety of student variables may be analyzed in the quickly 
developing scientific subject of educational DM [4,5]. In this 
context, numerous predictive algorithms have been effectively 
employed in educational settings for various purposes, utilizing 
diverse data sets and student records. A comprehensive review 
outlines two primary application purposes within academic 
contexts: predictors and early warning systems [6]. 

The purpose of predictors is to foresee how a course or 
degree will turn out, based on specific input data, while early 
warning systems not only perform this predictive function and 
report their findings to teachers or students at an early stage, 
enabling preemptive actions to prevent or lessen possible 
adverse consequences. Common forecast objectives in this 
context include assessing the risk of course failure, predicting 
dropout rates, estimating grades (focusing exclusively on 
college performance [7,8], or substituting individual course 
grades with semester-based course averages such as Grade Point 
Average (𝐺𝑃𝐴) per semester or cumulative 𝐺𝑃𝐴 at the time of 
prediction [9,10]), and forecasting graduation rates. 

Predicting academic performance is a highly noteworthy 
objective; for example, at the time of graduation, it has multiple 
vital purposes, including assisting educational institutions in 
identifying at-risk students for specialized help to lower failure 
rates and providing information to admissions committees about 
candidates likely to finish their program, recognizing high-
achieving students to guide their career development, and 
assessing key factors to enhance the quality of education 
continuously. When examining the existing literature on 
predicting students' academic performance, it becomes evident 
that these studies predominantly rely on four categories of 
student information: demographic and socioeconomic 
information, statistics from high school, records of college 
enrollment, and data on academic achievement up to the time of 
projection [11]. 

Frequently used predictive factors in academic performance 
include demographics like sex [12] and household income [13], 
along with high-school data such as GPA and admission test 
scores [12,14]. College-related information encompasses major, 
full-time, or part-time status and scholarship availability 
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[12,15,16]. Additionally, academic performance is usually 
represented by past course grades, except for predictive models 
used during admission [17,18]. 

In recent years, wide-ranging research has been conducted 
to analyze the factors influencing student performance, 
encompassing the direct and indirect attributes that affect 
academic outcomes. Some studies focus solely on attributive 
analysis, while others employ machine learning (ML) 
algorithms, particularly AI techniques [19], like ANN, random 
forests (RF), and Bayesian classifiers, to forecast student 
performance according to these attributes. Specific examples 
include the application of the Naive Bayesian 𝐷𝑀 technique to 
predict student performance based on 19  attributes such as 
gender, family status, and students' grades [20]. 

Support Vector Machines (SVM) have demonstrated 
significant improvements in predicting students' problem-
solving performance using Bayesian Knowledge Tracing (BKT) 
compared to the standard BKT method [21]. Various feature 
selection techniques, decision tree (DT) algorithms, particle 
swarm optimization, and ensemble methods have also been 
employed for student performance prediction [22]. Socio-
economic factors and entrance examination results have been 
utilized to predict cumulative grade point averages, and multiple 
techniques have been explored for forecasting students' 
academic success and choice of majors, with the Random Forest 
Classifier proving particularly effective [23, 24]. Additionally, 
hybrid models combining generative and discriminative models 
have been employed, and fuzzy logic, Adaptive Neuro-Fuzzy 

Inference System (ANFIS), and fuzzy ANFIS have been used 
for ratings and predictions in the educational context [25,26]. 

II. RELATED WORK 

Many academics have painstakingly examined the many 
aspects impacting students' achievement at different levels of 
education [27,28]. Numerous research in this field has used DM 
techniques, namely classification algorithms, to forecast student 
performance and boost the total effectiveness of higher 
education institutions. This section provides a summary of 
several relevant studies, paying special focus to those that 
address DT and classification methods in evaluating students' 
academic achievement [29–32]. 

For instance, Mustafa et al. [33] analyzed student data from 
C++ classes using the Cross Industry Standard Process for DM 
(CRISP) framework. She compared the performance of many 
classifiers, including Iterative Dichotomize 3 (𝐼𝐷3), C4.5 DT, 
and Naive Bayes (𝑁𝐵). With its improved performance, the 
C4.5 DT provided valuable insights into the variables affecting 
student success. Using classification and clustering methods, 
Sunita and LOBO L.M.R.J. The research in [34] were able to 
predict student performance and categorize students according 
to that performance, demonstrating the usefulness of DM in 
education. Classification models were created by Bichkar and R. 
R. Kabra [35] with the intention of detecting vulnerable first-
year engineering students. 

Table I shows the overview of published papers.

TABLE I.  OVERVIEW OF PUBLISHED PAPERS 

Ref. Carried out works Advantage Disadvantage 

C
o

rt
ez

 a
n

d
 S

il
v
a 

[3
6

] 

This study analyzes educational trends in Portugal, focusing 
on high student failure rates in core subjects. It utilizes 

Business Intelligence/Data Mining (BI/DM) techniques to 
address achievement issues, collecting recent real-world 

data via school reports and questionnaires. Mathematics and 

Portuguese subjects are modelled using classification and 
regression tasks. 

- Addresses pressing education issues. - Utilizes 
advanced BI/DM techniques. - Incorporates 

recent real-world data. - Comprehensive 

evaluation of models and methods. - Identifies 
key factors influencing achievement. - Provides 

actionable insights for tool development. 

- Reliance on retrospective data. - 
Limited focus on specific subjects. - 

Potential effectiveness variations. - 

Biases or limitations in data collection. 
- Lack of consideration for external 

factors. 

H
as

ib
 e

t 
al

. 
[3

7
] 

5 classification algorithms were utilized in the development 

of a prediction model for secondary school student success: 

XGBoost, Naive Bayes, K-Nearest Neighbors (KNN), and 
Logistic Regression. 2 Portuguese school reports and 

surveys provided the data, which was then used to model the 

mathematics and Portuguese language disciplines using 
binary/5-level classification tasks. To address dataset 

imbalance, K-Means SMOTE was employed. Additionally, 

interpretable LIME models were trained for all classifiers, 
enhancing model transparency and interpretability. 

- provides a model that uses sophisticated 

classification algorithms to predict student 

achievement - Utilizes real-world data from 
Portuguese school reports and surveys. - 

Addresses imbalanced dataset issue with K-

Means SMOTE. - Achieves high accuracy 
(96.89%) with Support Vector Machine (SVM). 

- Enhances model interpretability with LIME, 

providing confidence and transparency in 
predictions. 

- Reliance on specific classification 

algorithms may limit the exploration 
of other potential models. The 

generalizability of findings may be 

limited to the Portuguese education 
context. - Interpretability may vary 

depending on the complexity of 

underlying processes. 

A
ss

el
m

an
 e

t 
al

. 
[3

8
] 

Focus on enhancing the Performance Factors Analysis 
(PFA) approach, a crucial component of Knowledge 

Tracing (KT) in adaptive educational hypermedia systems. 

Introduction of Ensemble Learning methods, specifically 
Random Forest, AdaBoost, and XGBoost, to improve 

predictive accuracy of student performance. Evaluation of 

the proposed models on 3 different datasets. 

- Addresses the need for improved prediction 

accuracy in educational hypermedia systems. - 
Introduces Ensemble Learning methods to 

enhance technical aspects of PFA. - Evaluation 

of multiple datasets enhances the generalizability 
of findings. - Demonstrates a substantial 

improvement in performance prediction 

compared to the original PFA algorithm, 
particularly with XGBoost. 

- Focus on technical enhancements 

may overlook pedagogical 

considerations. - Limited discussion 
on potential challenges or limitations 

of the proposed approach. - 

Generalizability of findings may be 
restricted to specific datasets or 

educational contexts. 
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S
h

re
em

 e
t 

al
. 

[3
9

] 
introduced a wrapper feature selection technique for student 

performance prediction systems using an extended binary 

genetic algorithm (EBGA). A new hybrid selection process 

that combines the electromagnetic-like (EM) approach with 

k-means clustering is proposed. Using EBGA in conjunction 

with five classifiers (KNN, DT, NB, SVM, and Linear 
Discriminant Analysis) in a hybrid ML technique. 

Assessment of the suggested methodology using two actual 

case studies from the UCI ML Repository. 

- Introduction of an enhanced feature selection 

method tailored for student performance 
prediction systems. - Novel hybrid selection 

mechanism improves predictive accuracy. - 

Utilization of a hybrid ML approach enhances 
model performance. - Evaluation of real case 

studies enhances the practical applicability of 

findings. - Demonstrates an improvement in the 
performance of binary genetic algorithms and 

classifiers by 1% to 11%. 

- Limited discussion on potential 
challenges or limitations of the 

proposed approach. - Generalizability 

of findings may be restricted to 
specific datasets or educational 

contexts. - Lack of comparison with 

existing feature selection or hybrid 
ML methods. 

S
ar

w
at

 e
t 

al
. 

[4
0

] 

To predict student success through in-class and at-home 
tutoring, a deep-layer support vector machine (SVM) and an 

enhanced conditional generative adversarial network 

(CGAN) is proposed. Creating artificial data samples in 
order to deal with tiny dataset sizes. Model performance is 

assessed both with and without CGAN. Examination of 

several kernel-based methods for deep SVM, such as 
polynomial, sigmoid, radial, and linear functions. 

Performance comparison of the suggested model with the 

current solutions. 

- Effectively addresses small dataset size with 
synthetic data generation. - Demonstrates 

improved prediction accuracy with combined 

school and home tutoring. - Extensive evaluation 
of multiple kernel-based approaches for deep 

SVM. - Outperforms existing solutions in 

sensitivity, specificity, and AUC. 

- Limited discussion on potential 
challenges or limitations of the 

proposed approach. - Complexity of 

the model may hinder replication or 
generalization. - Comparative 

analyses may overlook nuances in 

different educational contexts. 

M
eh

d
i 

an
d

 N
ac

h
o
u
k

i 
[4

1
] 

created an explanatory and prediction model utilizing 

ANFIS to forecast the grade point average (GPA) of 
graduates in Ajman University's computer technology 

program. Use of high school GPA (HSGPA) and grades in 

foundational and introductory IT courses as predictors. 
Sensitivity analysis to ascertain each predictor's relative 

importance. ANFIS methodology is compared to popular 

methods like multilinear regression. 

- Effective use of ANFIS methodology for 

predicting GPA. - Identification of key 

predictors and their significance in influencing 
graduation GPA. - High predictive accuracy, 

with 77% of predicted values within one root 

mean square error of actual GPA. - Demonstrates 
ANFIS's superiority over commonly used 

techniques like multilinear regression. - Provides 

actionable insights for improving IT education 
programs. 

- Focused on a single academic 

program at one institution, which may 
limit generalizability. - Limited 

discussion on potential challenges or 

limitations of the ANFIS 
methodology. - Results may vary in 

different educational contexts or with 

different datasets. 

 

Despite the numerous models used for classifying student 
performance, none have incorporated the CATBoost classifier 
(CATC) until this point. With the aim of bridging this gap, the 
primary objective of this study was to advance a CATC-based 
model for forecasting student performance in language courses, 
using trustworthy data sources. The selection of the CATC was 
informed by its recognized robustness and efficacy in handling 
categorical features, a prevalent characteristic in student 
performance prediction tasks. CATBoost's track record of 
superior performance across diverse domains made it a 
compelling choice for this study, where accurate prediction of 
student outcomes is paramount. Moreover, the integration of 
VAO and ARO was driven by their specific strengths in 
optimization tasks. VAO, inspired by the adaptive behavior of 
the VA plant, excels in dynamic optimization problems, thereby 
offering an edge in scenarios with evolving parameters or data 
dynamics. Similarly, ARO, which mimics the foraging behavior 
of rabbits in search of optimal solutions, shows promise in fine-
tuning model parameters and improving overall model 
performance. The study's goal was to increase the predictive 
model's precision and accuracy by combining CATBoost with 
VAO and ARO in a way that maximizes their complementary 
strengths. This approach would also help to strengthen and 
improve the forecasting framework for language course student 
performance. 

In the following sections, related work is given in Section II, 
the dataset description and processing are detailed in Section III. 
Section IV provides an in-depth explanation of the presented 
model, while Section V discusses the meta-heuristic algorithms 
used. Section VI outlines the metrics employed to assess the 
performance of the developed models. Convergence analysis is 
given in Section VII. Results and discussion is given in Section 
VIII and Section IX respectively. Finally, Section X concludes 
the paper. 

III. DATA SELECTION AND PROCESSING 

This study uses data collected from previous literature 
[36,42]. Despite some governmental investments in Information 
Technology, most public schools still rely on paper-based 
information systems. Consequently, the database may be 
constructed from two sources: school reports (containing final 
grades and school absences) or questionnaires (covering 
demographic, social/emotional, and school-related variables 
expected to influence student performance). 

The study's database contains the following variables: the 
student's school, gender, age, home address (rural or urban), 
parents' cohabitation status (Pstatus), the mother's and father's 
degree and occupation (Medu, Fedu, Mjob, and Fjob), the reason 
the student chose this particular school (e.g., proximity to home, 
school reputation, course preference, or other), the student's 
guardian (mother, father, or other), the number of previous 
academic failures, extracurricular activities, paid instruction, 
attendance at nursery school, desire for further education, desire 
for further education, home Internet connection, romantic 
relationship, and family quality Any displayed input variable 
may be binary, numeric, or nominal.  

G3 and the number of school absences (absences) were 
selected as model outputs. 𝐺3  is the final grade of students 
obtained from school reports, with values between zero (the 
lowest grade) and 20 (the highest grade). Finally, by classifying 
reported grades, students were divided into four categories: Poor 
( 𝐺3  of 0– 12 ), Acceptable ( 𝐺3  of 12– 14 ), Good ( 𝐺3  of 
14– 16), and Excellent (𝐺3 of 16– 20). 

The correlation matrix for each new input and output 
variable is shown in Fig. 1. The parents' education had the 
highest positive effect on the grade obtained by the student, 
while the father's job was not as effective as the mother's. As 
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expected, study time positively affected outcomes, and the 
influence of previous failures of the student was revealed to be 
highly negative. The positive impact of internet accessibility and 
students' willingness to continue higher education and, in 

contrast, the negative consequences of alcohol consumption 
were noticeable. Also, the main variables influencing the 
number of absences from school were age, failures, and the 
amount of alcohol consumed on a daily and weekly basis.

 
Fig. 1. Correlation matrix for the input and output variables. 

IV. CATBOOST CLASSIFIER (CATC) 

A proficient ML algorithm for forecasting categorical 
attributes is the CatBoost classifier. CatBoost employs gradient 
boosting and utilizes binary DT as foundational predictors [43]. 

Let's consider a dataset comprising samples 𝐷 = {(𝑋𝑗, 𝑦𝑗)}, 𝑗 =

1,… ,𝑚, where in 𝑋𝑗 = (𝑥 j
1, 𝑥 𝑗

2, … , 𝑥 𝑗
n) , 𝑦𝑗 ∈ R, the response 

feature, and a vector of n characteristics. The answer feature 
might be numerical (0 𝑜𝑟 1) or binary (yes or no). The samples 

(𝑋𝑗 , 𝑦𝑗)  have the same independent distribution according to 

some unknown distribution 𝑝(. , . ) . To train a function 𝐻 ∶
 R𝑛  →  R that lowers the predicted loss as given by Eq. (1) is the 
aim of the knowledge problem. 

𝑋𝑗 = (𝑥 j
1, 𝑥 𝑗

2, … , 𝑥 𝑗
n)  denotes a vector of 𝑛 characteristics 

and the response feature 𝑦𝑗 ∈ R, which can be expressed as a 

numerical feature (0 𝑜𝑟 1) or as binary (i.e., yes or no). The 
samples ( 𝑋𝑗 , 𝑦𝑗 ) have the same independent distribution 

according to some unknown distribution 𝑝(. , . ) . To train a 
function 𝐻 ∶  R𝑛  →  R that lowers the predicted loss as given by 
Eq. (1) is the aim of the knowledge problem.  

ℒ(𝐻) ∶=  𝔼𝐿(𝑦, 𝐻(𝑋)) (1) 

Where (𝑋, 𝑦) indicates testing data selected from training 
data 𝐷, and 𝐿(. , . ) is a smooth loss function. 

The gradient boosting procedure [44] incrementally builds a 
series of approximations 𝐻𝑡 ∶  𝑅𝑚 →  𝑅, 𝑡 = 0, 1, .. in a greedy 
manner. Starting from the previous approximation 𝐻𝑡−1, each 
new approximation 𝐻𝑡  is obtained through an additive process, 
where 𝐻𝑡 = 𝐻𝑡−1  +  𝛼𝑔𝑡. Here, α represents the step size and 
the function 𝑔𝑡: 𝑅𝑛 →  𝑅, which serves as a base predictor, is 
chosen from a set of functions G to minimize or reduce the 
expected loss defined in Eq. (2): 

𝑔𝑡 = argmin
𝑔∈𝐺

ℒ(𝐻𝑡−1 + 𝑔𝑡)

= argmin
𝑔∈𝐺

𝔼𝐿(𝑦, 𝐻𝑡−1(𝑋) + 𝑔(𝑋)) 
(2) 

Frequently, the Newton approach is used for the 
minimization issue, using a second-order approximation of 
ℒ(𝐻𝑡−1 + 𝑔𝑡) at 𝐻𝑡−1, or by taking a (negative) gradient step. 
Both approaches, Newton's method and gradient descent, are 
utilized [45,46]. For additional details on the CatBoost 
algorithm, please refer to [43]. 
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V. META-HEURISTIC OPTIMIZATION ALGORITHMS 

A. Victoria Amazonica Optimization 

The distribution of the initial population, which is made up 
of two parts—Leaves and Flowers—and their corresponding 
capacities to spread over the surface are the main foci of the 
VAO algorithm [47]. This algorithm predominantly functions as 
a metaheuristic and uses swarm local search techniques. Its main 
drawback lies in the potential of getting trapped in local optima. 
However, it is noteworthy for its swiftness and resilience in 
handling a wide range of optimization tasks. In the context of 
this research, the scientific representation of diameter ⌀  is 
employed to illustrate how entities grow circularly. This growth 
includes their ability to occupy space, which is achieved through 
the forceful displacement of one another as they gain strength 
and spines. This competitive interaction is called intra-
competition or denoted as 𝜆 for formulation. 

Three common challenges affecting plant growth are beetle 
mortality, inadequate pollination, and temperature drops, 
collectively referred to as 𝜔. A higher 𝜔 value indicates weaker 
plant growth. Plant pests, like water lily Aphids, represented as 
𝜇, can damage leaves. A lower 𝜇 value implies better situations 
for a plant’s growing. 

Lastly, the mutation occurs when pond beetles cross-
pollinate a water lily flower with a different type, Hybrid 
Mutation, represented by the symbol 𝜌. As mentioned earlier, 
this mutation can result in negative and positive changes, each 
with a 0.2% frequency per generation. The healthiest and most 
robust leaf is identified as the optimal or 𝛼. The VAO method's 
flowchart is presented in Fig. 2. 

𝑉𝐴𝑂 = ∑ ∑ (𝑥𝑖𝑗[⌀𝑖𝑗 ,
𝑛

𝑗=1

𝑛

𝑖=1
 𝜆𝑖𝑗] +  𝜇 + 𝜔) ∗ (𝜌) (3) 

 

Fig. 2. Flowchart of the proposed VAO. 

B. Artificial Rabbits Optimization 

The 𝐴𝑅𝑂 idea is derived from the survival techniques used 
by rabbits in their natural environment, which are designed to 
confuse predators and guarantee their ability to avoid being 
tracked. ARO encompasses integrating rabbits' approaches 
related to foraging, concealing, and managing energy resources, 
allowing for a seamless transition between these strategic 
behaviors [48]. 

1) Detour foraging: Rabbits use a detour foraging strategy 

when they forage for food, focusing on far-off food sources and 

often ignoring closer ones. Imagine an environment where a 

number of rabbits, each with its region complete with burrows 

and grass, are contained inside the ARO framework. These 

bunnies often stumble into one other's foraging spots at 

random. The mathematical model to describe the deviation 

search behavior of rabbits is as follows: 

�⃗� 𝑖(𝑡 + 1) = 𝑥𝑗(𝑡) + 𝑆 × (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)) + 𝑤(0.5

× (0.05 + 𝑟1)) × 𝑚1, 

𝑖, 𝑗 = 1,… , 𝑛 𝑎𝑛𝑑 𝑗 ≠ 1  

(4) 

𝑆 = 𝑀 × 𝑣 (5) 

𝑀 = (𝑒 − 𝑒(
𝑡−1
𝐼

)
2

) × sin (2𝜋𝑟2) (6) 

𝑣(𝑦) = {
1     𝑖𝑓   𝑦 = 𝑓(1)
0                     𝑒𝑙𝑠𝑒

   𝑘 = 1,… , 𝑑 𝑎𝑛𝑑 𝑙

= 1,… , ⌈𝑟3 × 𝑑⌉ 
(7) 

𝑓 = 𝑝(𝑑) (8) 
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𝑚1 = 𝑁(0,1) (9) 

In all equations above: 

n: The population's total number of rabbits 

d: The scope of the issue 

�⃗� 𝑖(𝑡 + 1): The 𝑖 − 𝑡ℎ rabbit's location at time 𝑡 +  1, 

𝑛1: Based on the conventional normal distribution 
distribution model. 

𝑇: The maximum number of iterations, 

𝑥𝑖(𝑡): The position of the 𝑖 − 𝑡ℎ rabbit at time 𝑡. 

𝑝: produces a random permutation, or rearrangement, of 
numbers between 1 and 𝑑. 

𝑤 : An algorithmic mapping tool that makes it easier to 
choose components at random from the explorer to provide 
diversity to the search procedure. 

𝑟1, 𝑟2, and 𝑟3: Random values in the interval [0, 1). 

𝑆: During detour foraging, the run length indicates the pace 
of movement. 

2) Random hiding: To enhance their survival chances, 

rabbits are likely to select one of their caves at random as a 

shelter. The mathematical model that represents this stochastic 

shelter-seeking behavior is expressed through the following 

equations. The 𝑗 − 𝑡ℎ burrow of the 𝑖 − 𝑡ℎ rabbit’s formulation 

is as follows: 

�⃗� 𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑁 × 𝑓 × 𝑥 𝑖(𝑡),   𝑖, 𝑗 =
1,… , 𝑛 𝑎𝑛𝑑 𝑗 ≠ 1  

(10) 

𝐷 =
𝐼−𝑡+1

𝐼
× 𝑟4  (11) 

𝑚2 = 𝑁(0,1)  (12) 

𝑓(𝑦) = {
1     𝑖𝑓   𝑦 = 𝑔(1)
0                     𝑒𝑙𝑠𝑒

   𝑘 = 1,… , 𝑑  (13) 

�⃗� 𝑖,𝑟(𝑡) = 𝑥 𝑖(𝑡) +  𝑁 × 𝑓 × 𝑥 𝑖(𝑡)  (14) 

The parameter 𝑁 , which represents the hiding capability, 
gradually decreases linearly during the iteration process, starting 
at 1 and decreasing to 1/𝐼 , with the addition of random 
perturbations. 

Finally, whether the random hiding or detour foraging tactics 
are used, the update of the 𝑖 − 𝑡ℎ rabbit's position follows the 
formula provided in Eq. (15): 

𝑥 𝑖(𝑡 + 1)

= {
𝑥 𝑖(𝑡)                    𝑔(𝑥 𝑖(𝑡)) ≤ 𝑔 (�⃗� 𝑖(𝑡 + 1))

�⃗� 𝑖(𝑡 + 1)            𝑔(𝑥 𝑖(𝑡)) > 𝑔 (�⃗� 𝑖(𝑡 + 1))
 

 

(15) 

3) Energy shrink: The rabbits' energy levels steadily 

decline as a result of their frequent cycles of haphazard 

concealment and diversionary foraging. Consequently, an 

energy component must be included in the 𝐴𝑅𝑂 framework: 

𝐸(𝑡) = 4 (1 −
𝑡

𝐼
) 𝑙𝑛

1

𝑟
 (16) 

Fig. 3 displays the 𝐴𝑅𝑂 flowchart. 

 
Fig. 3. Flowchart of ARO. 

VI. EVALUATION METRICS 

The most frequently employed metric in a classification 
problem like the one addressed in this study is Accuracy. In 
defining the Accuracy, True positives, or TPs, are situations in 
which the model's predictions came true. Instances that were 
also accurately anticipated are known as true negatives (𝑇𝑁). 
False negatives ( 𝐹𝑁 ) indicate cases that were incorrectly 
predicted, while false positives (𝐹𝑃) indicate cases that were 
incorrectly anticipated.  

Nevertheless, five other metrics (Precision, F1-score, Recall, 
MCC, and AUC) have been chosen because the Accuracy metric 
has limitations and may not accurately reflect the situation when 
dealing with imbalanced data, because it usually benefits the 
dominant class. Precision measures how well positive 
predictions work, which is important for reducing false 
positives, while recall shows how well a model can locate all 
relevant instances within a class.  Furthermore, by taking into 
account both the minority and majority classes, the F1-score 
enables us to evaluate and correct for uneven data [49]. 
Evaluation parameters are defined in Eq. (17) to Eq. (21): 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (17) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (18) 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
             (19) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
           (20) 

𝑀𝐶𝐶 =
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃+𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
         (21) 

VII. CONVERGENCE ANALYSIS 

VAO and ARO are two distinct metaheuristic optimization 
algorithms that have shown promise in enhancing the 
performance of 𝑀𝐿 models. This study applied them to optimize 
CATC development CAVA and CAAR hybrid models. These 
optimizers work to fine-tune the model's hyperparameters and 
improve its predictive accuracy. 

 
Fig. 4. Convergence curve of hybrid models. 

An efficient method for assessing the convergence of these 
optimizers is by employing a convergence curve depicted in Fig. 
4, which is based on the measure of accuracy through 200 
iterations. This curve provides a graphic illustration of how the 
model's accuracy evolves with each iteration, enabling us to 
determine whether the optimizer is progressing toward an 
optimal solution and with which rate this convergence is 
occurring. As evident in Fig. 4, CAVA and CAAR have similar 
convergence rates, but CAVA starts its operation with about 5% 
higher accuracy than CAAR, and it reaches a better ultimate 
value. It is important to highlight that in both models, the trend 
line exhibited a linear pattern at around 120 iterations, indicating 
that this point represents the optimal level of computational 
efficiency. 

VIII. RESULTS 

This project incorporates a wide range of student data, with 
a focus on their final grades (𝐺3), in an effort to predict future 
academic success in language courses by using ML techniques.  
The three models—CATC, CAAR, and CAVA—that are based 
on the CATBoost Classifier (CATC) are trained and evaluated 
in large part using this dataset. This section contains the study's 
methodical computation of performance measures for each 
prediction step, including Accuracy, Recall, Precision, F1-
score, MCC, and AUC.  With the goal of identifying the best 
prediction model, this careful investigation provides insightful 
information that may be used to improve students' academic 
performance. Every pertinent measure value for testing, 
training, and model performance is listed in Table II and shown 
in Fig. 5.  When it comes to the G3 prediction results, 𝐶𝐴𝑉𝐴 and 
𝐶𝐴𝑇𝐶  have the best and lowest prediction performances, 
respectively, with maximum and minimum accuracy scores of 
0.9449 and 0.8744. The highest values that 𝐶𝐴𝑉𝐴 was able to 
obtain were 0.9453, 0.9449, 0.9449, 0.9192 , and 0.944  for 
Precision, Recall, F1-score, and AUC, respectively. These 
results demonstrate the excellent accuracy of CAVA's exact 
predictions. Conversely, the performance of the other hybrid 
model (CAAR) was lower than that of CAVA in the prediction 
processes, experiencing weaker performance across all metric 
values. 

TABLE II.  OUTCOMES OF THE MODELS PRESENTED 

𝑴𝒐𝒅𝒆𝒍 𝑷𝒉𝒂𝒔𝒆 
𝑰𝒏𝒅𝒆𝒙 𝒗𝒂𝒍𝒖𝒆𝒔 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 _𝒔𝒄𝒐𝒓𝒆 𝑴𝑪𝑪 𝑨𝑼𝑪 

𝐶𝐴𝑇𝐶 

𝑇𝑟𝑎𝑖𝑛 0.8744 0.8786 0.8744 0.8759 0.8183 

0.909 𝑇𝑒𝑠𝑡 0.8872 0.8892 0.8872 0.8871 0.8350 

𝐴𝑙𝑙 0.8783 0.8800 0.8800 0.8800 0.8230 

𝐶𝐴𝐴𝑅 

𝑇𝑟𝑎𝑖𝑛 0.9053 0.9066 0.9053 0.9045 0.8603 

0.904 𝑇𝑒𝑠𝑡 0.8564 0.8548 0.8564 0.8519 0.7876 

𝐴𝑙𝑙 0.8906 0.8900 0.8900 0.8900 0.8384 

𝐶𝐴𝑉𝐴 

𝑇𝑟𝑎𝑖𝑛 0.9449 0.9453 0.9449 0.9449 0.9192 

0.944 𝑇𝑒𝑠𝑡 0.9077 0.9065 0.9077 0.9063 0.8641 

𝐴𝑙𝑙 0.9337 0.9300 0.9300 0.9300 0.9026 
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Fig. 5. Bar charts for evaluation results related to hybrid models. 

After data processing and examining the classification 
capability of models in both training and testing phases, to 
discuss in detail, a total of 649 students based on test results (G3 
values) divided into four categories: Poor (G3 of 0–12), 
Acceptable (G3 of 12–14), Good (G3 of 14–20), and Excellent 
(G3 of 16–20). Based on categorizing results, 82, 112, 154, and 
301 students were located in Excellent, Good, Acceptable, and 
Poor classes. It revealed that most students (46.38%) performed 
poorly, while 23.73%, 17.26%, and 12.63% achieved 
acceptable, good, and excellent educational performance, 
correspondingly. Table III shows the accuracy, recall, and F1-
score index values to assess how well the constructed model’s 
categorization performance across various student groups. Each 
of the three Index values has been taken into consideration in the 
comparative study that follows: 

1) Precision: A thorough examination of two optimized 

models presented that, when categorizing students across 

various categories, the CAVA model exhibited the highest level 

of precision in all cases, except for the Excellent grade 

category, where the CAAR model achieved a max 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

value of 0.99. For students classified as Poor and Excellent, the 

CAVA model demonstrated a Precision value of 0.96 for both 

categories. Notably, the classification performance of all three 

models was least precise when dealing with students in the 

Good grade category, with the lowest precision values observed 

as 0.78, 0.83, and 0.88 for CATC, CAAR, and CAVA, 

respectively. 

2) Recall: Considering recall values, CAVA performed 

better in identifying all relevant instances within a class with 

0.89, 0.88, 0.9, and 0.98 of the Recall for Excellent, Good, 

Acceptable, and Poor categories, respectively. Of course, there 

was an exception in the case of poorly graded students, where 

CAAR with a marginally higher Recall value was better than 

CAVA. Similar to those obtained in Precision values 

comparison, all models performed poorly in classifying 

students in the Good grade category. 
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3) F1-score: Compared to the Precision and Recall, the F1-

score offers a more comprehensive and nuanced basis for 

comparative analysis. This metric is bounded between 0 and 1, 

with higher values signifying superior model performance. A 

higher F1 score indicates that the model achieves a balance 

between recalling all true positive instances and precisely 

recognizing positive cases (precision and recall). The 𝐶𝐴𝑉𝐴 

shows itself to be the most accurate when taking into account 

all student categories, producing F1-scores of 0.92,0.88,0.9, 

and 0.97 for students rated as Excellent, Good, Acceptable, and 

Poor. In the second position, concerning the classification of 

Poor and Excellent students, CAAR displayed greater accuracy 

than the individual model, whereas their performance was 

identical for Good students. For Acceptable students, CATC 

outperformed CAAR. 

4) MCC: The Matthews Correlation Coefficient (MCC) 

results show that 𝐶𝐴𝑉𝐴 performed well in finding all relevant 

occurrences in each class. Excellent, Good, Acceptable, and 

Poor categories received scores of 0.95, 0.87, 0.85, and 0.91, 

respectively. This indicates a high degree of accuracy in 

predicting student performance across various grade levels. It's 

noteworthy to mention that, akin to the findings in the 

comparison of Precision values, all models exhibited weaker 

performance in accurately classifying students within the Good 

grade category. 

In general, Table III shows the results of the developed 
models in detail. 

Fig. 6 provides chances for visual comparison by displaying 
the frequency of students in each category based on metrics and 
conclusions from the categorization model. It is evident that the 
students who fell into the categories of bad, acceptable, good, 
and exceptional were, in fact,301,154,112, and 82. The CAVA 
model demonstrated the max accuracy in correctly identifying 
the categorization of students across different categories, with 
one exception in the Poor category, where CAAR classified a 
higher number of students correctly (298 students). In contrast, 
considering all other grades of students, CAAR was the weakest 

classifier, especially in the case of Good grades, where only 
77.68% of students classified correctly. 

The confusion matrix in Fig. 7 demonstrates the number of 
students accurately assigned to their respective grades and those 
misclassified into incorrect categories. Considering CAVA, 73, 
99, 138, 196 (cumulative number of 606), students were 
categorized correctly in Excellent, Good, Acceptable, and Poor 
classes, and just 49 were in the wrong grade. In contrast, the 
number of students whom CAAR and CATC misclassified was 
71 and 79. For two optimized models, misclassification occurred 
mostly between neighborhood categories, for instance, 9 and 15 
students in the case of CAVA and CAAR instead of coming in 
the 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 category positioned in the 𝐺𝑜𝑜𝑑 grade category. 
On the other hand, in the instance of the single CATC model, 
seven students with a minimum score difference of four points 
in their G3 scores were wrongly placed in the Poor group instead 
of the Excellent category. Overall, CAVA outperformed 2 other 
models capable of predicting students' academic performance in 
the future more precisely. 

TABLE III.  GRADE-BASED PERFORMANCE EVALUATION INDICES FOR THE 

CREATED MODELS 

𝑴𝒐𝒅𝒆𝒍 𝑮𝒓𝒂𝒅𝒆 
𝑰𝒏𝒅𝒆𝒙 𝒗𝒂𝒍𝒖𝒆𝒔 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 𝑴𝑪𝑪 

𝐶𝐴𝑇𝐶 

𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 0.85 0.86 0.85 0.88 

𝐺𝑜𝑜𝑑 0.83 0.83 0.83 0.81 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 0.78 0.83 0.80 0.76 

𝑃𝑜𝑜𝑟 0.95 0.92 0.93 0.80 

𝐶𝐴𝐴𝑅 

𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 0.82 0.82 0.82 0.92 

𝐺𝑜𝑜𝑑 0.99 0.80 0.89 0.77 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 0.83 0.78 0.80 0.76 

𝑃𝑜𝑜𝑟 0.92 0.99 0.96 0.88 

𝐶𝐴𝑉𝐴 

𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 0.91 0.90 0.90 0.95 

𝐺𝑜𝑜𝑑 0.96 0.89 0.92 0.87 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 0.88 0.88 0.88 0.85 

𝑃𝑜𝑜𝑟 0.96 0.98 0.97 0.91 
 

  

  
Fig. 6. Based on measurements and the results of categorization models, the number of pupils in each category. 
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Fig. 7. Confusion matrix showing the accuracy of each model's categorization. 

The analysis makes use of the Receiver Operating 
Characteristic (ROC) curve to achieve equilibrium between 
True Positive (𝑇𝑃) and False Positive (𝐹𝑃) rates, gauged by the 
Area Under the 𝑅𝑂𝐶  Curve (𝐴𝑈𝐶).  A higher AUC signifies 
better control over the FP rate relative to the TP rate. An ideal 
discriminatory test is marked by an 𝑅𝑂𝐶  plot converging 
towards the upper-left corner, indicative of 100%  sensitivity 
and specificity. As depicted in Fig. 8, which presents ROC 

curves for the CATC, CAAR, and CAVA models in G3 score 
classification, it is evident that the AUC for the CAVA model 
(0.944) surpasses that of other categories, underscoring its 
robust discriminatory capability. The discernible inclination of 
the curve towards the upper-left corner underscores the model's 
effectiveness in distinguishing between various classes with 
precision. 

 

Fig. 8. The result of the ROC curve. 
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IX. DISCUSSION 

Since a particular dataset was used for the study, it is 
acknowledged that the findings might not apply to different 
educational settings. Nevertheless, the strategy proposed, which 
combines the CATC model with optimization algorithms, is 
believed to have the potential for generalization to other settings 
under specific conditions: 

1) Sufficient and representative data: The dataset needs to 

be sufficiently big and representative of the intended audience. 

It must have pertinent characteristics that may record the 

elements impacting pupils' academic achievement. 

Additionally, rigorous preprocessing and cleaning are essential 

to guarantee data quality and validity. 

2) Tuning of optimization algorithms: The tuning and 

adaptation of the optimization algorithms to the properties of 

the data is required. This involves adjusting parameters and 

initial conditions to optimize the objective function effectively. 

While optimization algorithms are powerful tools for 
enhancing predictive models, they also possess certain 
limitations and potential drawbacks: 

1) Dependence on data quality and quantity: Optimization 

algorithms rely on the quality and quantity of data for learning 

and optimizing the objective function. Issues like overfitting, 

underfitting, or bias in the optimization findings may arise from 

insufficient, erroneous, or unrepresentative data. 

2) Computational resources: Optimization algorithms' 

iterative procedures sometimes need large amounts of memory 

and processing power, especially when dealing with high-

dimensional and nonlinear issues. Due to this, they might not 

be as helpful or successful in real-world scenarios where time 

and distance are crucial factors. 

3) Sensitivity to parameters and initial conditions: 

Optimization algorithms typically involve specifying or tuning 

multiple parameters and initial conditions. Selecting these 

factors can have a big influence on the optimization solutions' 

quality, stability, and convergence, making it difficult to adapt 

to other situations or datasets. 

4) Lack of guarantees and robustness: Despite their 

effectiveness, optimization algorithms may lack guarantees and 

robustness in certain situations. Variability in convergence, 

stability, and quality of results may occur, making it 

challenging to ensure consistent performance across diverse 

contexts. 
Awareness of these limitations is essential when employing 

optimization algorithms in practical applications, necessitating 
careful consideration and validation to mitigate potential 
drawbacks and optimize their utility effectively. 

B. Comparison with Published Papers 

Table IV shows that the CAVA model in the present study 
achieves an accuracy of 93.37%, significantly outperforming 
other models such as the DTC and NBC used in previous 
studies. The superior performance of the CAVA model is 
attributed to its advanced optimization techniques, which 
improve parameter tuning and feature selection. This highlights 

the potential of using sophisticated optimization algorithms to 
address challenges in educational DM, leading to better 
predictive performance. The findings suggest that robust models 
like CAVA can enhance decision-making and support systems 
in educational settings, ultimately improving student outcomes. 

TABLE IV.  EXTENSIVE STUDY RESULTS COMPARED TO THE CURRENT 

WORK 

𝑨𝒖𝒕𝒉𝒐𝒓 (𝒔) 𝑴𝒐𝒅𝒆𝒍𝒔 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 

𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑡𝑢𝑑𝑦 𝐶𝐴𝑉𝐴 93.37% 

𝐾𝑎𝑏𝑎𝑘𝑐ℎ𝑖𝑒𝑣𝑎 [50] 𝐷𝑇𝐶 72.74% 

𝐵𝑖𝑐ℎ𝑘𝑎𝑟 𝑎𝑛𝑑 𝑅. 𝑅. 𝐾𝑎𝑏𝑟𝑎 [35] 𝐷𝑇𝐶 69.94% 

𝑁𝑔𝑢𝑦𝑒𝑛 𝑎𝑛𝑑 𝑃𝑒𝑡𝑒𝑟 [51] 𝐷𝑇𝐶 82% 

𝐸𝑑𝑖𝑛 𝑂𝑠𝑚𝑎𝑛𝑏𝑒𝑔𝑜𝑣𝑖𝑐 𝑒𝑡 𝑎𝑙. [52] 𝑁𝐵𝐶 76.65% 

X. CONCLUSION 

This inquiry is primarily concerned with the utilization of 
data-driven prediction models within educational settings, 
highlighting the critical integration of qualitative and 
quantitative components to forecast and assess students' 
academic success in language classes. Regression, 
classification, and clustering are 3 examples of DM techniques 
that show promise in addressing a variety of issues faced by 
undergraduate students. The knowledge gained from this study 
provides lawmakers, academic institutions, and students with 
important direction for improving future academic achievement. 
Additionally, the study introduces a pioneering approach by 
combining the VAO and ARO methods with the CATBoost 
classifier (CATC) model. This creative combination shows how 
ML methods and optimization algorithms may improve the 
accuracy and performance of prediction models. The resultant 
toolbox equips stakeholders to navigate the evolving 
complexities encountered throughout students' academic 
journeys. Through meticulous analysis, including model 
partitioning into training and testing sets, the study emphasizes 
how important it is for hybrid models to improve the CATC 
model's classification performance. Substantial improvements 
in Matthews Correlation Coefficient (MCC), Accuracy, and 
Precision attest to this progress. Detailed scrutiny of the data 
underscores the growing recognition of hybrid models for 
substantially refining the CATC model's categorization abilities. 
Particularly noteworthy is the exceptional performance of the 
VAO in boosting classification accuracy. Notably, the CAVA 
model demonstrates an impressive ability to accurately identify 
93.37% of students, outperforming CAAR and CATC. 
Ultimately, this work propels predictive modeling in education 
forward, offering avenues to augment the precision and efficacy 
of academic performance evaluations. These findings 
underscore the favorable impact data-driven strategies can have 
on undergraduate students' academic trajectories. Future work in 
this field should focus on expanding the dataset to include a 
more diverse student population and a broader range of 
academic disciplines to validate the generalizability of the 
models. Additionally, exploring the integration of other 
advanced optimization algorithms and ML techniques could 
further enhance model performance. Investigating the real-time 
application of these models in educational settings and their 
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impact on student interventions and support strategies would 
also be valuable. 
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