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Abstract—This study proposed a novel approach to handle 

mental health, particularly, depression among college students, 

called CRADDS A Comprehensive Real-time Adaptive Depression 

Detection System. The novel CRADDS combined advanced tensor 

fusion networks which is able to analyze emotions using audio, text 

and video data more accurately, this is possible due to the strength 

of deep learning and multimodal approaches. This system is 

constructed with a hybrid algorithm framework that combines 

SVM (Support Vector Machines), CNN (Convolutional Neural 

Network) and (Bidirectional Long-Term Short-Term Memory) 

BiLSTM techniques. To address the limitations identified in 

earlier research, CRADDS increasing its feature set and using 

effective machine learning algorithms to reduce false positives and 

negatives. Further, it includes the advanced IoT devices to collect 

real time data from various range of public and private sources. 

The depression symptoms may be continuously monitored in real 

time, which helps to identify depressions in early stages and 

guaranteed the perfect well-being of students. Additionally, the 

model has the ability to adjust based on the interaction features, 

which helps to provide psychological support using the automatic 

responses observed from the verbal and nonverbal clues. 

Experiments show that the proposed CRADDS obtained an 

impressive accuracy based on the features of text, audio and video, 

when compared with the existing models. Overall, CRADDS is a 

useful tool for mental health professionals and educational 

institutions because it not only identifies depression but also helps 

to treat it earlier, and guarantees good academic scores and 

general well-being. The proposed validation accuracy increases 

from 63.04% to 86.08% which is higher than compared existing 

SVM model. 

Keywords—Depression analysis; multimodal techniques; mental 

health; real-time monitoring; hybrid algorithms 

I. INTRODUCTION 

A. Depression Analysis and its Importance 

Examining depression among students become very 
important, particularly in COVID-19 situations, which has 
severely increased mental health issues. Lockdowns and remote 
learning caused students to be away from their regular social 
networks and classrooms, which led to increased stress, anxiety 
[20] and depression symptoms in the students. Particular 
psychological difficulties were presented by the change to 
online learning environments, the disturbance of habits and 
future uncertainty [1]. The analysis of depression occurrence 
among students during this period was necessary to allow early 
detection and treatment, for preventing long-term mental health 
issues. By using effective depression analysis techniques, 
educational institutions and healthcare practitioners were able 
to develop and execute mental health interventions that were 

specifically designed to meet the needs of students who were 
experiencing difficulties during the pandemic [2-3]. These 
methods included wellness programs, peer support systems and 
online counselling services. Additionally, by understanding the 
patterns and situations regarding depression in students, 
educators and others can efficiently create academic and 
psychological support networks. COVID-19 raised focus to the 
importance of mental health measures in educational settings 
and highlighted the value of mental health as a fundamental 
element of overall well-being and successful learning [4-5]. In 
ongoing global health crisis, assessing student depression will 
provide valuable insights into the future approaches to student 
health services. It also highlights the importance of mental 
health plays in improving academic flexibility and success. 

B. Depression Analysis Techniques and its Drawbacks 

Depression analysis techniques involve a variety of 
methodologies, such as self-report surveys, clinician interviews 
and growing technology-based approaches like machine 
learning models that are used to analyse behavioural data [6]. 
Traditional self-report measures, like the Beck Depression 
Inventory and the Hamilton Depression Rating Scale, are 
commonly used, due to their adaptability and ability to track 
changes [7-8]. However, these previous literature methods can 
be unfair because sometimes people underestimate the 
symptoms due to the misunderstanding of questions. Observing 
nonverbal signals that indicate depression and further analysing 
patient responses can be done through clinician interviews, 
which provide a more understanding level of information [9-
10]. Furthermore, using machine learning models provides an 
effective way to raise the accuracy of the depression diagnosis. 
These models may evaluate large amounts of data from various 
sources, like speech patterns, physical activity and social media 
usage, and identify patterns immediately that are not achievable 
with these traditional methods. Due to the limitations with these 
traditional techniques, there is an immediate need for 
multimodal based machine learning approaches. By analysing 
the advantages and trends of machine learning modals, we 
present the effective solution for this. 

C. Machine Learning and its Advantages 

Deep learning a subset of machine learning, provides a 
number of benefits when it comes to evaluating depression in 
college students by using advanced algorithms to understand a 
wide range of data sources. This technology is particularly good 
at immediate relationships and patterns that conventional 
analytical techniques could miss. For example, it can examine 
writing and speech patterns as well as social media activity to 
identify early indicators of depression that may not be 
immediately noticeable. Some of the techniques and its 
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advantages in reviewed by current research methods are 
illustrated below (Table I) [11-14]. 

The above researches obtain remarkable improvement in 
depression analysis with different data domains. Based on this 
research procedures, this study gives an advanced solution that 
tackle not only the present limitations but also the future. 

Traditional depression analysis models frequently fail in 
numerous important domains when applied in real-time. 
Previous research mostly used discrete data modalities like text, 
audio, or video, which might result in assessments that are both 
incomplete and perhaps erroneous. These models often employ 
opaque black box techniques, which make it challenging to 
comprehend the decision-making process and pinpoint the 
fundamental causes of depression. Furthermore, the temporal 
dynamics and intricate connections included in multi-modal 
data pose challenges to the handling capabilities of many of the 
models that are now in use. 

Our suggested CRADDS (Credit Risk Assessment Decision 
Support System) uses three potent algorithms—Convolutional 
Neural Network, BiLSTM, and SVM—to close these gaps. The 
individual qualities of each algorithm work together to improve 
the system's overall efficacy and accuracy in real-time 
depression analysis. 

First, the CNN in CRADDS is enhanced with dilated 
convolutions, which increase the receptive field without 
compromising resolution, making it different from a standard 
convolutional network. This makes it possible for the model to 
extract more contextual information from the input 
photographs, which is important for detecting small changes in 
facial expressions and subtle emotional subtleties that could be 
signs of depression. Second, the model can concentrate on 

significant features from textual, audio, and video data 
sequences thanks to the attention mechanism built into the 
BiLSTM layer. This increases the model's capacity to represent 
intricate linkages and long-range dependencies, which raises 
the model's accuracy in identifying patterns of sadness over 
time. Finally, by combining visual, textual, and aural signals, 
SVM ensures robust categorization and greatly lowers the 
likelihood of false positives and negatives. 

D. Proposed CRADDS Advantages and Study Motive 

The propose study designed with an objective regarding 
three existing articles [15-17], limitations and future scope, this 
study not only focused on depression analysis, also provides an 
effective solution for the current research limitations, 
additionally, the future scope of the studies also completely 
satisfied with our proposed CRADDS. The possibility is clearly 
overviewed by Table II. 

E. Depression Analysis among Various Factors  

A thorough investigation of depression among medical 
students was carried out by Puthran et al. (2016), and the results 
showed that the frequency was 28.0% worldwide. Remarkably, 
the highest rates of depression were seen in Year 1 students, 
with a progressive drop noted in future years. Even if the rates 
of depression in medical and non-medical students were 
identical, the poor treatment behavior among depressed medical 
students highlights the need for targeted treatments. A 
comparatively high incidence of depression of 28.4% was 
carried out by Gao et al. (2020), which examined the prevalence 
of depression among Chinese university students. The subgroup 
analysis highlights the need for improved mental healthcare 
services for this and suggests a continuous requirement for 
interventions and support networks in Chinese colleges. 

TABLE I.  MACHINE LEARNING [21] TECHNIQUES AND ITS ADVANTAGES  

Source Techniques Used Data Used Improvements Noted 

[11] SVM, Naïve Bayes Social Media Posts Improved early detection accuracy 

[12] CNN, kNN, Random Forest Facial Images, dynamic textual descriptions. 2.7% better in feature extraction. 

[13] Deep Learning, VGG-16, Word2Vec, Faster R-CNN Social Media Posts (texts, images, videos) First real-time multimodal analysis system. 

[14] BiLSTM Textual posts on social media Good results in early depression detection. 

TABLE II.  LIMITATIONS AND FUTURE SCOPE OF EXISTING RESEARCH  

Source Limitations Future Scope How CRADDS address Limitations and Future Scope 

[15] 

High risk of false positives 

and negatives, 

Ethical concerns 

Expand the use of IoT for real-time 

diagnostics 
Integrate with voice conversation systems 

for therapeutic effects 

Implements robust validation to minimize diagnostic errors 

Designs ethical AI frameworks and observes to guidelines 

Improves IoT integration and supports real-time multimodal analysis 

[16] 

Relies on audio and text; 

plans for video integration 
Requires broader, more 

accurate datasets 

Develop a hybrid model using audio, video, 

and text features 
Implement more powerful algorithms for 

enhanced accuracy 

Uses a comprehensive multimodal approach integrating audio, text, and 
video 

Applies advanced algorithms to improve learning rates and prediction 

accuracy 
Plans for real-time, scalable depression detection applications 

[17] 

Limited participant number 

affects result validity 

Manual collection of verbal 
and non-verbal cues is 

resource-intensive 

Develop automatic monitoring through app 
Use advanced statistical analysis for more 

significant findings 

Reduce required data collection period 

Expands dataset to include more demographic variables for greater 

representativeness 
Combines automatic monitoring of verbal and non-verbal cues through 

mobile apps 

Applies machine learning to reduce data collection period while 
maintaining accuracy 
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Machine learning approaches were used by Qasrawi et al., 
(2022) to predict risk factors related to anxiety and depression 
in school-age children. The models with the best accuracy 
levels were SVM and RF, underscoring the importance of 
variables including family income, academic performance, 
home environment and violence in schools in impacting mental 
health symptoms. The results suggest that to improve mental 
health preventive and intervention programs, machine learning 
should be included into school information systems. Haque et 
al., (2021) used machine learning techniques to identify 
depression in kids and teens between the ages of 4 and 17. After 
predicting depressed classes with a high accuracy rate of 95%, 
RF was shown to be the most effective algorithm. Suicidal 
thoughts, sleep difficulties, and mood-related symptoms were 
important indicators of depression, highlighting the need of 
early identification and treatment to lessen the harmful impacts 
of depression in this susceptible group. 

The remaining sections of the article are discussed in four 
sections. In Section II methods of the proposed model are 
outlined. In Section III, the results of the experiments are 
discussed. In Section IV, the conclusion is presented. 

II. METHOD 

A. Proposed Model Outline 

The foundation of our proposed CRADDS is the 
combination of three powerful algorithms: SVM (Support 
Vector Machine), CNN (Convolutional Neural Network), and 
BiLSTM (Bidirectional Long Short-Term Memory). Each of 
these algorithms includes specific features to improve the 
system's effectiveness and precision in real-time depression 
analysis. 

1) CNN: CRADDS's CNN is not like a regular 

convolutional network; it is improved by convolutional layers 

with specific functions that make use of dilated convolutions. 

These dilated convolutions increase the network's sensitive 

field without sacrificing resolution, allowing the model to 

extract more contextual information from input images. This is 

important for identifying detail emotions in recognition tasks. 

This is especially important for identifying changes in video 

expressions that could point to despair. 

2) Bi-LSTM: Bi-LSTM layer of CRADDS is used to give 

importance to certain data points. Its attention-mechanism 

allows the algorithm to focus more on important features from 

textual, audio and video data sequences that have a better ability 

to identify depression. The model's ability to learn from 

difficult dependencies and long-range connections in the data, 

which is made possible by weighting input information 

differently and improves its ability to observe depression 

patterns in time. 

3) SVM: Together with these advanced techniques of CNN 

and Bi-LSTM, SVM strength also added to make CRADDS 

effective. To conduct detailed analysis, the system continuously 

combines visual, textual and audio signals and greatly reduce 

the possibility of false positives and negatives. Through the 

combination of these advanced algorithms, CRADDS improve 

diagnostic precision and acts as an effective tool for early 

identification of depression, and guaranteeing quick support for 

depressed individuals. 

B. Architecture 

1) CNN architecture: In this section the proposed 

CRADDS used a dilated convolutional neural network (DCNN) 

to analyse depression very accurately. Because the dilated 

kernel is a perfect tool to analyse depression in any form of 

audio, video and textual. DCNN is important for improving the 

ability to analyse difficult emotional signals from multiple 

methods such as speech patterns, facial expressions, and textual 

data words. Traditional convolutional kernels are defined by 

𝑜𝑡𝑤 = (
𝑖𝑡𝑤−𝑛+2𝑝

𝑠
) + 1                          (1) 

𝑜𝑡ℎ = (
𝑖𝑡ℎ−𝑛+2𝑝

𝑠
) + 1                           (2) 

𝑜𝑡𝑤  and 𝑜𝑡ℎ  are the output width and height respectively. 
𝑖𝑡𝑤 and 𝑖𝑡ℎ are the input height and width. 𝑛 denotes the size of 
convolutional filter and 𝑝 is the amount of padding applied to 
the input. 𝑠  is the stride which the kernel moves across the 
input. The concept of traditional techniques is updated by using 
dilated convolutions which is used to extract the input features 
under CRADDS. 𝑑 is the dilation factor. By introducing gaps 
into the kernel, dilation allows the network to have a bigger 
responsive field by effectively raising the kernel size without 
increasing the number of weights. 

𝑜𝑡𝑤 = (
𝑖𝑡𝑤−(𝑛−1)×(𝑑−1)+2𝑝

𝑠
) + 1                    (3) 

𝑜𝑡ℎ = (
𝑖𝑡ℎ−(𝑛−1)×(𝑑−1)+2𝑝

𝑠
) + 1                      (4) 

Here 𝑑 is the dilation rate. (𝑛 − 1) 𝑎𝑛𝑑 (𝑑 − 1) adjusts the 
kernel size by considering the gaps inserted between the 
kernel's elements to modify the kernel's size. In CRADDS, we 
build the DCNN model by replacing these with dilated 
convolution kernels. By adding gaps to the kernel grid, dilated 
convolutions increase the field of contact without adding to the 
computational complexity. For example, the receiving area 
effectively grows from 3x3 to 7x7 and, with further dilation, to 
15x15 by changing conventional 3x3 kernels to include 
dilations. Even with these increases, the total number of 
parameters stays fixed, preventing higher processing expenses 
and improving the network's ability to extract more detailed 
information from the input data. 

Using a range of dilation rates that are carefully selected to 
capture the serious patterns related to emotion changes and 
emotional states in depression, the DCNN processing is 
improved for the identification of depression. Each of the 
dilation rates 1, 2 and 4 is precisely adjusted to the feature scales 
that are important for emotional analysis. The softmax function 
is defined as 

𝜎(𝑧𝑗) =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑗
𝐽
𝑗−1

                                 (5) 

In Eq. (5), 𝑧𝑗  denotes the element in vector 𝑧  with  𝑗 
highlights the total number of elements. Several dilation rates 
are built into the architecture of the DCNN in CRADDS, which 
improves feature extraction abilities and guaranteeing full 
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coverage of the input data. 6 dilated convolution-pooling 
modules, two fully connected layers, and a softmax output layer 
make up the DCNN structure. Dropout functions are integrated 
to reduce overloading, maintain the integrity of input 
information and improve performance. The specified dilations 
are defined as 

𝑚𝑖 = max [𝑚(𝑖 + 1) − 2𝑟𝑖,𝑚(𝑖 + 1) − 2(𝑚(𝑖 + 1) − 𝑟𝑖), 𝑟𝑖]                                               
(6) 

Here 𝑚𝑖 is the dilation rate for the current layer (𝑖),𝑚(𝑖 +
1)  is the dilation rate for the next layer (𝑖 + 1)  and 𝑟𝑖  is a 
parameter. The structure of DCNN is visually presented under 
Fig. 1. 

 
Fig. 1. DCNN structure for depression analysis for text, audio and video data. 

 

Fig. 2. Dilation results for text, audio and video data under CRADDS. 
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Fig. 2 shows the exact dilation process of text, audio and 
video inputs. For text processing, the kernel has been set for 
textual input with a dilation rate of 1, which indicates a 
conventional convolution that is direct and does not have any 
gaps. When analysing text, local information such as 
associations between words are important for understanding 
emotions. This minimal dilation is suitable for text processing. 
For audio processing, figure displays a kernel with a dilation 
rate of 2 for audio data. The kernel covers a greater portion of 
the input due to the higher dilation, ignoring some data points 
in order to capture more extensive temporal patterns in the 
spectrogram, such as changes over time that are important for 
audio analysis. For features like pitch and tone that change over 
a series of samples, this type of dilation is useful for detecting 
patterns across somewhat longer time spans. Dilation rate of 3 
is used to denote the video data processing, allows the 
convolutional process to cover a larger region of the input 
frames. This method works well with videos, because it can 
able to capture spatial relationships in larger regions, which is 
useful when detecting movements and changes in videos by 
using many pixels to present the movements with high 
accuracy. By increasing dilation rate, the network will improve 
the area where it receives and include more related information 
from the video frames. This can be used to understand the 
challenging patterns in motion tasks and improve the accuracy 
to find out emotional expressions very clearly. 

2) Bi-LSTM: CRADDS used BiLSTM with attention 

mechanism; by using its advanced features, it helps to improve 

the understanding of text, audio and video input. This model 

aims to identify the temporal patterns that are important for 

identifying depressions very accurately. Bi-LSTM layers allow 

the network to learn from data in both forward and backward 

directions. This helps the network to capture the various 

temporal features effectively than the traditional LSTM. This 

bidirectional learning is important to CRADDS because it 

obtains a thorough understanding of the data, which can be the 

textual, audio and video clippings. Thus, the attention 

techniques used in BiLSTM highlights the particular data in to 

segments that are helpful to identify depression. The attention 

mechanism is expressed as 

{
  
 

  
 
𝑜𝑡, ℎ = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝑎)

𝑜𝑡 = [𝑜𝑡𝑓 , 𝑜𝑡𝑏]

𝑜𝑡 = 𝑜𝑡𝑓 + 𝑜𝑡𝑏
𝜔 = 𝑤 × 𝑜𝑡 + 𝑏
𝑐 = tanh(𝑜𝑡) × 𝜔

𝑦 = 𝑜𝑡 × 𝑐

                         (7) 

In Eq. (7), the inputs are denoted by 𝑎 , the forward and 
backward LSTM outputs are represented by 𝑜𝑡𝑓 , 𝑜𝑡𝑏 , 

respectively, and their concatenation output is represented by 
𝑜𝑡 . The weight vector 𝜔  and the weighted context 𝑐  improve 
the model's ability to observe significant depression indications 
by focusing its learning on the most crucial elements of the 
sequence. 

The fully connected (FC) network processes the processed 
features after the attention layer, combining them into a final 
output that can be used to identify the presence and severity of 

depression. With this setup, each modality of text, audio and 
video is evaluated separately and their insights are integrated to 
create a more accurate evaluation. Table III shows the 
parameter setting of the proposed Bi-LSTM. 

TABLE III.  PARAMETER SETTING OF PROPOSED BI-LSTM  

Input Type Layer Name Parameter Setting 

Text 

Bi-LSTM Hidden Units 128 

Layer Layers 2 

 Dropout 0.5 

Attention Dropout 0.5 

FC1 Output Features 128 

 ReLU 

 Dropout 0.5 

FC2 Output Features 128 

 ReLU 

Audio 

Bi-LSTM Hidden Units 128 

Layer Layers 2 

 Dropout 0.5 

Attention Dropout 0.5 

FC1 Output Features 128 

 ReLU 

 Dropout 0.5 

FC2 Output Features 128 

 ReLU 

Video 

Bi-LSTM Hidden Units 128 

Layer Layers 2 

 Dropout 0.5 

Attention Dropout 0.5 

FC1 Output Features 128 

 ReLU 

 Dropout 0.5 

FC2 Output Features 128 

 ReLU 

3) Multi-modal fusion: Additionally, embeddings from the 

last Bi-LSTM layer and a DCNN processing features are 

concatenated to address the multimodal character of the input. 

By feeding this concatenated vector into a further FC layer, the 

results obtained from the analysis of text, audio and video are 

successfully combined. 

𝑓𝑜𝑡 , 𝑥𝑏𝑎𝑓𝑢𝑠𝑒𝑑 =

[𝐷𝐶𝑁𝑁 (𝑎𝑡𝑥𝑡), 𝐷𝐶𝑁𝑁 (𝑎𝑎𝑢𝑑𝑖𝑜), 𝐷𝐶𝑁𝑁 (𝑎𝑣𝑖𝑑𝑒𝑜)                  (8) 

Here 𝑓𝑖𝑡  denotes fused input of DCNN text, audio and 
video outputs respectively. 

BiLSTM processing of concatenated features 

𝑦𝑡𝑒𝑚𝑝 = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝑥𝑏𝑎𝑓𝑢𝑠𝑒𝑑)                      (9) 

Here (𝑥𝑏𝑎𝑓𝑢𝑠𝑒𝑑)  is the concatenated vector from all three 

modalities after initial DCNN processing. 𝑦𝑡𝑒𝑚𝑝  denotes the 

output from Bi-LTSM which produces temporal and sequential 
information across the multimodal data. The final prediction is 
expressed as 

𝑦𝑝𝑟𝑒𝑑 = 𝐹𝐶(𝑤𝑓𝑢𝑠𝑒 ∗ 𝑦𝑡𝑒𝑚𝑝 + 𝑏𝑓𝑢𝑠𝑒)              (10) 
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In Eq. (10) FC denotes fully connected network that 
combines the multimodal temporal features into final predictive 
output. 𝑤𝑓𝑢𝑠𝑒  and 𝑏𝑓𝑢𝑠𝑒 denotes weights and biases of the final 

FC layer. 

To improve the system the loss function needs to consider 
the combined influence of text, audio and video data. This can 
be expressed as, 

𝐿 = ℓ(𝑦𝑝𝑟𝑒𝑑 , 𝑦)                             (11) 

ℓ is the chosen loss function, cross entropy for classification 
tasks.  

4) SVM based feature extraction: The SVM is mainly used 

for feature extraction from difficult, high-dimensional datasets 

in our proposed CRADDS study. To improve the margin 

between two classes, the initial stage in this approach is to 

define a separating hyperplane using the traditional SVM 

technique for supervised learning classification. This can be 

expressed as 

min
1

2
 ||𝑊||2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1  subject to 

𝑡𝑖(𝑊𝑇𝑋𝑖 + 𝐵) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0,    𝑖 = 1, … . , 𝑁       (12) 

Where, the balance between increasing the margin and 
reducing classification mistakes is expressed by 𝐶, and 𝜉𝑖 are 
slack variables that account for misclassifications. By applying 
higher boundaries and promoting accurate classification, a high 
𝐶 value helps to reduce misclassification. 

The SVM successfully uses the kernel method to handle the 
non-linear aspects of energy system data. RBF (Radial Basis 
Function) kernel is expressed as, 

𝐾(𝑋𝑖, 𝑋𝑗) = 𝑒
−

1

2𝜎2
||𝑋𝑖−𝑋𝑗||2

                  (13) 

where the flexibility of the kernel function is controlled by 
the kernel parameter 𝜎2. The SVM can operate in a converted 
feature space where non-linear connections are corrected, 
allowing the separation of data points that are not linearly 
separable in the original space. This kernel simplifies this 
process. In addition, we incorporate a cost matrix into the SVM 
to handle the issues arising from dataset imbalances, which 
might lead to bias in the classification boundaries in favour of 
the majority class. This matrix reduces bias by adjusting the 
misclassification penalty to prioritize the minority class. The 
cost matrix function expressed as 

𝑐𝑜 = [
0 1
𝑐 0

]                                (14) 

if 𝑐 > 1, then it would cost more to incorrectly classify an 
instance of the minority class than the majority class. This 
strategy gives a more equitable categorization result by 
bringing the boundary closer to the majority class, which makes 
the model more sensitive to the minority class. The model 
reduces dimensionality and separates the essential elements 
from the input energy data through this procedure, guaranteeing 
reliable prediction outcomes. Fig. 3(a), 3(b) and 3(c) present the 
process of SVM classification of text, audio and video input. 

 

Fig. 3. SVM classification on Text input, Audio input, and Video input. 

III. RESULTS AND EXPERIMENTS  

A. Simulation Setup  

Proposed CRADDS is evaluated using DAIC-WOZ 
datasets adapted from [16]. Based on that Table IV presents the 
features of dataset which is used to evaluate proposed 
CRADDS. 

B. Evaluation Criteria  

In the present study, the results of the CRADDS are 
compared with the three existing researches of [15] [16] [17]. 
The main objective of the CRADDS is to address the limitation 
of these studies and also satisfy the future visions. Based on the 
task we proceed with an experiment. 

Table V presents that the CRADDS model performs 
significantly well when tested on text, audio and video data 
using DCNN, BiLSTM, and SVM. The validation accuracy and 
loss for Text DCNN are 0.45 and 0.85, respectively, and the 
training accuracy is 0.94 with a loss of 0.25. Using validation 
metrics of 0.82 accuracy and 0.28 loss, Audio DCNN achieves 
a training accuracy of 0.96 with a reduced loss of 0.12. Video 
DCNN validation accuracy of 0.83, a validation loss of 0.35, 
and a training accuracy of 0.95 and loss of 0.22. The validation 
accuracy and loss for Text BiLSTM are 0.80 and 0.30, and the 
accuracy is 0.89 with a loss of 0.18. With validation metrics of 
0.81 accuracy and 0.25 loss, Audio BiLSTM exhibits 0.91 
accuracy and 0.15 loss. With a validation accuracy and loss of 
0.80 and 0.28, Video BiLSTM exhibits an accuracy of 0.90 and 
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a loss of 0.17. Text SVM achieves validation accuracy of 0.78 
and loss of 0.32, together with training accuracy of 0.88 and 
0.20 loss. Audio SVM records validation accuracy and loss of 
0.79 and 0.27, along with 0.92 training accuracy and 0.14 loss. 
Lastly, Video SVM displays validation accuracy and loss of 

0.77 and 0.30 with 0.90 training accuracy and 0.19 loss. These 
findings show that, for all data types, DCNN models perform 
more accurately than BiLSTM and SVM, with Audio DCNN 
shows the best overall performance. 

TABLE IV.  DATASET FEATURES  

Category Description Category Description 

Dataset DAIC-WOZ Depression Database Participants 59 Depressed; 130 non-depressed individuals 

Purpose Automatic Depression Detection System Data Types 

Audio recordings (AUDIO.wav) 

Video recording 

Text responses (TRANSCRIPT.csv, FORMANT.csv, etc.) 

Source University of Southern California (USC) Training Set 

IDs of patients 

Patient PHQ-8 scores 

Binary labels 
Gender 

Questionnaire responses 

Access Apply on USC website for access and download Development Set 

IDs of patients 

Patient PHQ-8 scores 
Gender 

Binary labels 

Questionnaire responses 

Data Format Zip files (189 sessions: from 300 P.zip to 492 P.zip) Test Set 
IDs of patients 

Gender 

Total Sessions 189 Features 

Verbal symptoms 
Non-verbal symptoms 

Audio features 

Video features 
Text features 

 

TABLE V.  EVALUATION PARAMETERS FOR PROPOSED CRADDS  

Method 
Tra-

Accuracy 
Tra-Loss 

Val-

Accuracy 
Val-Loss 

Text DCNN 0.94 0.25 0.85 0.45 

Audio DCNN 0.96 0.12 0.82 0.28 

Video DCNN 0.95 0.22 0.83 0.35 

Text 

BiLSTM 
0.89 0.18 0.80 0.30 

Audio 

BiLSTM 
0.91 0.15 0.81 0.25 

Video 

BiLSTM 
0.90 0.17 0.80 0.28 

Text SVM 0.88 0.20 0.78 0.32 

Audio SVM 0.92 0.14 0.79 0.27 

Video SVM 0.90 0.19 0.77 0.30 

TABLE VI.  PERFORMANCE EVALUATION OF PROPOSED CRADDS  

Method Precision Recall F1 Support 

Text DCNN 0.93 0.92 0.93 50 

Audio DCNN 0.93 0.90 0.91 50 

Video DCNN 0.93 0.90 0.87 50 

Text BiLSTM 0.82 0.85 0.83 50 

Audio BiLSTM 0.84 0.86 0.85 50 

Video BiLSTM 0.83 0.85 0.84 50 

Text SVM 0.80 0.82 0.81 50 

Audio SVM 0.82 0.84 0.83 50 

Video SVM 0.82 0.83 0.83 50 

C. Performance Comparison with Existing Studies 

As we discussed earlier, in this section the proposed 
CRADDS based techniques of DCNN, BiLSTM with attention 
mechanism and SVM are compared with the existing research 
studies of [15] [16] and [17].  

Fig. 4 presents the efficacy of CRADDS based DCNN when 
compared with the efficacy of CNN [15]. The performance of 
the DCNN-based CRADDS on training and validation datasets 
obtains a notable efficacy in the depression diagnosis. The 
model's ability to adapt to new data is confirmed by the figure, 
which shows how training and validation loss meet. The 
validation loss decreases from 18 to 2.5 while the training loss 
drops substantially from 20 to 1.5 during the epochs, 
demonstrating the model's capacity for learning and error 
reduction. At the same time, the training accuracy steadily 
increases to 95.03%, whereas the validation accuracy rises 
steadily to 82.10%. These show that multimodal data including 
text, audio and video inputs has complex patterns that the 
DCNN is able to capture successfully. Comparative studies 
indicate that the model outperforms typical CNN models in 
reliably identifying depression, as seen by its higher precision 
and recall. Table VI shows performance evaluation of proposed 
CRADDS. 

Fig. 5 shows, when comparing the CNN-LSTM model [16] 
to the proposed CRADDS model BiLSTM, it shows remarkable 
efficacy in depression diagnosis. The training loss decreased 
from 18 to 2 and the validation loss from 16 to 3, respectively, 
on the training and validation loss, which show a considerable 
reduction across epochs. The immediate drop in loss values 
presents how well the BiLSTM model learns and adapt from 
the data. The validation accuracy increases gradually to 
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85.04%, but the training accuracy curve shows a continuous 
improvement up to 94.07%. These findings highlight the 
BiLSTM capacity to efficiently extract difficult patterns and 
temporal connections from multimodal data that includes text, 
audio and video inputs. The BiLSTM in CRADDS shows better 

performance than the CNN-LSTM model, which is important 
for depression identification. CRADDS with BiLSTM is an 
effective tool for automatic depression identification because of 
its improved feature extraction and classification abilities. 

 
Fig. 4. CRADDS-based DCNN results against typical CNN [15] over Epochs. 

 
Fig. 5. CRADDS-based BiLSTM results against CNN-LSTM [16] over Epochs. 

 
Fig. 6. CRADDS-based SVM(RBF) results against SVM [17] over Epochs. 
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Fig. 6 shows the efficacy of proposed CRADDS based 
SVM, when compared to the SVM model of [17], shows a 
notable improvement in depression identification [18, 19]. Over 
the course of the epochs, the training and validation loss figures 
show a constant decrease: the training loss dropped from 1.2 to 
0.5 and the validation loss from 1.3 to 0.55. This steady 
decrease shows how well the model can adapt to new data. 
There is a consistent improvement in training accuracy from 
65.12% to 90.02% and in validation accuracy from 63.04% to 
86.08%. These show the effectiveness of SVM model learns 
and captures the difficult correlations found in the multimodal 
data (text, audio, and video). The CRADDS-based SVM model 
appears to be more effective at differentiating between people 
who are depressed and those who are not, based on its greater 
accuracy and lower loss values when compared to the regular 
SVM model. 

IV. CONCLUSION 

The study introduces a novel CRADDS system to analyse 
the depression among college students by using their posts 
regarding text, audio and video inputs under the platform of 
University of Southern California (USC) by using DAIC-WOC 
dataset. The proposed CRADDS uses the techniques of DCNN, 
BiLSTM and SVM (RBF Kernel) model. This study presents 
the unique objectives in the domain of depression analysis. In a 
modern day the techniques of deep learning are mostly used 
under wide range of applications, this study also uses the 
effective fusion techniques of deep learning algorithms. To 
make sure about the effectiveness of proposed CRADDS each 
technique of CRADDS is evaluated and compared against the 
existing effective techniques analysed form the study [15] [16] 
and [17]. The main motive of the present study is to address the 
limitation of these existing researches and to satisfy their future 
scope expectations. The proposed CRADDS have the ability to 
address these objectives which is discussed earlier under the 
Table II. The effective experiments regarding the Table II are 
demonstrated under Section IV. The results of proposed 
CRADDS highlights that the techniques of CRADDS based 
DCNN, BiLSTM and SVM are outperforms with their 
proposed techniques of the existing studies with their 
remarkable scores. The output obtained from all the models 
under CRADDS highlights its efficacy regarding the input 
features of text, audio and video format. Overall, the proposed 
achieves the best solution when compared with the existing 
studies objective and acts as an effective tool to meet not only 
the present but also the future demands under the investigation 
of depression, guaranteeing the perfect well-being of students 
as well as common individuals. 

In order to improve the accuracy and robustness of the 
model, future study will investigate the integration of new data 
modalities, such as physiological signals. Our goal is to create 
edge computing-based real-time deployment solutions that 
increase efficiency and accessibility. Furthermore, 
investigating explainable AI methods will aid in improving the 
transparency and comprehensibility of the model's judgments. 
Finally, adding more demographic groupings to the dataset will 
guarantee the model's wider applicability and fairness. 
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