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Abstract—Myopic maculopathy (MM), also known as myopic 

macular degeneration, is the most serious, irreversible, vision-

threatening complication and the leading cause of visual 

impairment and blindness. Numerous research studies 

demonstrate that the convolutional neural network (CNN) 

outperforms many applications. Current CNN designs employ a 

variety of techniques, such as fixed convolutional kernels, the 

absolute value layer, data augmentation, and domain knowledge, 

to enhance performance. However, some network structure 

designing hasn't received much attention yet. The intricacy of the 

MM categorization and definition system makes it challenging to 

employ deep learning (DL) technology in the diagnosis of 

pathologic myopia lesions. To increase the detection precision of 

MM's spatial domain, the proposed work first concentrates on 

creating a novel CNN network structure then improve the 

convolution kernels in the preprocessing layer. The number of 

parameters is decreased, and the characteristic of a small local 

region is modeled using the smaller convolution kernels. Next 

channel correlation of the residuals with separable convolutions is 

employed to compress the image features. Then, the local features 

using the spatial pyramid pooling (SPP) technique is combined, 

which improves the features' capacity to be represented by multi-

level pooling. The use of data augmentation is the final step in 

enhancing network performance. Compress the residuals in this 

paper to make use of the channel correlation. The accuracy 

achieved by the model was 95%, F1-score of 96.5% and AUC of 

0.92 on augmented MM-PALM dataset. The paper concludes by 

conducting a comparative study of various deep-learning 

architectures. The findings highlight that the hybrid CNN with 

SPP and XgBoost (Depthwise-XgBoost) architecture is the ideal 

deep learning classification model for automated detection of four 

stages of MM. 

Keywords—Retinograph; ophthalmologists; computer-aided 

diagnosis; vision loss; deep learning; retinograph images; myopic 

maculopathy 

I. INTRODUCTION 

Due to its fast-rising incidence internationally [1] and the 
risk to eyesight, myopia is presently a major public health issue. 
By 2050, it is predicted that 50% of the world's population will 
be myopic, with 10% of them having severe myopia [2]. 
Cataracts, glaucoma, retinal detachment, and myopia 
maculopathy can all be brought on by myopia (MM). As a result, 
organizations in the health sector like WHO, are confident that 
myopia might cause visual impairment. MM puts a hardship on 

patients, their families, and society as a whole. According to 
Naidoo et al., the global productivity loss resulting from MM 
might be $6 billion, and in 2050, myopia could impact nearly 
half of the world's population. This financial stress will probably 
get worse shortly. There is no recognized cure for MM as of yet. 
Preventive treatment, however, lessens ocular headaches and 
should be taken into account for all myopic patients. The 
International Photographic and Grading System for Myopic 
Maculopathy [3] identifies and categorizes myopic 
maculopathy. According to the severity of the condition, 
pathologic myopia was divided into five categories: category 1, 
just tessellated fundus, category 2, diffuse chorioretinal atrophy, 
category 3, patchy chorioretinal atrophy, category 2, and 
category 0, no macular lesions. In addition, characteristics 
including lacquer cracks, Fuchs spots, and choroidal 
neovascularization, are utilized to classify diseases. 
Additionally, the posterior staphyloma offers more details on the 
illness. In this study, myopic maculopathy is taken into 
consideration when a fundus picture image falls into category 2 
or above. 

The rapid advancement of artificial intelligence [4] is 
essential for the automation of challenging medical diagnoses 
and the analysis of clinical data. The most sophisticated category 
of AI is deep learning [5]. It uses deep artificial neural networks 
to solve feature-dependent issues while simulating the 
functioning of the human brain. The deep learning system (DLS) 
surpasses board-certified professionals in medical settings [6], 
[7]. The employment of DSL-based diagnosis software in 
ophthalmology's clinical and public healthcare settings has 
proved effective. Artificial intelligence (AI)-based medical 
imaging, such as retinal fundus pictures, is a valuable and 
effective option for managing and diagnosing MM. However, 
automated diagnostics based on CT scans are thought to be an 
image analysis challenge, which may be solved by labelling the 
data and applying machine learning techniques like deep 
learning. The rapid advancement of artificial intelligence [4] is 
essential for the automation of challenging medical diagnoses 
and the analysis of clinical data. The most sophisticated category 
of AI is deep learning [5]. It uses deep artificial neural networks 
to solve feature-dependent issues by simulating the functioning 
of the human brain. The deep learning system (DLS) surpasses 
board-certified professionals in medical settings [6], [7]. The 
employment of DSL-based diagnosis software in 
ophthalmology's clinical and public healthcare settings has 
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proved effective. Artificial intelligence (AI)-based medical 
imaging, such as retinal fundus pictures, is a valuable and 
effective option for managing and diagnosing MM. However, 
automated diagnostics based on CT scans are thought to be an 
image analysis challenge, which may be solved by labelling the 
data and applying machine learning techniques like deep 
learning. 

 
Fig. 1. Grading of myopic maculopathy, where figure (a) Shows the 

category 0:No macular lesions, figure (b) Category 1: Tessellated fundus, 

figure (c) Shows category 2: Diffuse chorioretinal atrophy, figure (d) 

Category 3: Patchy chorioretinal atrophy and figure (e) Represents category 4: 
macular atrophy. 

Due to the intricacy of the categorization and 
characterization of the PM system, using deep learning 
approaches in PM lesion scanning is still difficult [11]. There 
was a lengthy period of disagreement on the precise definition 
of PM until a classification for MM was suggested by pathologic 
myopia (META-PM) meta-analysis. The severity of eyes with 
MM is approximately equal to or greater than that of eyes with 
spreading choroidal atrophy (Category 2), or eyes with at least 
one "plus" lesion are considered to have PM at this level of 
categorization. With such a categorization system in mind, 
creating an AI program to automatically recognize the PM and 
aid doctors in making a precise diagnosis is advantageous. 
Sufficient high-resolution PM retinal fundus picture dataset 
resources and a highly qualified staff are needed to do this. This 
study aims to construct and train DLSs that can automatically 
identify PM and categorize MM utilizing a beautiful dataset of 
color retinal fundus pictures gathered from the hospital's 
ophthalmology facilities. A visual example of the stages of MM 
is represented in Fig. 1. 

An original model is offered in this paper. Convolutional 
neural networks and the cycle generative adversarial network 
(CycleGAN) [12] are combined to optimize the convolutional 
neural network (CNN). The suggested technique can locate 
lesion locations with less initial training data and can identify 
retinal disorders. With cycle consistency, CycleGAN can 
provide more trustworthy and realistic pictures. Adopting the 
discriminator and generator adversarial results in the best 
solution. Additionally, to differentiate the domain pictures, the 
classifier and generator cooperate [13]. A unique res-guided 
sampling block strategy is proposed using the combination of 
learnable residual features and pixel-adaptive convolutions. As 
a generator, a res-guided U-Net [14] is created, and conventional 

convolution is used in place of res-guided sampling blocks. 
Large training datasets are frequently required for supervised 
learning to account for all potential variances. However, 
gathering a lot of training data can be time-consuming, 
especially for medical imaging, where hand annotation is 
necessary. DepthCNN-XgBoost is one method for solving this 
issue since it takes a lot less training data than the standard 
method of using vast quantities of data [15]. Several variations 
[16], which can be broken down into the three main views of 
data, method, and model, were used to carry out the DepthCNN-
XgBoost learning. The dataset was enhanced by the data-driven 
algorithm, which employed previous knowledge. The space is 
constrained by model-oriented approaches like embedding. 
Finally, from the perspective of an algorithm, it is comparable to 
tweaking the network weights by looking at data from a fresh 
sample. Therefore, rather than referring to specific learning 
algorithms, FSL refers to a general understanding of algorithms 
(such as supervised or unsupervised learning principles). In 
addition, different configuration stages, modelling, and 
formulation were required when applying FSL to various deep-
learning classifiers. 

As we previously explained, supervised learning models are 
used to train the deep learning models used for the area 
segmentation of MM RETINGRAPH images. These models are 
mostly based on DepthCNN-XgBoost and FCN structures. 
Therefore, their weight cannot be changed dynamically. There is 
a risk of problems if a large data sample is required for training. 
By suggesting a DepthCNN-XgBoost learning model in this 
study, where just a small sample of the network would be taught 
dynamically, we are able to get around this constraint. Our 
primary focus is pretrained learning-based classification, and we 
constantly update and improve weights by incorporating fresh 
sample data. Fig. 2 explains this DepthCNN-XgBoost learning 
approach. To the best of our knowledge, the dynamic updating 
of model weights is a new and original method. The DepthCNN-
XgBoost scheme, which has been shown to be particularly 
helpful for detection of MM when diagnosis using retinograph 
images. 

As of now, the MM eye-related disease has a unified region 
in retinograph images using a modified depthwise separable CN 
and XgBoost classifier. The findings were then evaluated by a 
domain expert during testing in order to categorize the output. 
Some of the samples were then picked for additional training. 
Due to the small amount of fresh ground truth data utilized as a 
training set, the deep model was able to learn to update its 
behavior dynamically with little modification to the learned 
behavior. 

The following are our main contributions to myopia 
detection. 

1) A novel deep learning technique is developed that 

recognizes the presence of myopia and categorizes it. 

2) To decrease the number of parameters and enhance local 

features, we reduce the size of the convolution kernel in the 

preprocessing layer and initialize the kernels using 30 SRM 

basic filters [12]. Additionally, the suggested "forward-

backward-gradient descent" approach is used to optimize the 
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convolution kernel in order to improve accuracy and hasten 

network convergence. 

3) To replace the conventional convolution layer, we utilize 

two separable convolution blocks. In order to enhance accuracy 

and boost the signal to noise ratio, separable convolution may 

be used to extract the spatial and channel correlation of 

residuals. 

4) Before feeding the feature maps to the segment of the 

network that is completely linked, we condense them using 

spatial pyramid pooling [19]. Through multi-level pooling, 

spatial pyramid pooling may enhance feature expressions and 

map feature maps to set lengths. 

5) A loss function is created to increase the distance between 

the PM and HM classes by combining the triple loss with the 

binary cross-entropy loss (BCE loss). Our technique 

consistently produces the greatest outcomes and performs at the 

highest level when compared to deep learning models, machine 

learning models, and other methods. It ensures physicians' 

convenience and accuracy in clinics. 

The primary contributions of this study are summarized 
below to address these issues: (1) The iChallengePM dataset will 
be used to create 12 DAMFs. To our knowledge, all of the 
operations employed in the present DA are covered by these DA 
approaches. Our goal is to enhance data features, control sample 
imbalance, and significantly boost dataset quality. (2) A variety 
of optimizers, loss functions, and learning rates are built using 
the AlexNet, VGG-16, GoogleLeNet, and ResNet-50 models as 
a foundation. Using training data from 12 datasets, the model 
with the highest accuracy will be used as the main learner. This 
approach will improve the model's capacity for generalization. 
(3) Following the training of the fusion model to create the final 
model, the main learner prediction indicated above will be 
utilized as a new input and added to the hard voting model. 
Without transfer learning, the model optimized by the 
aforementioned processes achieves great accuracy. More 
importantly, by utilizing the augmented dataset and the model 
fusion technique, we successfully avoid overfitting and enhance 
the model's generalization capability when processing different 
types of data, which further enhances the model's expressive 
capability. As a result, the model's ability to recognize 
complicated and uncommon case pictures will be much 
improved. 

II. RESEARCH BACKGROUND 

In the early studies [17], images were segmented using 
methods based on edges, regions, clusters, and thresholds. These 
traditional techniques include manually extracting features, 
which are subsequently put to use for background separation, 
among other things. Additionally, the segmentation results are 
influenced by the feature quality, and this method is occasionally 
time- and labor-intensive. However, in recent years, research has 
evolved away from deep learning algorithms and toward 
traditional neural networks, particularly in the area of semantic 
picture segmentation [19, 20]. Additionally, as time has gone on, 
the recognition and forecast accuracy of these approaches have 
significantly increased. They were the first to use deep 
convolutional neural networks to segment semantic images. To 
create FCN, they switched out the convolution layer with a fully 

connected layer. One of the finest prototypes for the encoder-
decoder architecture used for pixel-level image categorization is 
the FCN (Fully Convolutional Neural Network). Upsampling 
and transposed convolution might be used to reconstruct a whole 
segmented image with categorized pixels. Researchers now 
have the chance to train deeper and bigger neural networks 
thanks to the introduction of new GPUs and better algorithms. 
Compared to the original FCN, the suggested DeconvNet [20] is 
a more comprehensive decoder. The aforementioned encoder 
and decoder have the same number and size of features. In 
addition to deconvolution, the DeconvNet decoder employs 
unpooling layers to enhance the outcomes. Due to the encoder's 
fully linked layers, the DevconvNet also uses a lot more memory 
than FCS. 

The settings and memory should be optimized. The SegNet 
[21], which is similar to the VGG-16 but different from the FCN 
and DeconvNet in up-sampling and convolution, thereby doing 
away with deconvolution, is introduced by Badrinarayanan et al. 
The feature maps are extremely well managed by SegNet. 
Inference, however, calls for additional memory. Generative 
adversarial networks (GANs) have recently achieved great 
success in a variety of applications [22] (e.g., DCGAN [18], 
SRGAN [17], and Pix2Pix [19]). The generative adversarial loss 
is calculated to determine the difference between the real and 
generated data distribution. The GAN was formally proposed by 
Goodfellow in 2014, and since then, it has operated on five 
adversarial processes that alternate between faking and 
identifying. Several researchers have discovered generative 
adversarial loss to be beneficial for improving network 
performance. In response to the success of GANs in image 
translation [23], a powerful GAN network for picture semantic 
segmentation is developed. It most closely resembles the 
approach put forth by Luc et al., in which adversarial networks 
help with semantic segmentation training. But there is no 
improvement over the starting point. Global data is included in 
fully linked CRFs (FullCRFs) by Deeplab as an independent 
post-processing step to further enhance CNN. Two orders of 
magnitude improve the speed of inference and training with this 
technique. Additionally, the incorporation of learnable 
transformations together with learnable Gaussian features 
outperforms and transforms a significant chunk of the inference 
into convolutions with the development of ConvCRFs, enabling 
efficient implementation on GPUs. 

In various investigations [14, 15–16], clinicians used the CT 
scan to identify illnesses related to SMM. This study has two 
key benefits: (a) early viral infection patterns may be shown [15, 
16], and (b) in 70% of patients, viral pneumonia-related CT 
abnormalities can be detected before laboratory testing [15]. As 
a result, early SMM infection identification is greatly aided by 
CT imaging. Detecting SMM in chest X-ray pictures has also 
been the subject of several investigations [7, 17]. We prioritize 
work involving CT scans nonetheless. According to SMM study 
findings, clinical symptoms do not typically present until after 
CT abnormalities [17]. 

Furthermore, asymptomatic people's chest CTs commonly 
show abnormalities that are consistent with viral pneumonia. On 
the one hand, certain patterns target unilateral, multifocal, and 
peripherally based ground-glass opacities. However, 
symptomatic groups were more likely to have 
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lymphadenopathy, pleural effusion, bronchiectasis, round cystic 
alterations, nodules, thickening of the surrounding pleura, and 
interlobular septal thickening. 

The visual detection method should concentrate on 
identifying prominent lung abnormality patterns such as GGOs, 
crazy-paving patterns, consolidation, and linear opacities. 
However, the density and appearance of the sickness varied 
depending on the stage of the illness. The illness should manifest 
after nine days of early symptoms [14]. Deep learning-based 
algorithms are frequently used for detection, identification, or 
segmentation in medical imaging [18] and biomedical 
applications [19]. Researchers are looking at a number of 
strategies to assist medical personnel in SMM detection in this 
area. To categorize the many CT slices, convolutional neural 
network variants are first used [13]. With a ROCAUC value of 
0.95, the applied approach may detect a viral infection; a score 
of 1.00 indicates a flawless classic. Even with a high detection 
rate, it proved challenging to distinguish between viral 
pneumonia using a simple CT scan. For coronavirus diagnosis, 
CNN variants have been proposed [20]. This method aids in the 
differentiation between instances of SMM, non-infection, and 
other viral infections. The findings indicate a good detection 
rate, much better than RT-PCR analysis. The accuracy of CNN 
is increased in the following stage by combining it with long-
term memory networks [21]. The inf-Net parallel partial 
decoder, which integrates high-level features to produce a global 
map, has also been introduced [22]. Hierarchies of convolution 
are used for this. 

Another choice to consider is U-Net structures. It will only 
be used for medicinal purposes [23]. The multistage technique 
includes the segmentation and categorization of SMM and other 
viral diseases [24]. Additionally, it aids in tracking the 
development of advanced illnesses. The methods utilized for 
SMM picture segmentation, which are based on U-Net 
topologies, are briefly detailed in [6]. The region of interest is 
first separated from the lung scan using U-Net. The 
categorization of SMM or other situations is then updated using 
a pretrained Resnet-50 [25]. AdaResU-Net [26], a multi-object 
adaptive CNN with the capacity to automatically adapt to new 
datasets and residual learning paradigms, was suggested in the 
following phase. For the purpose of SMM detection on high-
resolution CT images, U-Net++ [8], a U-Net-based model, was 
also applied. Additionally, SMM's detection has been evaluated 
using Xception, ResNet-18, ResNet-50, ResNet-101, 
SqueezeNet, GoogleNet, VGG-16, VGG-19, and ResNet-19 
[28]. ResNet-101 and Xception outperform the competition. In 
a different article, AlexNet and Inception-V4 were also used for 
SMM detection [29]. Additionally, to identify SMM, CNN and 
an Artificial Neural Network Fuzzy Inference System 
(ANNFIS) are used [30]. In a different study [31] proposes a 
Stack Hybrid Classification (SHC) approach based on ensemble 
learning. 

Additionally, object-detection techniques are taken into 
account [32] for SMM diagnoses, and in another study, VGA 
variations were also employed to find symptomatic lung regions 
[33]. The suggested approach can differentiate between 
community-acquired pneumonia (CAP) and SMM (CAP). The 
Naive Bayes classifier, discrete wavelet transformations, and 
evolutionary algorithms are employed in study [34] for SMM 
identification. A suggested approach for MM RETINGRAPH 
image segmentation is integrated with super-pixel-based fuzzy-
modified flower pollination and a type 2 fuzzy clustering 
method in a segmentation-based study [35]. For SMM image 
segmentation, volumetric medical image segmentation 
networks, or V-Nets [36], provide an option. Similar to this, V-
Net was employed in a different research project to concurrently 
segment every MRI slice [37]. The quantitative findings support 
the viability and efficacy of infection-region marking. As we 
have already stated [38], deep learning techniques were crucial 
in the segmentation of lung CT images. They can now measure 
the degree of infection and judge the severity of the condition 
[40, 41]. Table I lists the deep learning methods applied to CT 
picture segmentation and SMM identification. 

A large ground-truth dataset for training is a fundamental 
prerequisite of deep learning-based approaches, which can 
sometimes be quite challenging. Additionally, annotating the 
vast volumes of data is a labor- and time-intensive task. Due to 
these restrictions, deep learning techniques can only be used to 
solve real-world issues. A relatively small number of papers, 
including [22], where a semi-supervised learning strategy was 
applied with multiclass segmentation to identify the infected 
zone, have begun to examine this problem. However, the results 
of this strategy were subpar. In this work, we suggested a 
depthwise separable CNN method with XGBoost that enables a 
system to classify various stages of MM. This method does away 
with the requirement for a sizable dataset. Additionally, this 
system interacts with subject-matter experts to dynamically alter 
the settings. On the other hand, the weights in the existing 
models cannot be adjusted after training. 

III. RELATED WORK 

Pathological myopia [8], often known as nearsightedness, is 
one of the severe forms of myopia. Because it might cause 
blindness, pathological myopia is also known as degenerative 
myopia. One might spot pathological myopia by looking at the 
diseases that develop in the posterior of the eye. Pathological 
myopia can cause several eye conditions, such as posterior 
staphyloma, vitreous opacities, Weiss' reflex, liquefaction, 
macular degeneration, cystoid degeneration, liquefaction, 
Foster-Fuchs' spot, etc. In this study, an automated method for 
the diagnosis of problematic myopia based on fundus pictures is 
constructed using a deep learning approach known as a 
convolutional neural network. 
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TABLE II.  SUMMARY OF STATE-OF-THE-ART MACHINE LEARNING TECHNIQUES EMPLOYED FOR DETECTION OF PATHOLOGIC MYOPIA IN RETINAL FUNDUS 

IMAGES 

Reference Image Processing Techniques/Models Results Advantage 

Rauf et al. [8] 
Grayscale, histogram, 
Red channel, Shuffle 

The preprocessed images are then fed to the designed 

CNN model. The CNN model automatically extracts the 
features from the input images and classifies the images, 

i.e., normal image or pathological myopia. 

AUC: 0.9845 
Detect different stages of 
PM. 

Li et al. [9] 
Color histogram 

distribution 

A dual-stream DCNN (DCNN-DS) model that perceives 
features from both original images and corresponding 

processed images. 

sensitivities of 
90.8% and 97.9% 

and specificities 

of 99.1% and 
94.0% for 

detecting PM 

Detect PM and TF 

Devda et al. [10] 
Morphological edge 

detection 

A deep learning model with convolutional neural 

networks (CNN) is employed for classification, and the 
U-net model does image segmentation. 

ACC of 97.8% Detect PM 

Hemelings et al. 

[24] 

CNN and Semantic 

Segmentation 

CNN is combined with lesion segmentation. 
Furthermore, domain knowledge is incorporated by 

using Optic Nerve Head (ONH)-based prediction to 

improve the segmentation of atrophy and fovea. 

AUC of 0.9867 

for PM detection, 
Euclidean 

distance of 58.77 

pixels for fovea 

localization 

Detect PM and fovea 

localization 

Li Lu et al. [25] NA 

The author proposed a series of deep learning systems to 

detect myopic macular lesions and PM in accordance 

with the international photographic classification system 
(META-PM) using color fundus images. 

AUC of 0.989  

Du et al. [26]  
Deep Learning (DL) algorithms are proposed to identify 

the key features. 

AUC values were 
0.970, 0.978, 

0.982, and 0.881 

diffuse atrophy, 87.22% for 

patchy atrophy, 85.10% for 
macular atrophy, and 37.07% 

for choroidal 

neovascularization 

Zhang et al. [27]  

In [27], using ultra-wide field of view (UWF) fundus 

color imaging, a screening system named DeepUWF was 

developed, which can diagnose three kinds of fundus 
diseases (diabetic retinopathy, retinal tear, retinal 

detachment, and pathological myopia). This system is 

composed of CNN and two customer classifiers. 

 

three kinds of fundus diseases 
(retinal tear & retinal 

detachment, diabetic 

retinopathy and pathological 
myopia) 

Shi et al. [28]  

A Myopia Detection Network (MDNet) is proposed that 

combines the advantages of dense connection and 

Residual Squeeze-and-Excitation attention to detect 

myopia in optos fundus images. 

Mean Absolute 
Error of the 

Spherical 

Equivalent 
detected by this 

network can reach 

1.1150 D 

 

Freire et al. [29]  

First, different Deep Learning techniques are applied on 

fundus images, and, then transfer learning is applied on 

all tasks using Xception. 

 

algorithms to diagnosis 

Pathological Myopia (PM) 

and detection of retinal 
structures and lesions such 

asOptic Disc (OD), Fovea, 

Atrophy and Detachment 

The CNN was invented by Spyder. The characteristics are 
automatically extracted from the photos and categorized for 
pathological myopia. The metrics AUC = 0.9845 and validation 
loss = 0.1457 show the CNN model's excellent performance. 
The identification of pathological myopia from fundus pictures 
is therefore possible in the medical field using CNN. 

MM, pathologic myopia (PM), and tessellated fundus were 
classified using a dual-stream DCNN (DCNN DS) model in [9]. 
(TF). It functions by taking characteristics out of the original 
image and applying them to an image that has been color 
histogram. The DCNN-DS model achieved sensitivities of 
93.3% and 91.0%, specificities of 99.6% and 98.7%, and an 
AUC of 0.988 and 0.994 for identifying PM. According to the 
author's claims in [10], the suggested algorithm is trustworthy 
and has high sensitivity, specificity, and AUC to discriminate 
against various levels of MM on fundus images. A deep learning 

model using convolutional neural networks (CNN) is used for 
classification, and a DepthCNN-XgBoost model handles image 
segmentation. Devda et al. concentrate on segmenting lesions 
(atrophy and detachment), classifying nonpathological and 
pathological myopia images, detecting the fovea, and localizing 
the optical disc. Positive outcomes are produced by combining 
CNN with DepthCNN-XgBoost. 

CNN and lesion segmentation are integrated in [24]. The 
segmentation of atrophy and fovea is further enhanced by 
applying optic nerve head (ONH)-based prediction, which 
incorporates domain knowledge. Segmentation, as opposed to 
detection or regression models, is used in this work to locate the 
fovea. Euclidean distance for fovea localization, AUC for PM 
detection, and F1 and Dice for semantic segmentation are some 
of the metrics that are used to evaluate the outcomes (optic disc, 
retinal atrophy, and retinal detachment). The model successfully 
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localizes the fovea at a distance of 58.77 Euclidean pixels and 
detects PMs with an AUC of 0.9867. The optic disc lesion, 
retinal detachment lesion, and retinal atrophy lesion F1 and Dice 
metrics for semantic segmentation of lesions are observed at 
.9303 and 0.9869, 0.8073 and 0.7059, and 0.8001 and 0.9135, 
respectively. To identify myopic macular lesions and PM in line 
with the worldwide photographic classification system (META-
PM) using color fundus photos, the author of [25] presented a 
number of deep learning algorithms. Both the test and external 
validation. 

Datasets are said to have robust performance. The 
identification of the relevant traits is presented using deep 
learning (DL) methods in [26]. Additionally, these models are 
used to create a meta-analysis for pathologic myopia (META-
PM) classifying system (CS) by adding a specific layer. The DL 
models' sensitivity to choroidal neovascularization was 37.07%,  
87.22%, 84.44%, and 85.10%, respectively, as were their 
sensitivity to patchy atrophy, diffuse atrophy, and macular 
atrophy. These are the relevant AUC values: 0.970, 0.978, 0.982, 
and 0.881. The META-PM study CS had an overall accuracy of 
87.53%, with rates of 90.18%, 95.28%, 97.50%, and 91.14% for 
each kind of lesion, respectively. 

A screening technique known as DeepUWF was created in 
[27], utilizing ultra-wide field of view (UWF) fundus color 
imaging, and it can diagnose three different fundus disorders 
(diabetic retinopathy, retinal tear, retinal detachment, and 
pathological myopia). This system is built using CNN and two 
customer classifiers. Six different image preparation approaches 
are also used to fix the low contrast problem with UAF photos. 
These preprocessing steps improve the networks' ability to learn 
and help them achieve high levels of sensitivity and specificity. 
The benefits of dense connection and residual squeeze-and-
excite attention are combined in [28] to present a myopia 
detection network (MDNet) that can identify myopia in a fundus 
image. Following the extraction of the region of interest using 
the optical disc identification approach, the dataset is expanded 
using the data augmentation method. This network's capacity to 
recognize spherical equivalents with a mean absolute error of 
1.1150 D (diopters) demonstrates the utility of this approach. In 
[29], transfer learning is used to complete all tasks using 
Xception after various deep learning algorithms are initially 
applied to fundus pictures. The optical disc segmentation 
algorithm pipeline also employs the YOLO design. The model 
is assessed using the following metrics: AUC-ROC, F1-Score, 
Mean Dice Score, and Mean Euclidean Distance. The approach 
has so far shown positive outcomes. 

IV. RESEARCH METHODOLOGY 

1) Data acquisition: The training dataset for this study was 

acquired from the event hosted by the International Symposium 

on Biomedical Imaging (ISBI-2019) in Italy. It contains 400 

labelled funds images. The dataset consists of 239 pathological 

myopic eye images and 161 normal eye images. The image size 

is 1444×1444×3 (RGB image). The database is available at 

https://palm.grand-challenge.org/. Fig. 2 shows the 

preprocessing step. 

2) Proposed method: The initial step involves preprocessing 

the image (as illustrated in subsection A) to emphasize 

particular patterns, which aids in effectively training Deep 

Learning models for classification purposes. Overall steps of 

proposed system is described in Algorithm 1. This algorithm 

outlines the steps for extracting features using Depthwise 

Separable CNN and Multi-Level Pooling. It applies depthwise 

separable convolution to capture spatial features efficiently and 

then performs multi-level pooling to reduce dimensionality and 

retain important information. The extracted features are then 

used to train a CNN model for classification. 
The proposed framework for steganography based on a 

convolutional neural network (CNN) is illustrated in Fig. 3. The 
proposed CNN architecture consists of several layers that take a 
256 x 256 input image and generate two class labels, namely 
"Normal" and "Pathological Myopia". The network includes an 
image preprocessing layer, two separable convolutions 
(sepconv) blocks, four fundamental feature extraction blocks, a 
spatial pyramid pooling (SPP) module, and two fully connected 
layers followed by a softmax function. The convolutional blocks 
consist of four blocks known as "Basic Blocks 1" to "Basic 
Blocks 4," which perform operations to capture the spatial 
relationships between feature maps and transmit this 
information to the fully connected layer for classification using 
the XgBoost classifier. Each Basic Block carries out a set of 
actions to achieve this. 

A. Image Preprocessing 

In the initial stage of processing, we adjust the size of the 
convolution kernel and employ 30 fundamental SRM filters [12] 
to set the kernels to minimize parameters and enhance local 
features. We also use the "forward-backward-gradient descent" 
approach to optimize the convolution kernel, thereby improving 
accuracy and speeding up the network's convergence. 

B. Convolution Layer 

Instead of using bigger convolution kernels like 55, 
employed in earlier publications [18], [20], we use compact 
convolution kernels like 33 in our CNN design to limit the 
number of parameters. The number of parameters is decreased 
while the extraction of local characteristics is made effective by 
the use of small convolution kernels. As a result, we decided to 
use a convolutional kernel size of 3 with 32 channels for each of 
the first four Basic Blocks. The performance of the network and 
computational complexity are carefully analyzed to determine 
the number of channels for each fundamental block. 

https://palm.grand-challenge.org/
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Fig. 2. A preprocessing step to enhance the contrast while adjusting the light illumination, where figure (a) shows input image, (b) enhance the contrast, and (c) 

light adjustment. Also, the figure (d) shows the region-of-interest (ROI). 

 

Fig. 3. The systematic flow diagram of proposed system. 

C. Batch Normalization (BN) Layer 

Batch normalization [25] is a technique commonly 
employed during training to normalize the distribution of each 
mini batch, typically resulting in a zero mean and unit variance. 
According to study [25], incorporating a BN layer in deep neural 
networks can prevent the issues of gradient vanishing or 
explosion and overfitting. Moreover, it allows for a reasonably 
high learning rate, which helps in achieving faster convergence. 
After conducting experiments, we observed that networks 
similar to Ye-Net that do not have BN are highly vulnerable to 
inadequate parameter initialization and may not reach 
convergence. These findings were noted in the study [20]. 
Therefore, BN is utilized in the proposed approach. 

D. Non-Linear Activation Function 

We use the traditional rectifying linear unit (ReLU) as the 
activation function for each block in the Zhu-Net to avoid 
gradient vanishing or exploding issues, hasten network 
convergence, and achieve several additional aims. Utilizing 
ReLU on neurons during training can teach them to respond 
exclusively to inputs that carry significant signals, which can 
enhance the creation of more efficient features. The ReLU 
function is useful and makes computing back-propagation 
gradients easier. In our research, we made use of the network 
shown in Figure to assess the performance of other activation 
functions, including the truncated linear unit (TLU) suggested in 
Ye-Net, for purposes alongside ReLU. ReLU is used as the 
activation function to train the entire model, comprising all of its 
layers and building components. The utilization of ReLU results 
in enhanced performance and accelerated convergence. 

 

Fig. 4. Depth-wise separable convolution layer. 

 
Fig. 5. A visual architecture of residual block is utilized in this work to build 

the model. 

 

(a) (b

) 

(c) (d

) 
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E. Average Pooling Layer 

Average pooling layers, which can improve receptive fields, 
shrink feature maps, and improve image feature abstraction, are 
included in the first three essential building blocks. Moreover, 
average pooling improves the network's generalization capacity. 
To prevent information loss, the network's first block does not 
use pooling. Furthermore, we utilize separable convolution 
blocks (Sepconv Blocks 1 and 2) to enhance the SNR (the ratio 
of the signal-to-noise in the stereo signal and the resultant 
image) and efficiently manage spatial and channel correlations. 
In the last stage, we utilize an SPP module to improve the 
extraction of features. Through the application of multi-level 
pooling, the SPP module enhances the representation of features. 
At the conclusion of the suggested approach, a trio of fully 
connected layers are implemented, consisting of 2688, 1024, and 
2 neurons in each layer. The ultimate layer with complete 
connectivity employs a softmax activation function to establish 
scores for the two class labels. 

1) Separable convolution architecture: Recent achievements 

in computer vision projects like Inception [29], Xception [30], 

and other architectures have been made possible by separable 

convolution. In Fig. 5, we can observe Xception, which is a 

modified version of the Inception module (a). In this particular 

Inception variation, known for its extreme approach, the 

interdependence between channels is entirely eliminated, 

resulting in a boost in model expressiveness and storage 

efficiency. When the layer has been preprocessed, we create the 

relevant sepconv blocks using two separable convolution 

blocks made up of a 1x1 and a 3x3 convolution. This is done in 

order to use the leftover information from the normal and 

pathological myopia images more efficiently (as shown in Fig. 

1). In our configuration, we presume that the residual 

correlations in the spatial and channel domains are independent 

of one another. Each feature map produced by the high-pass 

filter can be subjected to group convolution using the sepconv 

block. Fig. 4 depicts the structure of sepconv blocks. A sepconv 

block consists of three repetitions of both a 1x1 pointwise 

convolution and a 3x3 depthwise convolution. 
In order to extract spatial correlations, a convolution 

operation with a depth of 3 x 3 is first carried out, employing a 
total of 30 groups. Pytorch uses the "groups" argument to 
implement separable convolution. After that, a pointwise 
convolution is performed in a sepconv block to get rid of any 
remaining channel correlations. After the initial 1-1 
convolutional layer of sepconv block 1, we add an ABS layer 
[26] to help our model recognize the symmetry present in the 
noise residual. The two sepconv blocks integrate residual 
connections to improve classification performance and prevent 
gradient vanishing or explosion. Fig. 5 represents the visual 
architecture example used in our proposed model. It's important 
to note that the second SepConv block lacks an activation 
mechanism. We chose to employ the ABS layer in the first 
sepconv block even though depthwise separable convolutions 
are typically applied without nonlinearities. It somehow boosts 
the network performance. The optimized kernel and the hyper 
parameter description are as follows: 

F. Optimizing Kernels 

Modeling the residuals rather than the pixel values will 
produce more robust characteristics. The convolution kernels in 
the preprocessing layer are constant during training for the 
Yedroudj-Net and Xu-Net architectures. We built a 
preprocessing method termed "forward-backward-gradient 
descent" to improve the SRM feature sets that were manually 
created using domain-specific expertise. 

To determine the residual, we follow this method: Firstly, we 
take each image X = Xij and compute the residual R = Rij as 

Rij =  X pred (Nij)  −  cXij,  (1) 

In this equation, c is an integer that represents the residual 
order, Nij denotes the neighboring pixels of Xij, and X pred (.) 
is a predictor of cXij based on the values of Nij. Generally, we 
utilize high-pass filters to obtain X pred () 

Algorithm 1: An algorithm for feature extraction using 
Depthwise Separable CNN and Multi-Level Pooling 

Input:  

- Images dataset (X) with corresponding labels (Y) 

- Hyperparameters: number of layers (L), filter sizes (F), pool sizes 

(P), depthwise separable convolution parameters (D) 

- Number of classes (C) 

Output: 

- Extracted features (X_features) 

- Updated labels (Y) 

Algorithm: 

1. Initialize an empty list X_features. 

2. Initialize an empty list Y. 

3. For each image x and its corresponding label y in the dataset: 

     - Perform depthwise separable convolution on x with parameters 

D, resulting in feature maps. 

     - Perform multi-level pooling on the feature maps with pool 

sizes P, resulting in pooled feature maps. 

     - Flatten the pooled feature maps to obtain a 1D feature vector. 

     - Add the feature vector to X_features. 

     - Add the label y to Y. 

Convert X_features and Y to numpy arrays. 

Split X_features and Y into training and testing sets. 

Initialize a depthwise separable CNN model. 

Add L convolutional layers to the model, each with filter size F. 

Add a fully connected layer with C neurons for classification. 

Compile the model with an appropriate loss function and optimizer. 

Train the model using X_features_train and Y_train, and validate it 

using X_features_test and Y_test using XGBoost classifier as 

described in section 4.4. 

Evaluate the model's performance metrics such as accuracy, 

precision, recall, etc. 

Return the trained model for future predictions. 
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During the backpropagation step of each iteration, we utilize 
the stochastic gradient descent (SGD) algorithm to update filter 
weights. Earlier studies have demonstrated that a Convolutional 
Neural Network (CNN) with weights initialized randomly 
typically fails to converge. To address this, previous research has 
often utilized SRM kernels to initialize the weights of the initial 
layers in order to generate a group of prediction errors based on 
pixel values, which can enhance the performance of the CNN. 

G. Hyper-Parameters 

We utilize mini-batch stochastic gradient descent (SGD) as 
the training approach for the CNN networks, while setting the 
momentum and weight degradation values to 0.9 and 0.0005, 
respectively. Due to limitations in GPU memory, the training 
mini-batch size has been established as 16, comprising 8 
Normal/Myopia pairs. After that, the networks undergo training 
to reduce the cross-entropy loss using the variables mentioned 
earlier. During training, we modified the learning rate, which 
was initially set to 0.005. At certain predetermined steps 
throughout the training process, this modification entails 
dividing the learning rate by five. Specifically, during the 400-
epoch training of a CNN, the learning rate will decline during 
epochs 50, 150, and 250. In the final phases of training, using a 
slower learning rate can significantly decrease training loss and 
boost accuracy. To prevent over-fitting, stopping training before 
reaching 400 epochs is common. This means that training is 
stopped when the cross-entropy loss on the training set continues 
to decrease, but the accuracy on the validation set begins to 
decrease. Specifically, during the 400-epoch training of a CNN, 
the learning rate will decline during epochs 50, 150, and 250. In 
the final phases of training, using a slower learning rate can 
significantly decrease training loss and boost accuracy. The 
testing accuracy was used to evaluate the performance. The 
proposed DSC-XGBOOST structure for identifying myopia 
anomalies is shown in Fig. 3. 

2) Classification: The XGBoost algorithm has become the 

preferred tool for many data scientists, as it is a highly 

sophisticated algorithm capable of managing any kind of data 

abnormalities. Crafting a model using XGBoost is effortless, 

but enhancing it with XGBoost is arduous, at least in my 

experience. There are several things to take into account when 

using this strategy. To improve the performance of the model, 

it is essential to modify certain parameters. Nonetheless, it can 

be challenging to come up with a satisfying response to 

practical queries such "What is the perfect parameter setup for 

optimal results?" 

3) Regularization: While XGBoost is known as a 

"regularized boosting" method, standard GBM lacks 

regularization, which helps to avoid overfitting. Moreover, 

XGBoost uses parallel processing, which accelerates 

performance compared to GBM. Yet, because the boosting 

process is sequential, it begs the question of how parallelization 

is even conceivable. What prevents us from building a tree 

employing all cores at once if each tree can only be formed after 

the one before it? 
The XGBoost algorithm tries multiple approaches to handle 

missing data in each node while the user inputs a unique value 
as a parameter. In GBM, the tree pruning strategy is employed 

to prevent further division of that node if split results in a loss. 
In comparison to GBM, the XGBoost algorithm is more greedy 
because it prunes the tree backward and eliminates splits that 
don't offer any additional benefits. Moreover, XGBoost allows 
positive loss splits even after negative loss splits, something that 
GBM does not. For instance, XGBoost would continue and 
preserve both divides if they resulted in a total effect of +8, while 
GBM would stop at a split of -2. 

Built-in Cross-Validation: XGBoost simplifies the process of 
obtaining the perfect number of boosting iterations by enabling 
users to perform cross-validation at every stage of boosting. This 
is different from GBM, which requires a grid search and only 
permits a limited number of variables to be analyzed. Using the 
latest iteration of an XgBoost model as the starting point for 
training can be extremely advantageous in specific contexts. The 
GBM implementation in sklearn includes the same capability, so 
both XgBoost and GBM are equally equipped. However, 
XgBoost may produce unstable models due to overfitting on the 
training set. To avoid this, regularization techniques can be 
employed to consider the model's complexity and prevent 
overfitting. In XgBoost, including a term that measures the 
model's complexity can modify the cost function. The two 
parameters used for regularization in XgBoost are alpha and 
lambda, which correspond to L1 regularization (Manhattan 
distance) and L2 regularization (squared Euclidean distance), 
respectively [1]. In order to implement L2 regularization, we 
need to assign a value to the reg lambda parameter in XgBoost. 

The term "extreme gradient boosting," abbreviated as 
"XgBoost," refers to a method of gradient boosting that has been 
rigorously analyzed and parallelized to minimize the training 
time of the entire boosting procedure drastically. Instead of the 
traditional approach of creating the best possible model based 
on the data and then selecting it, we train numerous models on 
various subsets of the training dataset and choose the one that 
performs the best by gathering the results from all the models. 
XGBoost is often superior to standard gradient-boosting 
techniques in various scenarios. A vast array of key parameters 
can be adjusted for improved precision and accuracy by utilizing 
the Python implementation. 

Consider a function or an approximation, and then generate 
a sequence of values based on the gradients of the function. The 
subsequent formula models a particular form of gradient 
descent. The loss function indicates the direction of the 
function's descent, which needs to be minimized. The fitted 
change rate is equivalent to the learning rate used in gradient 
descent. It is expected to match the behavior of the loss function 
accurately. 

𝐹𝑥𝑖
= 𝐹𝑥𝑖

+ 𝛼𝑥𝑖

𝜕

𝜕𝑥
(𝑥𝑡)  (2) 

To find the best definition of the model, we need to describe 
the formula as a sequence and find a function that efficiently 
converges to its minimum. This function will be used as an error 
metric to help us reduce loss and maintain performance over 
time. Eventually, the sequence will reach the minimum of the 
function. This notation defines the error function for assessing a 
gradient boosting regressor. 

𝑓(𝑥, 𝜃) = ∑ 𝑙(𝑓(𝑥𝑖 , 𝜃), 𝑦𝑖)  (3) 
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The following are the steps involved in the XgBoost 
algorithm: 

XgBoost algorithm classifier for severity level of Myopic 

Maculopathy. 

Steps Given training data from the instance space 

1 Space 𝑆1= {(𝑥1,𝑦1)}, where 𝑆 = {𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛} 

2 [Initialize], 𝐷1(𝑖) =
1

𝑚
 

3 Repeat: 

For i= 1,2,3,…, n do  

4 Train a weak leaner ℎ𝑖: 𝑥 → 𝑅 using distribution 𝐷𝑖 

5 Update the distribution over the training set: 

6 𝐷𝑖+1(𝑘) =
𝐷𝑖(𝑘)𝑒−𝛼𝑖

𝑍𝑖
                (4) 

7 Where 𝑍𝑖 is a normalization factor 𝐷𝑖+1 chosen so that 

𝐷𝑖+1 will be a distribution 

8 [end for] 

9 𝑓(𝑥) = ∑ 𝛼𝑡ℎ𝑡(𝑥)𝑛
𝑖=0  𝑎𝑛𝑑 𝐻(𝑥) = 𝑠𝑖𝑔𝑛 (𝑓(𝑥)        (5) 

V. EXPERIMENTAL RESULTS 

A. Data Augmentation 

The augmentation approach is used to make the balance 
among classes of MM. The network becomes resistant to certain 
alterations in this way. The integration of spatial information, 
which is essential for image segmentation tasks, is a strength of 
CNNs and DepthCNN-XgBoost in particular, although they are 
not equally resilient to transformations like scaling and rotation. 
The network may get the necessary invariance and resilience 
properties through the use of rotations and flips, two data 
augmentation techniques. The data augmentation also included 
shears, a derivation of elastic deformations recommended as a 
general best practice for convolutional neural networks and flips 
and rotations. The ImageDataGenerator function of Keras is 
used to implement the augmentation. Fig. 6 is visually displayed 
the distribution after performing data augmentation. 

 
Fig. 6. Sample distribution of PALM dataset, where figure (a) shows the 

original images, whereas figure (b) shows the number of images after data 

augmentation. 

B. Experimental Setup  

All networks were developed in Python using the Keras and 
TensorFlow packages. The models were trained on an NVIDIA 
Tesla P4 GPU supplied by Google Colab. The test was run on a 
computer with an 8-core AMD FX-8320 CPU running at 3.5 
GHz and 8 GB of RAM. 

C. Assessment Criteria 

The false positive rate (FPR) is the proportion of times a 
biometric system incorrectly accepts a fake subject. The false 
negative rate (FNR) is a biometric system that wrongly rejects 
the percentage of times a legitimate subject. Finally, the 
proportion at which FPR and FNR are identical is referred to as 
the equal error rate (EER). The binary classification error rates 
are shown graphically by the detection error trade-off (DET) 
curve. The FPR is on the x-axis, and the corresponding FNR is 
on the y-axis in this curve. The system's effectiveness is 
evaluated using a verification system comprising EER and DET 
curves. Since it tries to match the biometrics provided by a 
person with the precise biometrics already enrolled, it is 
sometimes referred to as a "1-to-1 matching system." 

The identification system is represented as a 1-to-n matching 
system, in contrast to verification systems, where n is the total 
number of records in the database. Here, rank-1 IR and the CMC 
curve are used to evaluate the framework's performance. The 
rank-k identification rate is the proportion of times the true 
subject's match score appears in the top k matches (IR). A 1:1 
identification system may have its performance evaluated using 
the cumulative match curve (CC). Plotting a curve between 
rank-k IR on the y-axis and rank-k on the x-axis illustrates it. 
Using a number of other assessment metrics, such as specificity, 
sensitivity, F1-score, accuracy, recall, and precision, the 
effectiveness of the suggested approach is measured in numbers. 

Accuracy (ACC) is one of the most frequent and 
fundamental performance indicators. It is simply the likelihood 
that a randomly chosen example (positive or negative) will be 
true. In this measure, the diagnostic test shows how likely it is 
that the correct result will happen or how likely it is that the 
diagnosis is correct. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
  (6) 

The ability to properly identify positive categories within 
whole expected positive classes is referred to as precision, and 
it is stated as a ratio of all successfully predicted positive 
categories to all correctly expected positive categories: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (7) 

Sensitivity (SEN), Recall, True Positive Rate, Hit Rate: It is 
a measure of a model's capability to detect all positive instances 
and is represented as: 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝐸) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (8) 

It's worth noting that the above equation implies that a low 
false-negative rate almost always accompanies a high recall. 

Specificity (SPE): Ratio of true negatives to total negatives 
in the data. Mathematically can be represented as follows: 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (9) 

F1-score: It is not as straightforward as accuracy, but this 
metric is useful in determining the classifier's exact and 
robustness. The F1 score, which is a key metric that considers 
both recall and precision for performance testing, it could be 
represented as follow: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
× 100% (10) 

Where TN (true negative) and TP (true positive) are 
accurately predicted negative and positive outcomes, 
respectively. FN (false negative) and FP (false positive) do not 
predict negative and positive human identification cases 
correctly. 

AUC: This stands for area under the receiver operating 
characteristics (AUC). The AUC is a graphical representation or 
plotting the diagnostic ability of any machine learning classifier 
using all thresholds. 

D. Hyper-parameters Fine-tune 

To determine the optimal hyper-parameter values for the 
optimizer and initial learning rate, a grid search was conducted. 
This search involved considering five different optimizers: 
stochastic gradient descent (SGD), SGD-Momentum, Nesterov 
Accelerated GD, RMSProp, and ADAM. The initial learning 
rate was varied within the range of 10^-1 to 10^-4. The training 
process involved each benchmark CNN being initially trained 
with the hyper-parameter values specified in their respective 
papers. However, due to factors such as the relatively small size 
of the training dataset compared to the larger datasets they were 
originally trained on ImageNet and the differences in 
discriminative features among classes, these initial attempts 
resulted in poor learning. 

For each combination of optimizer and initial learning rate 
in the grid, the CNN models were trained for 20 epochs using 
the modified EyePACS train-set. Specific parameter values were 
set for each optimizer: a momentum of 0.9 for SGD and 
Nesterov Accelerated GD, a discounting factor (ρ) of 0.9 and a 
stability factor (ε) of 0.1 for RMSProp, and exponential decay 
rates β1 and β2 of 0.9 and 0.999 respectively, along with a 
stability factor (ε) of 1e-7 for ADAM. The best-performing 
optimizer and initial learning rate pair, which resulted in the 
highest training accuracy within the 40 epochs, was selected as 
the optimal combination of hyper-parameters for each 
benchmark CNN. 

E. Result Analysis 

The experimental results took numerous classification-
related performance metrics into account, including the 
identification skills and the average computational time required 

by a trained network to fully annotate a CT image. Five 
performance metrics are typically considered when assessing a 
classifier: accuracy, precision, recall, F1-score, and AUC. The 
DepthCNN-XgBoost model beat the other deep learning models 
in terms of classification accuracy for detecting the MM-
infected regions. It has been found that class imbalance may be 
used to explain the difference in accuracy, F1-score, and AUC. 
The majority class (no detections) was almost always classified 
properly. On the edges of infected regions in photos, false-
negative detections were discovered when MM symptoms were 
plainly discernible. Nevertheless, the minority class (MM 
symptomatic regions) was discernible because the F1-score and 
AUC were both reasonably high. Model loss and accuracy 
curves are visually displayed in Fig. 7. 

 
Fig. 7. Accuracy and validation loss curve for the proposed architecture. 

The DepthCNN-XgBoost model's higher generalization 
capabilities when compared to the CNN, LSTM and CNN-
LSTM. The current work aimed to decrease false positives since 
erroneous detections in medical imaging applications are crucial 
(normal areas are diagnosed as symptomatic). Additionally, the 
pandemic has raised the need for chest CT scan interpretation. 
With this in mind, we concentrated on minimizing radiologists' 
burden by striving for a high proportion of true positives 
(symptomatic areas diagnosed as symptomatic). In this situation, 
it is important to investigate the techniques that may result in 
extremely high accuracy and appropriate recall scores. 
DepthCNN-XgBoost and CNN-LSTM occasionally 
outperformed the traditional CNN because of their high-
precision scores, which included both FP and TP values, even 
though all three models produced the same results for the F1-
score, AUC, and accuracy. The result of AUC curve in Fig. 8 
shows that the higher AUC value of 0.92 achieved by the 
proposed Depthwise-XgBoost with data augmentation 
compared other classifiers. Similarly, Fig.  9 shows the 
confusion matrix of the proposed system without data 
augmentation. 
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Fig. 8. Three AUC curves for figure (a) Proposed depthwise-XgBoost with data augmentation, (b) Original depthwise separable CNN, and (c) XgBoost 

classifier. 

 

Fig. 9. Confusion matrix of proposed model for recognition of each class of MM. 

Here we include a detailed comparison of various machine 
learning classifiers' performance in detecting and classifying 
stages of Myopic Maculopathy, using three different train-test 
partition strategies, Table II, Table III and Table IV. Each table 
assesses the classifiers based on Accuracy (ACC), Precision 
(PR), Recall (RE), and F1-Score. In the 70%-30% train-test 
partition strategy, the classifiers including CNN, LSTM, CNN-
LSTM, Depthwise Separable, and the proposed Depthwise-
XgBoost, all showcase high performance with the metrics 
mostly in the mid-90s percentile. The proposed Depthwise-
XgBoost model exhibits a competitive edge with a 96.5% F1-
Score. When the partition strategy shifts to 80%-20%, the 
classifiers show similar or slightly improved performance. 
Notably, the Depthwise-XgBoost stands out with the highest 
precision of 98% and maintains a robust F1-Score of 96.5%.  

This indicates a consistency in the model's performance even 

as the data partitioning varies. The 90%-10% partition further 
underscores this consistency and, in some cases, an increase in 
accuracy and other metrics for all classifiers. The CNN-LSTM 
model achieves the highest accuracy at 97%, while the 
Depthwise-XgBoost maintains its high precision and F1-Score, 
emphasizing its reliability and effectiveness across different data 
distributions. Overall, the comparisons indicate that the 
advanced machine learning techniques, particularly the 
proposed Depthwise-XgBoost, are highly effective in 
diagnosing Myopic Maculopathy. The consistent performance 
of the Depthwise-XgBoost across various partition strategies 
highlights its potential as a robust and reliable model for medical 
diagnostic purposes. Each classifier demonstrates strengths in 
different metrics, but collectively they underscore the capability 
of deep learning architectures in enhancing the accuracy and 
reliability of medical diagnoses in ophthalmology. 
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TABLE III.  CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD 

WITH OTHER MACHINE LEARNING CLASSIFIERS USING 70%-30% TRAIN-TEST 

PARTITION STRATEGY 

Classifier ACC PR RE 
F1-

Score 

CNN 95% 95% 95% 96% 

LSTM 94% 93% 96% 95% 

CNN-LSTM 96% 94% 97% 96% 

Depthwise Separable 95% 94% 97% 96% 

Proposed Depthwise-
XgBoost 

95% 96% 97% 96.5% 

TABLE IV.  CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD 

WITH OTHER MACHINE LEARNING CLASSIFIERS USING 80%-20% TRAIN-TEST 

PARTITION STRATEGY 

Classifier ACC PR RE 
F1-

Score 

CNN 95% 96% 94% 95% 

LSTM 94% 95% 94% 95% 

CNN-LSTM 96% 95% 96% 96% 

Depthwise Separable 95% 95% 95% 95% 

Proposed Depthwise-

XgBoost 
95% 98% 97% 96.5% 

TABLE V.  CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD 

WITH OTHER MACHINE LEARNING CLASSIFIERS USING 90%-10% TRAIN-TEST 

PARTITION STRATEGY 

Classifier ACC PR RE 
F1-

Score 

CNN 96% 94% 96% 96% 

LSTM 95% 95% 95% 95% 

CNN-LSTM 97% 96% 96% 97% 

Depthwise Separable 96% 96% 96% 96% 

Proposed Depthwise-
XgBoost 

95% 98% 97% 96.5% 

In addition to comparing various machine learning 
classifiers, the article presents Table V, which contrasts the 
performance of the proposed method with other existing studies 
in the field of Myopic Maculopathy detection and classification. 
The comparison is based on four key metrics: Recall, Precision, 
F1-score, and Accuracy. The table lists several methods from 
different researchers, including Rauf et al., Li et al., Devda et al., 
Li Lu et al., Du et al., Zhang et al., along with the proposed 
method. Each method's performance is quantified, 
demonstrating a range of effectiveness in diagnosing Myopic 
Maculopathy. For instance, Rauf et al. show balanced 
performance across all metrics at 94%. Li et al. have a notably 
high precision of 97% but lower accuracy at 88%. Other 
methods like Devda et al. and Li Lu et al. present a balanced mix 
of recall, precision, and accuracy, reflecting the diversity in 
effectiveness and approach among different studies. The 
proposed method distinguishes itself at the end of the table, 
demonstrating superior recall (97%), precision (98%), and an 
F1-score of 96.5% with an accuracy of 95%. These numbers 
indicate a high level of reliability and precision in detecting and 
classifying Myopic Maculopathy, surpassing the other methods 
listed. This comparison not only underscores the proposed 
method's robust performance but also contextualizes it within 

the broader landscape of existing research, highlighting its 
potential as a significant advancement in the field. A visual result 
of the proposed system is also displayed in Fig. 10 to detect 
different classes of MM. 

 
Fig. 10. Color fundus photographs showing the worsening levels of myopic 

macular degeneration; (a) Category 1, (b) Category 2, (c) Category 3 (c), and 
(d) Category. 

TABLE VI.  COMPARISON OF THE PROPOSED METHOD WITH OTHER 

EXISTING STUDIES 

Method Recall Precision F1-score Accuracy 

Rauf et al [8] 94% 94% 94% 94% 

Li et al /pol 82% 97% 89% 88% 

Devda et al [10] 86% 96% 91% 94% 

Li Lu et al [25] 90% 92% 91% 87% 

Du et al [26] 83% 89% 82% 93% 

Zhang et al [27] 94% 96% 95% 95% 

Proposed Method 97% 98% 96.5% 95% 

VI. DISCUSSION 

This work suggests the identification and classification of 
myopia maculopathy (MM) from retinograph pictures, utilizing 
multi-layer deep learning and pretrained learning techniques. In 
reality, a number of conditions, such as myopia maculopathy, 
can be followed by cataracts, glaucoma, retinal detachment, and 
other conditions (MM) as described in Table VI. 

The World Health Organization consequently recognizes 
myopia as a significant factor in visual impairment if it is not 
completely treated. On patients, their families, and society as a 
whole, MM imposes a heavy cost. For MM, there is presently 
no effective therapy. For all myopic individuals, preventive 
treatment can lessen ocular problems. According to the 
International Photographic Classification and Grading System 
for Myopic Maculopathy [3], myopic maculopathy was 
identified and categorized. Myopia is classified according to its 
severity. In this study, identifying myopic maculopathy for 
fundus pictures in categories 2 and above is explored. Deep 
learning algorithms have lately been the subject of several 
academic studies aimed at segmenting MM-infected areas. In 
pixel-based segmentation for medical pictures, fully 
convolutional networks and U-shaped convolutional networks 
perform exceptionally well. So, when separating the MM-
infected part of the retinal fundus picture, both are given top 
priority. 

The adoption of deep learning (DL) technologies in 
identifying pathologic myopia (PM) lesions remains a difficulty 
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due to the complexity of the PM classification and definition 
system. However, enough resources can achieve objectives, 
such as high-quality PM retinal fundus picture collections and 
high-caliber expert teams. This study aims to create and train 
DLs to recognize PM as well as the categories. In this article, we 
used a novel deep learning model based on depthwise separable 
convolution layer for the detection of MM using fundus images.  
Motivated by the DSC model's outstanding results in various 
research disciplines. They perform well on small number of 
samples and allow. 

In this instance, we employed the idea of depth-wise 
separable. A small number of training examples are used at a 
time in this online learning process. According to this process, 
new fundus pictures are fed to the model with the approval of 
subject-matter experts, and the model outputs are also assessed 
by experts throughout the testing phase to detect findings that 
were incorrectly categorized. Despite the fact that this technique 
improved segmentation performance and provided a foundation 
for online learning, Nevertheless, it required expert input 
throughout the algorithm's testing stage. As a result, human 
participation is required throughout the learning process with 
this technique. Although unlikely, errors in judgment made by 
the medical experts would have led to a decline in network 
performance. The same problem arises when an incorrectly 
labeled dataset is introduced to the network in the supervised 
learning paradigm. But because the supervised learning ground 
truth data were generated offline, there was plenty of time to 
evaluate the accuracy of the annotation. The dynamic weight 
adjustments in the recommended learning technique prevent the 
expert from having time to reconsider their choice. In order to 
condense the training dataset and accommodate fresh training 
examples, a forgetting mechanism is used. The image is 
carefully examined at every level, from coarse to fine, in order 
to grasp its features. In the first stage, classification will be done, 
and an image's MM infection will be looked at. 

The FCN model, on the other hand, initially performs multi-
scale image processing, in which feature maps are created at 
several sizes. As the name suggests, an FCN model is built using 
locally linked layers, including convolution, pooling, and up-
sampling [42]. Fig. 4, which contrasts FCN processing with 
conventional CNN structure processing, serves as an illustration 

of this. A down-sampling path is in charge of obtaining semantic 
and contextual data, and an up-sampling path is in charge of 
extracting spatial data. Together, these two components make up 
an FCN's topology. Due to the absence of a thick layer in this 
architecture, the number of parameters required and the 
associated computational expense are reduced [44, 45]. 
Implementing a skip connection action, which bypasses at least 
one layer, can minimize any downsides related to information 
loss due to pooling or down-sampling layers. An FCN model is 
compelled by this structure to operate inside a global-local data 
processing architecture. 

It is clear that global-local analysis, as opposed to local-
based ones like CNN, offers a superior classification framework 
for MM RETINGRAPH image segmentation. DepthCNN-
XgBoosts is another design that may maintain the local-data 
features during the upsampling process and is similar to FCNs 
[23]. As a result, in this work, the MM segmentation of CT 
images is performed using the DepthCNN-XgBoost model. 
Ranneberger et al. (2015) demonstrated extremely strong 
performance when segmenting arterial brain arteries in a patient 
with cerebrovascular disease using a modified version of 
DepthCNN-XgBoost. This achievement motivates the 
development of vessel segmentation techniques for computer-
aided diagnosis of cerebrovascular illness. Deep learning-based 
networks do not require unique feature engineering or selection, 
in contrast to earlier "rule-based" non-neural network 
techniques. While DepthCNN-XgBoost outperforms the 
traditional graph-cut-based segmentation approach by 
effectively extracting the pertinent features during training.In 
the second phase, the MM region is localized and labeled, and a 
bound box is created around the area of interest. This will help 
specialists focus on the diagnosis. However, for many purposes, 
bounding boxes are inadequate (for example, precise tumor 
diagnosis). In such cases, we need extremely detailed "pixel-
based segmentation," or information at the pixel level. Semantic 
segmentation is aimed at achieving this. In this case, each pixel 
in a picture is assigned to a certain class. But due to time 
restraints, computational limitations, and low false-negative 
detection limits, semantic segmentation is restricted. 

TABLE VII.  COMPARISONS WITH STATE-OF-THE-ART APPROACHES 

Cited. Methodology Dataset Results Limitations 

[38] 

The detection and segmentation of PM using semantic adversarial networks 

(SAN) and few-short learning (FSL), respectively. Unlike DL methods, 

conventional segmentation techniques employ supervised learning models. 

PALM 

sensitivity (SE) of 

95%, specificity (SP) 

of 96%, and area 
under the receiver 

operating curve 

(AUC) of 98% 

Preprocessing steps are 
required and applied on a 

limited dataset. In addition, 

fixed data augmentation 
parameters are required. 

[39] 
Fundus images are first preprocessed and then images are fed to the 

designed CNN model. 
PALM AUC score of 0.9845 

CNN architecture is not 
optimized and generalize 

solution for detecting of 
different type of MM. 

[40] 

A dual-stream DCNN (DCNN-DS) model that perceives features from both 

original images and corresponding processed images by color histogram 

distribution optimization method was designed for classification of no MM, 
tessellated fundus (TF), and pathologic myopia (PM). 

PALM 

Sensitivities of 

90.8% and 97.9% and 

specificities of 99.1% 
and 94.0% 

 

[41] CNN bundles lesion segmentation and PM classification PALM AUC of 0.9867 

No multiclass categorization 

of different types of MM and 
so limited capability 
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[42] 

four convolutional neural network (CNN) architectures, namely 

DenseNet201, ResNet50, VGG16, and Xception. The CNN architectures 
were evaluated in the test dataset and their performances were compared. 

Xception had the best metrics compared with the other architectures in all 

three tasks 

META-PM -- 
Multiclass MM classification 
but without preprocessing and 

data augmentation. 

[43] DL models were able to recognize the lesions of myopic maculopathy META-PM AUC of 0.970 

No multiclass recognition of 

MM and no generalize tool. 

No preprocessing to adjust the 
pixels. 

[44] 
Combination of dense connection and Residual Squeeze-and-Excitation 

attention is proposed in this paper to detect myopia automatically 
Private -- 

No multiclass recognition of 

MM and no generalize tool. 

No preprocessing to adjust the 
pixels. 

[45] 

three five-classification models based on Vision Outlooker for Visual 

Recognition (VOLO), EfficientNetV2, and ResNet50 for detecting myopic 
maculopathy were trained with data-augmented images 

Meta-PM SE of 96.43 

No generalize tool. No 

preprocessing to adjust the 
pixels. 

[46] The efficientNet model was utilized to recognize multi-classes of MM.  AUC of 0.98 
No preprocessing to adjust the 

pixels. 

[47] Image Processing and feature fusion approach were developed. PALM AUC of 0.9981 

No multiclass recognition of 
MM and no generalize tool. 

No preprocessing to adjust the 

pixels. 

A medical expert can evaluate the segmentation quality in 
addition to a quantitative evaluation. U-Visual Net's analysis 
performance was therefore shown to be much better. However, 
compared to smaller arteries, huge vessels can be seen very well, 
which can be enhanced in the future. As a result, it demonstrates 
the excellent performance of the DepthCNN-XgBoost 
architecture in the clinical area. Utilizing more recent 
segmentation topologies, such as the MS-net (Shah et al., 2018), 
can result in even greater performance. We should examine the 
problem's constraints before beginning any implementation 
technique. Two key criteria in deep learning methods are data 
availability and data imbalance, which both affect the choice of 
classification model and topological complexity. The fundus 
samples' positive-to-negative ratio (492:447) is reasonable; 
however, the pixel ratio between MM and non-MM is 
unbalanced. This is because the infected eye part is smaller than 
the healthy one (see Fig. 3 and Fig. 6). As a result, the first step 
was to implement a training data balancing strategy that 
included undersampling the majority class (non-MM regions) 
[48]. To do this, 492 photographs with a positive annotation ratio 
of 0.01 to 59% of the total pixels are supplied to deep networks 

for training, while the 447 images with negatively annotated 
pixels are excluded from the training process. A visual example 
of heatmaps show in Fig. 11 about the success of classifying 
different patterns in MM retinograph images. 

4) Limitations of current study: The study acknowledges the 

significance of proper hyper-parameter tuning and the size and 

quality of the training dataset in achieving successful learning 

of a CNN model. In the context of this research, the focus was 

on evaluating various benchmark CNNs for MM classification 

tasks specifically using retinal fundus images. For future 

investigations, it is suggested that hybrid variations of the 

architectural concepts from the best-performing benchmark 

models, combined with attention mechanisms and spatial 

pooling, could be explored. This approach aims to synthesize a 

robust and accurate MM classification model by leveraging the 

strengths of different architectures and incorporating attention 

mechanisms to enhance the model's ability to focus on 

important regions or features in the images. 

 
Fig. 11. Three AUC curves for figure (a) Proposed depthwise-XgBoost with data augmentation, (b) Original depthwise separable CNN, and (c) XgBoost 

classifier. 

VII. CONCLUSION AND FUTURE DIRECTIONS 

This study presents a pretrained learning technique for 
segmenting SMM-infected regions. The DepthCNN-XgBoost 

framework was used to construct this model. Based on a small 
number of newly received samples, it modifies the network 
dynamically. This retraining method reduced the loss of existing 
knowledge while allowing the model to trust the approaching 
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new incoming data to the greatest extent possible. The 
recommended solution differs from conventional methods in 
that it employs an online learning paradigm using spatial 
pyramid pooling technique. This novel approach, called "few-
shot powered DepthCNN-XgBoost," is reportedly effective and 
persuasive in the segmentation of SMM-infected areas. 
Experimental results show the effectiveness of the suggested 
few-shot learning strategy in combination with a DepthCNN-
XgBoost model for finding and characterizing infectious SMM 
regions. The few-shot powered DepthCNN-XgBoost is a 
possible artificial intelligence (AI) framework for medical 
imaging, particularly beneficial for locating pathogenic SMM 
regions when compared to deep learning models like 
convolutional neural networks, fully convolutional networks, 
and traditional DepthCNN-XgBoost structures. The proposed 
few-shot DepthCNN-XgBoost model exhibited an IoU increase 
of 5.388% (3.046% for all test data utilizing 4-fold cross-
validation results from the various classifiers) compared to a 
regular DepthCNN-XgBoost. The F1-Score also increases by 
5.394, or 3.015%. We found increases in accuracy and recall of 
1.162, 2.137%, and 4.409, 4.790%, respectively. The Kruskal-
Wallis test p-value on the F1-score and IoU values between the 
proposed few-shot DepthCNN-XgBoost model and the 
traditional model was 0.026 (below 0.05). This indicates that 
there is a significant difference between the metrics of the two 
techniques, with a 95% confidence level. The recommended 
model needed around eight photos and a small number of new 
incoming samples in order to change its behavior effectively. 
Due to the fact that new data was combined with older samples 
to improve the network's generalization skills, the suggested 
few-shot DepthCNN-XgBoost model has a similar level of 
computational complexity to the traditional DepthCNN-
XgBoost model. The combination of few-shot learning with 
other deep models and learning techniques like transformers 
[48] is quite appealing for future development. According to a 
recent study, transformer-based models beat other types of 
networks, such as recurrent and convolutional structures, in a 
variety of benchmarks for visual information. 

REFERENCES 

[1] Modjtahedi, B. S., Abbott, R. L., Fong, D. S., Lum, F., Tan, D., Ang, M., 
... & Zadnik, K. (2021). Reducing the global burden of myopia by 
delaying the onset of myopia and reducing myopic progression in 
children: the Academy’s Task Force on Myopia. Ophthalmology, 128(6), 
816-826. 

[2] Sankaridurg, P., Tahhan, N., Kandel, H., Naduvilath, T., Zou, H., Frick, 
K. D., ... & Resnikoff, S. (2021). IMI impact of myopia. Investigative 
ophthalmology & visual science, 62(5), 2-2. 

[3] Lu, L., Ren, P., Tang, X., Yang, M., Yuan, M., Yu, W., ... & Han, W. 
(2021). AI-Model for Identifying Pathologic Myopia Based on Deep 
Learning Algorithms of Myopic Maculopathy Classification and “Plus” 
Lesion Detection in Fundus Images. Frontiers in cell and developmental 
biology, 2841. 

[4] Jotterand, F., & Bosco, C. (2022). Artificial Intelligence in Medicine: A 
Sword of Damocles?. Journal of Medical Systems, 46(1), 1-5. 

[5] Li, Y., Foo, L. L., Wong, C. W., Li, J., Hoang, Q. V., Schmetterer, L., ... 
& Ang, M. (2022). Pathologic myopia: advances in imaging and the 
potential role of artificial intelligence. British Journal of Ophthalmology. 

[6] Abbas, Q., Qureshi, I., Yan, J., & Shaheed, K. (2022). Machine Learning 
Methods for Diagnosis of Eye-Related Diseases: A Systematic Review 
Study Based on Ophthalmic Imaging Modalities. Archives of 
Computational Methods in Engineering, 1-58. 

[7] Qureshi, I., Ma, J., & Abbas, Q. (2021). Diabetic retinopathy detection 
and stage classification in eye fundus images using active deep learning. 
Multimedia Tools and Applications, 80(8), 11691-11721. 

[8] Rauf, N., Gilani, S. O., & Waris, A. (2021). Automatic detection of 
pathological myopia using machine learning. Scientific Reports, 11(1), 1-
9. 

[9] Li, J., Wang, L., Gao, Y., Liang, Q., Chen, L., Sun, X., ... & Xie, L. (2022). 
Automated detection of myopic maculopathy from color fundus 
photographs using deep convolutional neural networks. Eye and Vision, 
9(1), 1-12. 

[10] Devda, J., & Eswari, R. (2019). Pathological myopia image analysis using 
deep learning. Procedia Computer Science, 165, 239-244. 

[11] Zhang, C., Zhao, J., Zhu, Z., Li, Y., Li, K., Wang, Y., & Zheng, Y. (2022). 
Applications of Artificial Intelligence in Myopia: Current and Future 
Directions. Frontiers in Medicine, 9. 

[12] Zhang, Z., Ji, Z., Chen, Q., Yuan, S., & Fan, W. (2021). Joint optimization 
of CycleGAN and CNN classifier for detection and localization of retinal 
pathologies on color fundus photographs. IEEE Journal of Biomedical 
and Health Informatics, 26(1), 115-126. 

[13] You, A., Kim, J. K., Ryu, I. H., & Yoo, T. K. (2022). Application of 
generative adversarial networks (GAN) for ophthalmology image 
domains: a survey. Eye and Vision, 9(1), 1-19. 

[14] Abbas, Q., Qureshi, I., & Ibrahim, M. E. (2021). An Automatic Detection 
and Classification System of Five Stages for Hypertensive Retinopathy 
Using Semantic and Instance Segmentation in DenseNet Architecture. 
Sensors, 21(20), 6936. 

[15] Sun, L., Li, C., Ding, X., Huang, Y., Chen, Z., Wang, G., ... & Paisley, J. 
(2022). Few-shot medical image segmentation using a global correlation 
network with discriminative embedding. Computers in biology and 
medicine, 140, 105067. 

[16] Tian, Y., & Fu, S. (2020). A descriptive framework for the field of deep 
learning applications in medical images. Knowledge-Based Systems, 210, 
106445. 

[17] Wang, Z., Ma, B. & Zhu, Y. Review of Level Set in Image Segmentation. 
Arch Computat Methods Eng 28, 2429–2446 (2021). 
https://doi.org/10.1007/s11831-020-09463-9. 

[18] Yang R and Yu Y (2021) Artificial Convolutional Neural Network in 
Object Detection and Semantic Segmentation for Medical Imaging 
Analysis. Front. Oncol. 11:638182. doi: 10.3389/fonc.2021.638182. 

[19] L., & Wu, Y. Z. (2022). Semantic segmentation of pancreatic medical 
images by using convolutional neural network. Biomedical Signal 
Processing and Control, 73, 103458. 

[20] Lu, H., Tian, S., Yu, L., Liu, L., Cheng, J., Wu, W., ... & Zhang, D. (2022). 
DCACNet: Dual context aggregation and attention-guided cross 
deconvolution network for medical image segmentation. Computer 
Methods and Programs in Biomedicine, 214, 106566. 

[21] Gao, N., Xue, H., Shao, W., Zhao, S., Qin, K. K., Prabowo, A., ... & Salim, 
F. D. (2022). Generative adversarial networks for spatio-temporal data: A 
survey. ACM Transactions on Intelligent Systems and Technology 
(TIST), 13(2), 1-25. 

[22] You, A., Kim, J. K., Ryu, I. H., & Yoo, T. K. (2022). Application of 
generative adversarial networks (GAN) for ophthalmology image 
domains: a survey. Eye and Vision, 9(1), 1-19. 

[23] Zhan, B., Xiao, J., Cao, C., Peng, X., Zu, C., Zhou, J., & Wang, Y. (2022). 
Multi-constraint generative adversarial network for dose prediction in 
radiotherapy. Medical Image Analysis, 77, 102339. 

[24] Hemelings, R., Elen, B., Blaschko, M. B., Jacob, J., Stalmans, I., & De 
Boever, P. (2021). Pathological myopia classification with simultaneous 
lesion segmentation using deep learning. Computer Methods and 
Programs in Biomedicine, 199, 105920. 

[25] Lu, L., Zhou, E., Yu, W., Chen, B., Ren, P., Lu, Q., ... & Han, W. (2021). 
Development of deep learning-based detecting systems for pathologic 
myopia using retinal fundus images. Communications biology, 4(1), 1-8. 

[26] Du, R., Xie, S., Fang, Y., Igarashi-Yokoi, T., Moriyama, M., Ogata, S., ... 
& Ohno-Matsui, K. (2021). Deep learning approach for automated 
detection of myopic maculopathy and pathologic myopia in fundus 
images. Ophthalmology Retina, 5(12), 1235-1244. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 7, 2024 

968 | P a g e  

www.ijacsa.thesai.org 

[27] Zhang, W., Zhao, X., Chen, Y., Zhong, J., & Yi, Z. (2020). DeepUWF: 
an automated ultra-wide-field fundus screening system via deep learning. 
IEEE Journal of Biomedical and Health Informatics, 25(8), 2988-2996. 

[28] Shi, Z., Wang, T., Huang, Z., Xie, F., & Song, G. (2021). A method for 
the automatic detection of myopia in Optos fundus images based on deep 
learning. International Journal for Numerical Methods in Biomedical 
Engineering, 37(6), e3460. 

[29] Freire, C. R., Moura, J. C. D. C., Barros, D. M. D. S., & Valentim, R. A. 
D. M. (2020). Automatic lesion segmentation and pathological myopia 
classification in fundus images. arXiv preprint arXiv:2002.06382. 

[30] Jia, S., Jiang, S., Lin, Z., Li, N., Xu, M., & Yu, S. (2021). A survey: Deep 
learning for hyperspectral image classification with few labeled samples. 
Neurocomputing, 448, 179-204. 

[31] Voulodimos, A., Protopapadakis, E., Katsamenis, I., Doulamis, A., & 
Doulamis, N. (2021). A few-shot U-net deep learning model for COVID-
19 infected area segmentation in CT images. Sensors, 21(6), 2215. 

[32] Feng, Y., Gao, J., & Xu, C. (2022). Learning Dual-Routing Capsule Graph 
Neural Network for Few-shot Video Classification. IEEE Transactions on 
Multimedia. 

[33] Abdelaziz, M., & Zhang, Z. (2022). Multi-scale kronecker-product 
relation networks for few-shot learning. Multimedia Tools and 
Applications, 1-20. 

[34] Zhu, Q., Mao, Q., Jia, H., Noi, O. E. N., & Tu, J. (2022). Convolutional 
relation network for facial expression recognition in the wild with few-
shot learning. Expert Systems with Applications, 189, 116046. 

[35] Korshunov, P., & Marcel, S. (2022). Improving Generalization of 
Deepfake Detection with Data Farming and Few-Shot Learning. IEEE 
Transactions on Biometrics, Behavior, and Identity Science. 

[36] Li, W., Gao, Y., Zhang, M., Tao, R., & Du, Q. (2022). Asymmetric 
Feature Fusion Network for Hyperspectral and SAR Image Classification. 
IEEE Transactions on Neural Networks and Learning Systems. 

[37] Singh, R., Bharti, V., Purohit, V., Kumar, A., Singh, A. K., & Singh, S. 
K. (2021). MetaMed: Few-shot medical image classification using 
gradient-based meta-learning. Pattern Recognition, 120, 108111. 

[38] Wang, S. Y., Liao, W. S., Hsieh, L. C., Chen, Y. Y., & Hsu, W. H. (2012). 
Learning by expansion: Exploiting social media for image classification 
with few training examples. Neurocomputing, 95, 117-125. 

[39] Xian, Y., Korbar, B., Douze, M., Schiele, B., Akata, Z., & Torresani, L. 
(2020, August). Generalized many-way few-shot video classification. In 
European Conference on Computer Vision (pp. 111-127). Springer, 
Cham. 

[40] Javaria Amin, Muhammad Almas Anjum, Muhammad Sharif (2022, 
May). Fused information of DeepLabv3+ and transfer learning model for 
semantic segmentation and rich features selection using equilibrium 
optimizer (EO) for classification of NPDR lesions, Knowledge-Based 
Systems. 

[41] Abbas, Qaisar, Abdul Rauf Baig, and Ayyaz Hussain. "A Semantic 
Adversarial Network for Detection and Classification of Myopic 
Maculopathy." CMC-COMPUTERS MATERIALS & CONTINUA 75, 
no. 1 (2023): 1483-1499.  

[42] N. Rauf, S. O. Gilani and A. Waris, “Automatic detection of pathological 
myopia using machine learning,” Scientific Reports, vol. 11, no. 1, pp. 1–
9, 2021. 

[43] J. Li, L. Wang, Y. Gao, Q. Liang, L. Chen et al., “Automated detection of 
myopic maculopathy from color fundus photographs using deep 
convolutional neural networks,” Eye and Vision, vol. 9, no. 1, pp. 1–12, 
2022. 

[44] R. Hemelings, B. Elen, M. B. Blaschko, J. Jacob, I. Stalmans et al., 
“Pathological myopia classification with simultaneous lesion 
segmentation using deep learning,” Computer Methods and Programs in 
Biomedicine, vol. 199, pp. 1–18, 2021. 

[45] L. Lu, E. Zhou, W. Yu, B. Chen, P. Ren et al., “Development of deep 
learning-based detecting systems for pathologic myopia using retinal 
fundus images,” Communications Biology, vol. 4, no. 1, pp. 1–8, 2021. 

[46] R. Du, S. Xie, Y. Fang, T. I. Yokoi, M. Moriyama et al., “Deep learning 
approach for automated detection of myopic maculopathy and pathologic 
myopia in fundus images,” Ophthalmology Retina, vol. 5, no. 12, pp. 
1235–1244, 2021. 

[47] Z. Shi, T. Wang, Z. Huang, F. Xie and G. Song, “A method for the 
automatic detection of myopia in optos fundus images based on deep 
learning,” International Journal for Numerical Methods in Biomedical 
Engineering, vol. 37, no. 6, pp. 1–10, 2021. 

[48] Sun, Y., Li, Y., Zhang, F., Zhao, H., Liu, H., Wang, N., & Li, H. (2023). 
A deep network using coarse clinical prior for myopic maculopathy 
grading. Computers in Biology and Medicin.

 


