
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

969 | P a g e

www.ijacsa.thesai.org

Towards a Framework for Optimized Microservices

Placement in Cloud Native Environments

Riane Driss, Ettazi Widad, Ettalbi Ahmed

IMS Team-ADMIR Laboratory ENSIAS-Rabat IT Center, Mohammed V University in Rabat, Rabat, Morocco

Abstract—In recent times, cloud-native technologies have

increasingly enabled the design and deployment of applications

using a microservice architecture, enhancing modularity,

scalability, and management efficiency. These advancements are

specifically tailored for the creation and orchestration of

containerized applications, marking a significant leap forward in

the industry. Emerging cloud-native applications employ

container-based virtualization instead of the traditional virtual

machine approach. However, adopting this new cloud-native

approach requires a shift in vision, particularly in addressing the

challenges of microservices placement. Ensuring optimal

resource utilization, maintaining service availability, and

managing the complexity of distributed deployments are critical

considerations that necessitate advanced orchestration and

automation strategies. We introduce a new framework for

optimized microservices placement that optimizes application

performance based on resource requirements. This approach

aims to efficiently allocate infrastructural resources while

ensuring high service availability and adherence to service level

agreements. The implementation and experimental results of our

method validate the feasibility of the proposed approach.

Keywords—Cloud native architecture; Service placement;

containerization; Cloud resource allocation; microservices

architecture

I. INTRODUCTION

Cloud computing revolutionizes IT infrastructure by
offering on-demand access to a shared pool of configurable
computing resources, such as servers, storage, and applications,
over the internet. This model enhances flexibility, scalability,
and cost efficiency, making it ideal for businesses of all sizes.
Cloud-native development takes full advantage of cloud
computing by building and deploying applications specifically
designed to operate in a cloud environment. These applications
leverage microservice architecture, which breaks down a
monolithic application into smaller, independent services that
communicate through APIs. This approach enhances agility,
scalability, and resilience, as each microservice can be
developed, deployed, and scaled independently. Containers
further support this architecture by encapsulating microservices
and their dependencies into lightweight, portable units,
ensuring consistency across different environments.
Technologies like Docker [1] and Kubernetes [2] facilitate
container orchestration, automating deployment, scaling, and
management, thereby streamlining the development and
operational processes in a cloud-native landscape.

Deploying cloud-native applications involves leveraging
containerization and container orchestration to achieve
seamless scalability, flexibility, and resilience. Containers,

which package applications with their dependencies, ensure
consistency across different environments, from development
to production. This approach simplifies the deployment process
and enhances the portability of applications. Container
orchestration, with Kubernetes being the most widely used
platform, automates critical functions such as deployment,
management, scaling, and networking of containers.
Kubernetes manages containerized applications across a cluster
of machines, ensuring optimal resource utilization and
availability. It handles load balancing, scales applications
based on demand, and provides self-healing capabilities by
automatically restarting failed containers.

The deployment process of cloud-native applications
typically begins with defining application components in
declarative configuration files, which Kubernetes uses to create
and maintain the desired state of the application. Integration
with continuous integration and continuous deployment
(CI/CD) pipelines further streamlines the process, allowing for
rapid and reliable updates. CI/CD pipelines automate the
building, testing, and deployment of code changes, reducing
manual intervention and minimizing the risk of errors. This
automation not only improves operational efficiency but also
enhances the application's ability to adapt to changing
workloads and recover from failures. By adhering to cloud-
native principles, organizations can achieve greater agility,
scalability, and resilience in their application deployments,
ensuring they are well-prepared to meet evolving business
demands.

The challenge of optimal microservices placement over
multiple resources is a critical aspect of managing cloud-native
applications, particularly in a dynamic and distributed cloud
environment. As applications are decomposed into numerous
microservices, each with distinct resource requirements and
performance characteristics, determining the most efficient
placement of these microservices becomes increasingly
complex. This challenge is compounded by the need to balance
multiple factors such as resource utilization, latency, service
availability, and compliance with service level agreements
(SLAs).

Effective microservices placement requires sophisticated
algorithms that can analyze and predict resource demands,
identify potential bottlenecks, and dynamically allocate
resources to maintain optimal performance. These algorithms
must also account for the heterogeneity of resources across
different cloud environments, including various types of
compute, storage, and networking resources. Furthermore, they
must be resilient to changes in workload patterns and capable
of quickly adapting to failures or unexpected spikes in demand.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

970 | P a g e

www.ijacsa.thesai.org

Addressing these challenges is essential for maximizing
infrastructural efficiency, reducing operational costs, and
ensuring the high availability and reliability of cloud-native
applications.

This article presents a new approach to optimizing the
placement of microservices across multiple resources in cloud-
native environments. By using PSO-based algorithm, our
method strategically deploys microservices to enhance
resource utilization and service performance. The proposed
solution incorporates continuous monitoring to anticipate
resource demands and mitigate bottlenecks, ensuring efficient
distribution of workloads. This approach also employs
container orchestration platforms, to automate the dynamic
scaling and management of microservices, thereby maintaining
high availability and resilience. Evaluation through
comprehensive simulations highlights the efficacy of our
method in optimizing the placement of microservices based on
monitored data.

The following sections of this paper take a systematic
approach to examine the optimal placement of microservices in
cloud native environment. Section II reviews related work,
identifying gaps and opportunities in existing methodologies.
Section III details our proposed framework, including its
design and implementation. In Section IV, we present the Sock
Shop application as a use case for microservices deployment.
Section V introduces our proposed algorithm for microservices
placement using Particle Swarm Optimization (PSO), along
with performance evaluations that highlight the results of our
simulations and the advantages of our approach. Finally,
Section VI provides a conclusive summary of our findings,
discussing their implications for future research and practical
applications in cloud-native environments.

II. RELATED WORK

The placement of microservices in cloud-native
environments is crucial for enhancing performance, scalability,
and resource utilization. Numerous techniques and frameworks
have been proposed to address microservices placement
challenges. This section reviews existing work, categorized
into heuristic approaches, optimization-based techniques, and
frameworks. Heuristic approaches are popular for their
simplicity and efficiency, offering sub-optimal solutions
quickly, making them ideal for large-scale deployments.
Greedy algorithms [8, 18], for instance, place microservices by
iteratively selecting the best local option, such as prioritizing
resource-intensive microservices to ensure adequate resource
allocation.

Optimization-based techniques use mathematical models
and algorithms to find near-optimal or optimal placement
solutions, offering superior results in resource utilization and
performance despite their higher computational demands.
Methods like Linear and nonlinear Programming (LP) [3, 6]
and Mixed-Integer Linear Programming (MILP) [5, 7] model
the placement problem with linear constraints, providing
powerful solutions but often at a high computational cost for
large-scale problems. Metaheuristic algorithms, including
Genetic Algorithms (GA) [4, 10, 13], and Particle Swarm
Optimization (PSO) [14, 9], are also widely used. These
algorithms are designed to escape local optima and thoroughly

explore the solution space, making them well-suited for
complex placement problems.

Various frameworks and tools streamline microservices
placement in cloud-native settings by integrating placement
algorithms with container orchestration platforms like
Kubernetes, automating deployment. Kubernetes-native
solutions [11, 19, 22] leverage features like node affinity/anti-
affinity, taints and tolerations, and custom schedulers [12, 15],
empowering developers to guide placement decisions based on
resource needs and workload traits [16]. Additionally, service
meshes such as Istio [21] and Linkerd [24] enhance placement
strategies by dynamically altering request routing according to
real-time performance metrics [17], bolstering traffic
management [23] and observability capabilities.

However, there is a lack of continuous monitoring and real-
time service redeployment in these approaches, which are
critical for maintaining optimal performance and resource
utilization in dynamic cloud environments. In our work, we
focus on integrating these capabilities to ensure that
microservices placement can adapt to changing workloads and
cloud native infrastructure conditions in real-time.

III. FRAMEWORK FOR OPTIMSED MICROSERVICES

PLACEMENT

This section initially outlines the criteria necessary to meet
microservices placement key points aligned with workload
characteristics obtained from continuous monitoring.
Following this, we introduce a design and implementation of
our framework.

A. Key Points

In order to guarantee the performance of deployed
applications on cloud native environment, we consider the
following requirements:

1) Continuous monitoring for deployed microservices

applications in a cloud-native environment is crucial for

maintaining optimal performance, security, and reliability. By

constantly tracking metrics such as CPU usage, memory

consumption, network traffic, and response times, continuous

monitoring provides real-time insights into the health and

behavior of each microservice. This proactive approach allows

for the rapid detection and resolution of issues, minimizing

downtime and ensuring seamless user experiences.

Furthermore, continuous monitoring supports scalability by

identifying performance bottlenecks and guiding resource

allocation decisions, ultimately enhancing the efficiency and

resilience of cloud-native applications.

2) Collecting and analyzing workload data involves

gathering detailed metrics on system performance and

resource utilization under actual usage conditions. This

process provides critical insights into how different workloads

impact the system, revealing patterns and trends that are not

apparent through continuous monitoring alone. For

microservice applications in cloud-native environments, this

data is invaluable. It helps developers and administrators

optimize resource allocation, design better scaling strategies,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

971 | P a g e

www.ijacsa.thesai.org

and enhance overall performance. By understanding real-

world usage patterns, teams can make informed decisions that

improve the efficiency and reliability of their microservices

deployments.

3) Placement strategies for microservices deployment

based on heuristics that consider continuous monitoring and

workload data collection are essential for optimizing

performance in cloud-native environments. These strategies

use real-time monitoring to track system health and resource

usage, while data analysis provides insights into actual

workload patterns. By combining these approaches, heuristic

algorithm can make informed decisions about the optimal

placement of microservices, ensuring efficient resource

utilization, minimizing latency, and enhancing overall

application resilience and scalability.

B. Optimised Microservices Placement Framework Design

Based on the key points presented in the previous section,
we design the framework for optimized microservices
placement as shown in Fig. 1 and Fig. 2. Our framework
includes the following components: i) Workload continuous
monitoring, ii) workload analysis, iii) Microservices
Placement, iv) cloud-native infrastructure Management. The
proposed framework handles cloud-native application
requirements that include resource parameters and
microservices inter-communication for efficient application
deployment in cloud-native infrastructure such as Kubernetes
platform.

The workload continuous monitoring provides real-time
visibility into the performance and health of microservices by
tracking key metrics. It measures CPU usage to detect
overutilization or underutilization, monitors memory

consumption to prevent leaks and ensure efficient usage, tracks
network traffic to identify bottlenecks and optimize
communication, and measures response times to ensure low
latency and high performance. This comprehensive monitoring
is crucial for maintaining optimal functionality and reliability
of microservices in a cloud-native environment.

The workload analysis collects and processes detailed
metrics on system performance and resource utilization under
actual usage conditions. Key functions include:

 Data Collection: Aggregates performance data over
time, providing a historical view of system behaviour.

 Pattern Identification: Analyzes data to identify trends,
peak usage times, and typical workload patterns.

 Impact Assessment: Evaluate how different workloads
affect system components, enabling resource allocation
optimization.

The Microservices placement uses heuristic algorithm to
make decision about where to deploy microservices. Key
features include:

 Resource Allocation: Determines the optimal
distribution of resources based on continuous
monitoring and workload analysis.

 Scalability Management: Adjusts the number of
instances of each microservice to match current
demand, ensuring efficient resource usage.

 Latency Minimization: Places microservices in
locations that reduce communication delays, enhancing
overall system responsiveness.

Fig. 1. Overview of optimised microservices placement framework design.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

972 | P a g e

www.ijacsa.thesai.org

Fig. 2. Workflow diagram of optimised microservices placement framework.

The cloud-native management, such as a Kubernetes
platform, provides the environment for deploying and
managing microservices. Key capabilities include:

 Container Orchestration: Manages the deployment,
scaling, and operation of containerized applications,
ensuring consistent and reliable performance.

 Self-Healing: Automatically restarts failed containers,
ensuring high availability and resilience.

 Load Balancing: Distributes incoming traffic across
multiple instances of a service to optimize resource
usage and prevent overloads.

 Resource Management: Dynamically allocates
computing resources to meet the needs of deployed
microservices based on real-time data.

Fig. 2 illustrates the workflow diagram of our framework.
The process begins with users submitting requests to the
framework, providing a YAML description (which includes
specifying all the necessary components, such as
microservices, their dependencies, resource requirements,
environment variables, and network configurations), of the
cloud-native application along with workload parameters, such
as CPU and memory limits, replica counts, and other resource
requirements.

The second steps consists of deploying the application the
cloud native platform (e.g. kubernetes), monitoring and
collecting workload data (i.e. resource usage for pods and
nodes).

The third step focuses on microservices placement within
cloud native platform. Based on the stored data from previous

step, including resource status. This stage performs the
placement Algorithm, quantifies each microservice's
description and returns the placement results.

IV. USE CASE: SOCKSHOP APPLICATION

A. Microservice Demo

The Sock-Shop application [20], also known as the
Microservices Demo, is a widely recognized reference
application designed to illustrate microservices architecture in
practice. It serves as a tool for demonstrating and testing
microservice and cloud-native technologies. Simulating an e-
commerce platform that sells socks, it provides developers and
architects with a practical example to explore, learn, and
experiment with microservices concepts, technologies, and best
practices.

It is built using Spring Boot, Go kit, and Node.js, and is
packaged within Docker containers. We use Locust [25] as a
testing tool that allows defining user behavior and simulating
traffic to create workloads for the application. This helps in
evaluating how well your application handles different levels
of user load. Fig. 3 provides more details about its overall
architecture.

B. Testbed Cloud Native Environment

As illustrated in Fig. 4, we set up cloud-native environment
using multiple Kubernetes clusters. We created two different
Kubernetes clusters to test and experiment with the Sock-Shop
cloud-native application. The first cluster consists of one
master node and three worker nodes. The second cluster
includes master node and two worker nodes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

973 | P a g e

www.ijacsa.thesai.org

Fig. 3. Sock-Shop application architecture.

We use Rancher [26] tool that offers built-in monitoring
capabilities through its integrated monitoring stack, which
includes Prometheus for metrics collection and Grafana for
visualization. Rancher allows monitoring resource usage, CPU
and memory utilization, as well as workload data across
multiple Kubernetes clusters.

After the application has been deployed, Rancher actively
monitors the health status of Kubernetes pods to ensure optimal
performance. Leveraging its robust automation capabilities,
Rancher dynamically introduces various workloads tailored to
the specific requirements of the application type. These
workloads, meticulously crafted within a shell script and
utilizing benchmarking tools, aim to emulate real-world
scenarios and stress test the application's resilience. Following
the injection process, Rancher diligently gathers resource
utilization data from all microservices constituting the
application, meticulously assessing CPU, memory, and
network usage. Subsequently, this monitored data is securely
stored in a dedicated profiling datastore, facilitating
comprehensive analysis and enabling informed decision-
making regarding resource allocation and performance
optimization strategies.

Upon reaching the specified duration parameter, if the
elapsed time of application deployment matches, Rancher
initiates the termination process, dismantling the application
infrastructure. This cyclic operation persists automatically until
the desired number of iterations is achieved, ensuring thorough
profiling and assessment of the application's performance
under varying conditions. As the profiling process concludes,
Rancher leverages its visualization capabilities to render the
stored profiling data into a comprehensive graph format,
typically presented as a scatter plot. This graphical
representation provides stakeholders with valuable insights into
the application's behavior, enabling informed decision-making
regarding optimization strategies and resource allocation.

Fig. 4. Multiple Kubernetes cluster management with Rancher.

C. Sock Shop Performance

Fig. 5 shows the output of the command `kubectl get pods -
n sock-shop` which lists the pods running in the "sock-shop"
namespace. This indicates a healthy and stable deployment of
the sock-shop microservices application in Kubernetes.

Fig. 5. Running Pods for sock shopp application.

The performance analysis of the Sock Shop services after
15 iterations, as depicted in Fig. 6, reveals distinct patterns in
resource utilization across various services. The front-end
service exhibits the highest CPU usage at 1.2 cores, which
indicates it is a critical component in terms of processing
power. Similarly, the queue-master service shows a significant
memory consumption of 2.7 GB, suggesting it handles
substantial data throughput. In contrast, services like carts-db,
orders-db, payment, and user-db have minimal CPU and
memory usage, implying they are lightweight and less
demanding on infrastructure resources.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

974 | P a g e

www.ijacsa.thesai.org

Fig. 6. Resources utilisation by services.

V. PSO-BASED PLACEMENT ALGORITHM

This section presents PSO PSO-based placement algorithm
used in our framework in order to deploy microservices in the
cloud native infrastructure. Then we evaluate the performances
of algorithm and the results analysis.

A. PSO-Based Microservices Placement Algorithm

In this section, we present a model for microservices
placement based on Particle Swarm Optimization (PSO), an
optimization technique inspired by the social behavior of
particles in nature. PSO has been adapted to address the
microservices placement problem by effectively exploring the
solution space to find optimal placement configurations.

In the context of microservices placement, the variables and
notations used includes: C represents the set of available
clusters where microservices can be deployed in the cloud-
native infrastructure. Hn denotes the set of hosts within the nth
cluster, which serves as the infrastructure for hosting
microservices. MS signifies the set of microservices that need
to be placed within the cloud-native environment. Pi refers to
the position of particle i within the search space, where each
particle represents a potential solution for microservices
placement. Vi represents the velocity of particle i within the
search space, indicating the rate and direction of movement as
the algorithm progresses.

The update of particle positions and velocities in the PSO
algorithm is performed using the following equations:

𝑉𝑖(𝑡 + 1) = 𝑤 ∗ 𝑉𝑖(𝑡) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖(𝑡) − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖(𝑡)) +

𝑐2 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖(𝑡) − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖(𝑡))

𝑃𝑖(𝑡 + 1) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)

Where, 𝑤 is the inertia weight, 𝑐1 and 𝑐2 are the acceleration
coefficients, and 𝑟𝑎𝑛𝑑() is a function that generates a random
number between 0 and 1.

Fitness of microservices placement solutions is evaluated
based on resource (CPU and Memory) utilization. A placement

solution is considered better if it minimizes resource usage
while meeting performance and availability constraints.

Algorithm 1 outlines the steps for implementing the PSO
algorithm to optimize microservices placement in a cloud-
native environment. It includes the initialization of particles,
updating their positions and velocities, and evaluating fitness
based on resource utilization (CPU and memory) to find the
best placement solution.

Algorithm 1: PSO-Based Microservices Placement

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

B. Performance Evaluation for PSO-Based Microservices

Placement Algorithm

In this section, we evaluate the performance of the PSO-
based microservices placement algorithm by using the Sock
Shop microservices demo as a test case. The Sock Shop demo
is a widely recognized benchmark for demonstrating
microservices architectures, consisting of various services that
simulate an e-commerce application for selling socks. This
demo provides a realistic and complex environment for testing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

975 | P a g e

www.ijacsa.thesai.org

and validating the efficiency and effectiveness of our
placement algorithm.

1) Experimental setup: The experimental setup involves

multiple components, including the configuration of

Kubernetes clusters, the deployment of the Sock Shop

microservices, and the definition of key parameters for the

Particle Swarm Optimization algorithm. By creating a

controlled environment that mirrors real-world conditions, we

can systematically measure the impact of the PSO algorithm

on resource utilization, load balancing, service latency, and

overall system fitness.

Table I details the specific configurations and parameters
used in the experiment, and the metrics employed for
performance evaluation.

TABLE I. EXPERIMENTAL PARAMETERS

 Parameter Detail

Workload

Kubernetes

Clusters (C)

Multiple clusters set up to host the

Sock Shop microservices.

Hosts (Hn)
Each cluster consists of multiple
hosts with random capacities of

CPU and memory resources.

Microservices

(MS)

The Sock Shop application includes
user, catalog, cart, order, payment,

and shipping services.

PSO Parameters

w 0.5

c1 1.5

c2 1.5

Poupulation size 30

Max iterations 100

Microservices

resource
requirments

user Cpu=1 , Memory =512

catalog Cpu=2 , Memory =1024

orders Cpu=2 , Memory =512

Payment Cpu=2 , Memory =1024

Shipping Cpu=1 , Memory =512

Cart Cpu=1 , Memory =512

2) Experimental result: To evaluate the efficiency of the

PSO-based microservices placement algorithm, we conducted

an analysis of resource utilization, specifically focusing on

CPU and memory usage across all hosts. The assessment was

performed before and after applying the PSO algorithm, and

the results are depicted in Fig. 7 and Fig. 8.

The results demonstrate that the PSO-based placement
algorithm significantly enhances resource utilization. By
balancing the CPU and memory usage, the algorithm ensures
that no single host becomes a bottleneck, thereby improving
the overall performance and reliability of the microservices
deployment. The reduction in resource hotspots contributes to a
more efficient and resilient cloud-native environment, capable
of handling varying workloads with greater stability.

Fig. 7. CPU utilisation before and after PSO.

Fig. 8. Memory utilisation before and after PSO.

VI. CONCLUSION

In conclusion, this paper has explored the significant
advancements enabled by cloud-native technologies in the
design and deployment of applications utilizing a microservice
architecture. These technologies enhance modularity,
scalability, and management efficiency, facilitating a shift from
traditional virtual machine-based approaches to container-
based virtualization. The adoption of this cloud-native
paradigm introduces new challenges, particularly in the
optimal placement of microservices, which is crucial for
maximizing resource utilization, ensuring service availability,
and managing the complexity of distributed systems.

We proposed a new framework for optimized
microservices placement, focusing on efficient resource
allocation while maintaining high service availability and
compliance with service level agreements. By leveraging
Particle Swarm Optimization (PSO), our approach effectively
addresses the challenges associated with microservices
placement in cloud-native environments. The experimental
results obtained from the Sock Shop application use case
demonstrate the feasibility and effectiveness of our proposed
method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 7, 2024

976 | P a g e

www.ijacsa.thesai.org

This work not only highlights the potential benefits of
advanced orchestration and automation strategies but also
paves the way for future research to further enhance
microservices placement techniques. The implications of our
findings suggest that continued innovation in this area will be
essential for improving the performance and scalability of
cloud-native applications, ultimately driving more efficient and
resilient cloud infrastructures.

REFERENCES

[1] “Docker”, 2024, [online] Available: https://www.docker.com/

[2] “Kubernetes”, 2024, [online] Available: https://kubernetes.io/

[3] X. He, H. Xu, X. Xu, Y. Chen and Z. Wang, “An Efficient Algorithm
for Microservice Placement in Cloud-Edge Collaborative Computing
Environment”, in IEEE Transactions on Services Computing, doi:
10.1109/TSC.2024.3399650.

[4] B. Natesha and R. M. R. Guddeti, “Adopting elitism-based genetic
algorithm for minimizing multi-objective problems of iot service
placement in fog computing environment”, Journal of Network and
Computer Applications, vol. 178, p. 102972, 2021.

[5] S. N. Srirama, M. Adhikari and S. Paul, “Application deployment using
containers with auto-scaling for microservices in cloud environment”, J.
Netw. Comput. Appl., vol. 160, 2020.

[6] Z. Zhong and R. Buyya, “A cost-efficient container orchestration
strategy in kubernetes-based cloud computing infrastructures with
heterogeneous resources”, ACM Trans. Internet Technol., vol. 20, no. 2,
pp. 1-24, 2020.

[7] K. Cheng et al., “GeoScale : Microservice Autoscaling With Cost
Budget in Geo-Distributed Edge Clouds”, IEEE Trans. Parallel Distrib.
Syst., p. 1–17, 2024.

[8] X. He, Z. Tu, M. Wagner, X. Xu and Z. Wang, “Online Deployment
Algorithms for Microservice Systems With Complex Dependencies”, in
IEEE Transactions on Cloud Computing, vol. 11, no. 2, pp. 1746-1763,
1 April-June 2023, doi: 10.1109/TCC.2022.3161684

[9] A. M. Maia, Y. Ghamri-Doudane, D. Vieira and M. F. de Castro, “An
improved multi-objective genetic algorithm with heuristic initialization
for service placement and load distribution in edge computing”, Comput.
Netw., vol. 194, 2021.

[10] H. Liang and J. Chou, “HPA: Hierarchical Placement Algorithm for
Multi-Cloud Microservices Applications”, 2022 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
Bangkok, Thailand, 2022, pp. 17-24, doi:
10.1109/CloudCom55334.2022.00013

[11] Z. Ding, S. Wang and C. Jiang, “Kubernetes-Oriented Microservice
Placement With Dynamic Resource Allocation”, in IEEE Transactions
on Cloud Computing, vol. 11, no. 2, pp. 1777-1793, 1 April-June 2023,
doi: 10.1109/TCC.2022.3161900

[12] M. Selimi, L. Cerdà-Alabern, M. Sánchez-Artigas, F. Freitag and L.
Veiga, “Practical Service Placement Approach for Microservices
Architecture”, in 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), Madrid, Spain, 2017, pp. 401-
410, doi: 10.1109/CCGRID.2017.28

[13] C. Tian et al., “Improving Simulated Annealing Algorithm for FPGA
Placement Based on Reinforcement Learning”, 2022 IEEE 10th Joint
International Information Technology and Artificial Intelligence
Conference (ITAIC), Chongqing, China, 2022, pp. 1912-1919, doi:
10.1109/ITAIC54216.2022.9836761.

[14] Y. Li, H. Zhang, W. Tian and H. Ma, “Joint Optimization of Auto-
Scaling and Adaptive Service Placement in Edge Computing”, in IEEE
27th International Conference on Parallel and Distributed Systems
(ICPADS), Beijing, China, 2021, pp. 923-930, doi:
10.1109/ICPADS53394.2021.00121 .

[15] S. Pallewatta, V. Kostakos et R. Buyya, “MicroFog: A framework for
scalable placement of microservices-based IoT applications in federated
Fog environments”, Journal of Systems and Software, Volume 209,
2024, 111910, ISSN 0164-1212, doi:10.1016/j.jss.2023.111910.

[16] R. Mahmud, S. Pallewatta, M. Goudarzi et R. Buyya, “iFogSim2 : An
extended iFogSim simulator for mobility, clustering, and microservice
management in edge and fog computing environments”, J. Syst. Softw.,
p. 111351, mai 2022.

[17] S. Pallewatta, V. Kostakos et R. Buyya, “QoS-aware placement of
microservices-based IoT applications in Fog computing environments”,
Future Gener. Comput. Syst., vol. 131, p. 121–136, juin 2022.

[18] Q. Yue, X. Liu, L. Fang, X. Wang and W. Hu, “A container service
chain placement greedy algorithm based on heuristic information”, J.
Phys. Conf. Ser., vol. 1621, no. 1, 2020.

[19] T. Goethals, F. De Turck and B. Volckaert, “Extending Kubernetes
Clusters to Low-Resource Edge Devices Using Virtual Kubelets”, in
IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 2623-2636,
1 Oct.-Dec. 2022, doi: 10.1109/TCC.2020.3033807

[20] https://github.com/microservices-demo/microservices-demo

[21] L. Nathaniel, G. V. Perdana, M. R. Hadiana, R. M. Negara et S. N.
Hertiana, “Istio API Gateway Impact to Reduce Microservice Latency
and Resource Usage on Kubernetes”, dans 2023 Int. Seminar Intell.
Technol. Its Appl. (ISITIA), Surabaya, Indonesia, 26–27 juill. 2023.

[22] A. Aznavouridis, K. Tsakos et E. G. M. Petrakis, “Micro-Service
Placement Policies for Cost Optimization in Kubernetes”, dans
Advanced Information Networking and Applications. Cham : Springer
Int. Publishing, 2022, p. 409–420.

[23] C. Lübben, S. Schäffner and M. -O. Pahl, “Continuous Microservice Re-
Placement in the IoT”, NOMS 2022-2022 IEEE/IFIP Network
Operations and Management Symposium, Budapest, Hungary, 2022, pp.
1-6, doi: 10.1109/NOMS54207.2022.9789780.

[24] “Linkerd”, 2024, [online] Available: https://linkerd.io/2.15/overview/

[25] “Locust”, 2024, [online] Available: https://locust.io/

[26] “rancher”, 2024, [online] Available: https://www.rancher.com/

