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Abstract—In recent times, cloud-native technologies have 

increasingly enabled the design and deployment of applications 

using a microservice architecture, enhancing modularity, 

scalability, and management efficiency. These advancements are 

specifically tailored for the creation and orchestration of 

containerized applications, marking a significant leap forward in 

the industry. Emerging cloud-native applications employ 

container-based virtualization instead of the traditional virtual 

machine approach. However, adopting this new cloud-native 

approach requires a shift in vision, particularly in addressing the 

challenges of microservices placement. Ensuring optimal 

resource utilization, maintaining service availability, and 

managing the complexity of distributed deployments are critical 

considerations that necessitate advanced orchestration and 

automation strategies. We introduce a new framework for 

optimized microservices placement that optimizes application 

performance based on resource requirements. This approach 

aims to efficiently allocate infrastructural resources while 

ensuring high service availability and adherence to service level 

agreements. The implementation and experimental results of our 

method validate the feasibility of the proposed approach. 

Keywords—Cloud native architecture; Service placement; 

containerization; Cloud resource allocation; microservices 

architecture 

I. INTRODUCTION 

Cloud computing revolutionizes IT infrastructure by 
offering on-demand access to a shared pool of configurable 
computing resources, such as servers, storage, and applications, 
over the internet. This model enhances flexibility, scalability, 
and cost efficiency, making it ideal for businesses of all sizes. 
Cloud-native development takes full advantage of cloud 
computing by building and deploying applications specifically 
designed to operate in a cloud environment. These applications 
leverage microservice architecture, which breaks down a 
monolithic application into smaller, independent services that 
communicate through APIs. This approach enhances agility, 
scalability, and resilience, as each microservice can be 
developed, deployed, and scaled independently. Containers 
further support this architecture by encapsulating microservices 
and their dependencies into lightweight, portable units, 
ensuring consistency across different environments. 
Technologies like Docker [1] and Kubernetes [2] facilitate 
container orchestration, automating deployment, scaling, and 
management, thereby streamlining the development and 
operational processes in a cloud-native landscape. 

Deploying cloud-native applications involves leveraging 
containerization and container orchestration to achieve 
seamless scalability, flexibility, and resilience. Containers, 

which package applications with their dependencies, ensure 
consistency across different environments, from development 
to production. This approach simplifies the deployment process 
and enhances the portability of applications. Container 
orchestration, with Kubernetes being the most widely used 
platform, automates critical functions such as deployment, 
management, scaling, and networking of containers. 
Kubernetes manages containerized applications across a cluster 
of machines, ensuring optimal resource utilization and 
availability. It handles load balancing, scales applications 
based on demand, and provides self-healing capabilities by 
automatically restarting failed containers. 

The deployment process of cloud-native applications 
typically begins with defining application components in 
declarative configuration files, which Kubernetes uses to create 
and maintain the desired state of the application. Integration 
with continuous integration and continuous deployment 
(CI/CD) pipelines further streamlines the process, allowing for 
rapid and reliable updates. CI/CD pipelines automate the 
building, testing, and deployment of code changes, reducing 
manual intervention and minimizing the risk of errors. This 
automation not only improves operational efficiency but also 
enhances the application's ability to adapt to changing 
workloads and recover from failures. By adhering to cloud-
native principles, organizations can achieve greater agility, 
scalability, and resilience in their application deployments, 
ensuring they are well-prepared to meet evolving business 
demands. 

The challenge of optimal microservices placement over 
multiple resources is a critical aspect of managing cloud-native 
applications, particularly in a dynamic and distributed cloud 
environment. As applications are decomposed into numerous 
microservices, each with distinct resource requirements and 
performance characteristics, determining the most efficient 
placement of these microservices becomes increasingly 
complex. This challenge is compounded by the need to balance 
multiple factors such as resource utilization, latency, service 
availability, and compliance with service level agreements 
(SLAs). 

Effective microservices placement requires sophisticated 
algorithms that can analyze and predict resource demands, 
identify potential bottlenecks, and dynamically allocate 
resources to maintain optimal performance. These algorithms 
must also account for the heterogeneity of resources across 
different cloud environments, including various types of 
compute, storage, and networking resources. Furthermore, they 
must be resilient to changes in workload patterns and capable 
of quickly adapting to failures or unexpected spikes in demand. 
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Addressing these challenges is essential for maximizing 
infrastructural efficiency, reducing operational costs, and 
ensuring the high availability and reliability of cloud-native 
applications. 

This article presents a new approach to optimizing the 
placement of microservices across multiple resources in cloud-
native environments. By using PSO-based algorithm, our 
method strategically deploys microservices to enhance 
resource utilization and service performance. The proposed 
solution incorporates continuous monitoring to anticipate 
resource demands and mitigate bottlenecks, ensuring efficient 
distribution of workloads. This approach also employs 
container orchestration platforms, to automate the dynamic 
scaling and management of microservices, thereby maintaining 
high availability and resilience. Evaluation through 
comprehensive simulations highlights the efficacy of our 
method in optimizing the placement of microservices based on 
monitored data. 

The following sections of this paper take a systematic 
approach to examine the optimal placement of microservices in 
cloud native environment. Section II reviews related work, 
identifying gaps and opportunities in existing methodologies. 
Section III details our proposed framework, including its 
design and implementation. In Section IV, we present the Sock 
Shop application as a use case for microservices deployment. 
Section V introduces our proposed algorithm for microservices 
placement using Particle Swarm Optimization (PSO), along 
with performance evaluations that highlight the results of our 
simulations and the advantages of our approach. Finally, 
Section VI provides a conclusive summary of our findings, 
discussing their implications for future research and practical 
applications in cloud-native environments. 

II. RELATED WORK 

The placement of microservices in cloud-native 
environments is crucial for enhancing performance, scalability, 
and resource utilization. Numerous techniques and frameworks 
have been proposed to address microservices placement 
challenges. This section reviews existing work, categorized 
into heuristic approaches, optimization-based techniques, and 
frameworks. Heuristic approaches are popular for their 
simplicity and efficiency, offering sub-optimal solutions 
quickly, making them ideal for large-scale deployments. 
Greedy algorithms [8, 18], for instance, place microservices by 
iteratively selecting the best local option, such as prioritizing 
resource-intensive microservices to ensure adequate resource 
allocation. 

Optimization-based techniques use mathematical models 
and algorithms to find near-optimal or optimal placement 
solutions, offering superior results in resource utilization and 
performance despite their higher computational demands. 
Methods like Linear and nonlinear Programming (LP) [3, 6] 
and Mixed-Integer Linear Programming (MILP) [5, 7] model 
the placement problem with linear constraints, providing 
powerful solutions but often at a high computational cost for 
large-scale problems. Metaheuristic algorithms, including 
Genetic Algorithms (GA) [4, 10, 13], and Particle Swarm 
Optimization (PSO) [14, 9], are also widely used. These 
algorithms are designed to escape local optima and thoroughly 

explore the solution space, making them well-suited for 
complex placement problems. 

Various frameworks and tools streamline microservices 
placement in cloud-native settings by integrating placement 
algorithms with container orchestration platforms like 
Kubernetes, automating deployment. Kubernetes-native 
solutions [11, 19, 22] leverage features like node affinity/anti-
affinity, taints and tolerations, and custom schedulers [12, 15], 
empowering developers to guide placement decisions based on 
resource needs and workload traits [16]. Additionally, service 
meshes such as Istio [21] and Linkerd [24] enhance placement 
strategies by dynamically altering request routing according to 
real-time performance metrics [17], bolstering traffic 
management [23] and observability capabilities. 

However, there is a lack of continuous monitoring and real-
time service redeployment in these approaches, which are 
critical for maintaining optimal performance and resource 
utilization in dynamic cloud environments. In our work, we 
focus on integrating these capabilities to ensure that 
microservices placement can adapt to changing workloads and 
cloud native infrastructure conditions in real-time. 

III. FRAMEWORK FOR OPTIMSED MICROSERVICES 

PLACEMENT 

This section initially outlines the criteria necessary to meet 
microservices placement key points aligned with workload 
characteristics obtained from continuous monitoring. 
Following this, we introduce a design and implementation of 
our framework. 

A. Key Points 

In order to guarantee the performance of deployed 
applications on cloud native environment, we consider the 
following requirements: 

1) Continuous monitoring for deployed microservices 

applications in a cloud-native environment is crucial for 

maintaining optimal performance, security, and reliability. By 

constantly tracking metrics such as CPU usage, memory 

consumption, network traffic, and response times, continuous 

monitoring provides real-time insights into the health and 

behavior of each microservice. This proactive approach allows 

for the rapid detection and resolution of issues, minimizing 

downtime and ensuring seamless user experiences. 

Furthermore, continuous monitoring supports scalability by 

identifying performance bottlenecks and guiding resource 

allocation decisions, ultimately enhancing the efficiency and 

resilience of cloud-native applications. 

2) Collecting and analyzing workload data involves 

gathering detailed metrics on system performance and 

resource utilization under actual usage conditions. This 

process provides critical insights into how different workloads 

impact the system, revealing patterns and trends that are not 

apparent through continuous monitoring alone. For 

microservice applications in cloud-native environments, this 

data is invaluable. It helps developers and administrators 

optimize resource allocation, design better scaling strategies, 
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and enhance overall performance. By understanding real-

world usage patterns, teams can make informed decisions that 

improve the efficiency and reliability of their microservices 

deployments. 

3) Placement strategies for microservices deployment 

based on heuristics that consider continuous monitoring and 

workload data collection are essential for optimizing 

performance in cloud-native environments. These strategies 

use real-time monitoring to track system health and resource 

usage, while data analysis provides insights into actual 

workload patterns. By combining these approaches, heuristic 

algorithm can make informed decisions about the optimal 

placement of microservices, ensuring efficient resource 

utilization, minimizing latency, and enhancing overall 

application resilience and scalability. 

B. Optimised Microservices Placement Framework Design 

Based on the key points presented in the previous section, 
we design the framework for optimized microservices 
placement as shown in Fig. 1 and Fig. 2. Our framework 
includes the following components: i) Workload continuous 
monitoring, ii) workload analysis, iii) Microservices 
Placement, iv) cloud-native infrastructure Management. The 
proposed framework handles cloud-native application 
requirements that include resource parameters and 
microservices inter-communication for efficient application 
deployment in cloud-native infrastructure such as Kubernetes 
platform. 

The workload continuous monitoring provides real-time 
visibility into the performance and health of microservices by 
tracking key metrics. It measures CPU usage to detect 
overutilization or underutilization, monitors memory 

consumption to prevent leaks and ensure efficient usage, tracks 
network traffic to identify bottlenecks and optimize 
communication, and measures response times to ensure low 
latency and high performance. This comprehensive monitoring 
is crucial for maintaining optimal functionality and reliability 
of microservices in a cloud-native environment. 

The workload analysis collects and processes detailed 
metrics on system performance and resource utilization under 
actual usage conditions. Key functions include: 

 Data Collection: Aggregates performance data over 
time, providing a historical view of system behaviour. 

 Pattern Identification: Analyzes data to identify trends, 
peak usage times, and typical workload patterns. 

 Impact Assessment: Evaluate how different workloads 
affect system components, enabling resource allocation 
optimization. 

The Microservices placement uses heuristic algorithm to 
make decision about where to deploy microservices. Key 
features include: 

 Resource Allocation: Determines the optimal 
distribution of resources based on continuous 
monitoring and workload analysis. 

 Scalability Management: Adjusts the number of 
instances of each microservice to match current 
demand, ensuring efficient resource usage. 

 Latency Minimization: Places microservices in 
locations that reduce communication delays, enhancing 
overall system responsiveness. 

 

Fig. 1. Overview of optimised microservices placement framework design. 
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Fig. 2. Workflow diagram of optimised microservices placement framework.

The cloud-native management, such as a Kubernetes 
platform, provides the environment for deploying and 
managing microservices. Key capabilities include: 

 Container Orchestration: Manages the deployment, 
scaling, and operation of containerized applications, 
ensuring consistent and reliable performance. 

 Self-Healing: Automatically restarts failed containers, 
ensuring high availability and resilience. 

 Load Balancing: Distributes incoming traffic across 
multiple instances of a service to optimize resource 
usage and prevent overloads. 

 Resource Management: Dynamically allocates 
computing resources to meet the needs of deployed 
microservices based on real-time data. 

Fig. 2 illustrates the workflow diagram of our framework. 
The process begins with users submitting requests to the 
framework, providing a YAML description (which includes 
specifying all the necessary components, such as 
microservices, their dependencies, resource requirements, 
environment variables, and network configurations), of the 
cloud-native application along with workload parameters, such 
as CPU and memory limits, replica counts, and other resource 
requirements. 

The second steps consists of deploying the application the 
cloud native platform (e.g. kubernetes), monitoring and 
collecting workload data (i.e. resource usage for pods and 
nodes). 

The third step focuses on microservices placement within 
cloud native platform. Based on the stored data from previous 

step, including resource status. This stage performs the 
placement Algorithm, quantifies each microservice's 
description and returns the placement results. 

IV. USE CASE: SOCKSHOP APPLICATION 

A. Microservice Demo 

The Sock-Shop application [20], also known as the 
Microservices Demo, is a widely recognized reference 
application designed to illustrate microservices architecture in 
practice. It serves as a tool for demonstrating and testing 
microservice and cloud-native technologies. Simulating an e-
commerce platform that sells socks, it provides developers and 
architects with a practical example to explore, learn, and 
experiment with microservices concepts, technologies, and best 
practices. 

It is built using Spring Boot, Go kit, and Node.js, and is 
packaged within Docker containers. We use Locust [25] as a 
testing tool that allows defining user behavior and simulating 
traffic to create workloads for the application. This helps in 
evaluating how well your application handles different levels 
of user load. Fig. 3 provides more details about its overall 
architecture. 

B. Testbed Cloud Native Environment 

As illustrated in Fig. 4, we set up cloud-native environment 
using multiple Kubernetes clusters. We created two different 
Kubernetes clusters to test and experiment with the Sock-Shop 
cloud-native application. The first cluster consists of one 
master node and three worker nodes. The second cluster 
includes master node and two worker nodes. 
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Fig. 3. Sock-Shop application architecture. 

We use Rancher [26] tool that offers built-in monitoring 
capabilities through its integrated monitoring stack, which 
includes Prometheus for metrics collection and Grafana for 
visualization. Rancher allows monitoring resource usage, CPU 
and memory utilization, as well as workload data across 
multiple Kubernetes clusters. 

After the application has been deployed, Rancher actively 
monitors the health status of Kubernetes pods to ensure optimal 
performance. Leveraging its robust automation capabilities, 
Rancher dynamically introduces various workloads tailored to 
the specific requirements of the application type. These 
workloads, meticulously crafted within a shell script and 
utilizing benchmarking tools, aim to emulate real-world 
scenarios and stress test the application's resilience. Following 
the injection process, Rancher diligently gathers resource 
utilization data from all microservices constituting the 
application, meticulously assessing CPU, memory, and 
network usage. Subsequently, this monitored data is securely 
stored in a dedicated profiling datastore, facilitating 
comprehensive analysis and enabling informed decision-
making regarding resource allocation and performance 
optimization strategies. 

Upon reaching the specified duration parameter, if the 
elapsed time of application deployment matches, Rancher 
initiates the termination process, dismantling the application 
infrastructure. This cyclic operation persists automatically until 
the desired number of iterations is achieved, ensuring thorough 
profiling and assessment of the application's performance 
under varying conditions. As the profiling process concludes, 
Rancher leverages its visualization capabilities to render the 
stored profiling data into a comprehensive graph format, 
typically presented as a scatter plot. This graphical 
representation provides stakeholders with valuable insights into 
the application's behavior, enabling informed decision-making 
regarding optimization strategies and resource allocation. 

 
Fig. 4. Multiple Kubernetes cluster management with Rancher. 

C. Sock Shop Performance 

Fig. 5 shows the output of the command `kubectl get pods -
n sock-shop` which lists the pods running in the "sock-shop" 
namespace. This indicates a healthy and stable deployment of 
the sock-shop microservices application in Kubernetes. 

 
Fig. 5. Running Pods for sock shopp application. 

The performance analysis of the Sock Shop services after 
15 iterations, as depicted in Fig. 6, reveals distinct patterns in 
resource utilization across various services. The front-end 
service exhibits the highest CPU usage at 1.2 cores, which 
indicates it is a critical component in terms of processing 
power. Similarly, the queue-master service shows a significant 
memory consumption of 2.7 GB, suggesting it handles 
substantial data throughput. In contrast, services like carts-db, 
orders-db, payment, and user-db have minimal CPU and 
memory usage, implying they are lightweight and less 
demanding on infrastructure resources. 
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Fig. 6. Resources utilisation by services. 

V. PSO-BASED PLACEMENT ALGORITHM 

This section presents PSO PSO-based placement algorithm 
used in our framework in order to deploy microservices in the 
cloud native infrastructure. Then we evaluate the performances 
of algorithm and the results analysis. 

A. PSO-Based Microservices Placement Algorithm 

In this section, we present a model for microservices 
placement based on Particle Swarm Optimization (PSO), an 
optimization technique inspired by the social behavior of 
particles in nature. PSO has been adapted to address the 
microservices placement problem by effectively exploring the 
solution space to find optimal placement configurations. 

In the context of microservices placement, the variables and 
notations used includes: C represents the set of available 
clusters where microservices can be deployed in the cloud-
native infrastructure. Hn denotes the set of hosts within the nth 
cluster, which serves as the infrastructure for hosting 
microservices. MS signifies the set of microservices that need 
to be placed within the cloud-native environment. Pi refers to 
the position of particle i within the search space, where each 
particle represents a potential solution for microservices 
placement. Vi represents the velocity of particle i within the 
search space, indicating the rate and direction of movement as 
the algorithm progresses. 

The update of particle positions and velocities in the PSO 
algorithm is performed using the following equations: 

𝑉𝑖(𝑡 + 1) = 𝑤 ∗ 𝑉𝑖(𝑡) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑( ) ∗ (𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖(𝑡) −  𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖(𝑡)) +

𝑐2 ∗ 𝑟𝑎𝑛𝑑( ) ∗ (𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖(𝑡) − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖(𝑡))  

𝑃𝑖(𝑡 + 1) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) 

Where, 𝑤 is the inertia weight, 𝑐1 and 𝑐2 are the acceleration 
coefficients, and 𝑟𝑎𝑛𝑑( ) is a function that generates a random 
number between 0 and 1. 

Fitness of microservices placement solutions is evaluated 
based on resource (CPU and Memory) utilization. A placement 

solution is considered better if it minimizes resource usage 
while meeting performance and availability constraints. 

Algorithm 1 outlines the steps for implementing the PSO 
algorithm to optimize microservices placement in a cloud-
native environment. It includes the initialization of particles, 
updating their positions and velocities, and evaluating fitness 
based on resource utilization (CPU and memory) to find the 
best placement solution. 

Algorithm 1: PSO-Based Microservices Placement 
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B. Performance Evaluation for PSO-Based Microservices 

Placement Algorithm 

In this section, we evaluate the performance of the PSO-
based microservices placement algorithm by using the Sock 
Shop microservices demo as a test case. The Sock Shop demo 
is a widely recognized benchmark for demonstrating 
microservices architectures, consisting of various services that 
simulate an e-commerce application for selling socks. This 
demo provides a realistic and complex environment for testing 
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and validating the efficiency and effectiveness of our 
placement algorithm. 

1) Experimental setup: The experimental setup involves 

multiple components, including the configuration of 

Kubernetes clusters, the deployment of the Sock Shop 

microservices, and the definition of key parameters for the 

Particle Swarm Optimization algorithm. By creating a 

controlled environment that mirrors real-world conditions, we 

can systematically measure the impact of the PSO algorithm 

on resource utilization, load balancing, service latency, and 

overall system fitness. 

Table I details the specific configurations and parameters 
used in the experiment, and the metrics employed for 
performance evaluation. 

TABLE I. EXPERIMENTAL PARAMETERS 

 Parameter Detail 

Workload 

Kubernetes 

Clusters (C) 

Multiple clusters set up to host the 

Sock Shop microservices. 

Hosts (Hn) 
Each cluster consists of multiple 
hosts with random capacities of 

CPU and memory resources. 

Microservices 

(MS) 

The Sock Shop application includes 
user, catalog, cart, order, payment, 

and shipping services. 

PSO Parameters 

w 0.5 

c1 1.5 

c2 1.5 

Poupulation size 30 

Max iterations 100 

Microservices 

resource 
requirments 

user Cpu=1 , Memory =512 

catalog Cpu=2 , Memory =1024 

orders Cpu=2 , Memory =512 

Payment Cpu=2 , Memory =1024 

Shipping Cpu=1 , Memory =512 

Cart Cpu=1 , Memory =512 

2) Experimental result: To evaluate the efficiency of the 

PSO-based microservices placement algorithm, we conducted 

an analysis of resource utilization, specifically focusing on 

CPU and memory usage across all hosts. The assessment was 

performed before and after applying the PSO algorithm, and 

the results are depicted in Fig. 7 and Fig. 8. 

The results demonstrate that the PSO-based placement 
algorithm significantly enhances resource utilization. By 
balancing the CPU and memory usage, the algorithm ensures 
that no single host becomes a bottleneck, thereby improving 
the overall performance and reliability of the microservices 
deployment. The reduction in resource hotspots contributes to a 
more efficient and resilient cloud-native environment, capable 
of handling varying workloads with greater stability. 

 
Fig. 7. CPU utilisation before and after PSO. 

 

Fig. 8. Memory utilisation before and after PSO. 

VI. CONCLUSION 

In conclusion, this paper has explored the significant 
advancements enabled by cloud-native technologies in the 
design and deployment of applications utilizing a microservice 
architecture. These technologies enhance modularity, 
scalability, and management efficiency, facilitating a shift from 
traditional virtual machine-based approaches to container-
based virtualization. The adoption of this cloud-native 
paradigm introduces new challenges, particularly in the 
optimal placement of microservices, which is crucial for 
maximizing resource utilization, ensuring service availability, 
and managing the complexity of distributed systems. 

We proposed a new framework for optimized 
microservices placement, focusing on efficient resource 
allocation while maintaining high service availability and 
compliance with service level agreements. By leveraging 
Particle Swarm Optimization (PSO), our approach effectively 
addresses the challenges associated with microservices 
placement in cloud-native environments. The experimental 
results obtained from the Sock Shop application use case 
demonstrate the feasibility and effectiveness of our proposed 
method. 
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This work not only highlights the potential benefits of 
advanced orchestration and automation strategies but also 
paves the way for future research to further enhance 
microservices placement techniques. The implications of our 
findings suggest that continued innovation in this area will be 
essential for improving the performance and scalability of 
cloud-native applications, ultimately driving more efficient and 
resilient cloud infrastructures. 
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