
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

1026 | P a g e  

www.ijacsa.thesai.org 

Dynamic Simulation and Forecasting of Spatial 

Expansion in Small and Medium-Sized Cities Using 

ANN-CA-Markov Models 

Chengquan Gao 

School of Architecture and Urban Planning, Henan University of Urban Construction, Ping’dingshan 467001, China 

 

 
Abstract—This study utilizes the ANN-CA-Markov (Artificial 

Neural Network-Cellular Automata-Markov) model to address 

spatial planning and expansion challenges in China’s small and 

medium-sized cities. With China’s urbanization rate reaching 

59.58% in 2018 and expected to hit 70% by 2030, the country is 

entering a mid-stage of urbanization, leading to rapid expansion 

of megacities and a gradual decline in smaller cities. The study 

aims to dynamically simulate urban spatiotemporal evolution and 

predict future land use changes, integrating land use data, DEM 

elevation, transportation, administrative centers, and ecological 

information. The model forecasts the ecological spatial layout of 

Wanzhou District by 2025, with results indicating a slight decrease 

in ecological space and an increase in construction land. This 

suggests a need to balance urban development with ecological 

sustainability amidst rapid urbanization. The study demonstrates 

the high accuracy of the ANN-CA-Markov model in predicting 

land use changes and provides valuable insights for urban 

planners in making informed land use decisions. 
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I. INTRODUCTION 

In 2018, China’s urbanization rate reached 59.58%, and it is 
expected to hit 70% by 2030, marking the country’s entry into 
the middle stage of urbanization [1-3]. Since 2011, China has 
been systematically revising its traditional urbanization 
approach, leading to the rapid expansion of megacities and the 
gradual decline of many small and medium-sized cities and 
towns. With the central government’s strategic decisions to 
“establish a scientifically and reasonably structured urban 
pattern, where large, medium, and small cities and towns, as well 
as city clusters, are well-organized,” new opportunities and 
broad prospects have emerged for the development of small and 
medium-sized towns. The healthy urbanization of these smaller 
cities requires more scientific planning and development of 
urban land resources by administrators [4, 5]. 

Scientifically defining urban development boundaries not 
only enables the intensive use of spatial resources and controls 
the disorderly sprawl of cities but also supports the sustainable 
socio-economic development of cities while protecting the 
natural ecological environment [6-9]. However, one of the major 
challenges in urban planning is accurately predicting the spatial 
and temporal evolution of land use, particularly in small and 
medium-sized cities where data may be less comprehensive, and 
urbanization patterns are more complex. 

In recent years, numerous scholars have utilized the ANN-
CA (artificial neural network-cellular automata) coupled model 
to dynamically simulate the temporal and spatial evolution of 
cities and predict future land use changes, assisting in urban land 
use simulation, urban development boundaries, and ecological 
redline protection in urban planning, achieving many 
meaningful results [10-12]. For instance, Xu et al. [13] 
integrated Artificial Neural Networks (ANN), Cellular 
Automata (CA), and Markov Chain (MC) to simulate urban 
expansion in rapidly urbanizing areas, revealing the nonlinear 
relationship between the expansion process and its drivers. 
Similarly, Zhao et al. [14] studied land-use changes in Yucheng 
District, Ya'an City, China using an ANN-CA model, 
emphasizing the improvement of simulation accuracy through 
appropriate thresholds and random variable parameters. 
Additionally, Asanza et al. [15] explored the integration of ANN 
and CA models for spatial-temporal load forecasting, 
highlighting the enhanced forecasting accuracy through 
temporality and geospatial data analytics. 

Despite these advances, challenges remain in effectively 
modeling and predicting land use changes in regions where data 
availability is limited or where the urbanization process involves 
complex interactions among multiple factors. The current study 
addresses these challenges by developing an enhanced ANN-
CA-Markov coupled model that incorporates more 
comprehensive datasets and refined transition rules to achieve 
higher simulation precision. Specifically, this study leverages 
Wanzhou District’s land use cover data, DEM elevation data, 
road traffic data, administrative center data, river data, 
ecological protection redline data, and natural conservation area 
data from 2000, 2006, 2012, and 2018. By integrating these data 
with the ANN-CA-Markov coupled model, we aim to predict 
the ecological spatial layout of Wanzhou District by 2025 more 
accurately. 

The novel contribution of this work lies in overcoming the 
difficulties associated with limited data availability and complex 
urbanization processes by enhancing the precision of the ANN-
CA-Markov model. This is achieved through the integration of 
additional data sources and the refinement of transition rules, 
offering a more comprehensive approach to modeling and 
predicting spatial changes. This study, therefore, represents a 
significant advancement in the field, particularly in the context 
of small and medium-sized cities where such challenges are 
most pronounced. 
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II. METHOD 

A. ANN-CA Model 

The ANN-CA model, short for Artificial Neural Network - 
Cellular Automata model, is a discrete time, space, and state grid 
dynamic model where spatial interactions and temporal causal 
relations are local. It enables the bottom-up simulation of the 
spatiotemporal evolution of complex systems. The state of each 
cell is determined by the states of its neighboring cells, and upon 
establishing transition rules, all cells can evolve autonomously 
following these rules, highlighting the core essence of transition 
rules. Artificial neural networks possess self-learning and 
associative capabilities, allowing for the rapid identification of 
optimized solutions [16-18]. By learning the rules of land use 
data changes through the neural network model and applying 
these extracted rules to the grid data of the starting year, 
simulation predictions can be completed within the cellular 
automata. The core principle involves training neurons with land 
use data from different periods, then determining the transition 
probabilities for each land use type based on the characteristics 
of influencing factors, culminating in the simulated prediction 
of land use planning. To ensure the model's accuracy, the input 
parameters were rigorously selected and optimized. The primary 
inputs include land use types, digital elevation model (DEM), 
neighborhood development density, and transition suitability. 
These parameters were chosen based on the terrain 
characteristics of the study area, the diversity of land use, and 
the complexity of its spatial distribution. 

Extensive experiments were conducted to evaluate the 
impact of different parameter combinations on the model's 
predictive outcomes. Specifically, different neighborhood 
window sizes, DEM resolutions, and land use classification 
standards were tested. Sensitivity analysis revealed that the size 
of the neighborhood window significantly affects the model's 
spatial resolution and computational efficiency, while variations 
in DEM resolution notably influence the prediction accuracy. 
Ultimately, a 5×5 Moore neighborhood window and a 30-meter 
resolution DEM were selected as they offered the best balance 
between computational efficiency and prediction accuracy. 

Additionally, the selection of transition suitability 
parameters was explored. These parameters primarily represent 
the likelihood of transitions between different land use types. 
During the parameter adjustment process, a stochastic 
disturbance factor was introduced to simulate unforeseen 
changes in real-world conditions. The final selection of these 
parameters was made based on a comparative analysis of 
multiple simulation results, tailored to the specific conditions of 
the study area. The mathematical expression is as follows: 

   P(k, t, l) 1 ( ln ) (k, t, l) Ω cost t

ann k kP S    
 (1) 

In this expression, it mainly expresses the transition 
probability P of a cell k at time t to the l-th type of land use as a 
function of random factors, artificial neural network calculated 
probabilities, neighborhood development density, and transition 

suitability. ( ln )  represents the random factor; (k, t, l)annP  is 
the transition probability of a certain land type calculated by the 

trained artificial neural network; 
Ωt

k  represents the urban land 

density within the defined neighborhood window, i.e., the total 
number of urban land cells divided by the total number of grid 

cells in the neighborhood window;  cos t

kS
 represents the 

transition suitability between two land types, generally indicated 
by 0 or 1, mainly to signify whether a transition is possible. 

B. Markov Model 

The Markov model (Markov), based on a type of stochastic 
process is a mathematical method used to predict the prior 
probabilities and conditional probabilities of events [14-16]. Its 
changes over time are continuous, and when the process 
parameters take discrete time values, it is referred to as a Markov 
sequence. The primary feature of the Markov sequence is its 
Markov property, not time series property, meaning when the 
state of the process (system) at time t0 is known, the state of the 
process (system) at time t (t>t0) is independent of the state at 
time t0. The Markov model is an extremely important predictive 
model in geographic forecasting research. In constructing the 
Markov model, we meticulously adjusted the state transition 
probability matrix. The state transition probabilities primarily 
reflect the likelihood of transitions between different land use 
types within a specific time sequence. To ensure the accuracy of 
this probability matrix, we conducted several experiments to test 
the impact of different initial conditions and transition 
probabilities on the final predictive outcomes. Sensitivity 
analysis indicated that certain key parameters in the state 
transition probability matrix significantly influence the spatial 
distribution of the model’s predictions. For instance, increasing 
the probability of converting arable land to construction land by 
10% substantially increases the predicted area of construction 
land while decreasing the areas of forest land and water bodies. 
This highlights the need to adjust transition probabilities in 
accordance with real-world conditions. The Markov model 
mainly consists of states, state transition processes, state 
transition probabilities, and state transition matrices, detailed as 
follows: 

1) State: Represents an outcome, indicating the result 

appearing at a specific point in time. 

2) State transition process: The relationship between the state 

change of an event and time. 

3) State transition probability: Refers to the likelihood of an 

event’s state changing to another state, expressed 

mathematically as follows: 

   /ij i j j iP P E E P E E  
   (2) 

In the formula, ijP
 and 

 i jP E E
 both represent the 

probability of the state transition of the event, 
 /j iP E E

 

represents the conditional probability, and iE
 and jE

 
respectively represent the state at moments i and j. 

4) State transition probability matrix: If a specific event has 

n possible states, then the state transition probability from state 

Ei to state Ej is denoted as pij and expressed through a matrix as 

follows: 
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
    (3) 

In the above expression, p represents the state transition 
probability matrix. 

C. Construction of the ANN-CA-Markov Model 

To simulate and predict the ecological space pattern of 
Wanzhou District, this study employs the CA-Markov model, 

which combines the transition prediction capability of the 
Markov model with the spatial distribution simulation of cellular 
automata [17-19]. Traditional CA-Markov models face 
challenges in handling nonlinear relationships, so an artificial 
neural network (ANN) model is introduced to learn and establish 
more accurate transition rules. The process is divided into two 
stages: training and simulation. The operational logic of the 
model is illustrated in Fig. 1. 

 

Fig. 1. Technical route map. 

III. RESEARCH AREA AND DATA PROCESSING 

A. Geographic Overview 

Wanzhou District is located on the eastern edge of the 
Sichuan Basin, in the northeastern part of Chongqing. The 
Yangtze River flows into Wanzhou from the southwest, 
traverses northeastward, and then flows into Yunyang. 
Wanzhou District is situated between 107°55′22″E to 
108°53′25″E and 30°24′00″N to 31°14′58″N. Lichuan and 
Shizhu are located to the south of Wanzhou District, Yunyang 
to the east, Liangping and Zhong County to the west, and 
Kaizhou District and Kaijiang to the north. The straight-line 
distance from Wanzhou District to Chongqing is 228 kilometers. 
Fig. 2 shows the location map of Wanzhou District. 

Wanzhou

 

Fig. 2. Location map of wanzhou district. 

B. Data Sources 

This study employed Landsat TM/ETM imagery for 
Wanzhou District from 2000, 2006, 2012, and 2018. The 2000, 
2006, and 2012 data were sourced from Landsat-5 TM, while 
2018 data came from Landsat-8, all acquired via the Geospatial 
Data Cloud (Table I). The imagery has a 30m×30m resolution, 
and the data were projected using the Albers projection. 
Additional data included 30m GDEM elevation data, OSM road, 
river, and administrative boundaries, and population data from 
the Chongqing Statistical Yearbook. 

TABLE I. CLASSIFICATION STANDARDS FOR LAND USE TYPES IN 

WANZHOU DISTRICT 

Land Category 

Code 

Land Category 

Type 
Detailed Types 

1 Cultivated Land Paddy fields, dry land 

2 Forest Land 
Forested land, shrub land, sparse 

forest, and other forest lands 

3 Grassland 
High, medium, and low coverage 

grasslands 

4 Water Bodies 
Rivers, lakes, reservoirs, ponds, 

tidal flats 

5 
Constructed 

Land 

Urban areas, rural settlements, 

industrial and mining areas, 
transportation land 

6 Unused Land 
Bare land, sandy land, other types 

of unused land 

C. Data Preprocessing 

The study highlighted remote sensing image preprocessing 
importance using ERDAS 9.1 for band synthesis, geometric 
correction, and image cropping, enhancing data quality for 
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Wanzhou District. Band synthesis integrated different bands to 
improve image classification accuracy. Geometric corrections 
were applied using a third-order polynomial method to ensure 
pixel accuracy, while image cropping maintained research area 
consistency. The analysis involved visual and computer 
processing, adhering to “Current Land Use Classification” 
standards and incorporating field data and professional 
verification to achieve over 85% interpretation accuracy. These 
processed images provide a reliable basis for further analysis. 

IV. ANALYSIS OF ECOLOGICAL SPACE CHANGE 

CHARACTERISTICS 

A. Dynamic Degree and Transfer Rate 

In studying the characteristics of ecological space change, 
the dynamic degree and transfer rate are mainly used to examine 
the changes in the quantity of ecological spaces within the study 
area. The formula for calculating the transfer rate of ecological 
space types is as follows: 

1
100%b a

a

u u
K

u T


  

   (4) 

𝐾 represents the transfer rate of a certain ecological space 
type; 𝑢𝑎 represents the quantity of a certain ecological space 
type at the beginning of the study; 𝑢𝑏 represents the quantity of 
the same ecological space type at the end of the study; T 
represents the time span of the study period. The formula for 
calculating the overall dynamic degree of ecological space in the 
study area is: 
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 

     (5) 

𝐿𝑢𝑖 represents the quantity of the ith ecological space type at 
the beginning of the study; △ Luᵢ₋ⱼ represents the absolute value 
of the quantity of the ith ecological space type transformed into 
the non-ith ecological space type during the study period; T 
represents the time span of the study period, Lᴄ represents the 
comprehensive dynamic degree of ecological space. 

B. Transition Matrix 

In the land-use transition matrix, the rows and columns 
represent the ecological space types at the beginning and end of 
a certain time sequence unit, respectively. Therefore, using the 
transition matrix to study ecological space types can reveal the 
changes in the area of each ecological space type from the 
beginning to the end of the period, as well as the transition 
situations of ecological space types. The formula for calculating 
the transition matrix is as follows: 

11 1

1

n

ij

n nn

S S

S

S S

 
 


 
      (6) 

In the formula, S represents the area of ecological space 
types within the time sequence unit, n is the total number of 
ecological space types within the time sequence unit, i represents 
the index of ecological space types at the beginning of the time 

sequence unit; j represents the index of ecological space types at 
the end of the time sequence unit. 

C. Landscape Pattern Indices 

The spatial change characteristics of ecological spaces are 
mainly analyzed through the landscape pattern indices and 
classified landscape pattern indices of the study area. The 
analysis of these indices quantitatively describes the structure 
and distribution characteristics of the landscape itself. This 
paper selects the patch area, patch number, patch density, largest 
patch index, splitting index, and Shannon’s diversity index to 
analyze the landscape pattern indices and classified landscape 
pattern indices, thereby analyzing the spatial change 
characteristics of ecological spaces. 

1) Patch area (CA): The patch area (CA) represents the total 

area of a specific landscape type, and its calculation formula is 

as follows: 

1

(1/10000)
n

ij
j

CA a


 
   (7) 

In the formula, aᵢⱼ represents the area of patch iⱼ in a landscape 
type, n is the total number of all landscape types in the study 
area. 

2) Patch Number (NP): The patch number (NP) reflects the 

spatial pattern of the landscape. The larger the value of NP, the 

higher the degree of fragmentation in space, and vice versa. The 

spatial distribution characteristics of various landscape types can 

be determined to some extent by the patch number (NP), and its 

calculation formula is as follows: 

( 1)NP m m      (8) 

In the formula, m represents the number of patches of a 
certain ecological space type. 

3) Patch Density (PD): Represents the number of patches per 

unit area of the entire ecological space or a certain ecological 

space type. The larger the value of PD, the greater the separation 

among individual patches; conversely, the closer the patches are 

to each other. The calculation method is as follows: 

/PD N A      (9) 

In the formula, N represents the number of patches of the 
ecological space type, A is the area of the study region. 

4) Largest Patch Index (LPI): The largest patch index 

represents the ratio of the largest patch of an ecological space 

type to the total area of the study region. The larger the LPI 

value, the higher the connectivity among patches of ecological 

space types, and vice versa. The calculation method is as 

follows: 

100
ijMaxa

LPI
A

 
    (10) 

In the formula, LPI represents the value of the largest patch 
index, aᵢⱼ is the area of patch iⱼ of the ecological space type, A is 
the total landscape area of the entire study region. 
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5) Splitting Index (SPLIT): Used to indicate the degree of 

fragmentation of a landscape type. The larger the value of 

SPLIT, the higher the degree of fragmentation of the landscape 

type, and vice versa. The calculation method is as follows: 

2

2

1 1

m n

ij
i j

A
SPLIT

a
 




     (11) 

In the formula, SPLIT represents the value of the splitting 
index, aᵢⱼ is the area of patch iⱼ in a landscape type, A is the total 
landscape area of the study region. 

6) Shannon’s Diversity Index (SHDI): Indicates the degree of 

evenness among different ecological space types within the 

study area. The larger the value of SHDI, the more even the 

distribution of ecological space type patches, and vice versa. The 

calculation method is as follows: 

1

m

i
i

SHDI p


 
    (12) 

In the formula, m represents the number of ecological space 
types, pᵢ is the proportion of ecological space type i in the area 
of the study region. 

D. Analysis of Ecological Space Structure Type Change 

Characteristics 

The ecological space structure types in Wanzhou District 
mainly include cultivated land, forest land, grassland, water 
bodies, and unused land. Using the land use type data of 
Wanzhou District from 2000, 2006, 2012, and 2018, the 
software ArcGIS 10.1 was used to analyze the changes in the 
area of ecological spaces in Wanzhou District. 

Using ArcGIS 10.1’s mapping features, land use type maps 
of Wanzhou District from 2000 to 2018 were created, as shown 
in Fig. 3. Additionally, ArcGIS’s statistical tools were employed 
to compile data on ecological spaces and land use areas in 
Wanzhou District from 2000 to 2018, as presented in Table II. 

Table II highlights that Wanzhou District's ecological spaces 
are predominantly woodland (over 50%) and arable land (over 
44%), with water bodies and grassland as secondary types. 
Unused land is minimal. Transition matrices for 2000–2006, 
2006–2012, 2012–2018, and 2000–2018, generated using 
ArcGIS and Excel, are shown in Tables III to VI. 

As shown in Table III, during 2000–2006, the main 
ecological space type conversions were from arable land and 
woodland to water bodies and built-up land, primarily due to the 
water storage of the Three Gorges Reservoir Area and rapid 
urbanization. 

 

Fig. 3. Distribution map of ecological space structure types in wanzhou district from 2000 to 2018. 
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TABLE II. AREA STATISTICS OF ECOLOGICAL SPACE STRUCTURE TYPES IN WANZHOU DISTRICT FROM 2000 TO 2018 

Type 
2000 2006 2012 2018 

Area (hm²) Percentage (%) Area (hm²) Percentage (%) Area (hm²) Percentage (%) Area (hm²) Percentage (%) 

Ecological 

Space 
337826.13 98.33% 336026.89 97.80% 334956.05 97.49% 334279.17 97.29% 

Arable Land 152779.02 44.47% 150913.92 43.92% 149056.68 43.38% 148385.62 43.19% 

Woodland 169647.69 49.38% 169140.76 49.23% 168503.00 49.04% 168417.14 49.02% 

Grassland 5906.24 1.72% 5826.97 1.70% 5754.00 1.67% 5848.84 1.70% 

Water Bodies 9461.36 2.75% 10138.51 2.95% 11637.71 3.39% 11618.41 3.38% 

Unused Land 31.82 0.01% 6.73 0.00% 4.66 0.00% 9.17 0.00% 

Developed Land 5748.00 1.67% 7547.25 2.20% 8618.08 2.51% 9294.97 2.71% 
 

Based on the 2006–2012 land use transition matrix 
(Table IV) for Wanzhou District, the conversion of arable land 
to built-up land significantly decreased compared to the period 
2000–2006. 

According to Table V, arable land no longer converts to 
forestland but solely transitions from arable land to forestland, 
with a conversion area of 19.57 hm². This indicates that during 
the 2012–2018 period, the policy of converting farmland back 
to forestland was strongly implemented in Wanzhou District. 
During this time, the primary land use transitions were from 
arable land and forestland to grassland and built-up land. The 
most significant conversion was from arable land to built-up 
land, with an area of 612.62 hm², followed by the conversion 
from forestland to built-up land, with an area of 64.27 hm². 

According to Table VI, during the period from 2000 to 2018, 
the primary transition for arable land was towards built-up land, 
with a conversion area of 2885.10 hm², followed by transition to 
water bodies, totaling 1455.37 hm². Similarly, forestland mainly 
converted to built-up land, with an area of 654.03 hm², and 
secondarily to water bodies, with 643.38 hm². Grassland 
predominantly transformed into built-up land (57.50 hm²) and 
forestland (42.93 hm²). Water bodies mainly converted to arable 
land (27.03 hm²) and built-up land. Built-up land primarily 
transitioned to water bodies, with an area of 63.22 hm². Unused 
land primarily transformed into arable land (11.42 hm²) and 
built-up land (7.86 hm²). 

TABLE III. LAND USE TRANSITION MATRIX FOR WANZHOU DISTRICT (HM²) FOR 2000–2006 

 
2000-2006 

Arable Land Woodland Grassland Water Bodies Developed Land Unused Land 

Arable Land 150852.15 40.01 0.00 418.10 1465.34 3.43 

Woodland 3.00 169050.12 13.02 276.19 302.04 3.30 

Grassland 18.52 42.93 5806.04 6.89 31.86  

Water Bodies 20.96  3.07 9437.32   

Developed Land — — — — 5748.00 — 

Unused Land 19.28 7.70 4.84 — — — 

TABLE IV. LAND USE TRANSITION MATRIX FOR WANZHOU DISTRICT (HM²) FOR 2006–2012 

 
2006-2006 

Arable Land Woodland Grassland Water Bodies Developed Land Unused Land 

Arable Land 149023.48 33.02 
 

1038.91 815.01 3.50 

Woodland 10.68 168453.66 1.08 386.47 287.72 1.16 

Grassland 11.39 13.02 5752.93 20.92 28.71 — 

Water Bodies 7.71 — — 10128.17 2.63 — 

Developed Land — — — 63.22 7484.02 — 

Unused Land 3.43 3.3. — — — — 

TABLE V. LAND USE TRANSITION MATRIX FOR WANZHOU DISTRICT (HM²) FOR 2012–2018 

 
2010-2018 

Arable Land Woodland Grassland Water Bodies Developed Land Unused Land 

Arable Land 148385.62 19.57 38.88 — 612.62 — 

Woodland — 168397.57 36.65 — 64.27 4.50 

Grassland —  5754.00 — — — 

Water Bodies —  19.29 11618.41 — — 

Developed Land — — — — 8618.08 — 

Unused Land — — — — — 4.66 
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TABLE VI. LAND USE TRANSITION MATRIX FOR WANZHOU DISTRICT (HM²) FOR 2000–2018 

 
2010-2018 

Arable Land Woodland Grassland Water Bodies Developed Land Unused Land 

Arable Land 148303.57 92.59 38.88 1455.37 2885.10 3.50 

Woodland 13.68 168273.92 57.02 643.38 654.03 5.66 

Grassland 29.91 42.93 5748.09 27.81 57.50 — 

Water Bodies 27.03 — — 9428.63 5.69 — 

Developed Land — — — 63.22 5684.78 — 

Unused Land 11.42 7.70 4.48 — 7.89 4.66 

TABLE VII. TRANSFER RATE OF ECOLOGICAL SPACE IN WANZHOU DISTRICT FROM 2000 TO 2018 (%) 

 2000—2006 2006—2012 2012-2018 

Arable Land 0.09 0.05 0.03 

Woodland 0.20 0.21 0.08 

Grassland 0.05 0.06 0.01 

Water Bodies 0.22 0.21 -0.27 

Developed Land -1.19 -2.46 0.03 

Unused Land 13.14 5.12 -16.11 

Comprehensive Dynamic Degree 0.08 0.10 0.05 
 

E. Analysis of Ecological Space Dynamics 

When studying the evolution characteristics of ecological 
space, it is necessary to examine the transfer rate and the activity 
level of the ecological space. Therefore, based on the area 
statistics table of Wanzhou District’s ecological space types 
from 2000 to 2018, the transfer rate and comprehensive dynamic 
degree of Wanzhou District’s ecological space from 2000 to 
2018 are calculated, with the results shown in Table VII. 

F. Influencing Factors 

The changes in the ecological space layout of Wanzhou 
District are a complex process, influenced by a combination of 
various natural and human factors. Based on extensive literature 
review and adhering to the four principles of factor selection 
mentioned earlier, the preliminary selected influencing factors 

include: elevation factor, slope factor, road traffic factor, 
administrative center factor, river factor, and policy control 
factor. The specific factors of elevation, slope, road traffic, 
administrative center, river, and policy control are illustrated in 
Fig. 4. 

After the preliminary selection of influencing factors such as 
elevation, slope, road traffic, administrative center, river, and 
policy control factors, the Empirical Likelihood method is used 
to further select and analyze the elevation, slope, road traffic, 
administrative center, and river factors. The results are shown in 
Fig. 5. The reason for not applying the Empirical Likelihood 
method to further verify and select the policy control factor is 
that it serves as a constraint, significantly impacting the 
ecological space layout changes. 

 

Fig. 4. Wanzhou district influencing factors map. 
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Fig. 5. Wanzhou district influencing factors impact map. 

Based on Fig. 5, the final selected influencing factors are 
elevation, road traffic, administrative center, and policy control 
factors. 

V. SIMULATION OF ECOLOGICAL SPACE LAYOUT IN 

WANZHOU DISTRICT BASED ON THE ANN-CA-MARKOV MODEL 

A. ANN-CA-Markov 

The Ann-CA-Markov model, aimed at simulating Wanzhou 
District’s ecological space pattern, is constructed as follows: (1) 
Cells are defined as 30m×30m grids based on TM image data, 
mirroring the district’s ecological structure. (2) Cellular space 
consists of these grids. (3) Cell states represent ecological and 
non-ecological spaces, categorized into types like cultivated 
land, forest, grassland, water bodies, and construction land. (4) 
The neighborhood is defined using a 5×5 extended Moore setup, 
where 24 adjacent cells affect the central one. The choice of a 
5×5 neighborhood window balances computational efficiency 
with spatial accuracy. This window size was selected based on 
sensitivity analysis, which demonstrated that smaller windows 
(e.g., 3×3) provided insufficient spatial context, while larger 
windows (e.g., 7×7) added unnecessary complexity without 
significantly improving model precision. (5) Transition rules are 
established using spatial and quantitative methods, with the 
former calculated via the MLP_ANN model and the latter 
through Markov model-derived transition probability matrices 
between space types. (6) Transition probabilities are calculated 
for 2000—2006, 2006—2012, and 2012—2018 using IDRISI 
software, aiding in predicting land use changes, shown in 
Tables VIII, IX, and X, respectively. 

After selecting spatial variables and influencing factors, the 
MLP_ANN tool was utilized to construct the transition rules for 

the cellular automaton model (Fig. 6). The MLP_ANN 
comprises a three-layer network structure, including an input 
layer, a hidden layer, and an output layer. In this study’s 
MLP_ANN, the input layer consists of 15 neurons, 
corresponding to the 15 influencing factors identified earlier. 
The number of neurons in the hidden layer, representing the 
number of input samples, should be at least two-thirds of the 
number of input layer neurons, hence 11 neurons were set for 
the hidden layer. The output layer contains 6 neurons, each 
corresponding to the transition probabilities for Wanzhou 
District’s five ecological space types and one non-ecological 
space type. However, due to the negligible area of unused land 
in the study area, the actual number of neurons in the output 
layer used is five, representing the transition probabilities for 
farmland, woodland, grassland, water bodies, and construction 
land. 

Following the computation of transition probability maps for 
various land use types, including farmland, woodland, 
grassland, water bodies, and construction land, using the 
MLP_ANN model, the results were refined to reflect both the 
prevailing policies and the real-world conditions of the study 
area. To ensure that the study's outcomes were consistent with 
local land use regulations, specific constraints were applied. 
These constraints mandated that construction land and water 
bodies could not change, while ecological spaces and non-
ecological areas within designated protected zones—such as 
ecological protection red lines, forest parks, nature reserves, 
geological parks, and scenic areas—were preserved from any 
transitions. As the ANN-CA-Markov model is built on the 
principles of cellular automata (CA), the refined transition rules, 
now represented as probability maps for each land use type, 
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were standardized to a 0–255 scale. The standardized transition 
probability maps for the respective land types are presented in 
Fig. 7. In the final step, these maps were integrated into a 

comprehensive suitability mapset using the Collection Editor 
tool within the IDRISI software suite. 

 

Fig. 6. MLP_ANN learning and calculation process diagram. 

TABLE VIII. TRANSITION PROBABILITY MATRIX OF ECOLOGICAL SPACE TYPES IN WANZHOU DISTRICT FROM 2000—2006 (%)) 

  Arable Land Woodland Grassland Water Bodies Developed Land Unused Land 

Arable Land 0.8393 0.0033 0 0.035 0.1222 0.0003 

Woodland 0.0007 0.847 0.0032 0.0708 0.0774 0.0008 

Grassland 0.0307 0.0703 0.8356 0.0117 0.0517 0 

Water Bodies 0.1345 0 0.0177 0.8478 0 0 

Developed Land 0.03 0.03 0.03 0.03 0.85 0.03 

Unused Land 0.6091 0.238 0.153 0 0 0 

TABLE IX. TRANSITION PROBABILITY MATRIX OF ECOLOGICAL SPACE TYPES IN WANZHOU DISTRICT FROM 2006—2012 (%) 

  Arable Land Woodland Grassland Water Bodies Developed Land Unused Land 

Arable Land 0.8393 0.0028 0 0.0882 0.0694 0.0003 

Woodland 0.0023 0.8465 0.0003 0.0866 0.064 0.0003 

Grassland 0.0252 0.0276 0.8393 0.0459 0.062 0 

Water Bodies 0.1168 0 0 0.8491 0.0341 0 

Developed Land 0 0 0 0.1571 0.8429 0 

Unused Land 0.5068 0.4932 0 0 0 0 

TABLE X. TRANSITION PROBABILITY MATRIX OF ECOLOGICAL SPACE TYPES IN WANZHOU DISTRICT FROM 20012—2018 (%) 

  Arable Land Woodland Grassland Water Bodies Developed Land Unused Land 

Arable Land 0.8462 0.0045 0.0086 0 0.1407 0 

Woodland 0 0.8495 0.053 0 0.0909 0.0066 

Grassland 0.03 0.03 0.85 0.03 0.03 0.03 

Water Bodies 0 0 0.1514 0.8486 0 0 

Developed Land 0.03 0.03 0.03 0.03 0.85 0.03 

Unused Land 0.03 0.03 0.03 0.03 0.03 0.85 
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Fig. 7. Conversion probability maps for cultivated land, forest land, grassland, water area, and construction land. 

B. Determining the Number of Iterations and the Forecast 

Year 

After setting the iteration interval to 6 years, based on the 
base data and calculated transition probability matrices, the 
ecological space evolution in the study area for 2012 is 
simulated and predicted based on the 2000 and 2006 data. Then, 
the ecological space evolution in 2018 is simulated and 
predicted based on the 2006 and 2012 data. After verifying the 
accuracy of the simulated ecological space for 2012 and 2018 
with the ANN-CA-Markov coupled model and meeting the 
accuracy requirements, the ecological space evolution in 2025 is 
simulated and predicted. Thus, in the ANN-CA-Markov coupled 
model, 2012, 2018, and 2025 are determined as the forecast 
years. 

C. ANN-CA-Markov Coupled Model Accuracy Verification 

After constructing the ANN-CA-Markov coupled model, the 
ecological space distribution in Wanzhou District for the years 
2012 and 2018 is simulated based on the data from 2000 to 2006 
and 2006 to 2012, respectively. The simulation results are shown 
in Fig. 8 and 9. 

After completing the simulation maps of the ecological 
space structure types in Wanzhou District for 2012 and 2018, it 
is necessary to verify the simulation accuracy of the ANN-CA-
Markov coupled model. This is done by comparing the 
simulation results for 2012 with the actual data for 2012, and the 
simulation results for 2018 with the actual data for 2018, to 
validate the simulation accuracy of the ANN-CA-Markov 
coupled model. 

First, a quantitative verification is performed by comparing 
the simulated results for 2012 and 2018 with the actual data for 
those years. The specific quantitative verification results are 
shown in Tables XI and XII. 

Based on Tables XI and XII, except for unused land, the 
simulation results for other ecological space types (cultivated 
land, forest land, grassland, water bodies) and non-ecological 
space type (construction land) show high accuracy rates. The 
lower accuracy for unused land is due to its minimal grid cell 
count, which does not reach 0.01% of the total grid cell count in 
the study area. Overall, the Ann-CA-Markov coupled model 
demonstrates high simulation accuracy in terms of quantity. 
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Fig. 8. Simulation map of the ecological space structure types in Wanzhou District for the year 2012. 

 

Fig. 9. Simulation map of the ecological space structure types in wanzhou district for the year 2018. 
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TABLE XI. VERIFICATION OF THE SIMULATED AND ACTUAL NUMBER OF GRIDS FOR 2012 

Land Type Actual Number of Grids (2012) Simulated Number of Grids (2012) Accuracy (%) 

Cultivated Land 1,655,590 1,672,030 99.01 

Forest Land 1,870,820 1,873,846 99.84 

Grassland 63,945 65,175 98.08 

Water Area 129,273 113,517 87.81 

Unused Land 55 73 67.27 

Construction Land 95,783 90,825 94.82 

TABLE XII. VERIFICATION OF THE SIMULATED AND ACTUAL NUMBER OF GRIDS FOR 2018 

Land Type Actual Number of Grids (2018) Simulated Number of Grids (2018) Accuracy (%) 

Cultivated Land 1,648,162 1,661,779 99.17 

Forest Land 1,869,859 1,870,178 99.98 

Grassland 64,994 55,553 85.47 

Water Area 129,054 128,992 99.95 

Unused Land 107 55 51.40 

Construction Land 103,290 98,909 95.76 
 

D. Simulation and Result Analysis of Ecological Space Layout 

in the Study Area for 2025 

After validating the Ann-CA-Markov model’s high 
accuracy, it was applied to project Wanzhou District’s 2025 
ecological space. For the 2025 simulation, the model used 2018 
data for neighboring variables and current space types, adjusted 
conversion probability maps, and derived the transition matrix 
from 2012 and 2018 data. These modifications enabled the 
projection of the district’s 2025 ecological layout, depicted in 
Fig. 10. A corresponding map illustrating the predicted 
ecological space distribution for 2025 is shown in Fig. 11. 

Based on the simulation results for Wanzhou District in 2025 
(Fig. 10 and 11) and the actual data from 2018, the areas of 

ecological spaces in Wanzhou District were calculated and 
summarized, as shown in Table XIII. 

In 2025, ecological space in Wanzhou District is projected 
to cover 334,022.95 hectares (97.28%), dominated by cultivated 
land (147,743.20 hectares) and forest land (168,944.40 
hectares). Grassland (5,698.71 hectares) and water bodies 
(11,627.26 hectares) contribute smaller portions, while unused 
land remains negligible. Constructed land expands to 9,349.42 
hectares (2.72%). From 2018 to 2025, the ecological space 
decreased slightly by 81.02 hectares, as cultivated land and 
grassland declined, while forest land and water bodies saw 
modest increases. The transfer matrix in Table XIV highlights 
the shifts between these land types during the period. 

 

Fig. 10. Simulated distribution map of ecological space structure types in wanzhou district for 2025. 
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Fig. 11. Simulated ecological space distribution map in wanzhou district for 2025. 

TABLE XIII. SIMULATED RESULTS OF ECOLOGICAL SPACE IN WANZHOU DISTRICT FOR 2025 

Type 
2018 2025 

Area (hm²) Proportion(%) Area (hm²) Proportion(%) 

Ecological Space 334103.97 97.30 334022.95 97.28 

Cultivated Land 148328.32 43.20 147743.20 43.03 

Forest Land 168317.33 49.02 168944.40 49.20 

Grassland 5843.57 1.70 5698.71 1.66 

Water Body 11605.37 3.38 11627.26 3.39 

Unused Land 9.37 0.00 9.37 0.00 

Constructed Land 9268.41 2.70 9349.42 2.72 

TABLE XIV. TRANSFER MATRIX OF ECOLOGICAL SPACE STRUCTURE TYPES IN WANZHOU DISTRICT FOR 2018-2025 (HM²) 

2018 
2025 

Arable Land Woodland Grassland Water Bodies Developed Land Unused Land 

Arable Land 147528.64 742.57 9.07 4.20 43.85 0.00 

Woodland 88.62 168128.55 23.34 11.90 64.93 0.00 

Grassland 48.58 60.61 5653.00 34.73 46.64 0.00 

Water Bodies 3.25 8.61 8.30 11572.30 12.90 0.00 

Developed Land 74.11 4.06 5.00 4.13 9181.11 0.00 

Unused Land 0.00 0.00 0.00 0.00 0.00 9.37 
 

According to Table XIV, during the period from 2018 to 
2025, the area of cultivated land mainly transferred to forest land 
and constructed land, with transfer areas of 742.57 hm² and 
43.85 hm², respectively. The primary transfers from forest land 
were to cultivated land and constructed land, with transfer areas 
of 88.62 hm² and 64.93 hm², respectively. Grassland transfers 
were relatively balanced among various types, with transfer 

areas to cultivated land, forest land, water bodies, and 
constructed land being 48.58 hm², 60.61 hm², 34.73 hm², and 
46.64 hm², respectively. Water bodies had smaller transfer areas 
to other types, with the largest being the transfer to constructed 
land, at 12.90 hm². Constructed land primarily transferred to 
cultivated land, with a transfer area of 74.11 hm². Unused land 
did not undergo any transfers. 
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VI. CONCLUSION 

The deployment of the ANN-CA-Markov model in this 
study provides a detailed and forward-looking analysis of the 
expected land use changes in Wanzhou District by the year 
2025. The results of the analysis suggest that ecological spaces 
will remain predominant, accounting for 97.28% of the district's 
total land area. However, a minor reduction in ecological spaces 
is forecasted, accompanied by a corresponding increase in 
construction land, indicating the growing impact of urbanization 
on the region's ecological zones. Specifically, the study 
anticipates a decline in arable land and grassland areas, while 
forested regions and water bodies are projected to expand. This 
shift may reflect the influence of regional policies and planning 
initiatives aimed at conserving forests and water resources. 
Although the increase in construction land is relatively small, it 
nonetheless reflects the broader trend of intensified land use and 
development driven by urbanization pressures. Furthermore, an 
examination of the transition dynamics between various land use 
categories reveals a pattern where arable land is increasingly 
converted to forested areas and construction sites, while 
transitions involving forest land typically lead to its conversion 
into arable land or construction areas. These land use 
transformations are likely driven by a combination of policy 
enforcement, economic development, and resource management 
practices. 
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