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Abstract—Predicting thermal comfort within indoor 

environments is essential for enhancing human health, 

productivity, and well-being. This study uses interdisciplinary 

approaches, integrating insights from engineering, psychology, 

and data science to develop sophisticated machine learning 

models that predict thermal comfort. Traditional methods often 

depend on subjective human input and can be inefficient. In 

contrast, this research applies Support Vector Machines (SVM) 

and Random Forest algorithms, celebrated for their precision 

and speed in handling complex datasets. The advent of the 

Internet of Things (IoT) further revolutionizes building 

management systems by introducing adaptive control algorithms 

and enabling smarter, IoT-driven architectures. We focus on the 

comparative analysis of SVM and Random Forest in predicting 

indoor thermal comfort, discussing their respective advantages 

and limitations under various environmental conditions and 

building designs. The dataset we used included comprehensive 

thermal comfort data, which underwent rigorous preprocessing 

to enhance model training and testing—80% of the data was used 

for training and the remaining 20% for testing. The models were 

evaluated based on their ability to accurately mirror complex 

interactions between environmental factors and occupant 

comfort levels. The results indicated that while both models 

performed robustly, Random Forest demonstrated greater 

stability and slightly higher accuracy in most scenarios. The 

paper proposes potential strategies for incorporating additional 

predictive features to further refine the accuracy of these models, 

emphasizing the promise of machine learning in advancing 

indoor comfort optimization. 
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I. INTRODUCTION 

Optimizing built environments for human habitation 
crucially involves predicting thermal comfort, a significant 
challenge intensified by climate change. As climate change 
escalates, extreme weather events become more frequent and 
severe, heightening the need for effective management of 
indoor thermal conditions. The importance of accurately 
predicting thermal comfort is underscored by its substantial 
impact on human health, productivity, and overall well-being. 
Inadequate thermal environments, characterized by excessive 
heat or cold, can result in discomfort, fatigue, and health 
complications, adversely affecting an individual's quality of 
life and reducing productivity in various environments such as 
workplaces, educational institutions, and homes. 

Moreover, the economic consequences of neglecting 
thermal comfort are significant. Suboptimal indoor climates 
lead to heightened energy consumption as occupants frequently 

use heating or cooling systems to alleviate discomfort. This 
increased reliance on HVAC (Heating, Ventilation, & Air 
Conditioning) systems not only results in higher utility bills but 
also contributes to environmental strain. Consequently, there is 
an urgent need to develop reliable predictive models that can 
accurately forecast occupants’ thermal comfort preferences 
under varying environmental conditions and architectural 
designs. Such models must incorporate a range of factors, 
including ambient temperature, humidity levels, clothing 
insulation, metabolic rates, and individual preferences, to 
deliver precise assessments of thermal comfort levels. 

Addressing this imperative necessitates interdisciplinary 
collaboration among architects, engineers, psychologists, and 
data scientists. Integrating insights from environmental science, 
human physiology, and behavioral psychology is essential for 
developing effective predictive models. By harnessing 
advancements in sensor technology, data analytics, and 
machine learning algorithms, these models can be refined to 
provide real-time insights into the dynamics of thermal 
comfort. This enables building managers and occupants to 
optimize indoor environments, thereby enhancing well-being 
and promoting sustainable resource utilization. 

To further understand the impact of thermal comfort, let's 
explore a detailed example. Temperature plays a critical role in 
human well-being, akin to how a rise in body temperature can 
signal illness, indicating that something is amiss. Similarly, 
room temperature significantly affects comfort and, 
consequently, our ability to function optimally. 

Consider a scenario on a hot summer day: you begin to 
prepare for lessons or study in your room. To create a quiet 
environment, you close the door to block out noise and shut the 
window to keep out the heat. However, this action 
inadvertently leads to a reduction in airflow and available 
space, causing an increase in carbon dioxide levels as it 
accumulates in the room. This buildup of carbon dioxide 
decreases the oxygen levels, leading to a rise in room 
temperature. Consequently, you may start to feel distracted and 
lethargic, a direct result of the diminished air quality and 
increased warmth. This situation can be remedied by simply 
opening the door to improve ventilation. This action helps to 
balance the air quality and regulate the room's temperature, 
restoring a more comfortable and conducive environment for 
studying. This example underscores the importance of 
managing thermal comfort to maintain productivity and well-
being in indoor spaces. The process of predicting thermal 
comfort involves the analysis of various factors, including 
temperature, humidity, air velocity, and clothing insulation. 
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Traditional methods, based on human comfort models, tend to 
be subjective and time-consuming. 

In this paper, we explore the application of Support Vector 
Machines (SVM) and Random Forest algorithms for predicting 
thermal comfort in buildings, aiming to assess their 
effectiveness and compare their performance across different 
scenarios. The goal is to provide a thorough understanding of 
how these machine learning algorithms can aid building 
designers and facility managers in optimizing indoor 
environments and enhancing occupant comfort. Our research is 
structured around a series of hypotheses that guide the 
experimental design: 

 Data Preparation: We hypothesize that removing NaN 
values and establishing a threshold for the minimum 
number of observations per feature will improve model 
accuracy by ensuring the data quality and relevance of 
the features used. 

 Feature Encoding: We will evaluate the suitability of 
different encoding strategies as OneHotEncoder, 
LabelEncoder, and Word2Vec, to determine how best 
to handle categorical variables. The choice of encoder 
may significantly impact the performance of our 
models, depending on the nature of the data. 

 Feature Selection: The SelectKBest model will be 
utilized to identify the most relevant features for 
predicting thermal comfort. This method is expected to 
highlight the variables most closely linked to the 
outcomes, thereby streamlining the modeling process. 

 Feature Variants: Post feature selection, we will focus 
on variants of the filtered features that are closely 
associated with temperature prediction. This step is 
crucial for refining the model's focus and enhancing its 
predictive accuracy regarding thermal comfort. 

Through this structured approach, we aim to validate our 
hypotheses and draw meaningful conclusions about the utility 
of the algorithms in the context of thermal comfort prediction, 
potentially offering actionable insights for the design and 
management of building environments. Both SVM and RF are 
supervised learning algorithms capable of being trained on 
datasets consisting of thermal comfort parameters alongside 
corresponding human feedback. 

This paper is structured as follows: Section II provides a 
literature review, contextualizing our study within existing 
research. Section III describes the methodology employed, 
detailing the techniques used to analyze data. Section IV 
presents the findings of the study, supported by relevant tables 
and illustrations. Section V discusses the implications of these 
results. Finally, Section VI offers a conclusion, summarizing 
the key outcomes and proposing directions for future research. 

II. RELATED WORKS 

The Internet of Things (IoT) is revolutionizing the building 
management systems (BMS) industry, with forecasts predicting 
up to 125 billion connected devices by 2030. Despite these 
advancements, current BMS solutions often lack flexibility, 
especially in terms of feedback control options. To fully 

leverage the potential of IoT, adaptive control algorithms and 
modular architectures are being explored. The authors have 
introduced the "Semantically-Enhanced IoT-enabled Intelligent 
Control System" (SEMIoTICS) architecture, which enhances 
control system capabilities through redundancy and 
automatically adjusts configurations based on quality-of-
service criteria [1]. Additionally, Model Predictive Control 
(MPC) is becoming increasingly popular for optimizing energy 
efficiency and comfort in HVAC systems. Nonetheless, the use 
of nonlinear models introduces significant computational 
challenges. In response, research has shifted towards linear 
controllers that utilize Jacobian linearization. A notable 
innovation in this field is a bilinear model for nonlinear MPC, 
designed to minimize energy costs while maintaining comfort 
levels. However, the computational intensity of this model 
poses challenges for its application in real-time control settings 
[2]. 

Another articles introduce a cutting-edge reinforcement 
learning (RL)-based approach for HVAC systems integrated 
into the Transactive Energy Simulation Platform (TESP). 
Utilizing the Deep Deterministic Policy Gradients (DDPG) 
algorithm, this method focuses on intelligent and granular 
control of HVAC operations by optimizing a cost function that 
seeks a balance between electricity costs and end-user 
dissatisfaction. The approach includes a market price 
prediction model developed using Artificial Neural Networks 
(ANN), a DDPG-based RL control algorithm, and both 
implementation and testing phases within the TESP framework 
[3]. Further the authors present a simulation model that 
incorporates both high-level and low-level controllers for a 
passenger car’s air conditioning system. This model prioritizes 
occupant thermal comfort and the precise regulation of the 
physical system. They also introduce an Eco-Cooling Strategy 
employing MPC to optimize control inputs. The strategy is 
designed to achieve efficient cooling, reduce energy 
consumption, and maintain comfort. The simulation results 
underscore the critical role of control settings in effective 
thermal management [4]. 

Fuzzy logic-based models are increasingly utilized to 
control air conditioning systems at variable speeds, optimizing 
energy consumption and enhancing thermal comfort. 
Implemented in hardware such as microcontrollers, VLSI 
chips, and EDA tools, these controllers precisely manage 
temperature and humidity levels, effectively regulating fan and 
compressor speeds. Integrated with other techniques, they 
significantly improve energy efficiency and system 
performance [5]. Ref. [6] explores a range of HVAC control 
strategies, from classical PID controllers to advanced MPC. 
They address challenges in system simulation, control 
implementation, artificial intelligence integration, and energy 
savings, introducing the LAMDA controller to enhance real-
time responsiveness and self-adjustment based on contextual 
information, further refining control accuracy and efficiency in 
HVAC systems. 

The escalating energy consumption in commercial 
buildings, particularly through HVAC systems, has spurred 
increased research into optimizing energy efficiency. Despite 
advancements in HVAC technologies that have enhanced 
Demand Response (DR) programs, challenges remain in the 
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application of model predictive control techniques. Recent 
studies have utilized machine learning methods, including 
Reinforcement Learning and Supervised Learning, to improve 
these systems [7]. Research in BEM has particularly focused 
on optimizing HVAC operations through various innovative 
approaches. Key developments include dynamic demand 
response controllers, mixed-integer nonlinear optimization 
models, stochastic programs, multi-objective optimization 
models, occupancy-based controllers, and incentive-based DR 
controllers. Additional methodologies explored include event-
based control, mutual information frameworks, and MPC [8]. 
Furthermore, this paper [9] introduces a three-layered model 
designed for optimizing energy consumption in smart homes, 
incorporating data collection, prediction, and optimization 
phases. The model employs an Alpha Beta filter for reducing 
noise, Dynamic Evolving Neural Network (DELM) for 
dynamic parameter prediction, and fuzzy controllers for 
making refined control decisions. This integrated approach not 
only addresses static user parameters but also enhances both 
comfort and energy efficiency. 

One study introduces an innovative model that omits 
gender and age factors in assessing thermal comfort, focusing 
instead on six key thermal factors: air temperature, mean 
radiant temperature, relative humidity, air speed, clothing 
insulation, and metabolic rate. This model, developed using 
Supervised Machine Learning, is tailored for application in a 
commercial building environment [10]. Another study 
conducted in Bilbao, Spain, at the KUBIK energy efficiency 
research facility, examines human thermal perception in 
response to external temperatures to enhance indoor comfort 
and reduce energy consumption [11]. Further research 
evaluates indoor thermal comfort using the Fanger method and 
adhering to ASHRAE Standard 55, emphasizing real-world 
conditions to promote well-being, productivity, and energy 
conservation in buildings [12]. 

Additionally, a study introduces a model based on multiple 
preferences for predicting group thermal comfort in shared 
spaces. This model integrates individual preferences and 
environmental parameters, segments occupants by Body Mass 
Index (BMI), predicts individual comfort zones, and adjusts 
settings to achieve group satisfaction [13]. Overall, optimizing 
thermal comfort in buildings is crucial for enhancing occupant 
well-being, productivity, and energy efficiency. Effective 
assessment models take into account variables such as air 
temperature, humidity, radiant temperature, and air speed, with 
the ASHRAE 55 standards providing guidelines for acceptable 
conditions. 

Alternative models such as ANN, hybrid ANN-fuzzy 
systems, SVM, decision trees, and Bayes networks offer 
enhanced flexibility and accuracy in predicting thermal 
comfort [14]. Thermal comfort is a key component of indoor 
environmental quality, which can be categorized into static, 
adaptive, and data-driven models. Static models, like the 
Predicted Mean Vote (PMV), incorporate environmental and 
personal factors but have recognized limitations due to their 
lack of adaptability to individual responses. Adaptive models 
account for psychological and behavioral adaptations, 
enhancing their responsiveness to occupant preferences. Data-
driven models leverage real-time data from sensor technologies 

for dynamic and responsive assessments of thermal comfort 
[15]. 

Further advancements are seen in the development of a 
building thermal model that utilizes low-resolution data from 
smart thermostats, improving accuracy and applicability across 
different seasons. This approach transforms traditional 
empirical models into a data-driven framework by using 
surrogate features to approximate internal heat gains. The 
model's design allows for implementation on either edge 
devices or cloud infrastructure, facilitating efficient data 
collection, model learning, and deployment [16]. 

Research continues to evolve with studies focusing on 
innovative cooling technologies such as Thermoelectric Air 
Ducts, with neural network models demonstrating high 
accuracy in predicting comfort parameters in dynamic settings. 
Understanding the interplay between climatic variables, 
occupant comfort, and system performance is fundamental 
[17]. Overall, the prediction of thermal comfort and 
optimization of energy use in buildings are critical for ensuring 
occupant satisfaction and achieving energy efficiency. Key 
factors influencing comfort include metabolic rate, clothing 
insulation, and air temperature. 

Deep feedforward neural networks and reinforcement 
learning models are increasingly utilized to predict comfort 
levels, which is essential for monitoring and optimizing HVAC 
energy consumption in building operations [18]. A novel 
methodology employing machine learning, data mining, and 
statistical techniques has been developed to create predictive 
models for Combined Heat, Cooling, and Power (CHCP) 
systems. This methodology encompasses four stages: data 
preparation, data engineering, model building, and model 
evaluation. Data preparation includes retrieving failure events, 
labeling instances, and compiling a comprehensive dataset. 
Data engineering focuses on improving data representation 
through feature extraction and selection. The model building 
phase employs machine learning algorithms for various 
classification and regression tasks, while model evaluation 
assesses time to failure and other performance metrics to 
ensure the model's suitability [19]. 

Another innovative study explores thermal comfort in 
indoor environments through a novel approach called Relative 
Thermal Sensation (RTS). This method views thermal 
sensation as a continuous function of time, offering a more 
detailed understanding of human thermal perception. The study 
introduces a 3-point Relative Thermal Sensation Scale (RTSS) 
to collect real-time data on thermal sensations, capturing subtle 
changes that traditional discrete scales might overlook. 
Additionally, the research integrates RTS data with Absolute 
Thermal Sensation data from modified versions of the 
ASHRAE 7-point thermal sensation scale, enhancing the 
comprehensive understanding of thermal comfort [20]. 

Interpretable thermal comfort systems are being developed 
to enhance energy efficiency and occupant satisfaction in smart 
building environments. Traditional models such as the PMV 
often lack interpretability, posing challenges for building 
operators who need to understand the mechanisms influencing 
thermal comfort. To address this, researchers are integrating 
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machine learning techniques that promote model transparency, 
such as Partial Dependence Plots (PDP) and SHAP values. 

These tools allow operators to comprehend how 
environmental conditions affect human comfort and to evaluate 
the significance of various features under different scenarios. 
Furthermore, these interpretable machine learning algorithms 
are also being used to create surrogate models that replicate 
and potentially improve upon existing thermal comfort models, 
making them more accessible and actionable for building 
management [21]. 

III. METHODOLOGY 

A. Dataset 

The dataset, sourced from the ASHRAE and available on 
Kaggle [22], comprises 70 columns and 107,583 rows, 
containing data collected globally from 1995 to 2015. Initially, 
an examination of the dataset description led to a filtering 
process. This revealed that some columns contained sparse 
data. Consequently, a threshold was set at 60,000 rows; data 
points below this limit were discarded. Additionally, it was 
necessary to address missing values. Despite starting with 
107,583 rows, the removal of rows with NaN values was 
essential to ensure data integrity. 

Another analytical approach considered was the use of the 
Interquartile Range (IQR) method to identify and eliminate 
outliers, further refining the dataset's quality (see Fig.1). 

 
Fig. 1. Data filtering scheme. 

Regarding the conversion of text data to numeric form, as 
shown in Fig. 2, two encoding options were evaluated: 
LabelEncoder and OneHotEncoder. The decision to proceed 
with OneHotEncoder was based on its superior performance in 
preliminary results [23], effectively transforming categorical 
text data into a usable format for machine learning models. 

 
Fig. 2. Encoding scheme for the conversion of text data to numeric form. 

In the feature selection process, as shown in Fig. 3, two 
methods were considered: using the SelectBest library or 
selecting based on correlation with a predefined threshold. The 
chosen method was to use correlations, specifically setting a 
boundary above 50% to determine relevant features. The final 
set of features selected includes Age, Clothing insulation (Clo), 
Sex, Metabolic rate (Met), Thermal preference, Year, Season, 
Köppen climate classification, Cooling strategy at the building 
level, City, Predicted Percentage of Dissatisfied (PPD), Air 
temperature (C), Outdoor monthly air temperature (C), 
Relative humidity (%), and Air velocity (m/s). This selection 
represents the culmination of extensive testing with various 
combinations of features, all of which will be detailed in the 
Experiments section of our study. 

 
Fig. 3. Feature selection. 

These features were instrumental in enhancing the 
predictive accuracy of our models. For the experimental setup, 
the dataset was divided into 80% for training and 20% for 
testing. Typically, thermal comfort ratings in the dataset ranged 
from 1 to 6. Another hypothesis tested was the conversion of 
these label values into integers. By reducing the range of 
thermal comfort ratings from six to three distinct categories, we 
observed a significant improvement in model accuracy. This 
transformation simplifies the model's classification task, 
enabling more precise predictions. 

B. Inter Quartile Range (IQR) 

The Interquartile Range (IQR) is a measure of statistical 
dispersion that is calculated as the difference between the third 
quartile (Q3) and the first quartile (Q1) of a dataset. 
Mathematically, it is defined as: 

IQR = Q3 − Q1   (1) 

where Q1 is the median of the lower half of the dataset and 
Q3 is the median of the upper half of the dataset. It is 
particularly useful in identifying and dealing with outliers, 
which are data points that significantly differ from the rest of 
the dataset. Here’s how the IQR is calculated and how it can be 
used to remove outliers: 

1) Calculation of IQR: 

 Firstly, you need to arrange your dataset in ascending 
order. 

 Then, find the median of the dataset, which is the 
middle value when the data is sorted. If the dataset has 
an odd number of observations, the median is the 
middle value. If it has an even number of observations, 
the median is the average of the two middle values. 
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 Divide the dataset into two halves at the median. The 
lower half contains all the values less than or equal to 
the median, and the upper half contains all the values 
greater than or equal to the median. 

 Find the median of each half. This gives you the first 
quartile (Q1) and the third quartile (Q3) of the dataset, 
respectively. 

 The IQR is then calculated as the difference between 
Q3 and Q1: IQR = Q3 - Q1. 

2) Identifying outliers using IQR: 

 Outliers can be detected using the IQR method by 
considering values that lie below Q1 − 1.5 × IQR or 
above Q3 + 1.5 × IQR. These values are considered to 
be significantly different from the rest of the dataset. 

 Values below Q1 − 1.5 × IQR or above Q3 + 1.5 × 
IQR are commonly referred to as lower and upper 
bounds, respectively. 

 Any data points falling outside these bounds can be 
considered outliers. 

3) Removing outliers using IQR: 

 Once outliers are identified using the IQR method, you 
can choose to remove them from the dataset to improve 
the robustness of your analysis or model. 

 Outliers can be removed by filtering the dataset to 
exclude any observations that fall outside the lower and 
upper bounds defined by Q1 − 1.5 × IQR and  Q3 + 1.5 
× IQR, respectively. 

 After removing outliers, the dataset may be more 
representative of the underlying distribution and less 
influenced by extreme values. 

4) Considerations: 

 While the IQR method is effective in identifying and 
removing outliers, it’s important to exercise caution and 
consider the context of the data. 

 Outliers may sometimes carry valuable information or 
be indicative of rare but important events. Therefore, 
the decision to remove outliers should be made 
judiciously based on the specific goals of the analysis or 
model. 

 Additionally, the choice of the multiplier (1.5 in the 
conventional method) used to define the bounds can be 
adjusted depending on the desired level of sensitivity to 
outliers. 

In summary, the IQR is a useful statistical measure for 
assessing the spread of a dataset and identifying outliers. By 
calculating the IQR and defining bounds based on it, outliers 
can be effectively detected and removed, leading to a more 
robust analysis or model. 

C. Applied Algorithms 

SVM is a robust supervised machine learning algorithm 
well-suited for both classification and regression tasks. In 
thermal comfort prediction, SVM is employed to delineate the 
complex interrelationships between various environmental 
factors—like temperature, humidity, and air velocity—and 
human thermal comfort responses. The algorithm focuses on 
maximizing the margin between classes in classification tasks 
or minimizing the error in regression, all while effectively 
controlling for overfitting. By training on labeled datasets that 
encapsulate environmental conditions and corresponding 
thermal comfort ratings, SVM learns to accurately predict 
thermal comfort levels based on specific environmental inputs. 

Random Forest is another versatile machine-learning 
algorithm capable of handling both classification and 
regression challenges. It operates on an ensemble learning 
principle, utilizing multiple decision trees to construct a more 
accurate and robust model, as shown in Fig. 4. The process 
involves extensive data preparation, including cleaning, 
handling missing values, and appropriate transformations to fit 
the model. Random Forest uses random sampling to select data 
subsets for training each tree, employs recursive partitioning 
for tree creation, and integrates a voting mechanism to 
aggregate the predictions from various trees. This method is 
particularly effective in modeling nonlinear relationships and 
interactions among different environmental variables. Random 
Forest's ability to generate reliable predictions is enhanced by 
its ensemble approach, which provides a comprehensive view 
of thermal comfort across varying conditions. 

 
Fig. 4. Multiple decision trees of the Random Forest algorithm. 

Both SVM and Random Forest are adept at capturing the 
nuanced dynamics between environmental parameters and 
thermal responses, making them invaluable for predicting 
thermal comfort in diverse settings. These models stand out for 
their robustness against overfitting, ensuring consistent 
reliability across different datasets and environmental 
scenarios. While SVM offers clear decision boundaries 
facilitating easier interpretation of the factors influencing 
thermal comfort, Random Forest provides insights into feature   
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importance through its aggregated decision trees, although 
individual tree interpretations are less straightforward. 

The flexibility of SVM and Random Forest models allows 
for the accommodation of various data types, making them 
ideal for integration with different environmental sensors and 
monitoring systems in thermal comfort assessment. An 
innovative approach within this domain is utilizing the 
'Thermal preference' column as an alternative predictive 
variable instead of the conventional 'Thermal comfort' scale, 
moving away from traditional models that categorize comfort 
into six distinct levels to a more simplified three-level scale, 
which could potentially streamline the prediction process and 
enhance model accuracy. 

D. Integration with IoT 

The IoT component of the system is integral to enhancing 
building management by deploying a comprehensive network 
of sensors throughout the facility. These sensors are designed 
to monitor a variety of environmental conditions in real-time, 
including temperature, humidity, CO2 levels, and occupancy 
rates. The data collected by these IoT sensors is then 
transmitted to a central server, where it is stored and analyzed. 
For efficient and reliable data transfer, wireless communication 
protocols such as Wi-Fi, Bluetooth, or LoRaWAN are utilized. 

As part of the system design of the controller, a thorough 
selection of hardware components and parameters was 
conducted. The designed printed circuit board (PCB) features 
include: 

 A PCB thickness of 1.5 mm; 

 A copper foil thickness of 35 μm; 

 Glass epoxy laminated with foil; 

 Epoxy-urethane varnish; 

 Minimum conductor width and spacing of 0.3 mm, with 
a power bus width of 0.4 mm; 

 Minimum hole diameter of 0.352 mm, with mounting 
hole diameter of 2 mm; 

 Geometric dimensions of the board: 50.7 mm × 39.1 
mm × 6.81 mm. 

Following the selection of the electronic base and PCB 
parameters, a Raspberry Pi compatible topology was developed 
using DipTrace, as shown in Fig. 5. All components were 
positioned as closely as possible to minimize the board's size. 
Metallized holes were created in the corners of the board for 
mounting in the enclosure. The connections for power sources 
were placed on the left side of the board, and the connection 
for the battery was located on the right side. 

 
Fig. 5. Schematic of the IoT controller developed using DipTrace software. 

The AI models within the system leverage this real-time 
data to continuously refine their predictions and immediately 
adjust the building's HVAC system to achieve optimal thermal 
comfort. A key feature of this setup is its feedback loop 
mechanism, which plays a critical role in maintaining desired 
thermal conditions. The AI algorithms actively process the 
incoming data from the IoT sensors and either make 
recommendations or directly control the HVAC system's 
operations, as shown in Fig. 6. 

 
Fig. 6. General design of the system. 

The device, powered by a rechargeable battery (referred to 
as the "slave device" in our model), collects data from sensors 
and sends this data to the master device. In our case, we use 
temperature and humidity sensors, which allow for monitoring 
in the environment to solve specific tasks. The only 
requirement for using this topology is that all slave devices 
must be no more than 100 meters away from the master device. 

The topology of this model implies that each slave device is 
only aware of the master device's existence and there is no data 
transmission between two slave devices. This arrangement 
eliminates one of the main drawbacks: unreliable 
communication between two devices. The master device, in 
turn, is connected to the global network, and therefore, it only 
structures and redirects the data to the final destination—a 
database. There is a possibility that the master device may fail. 
However, nothing prevents connecting two master devices, 
through which sensor data is transmitted, and writing it into 
backup databases. 
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For instance, if the system detects any deviations from set 
comfort levels, it is programmed to make necessary 
adjustments to temperature, humidity, or airflow. This dynamic 
adjustment ensures that thermal comfort is not only achieved 
but sustained, adapting to both environmental changes and 
occupancy patterns within the building. A Raspberry Pi 
connected to a LoRa module serves as the master device. The 
role of the slave device is performed by a system composed of 
a microcontroller, a LoRa module, and sensors, all powered by 
a rechargeable battery. The collection of analog values 
produced by temperature and humidity sensors is facilitated by 
an integrated analog-to-digital converter. A fully charged 
battery can support the operation of the devices for up to 30 
days. 

The algorithm is implemented on the Raspberry Pi, which 
emulates the operation of a microcontroller. This device 
continuously listens on the 866 MHz frequency, which is used 
for transmitting data from the sensors. Selecting a suitable and 
efficient microcontroller will be part of future research. 
Managing comfortable environmental levels can also be 
controlled through an application as shown in Fig. 7. The 
interface allows us to easily manage the environment of a 
room. On the display, it can be seen current room conditions 
including temperature, humidity, and comfort level. To 
customize these settings, we can use the "Adjust Settings" 
section on the right, and the "Apply Settings" button to apply 
the new conditions. 

 
Fig. 7. GUI of the managing application. 

IV. RESULTS 

After an initial filtering process, our dataset was reduced 
from 70 to 21 columns. We continued to refine our feature 
selection by using correlations and deliberately avoided 
incorporating Fanger’s features. Further filtration using both 

correlation analysis and the SelectKbest model, which assists 
in identifying the most impactful features, led us to define three 
distinct sets of features: 

 First Set (17 features): Age, Sex, Metabolic rate (Met), 
Thermal preference, Thermal sensation, Clothing 
insulation (Clo), Subject's height (cm), Subject's weight 
(kg), Year, Season, Köppen climate classification, 
Building type, Cooling strategy at building level, Air 
temperature (C), Outdoor monthly air temperature (C), 
Relative humidity (%), and Air velocity (m/s). 

 Second Set (9 features): Age, Sex, Met, Clo, Year, 
Season, Air temperature (C), Relative humidity (%), Air 
velocity (m/s). 

 Third Set (15 features): Age, Clo, Sex, Met, Thermal 
preference, Year, Season, Köppen climate 
classification, Cooling strategy at building level, City, 
Predicted Percentage of Dissatisfied (PPD), Air 
temperature (C), Outdoor monthly air temperature (C), 
Relative humidity (%), Air velocity (m/s). 

Following the feature selection, our dataset consisted of 17 
columns and 6,765 rows. In the initial modeling phase, we 
utilized all 17 features, which yielded unsatisfactory results. 
Subsequent iterations with 9 and then 15 of the 17 features also 
failed to significantly improve outcomes. These iterations 
allowed us to test our hypotheses; notably, the IQR method 
enhanced model accuracy by approximately 3-4%, and the 
method of reducing label values improved accuracy by 20-
23%. 

Adjusting the parameters of our models led to more 
promising configurations. For the SVM model, optimal settings 
were identified as a radial basis function (RBF) kernel with 
gamma set to 0.001 and C set to 3. For the Random Forest 
model, the best parameters were found to be 300 estimators 
with a maximum depth of 15. These parameters maximized 
accuracy. 

Additionally, comparing the impact of using LabelEncoder 
versus OneHotEncoder on the dataset revealed a difference in 
performance of 2-4%. This discrepancy influenced our 
decision to favor OneHotEncoder. Our tests on data 
standardization, using both the StandardScaler and 
MinMaxScaler, indicated that standardization did not 
significantly alter the accuracy, which remained relatively 
stable. Tables I, II, and III below present the initial results of 
our prediction efforts, illustrating the performance of each 
feature set and modeling approach: 

TABLE I.  ITERATION OF 17 FEATURES 

Model Accuracy Precision Recall F1 score 

SVM 0.509 0.451 0.509 0.436 

RF 0.543 0.505 0.543 0.5 

TABLE II.  ITERATION OF 9 FEATURES 

Model Accuracy Precision Recall F1 score 

SVM 0.507 0.461 0.507 0.438 

RF 0.526 0.513 0.526 0.49 
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TABLE III.  ITERATION OF 15 FEATURES 

Model Accuracy Precision Recall F1 score 

SVM 0.533 0.448 0.533 0.433 

RF 0.54 0.475 0.539 0.482 

Based on the initial results, we further pursued enhancing 
model accuracy by employing the hypotheses formulated 
earlier in our study. The implementation of the IQR method 
was a particular focus, aimed at refining the data by removing 
outliers, which are often a source of prediction error. Tables 
IV, V, and VI below display the outcomes of applying the IQR 
method, which has further streamlined the model training 
process. These tables illustrate the effect of this technique on 
the overall performance of the models: 

TABLE IV.  ITERATION OF 17 FEATURES WITH IQR 

Model Accuracy Precision Recall F1 score 

SVM 0.522 0.44 0.522 0.441 

RF 0.548 0.517 0.548 0.504 

TABLE V.  ITERATION OF 9 FEATURES WITH IQR 

Model Accuracy Precision Recall F1 score 

SVM 0.507 0.44 0.383 0.424 

RF 0.52 0.501 0.52 0.479 

TABLE VI.  ITERATION OF 15 FEATURES WITH IQR 

Model Accuracy Precision Recall F1 score 

SVM 0.563 0.539 0.563 0.425 

RF 0.57 0.494 0.57 0.5 

Building on the improvements, which enhanced model 
accuracy by approximately 2-5%, our next step involves 
reducing label values to further increase the accuracy. This 
simplifies the output space of the model, potentially making it 
easier for the algorithms to distinguish between different states 
of thermal comfort. The Tables VII, VIII, IX shows the result 
of this approach: 

TABLE VII.  ITERATION OF 17 FEATURES WITH REDUCING LABELS 

Model Accuracy Precision Recall F1 score 

SVM 0.715 0.644 0.715 0.614 

RF 0.744 0.708 0.744 0.704 

TABLE VIII.  ITERATION OF 9 FEATURES WITH REDUCING LABELS 

Model Accuracy Precision Recall F1 score 

SVM 0.688 0.598 0.688 0.569 

RF 0.699 0.657 0.699 0.645 

TABLE IX.  ITERATION OF 15 FEATURES WITH REDUCING LABELS 

Model Accuracy Precision Recall F1 score 

SVM 0.78 0.608 0.78 0.683 

RF 0.78 0.719 0.78 0.727 

We utilized Random sampling to select subsets of the 
dataset for training individual decision trees within our 
Random Forest model. By integrating strategies such as feature 
reduction, IQR, and Random sampling, we have enhanced the 
construction and performance of our decision trees. These trees 
are built using recursive partitioning that methodically splits 
the data into increasingly specific subsets. This splitting is 
based on the feature values that most effectively differentiate 
the categories of the target variable. 

The process is further refined through selective feature 
selection, which concentrates on the most impactful variables. 
This allows the model to focus on the data elements that are 
most predictive of the outcomes, significantly enhancing the 
overall performance of the model. These integrations 
contribute to a more efficient predictive tool, suitable for 
complex scenarios in smart building environments. After 
incorporating the feature-reduced model, further simplifying 
the feature space, we observed the following results, as in 
Tables X, XI, XII: 

TABLE X.  ITERATION OF 17 FEATURE-REDUCED LABELS AND IQR 

Model Accuracy Precision Recall F1 score 

SVM 0.726 0.598 0.726 0.621 

RF 0.733 0.678 0.733 0.688 

TABLE XI.  ITERATION OF 9 FEATURE-REDUCED LABELS AND IQR 

Model Accuracy Precision Recall F1 score 

SVM 0.706 0.498 0.706 0.584 

RF 0.717 0.668 0.717 0.653 

TABLE XII.  ITERATION OF 15 FEATURE-REDUCED LABELS AND IQR 

Model Accuracy Precision Recall F1 score 

SVM 0.835 0.697 0.835 0.76 

RF 0.821 0.738 0.821 0.766 

The implications of these findings are significant, 
especially in the context of predictive accuracy in 
environmental modeling for predicting thermal comfort levels 
in smart building systems. The Receiver Operating 
Characteristic (ROC) curves graph, presented in Fig. 8, provide 
a visual comparison of the performance of two machine 
learning models: SVM and Random Forest (RF). These curves 
are essential tools in evaluating the models by plotting the True 
Positive Rate (sensitivity) against the False Positive Rate (1-
specificity) at various threshold settings. The area under the 
curve (AUC) serves as a summary measure of the model's 
ability to discriminate between positive and negative classes. 
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Fig. 8. ROC comparison for both the SVM and RF. 

In this analysis, the SVM model demonstrates an AUC of 
0.72, while the RF model exhibits a slightly superior AUC of 
0.84. This suggests that the RF model has a better overall 
performance in distinguishing between the classes under study, 
likely due to its ensemble nature, which typically provides a 
more robust prediction by averaging multiple decision 
processes. 

The following boxplots, depicted in Fig. 9, below show the 
distribution of cross-validation accuracy scores for SVM and 
RF models across various feature sets and conditions. The 
SVM exhibits a broader range of accuracy variations, 
especially with the 15-feature set. The increase in accuracy 
when reducing label values suggests that SVM benefits 
significantly from a simplified output space, potentially due to 
reduced complexity in the decision boundary formation. The 
RF shows tighter accuracy distributions and higher median 
accuracies across all feature sets, indicating better stability and 
robustness. The performance improvements with label 
reduction demonstrate RF’s effectiveness in handling more 
straightforward, cleaner data. Further exploring more 
sophisticated data preprocessing techniques such as feature 
scaling, transformation (like log transformation for skewed 
data), or anomaly detection methods could help to handle 
outliers more dynamically than just applying IQR. 

 
Fig. 9. Boxplots of cross-validation accuracy scores. 

The implications of these findings are significant, 
especially in the context of predictive accuracy in 
environmental modeling, such as predicting thermal comfort 
levels in smart buildings. The higher AUC for the RF model 
indicates a higher likelihood of correctly classifying the 
thermal comfort levels as satisfactory or unsatisfactory, which 

is crucial for developing systems that can dynamically adjust to 
maintain or achieve desired comfort states. Moreover, the 
relatively lower performance of the SVM could be attributed to 
its sensitivity to the choice of kernel and the tuning of its 
parameters, which might not have been optimal in this 
scenario. These insights not only aid in selecting the 
appropriate model for deployment but also highlight the 
importance of model tuning and feature selection, reinforcing 
the need for ongoing model adjustment in practical 
applications to achieve the best outcomes. 

V. DISCUSSION 

This research assesses the effectiveness of Random Forest 
and SVM algorithms across different feature sets in predicting 
thermal comfort and thermal preference. We introduced eight 
new features in our analysis, while seven features were 
consistent with those used in prior studies. When comparing 
the outcomes for guessing Thermal comfort versus Thermal 
preference, the performance gap between them was relatively 
narrow, ranging from 1-3%, with Random Forest generally 
exhibiting greater stability. 

Specifically, in the scenarios where we tested sets with 9 
and 15 features, alternative versions of our models initially led 
in performance. However, a significant shift occurred when we 
simplified the prediction scale from six to three Thermal 
comfort values, which resulted in our primary model 
configuration achieving superior results. This simplification 
appeared to enhance the model's ability to discriminate 
between different levels of comfort effectively. 

Moving forward, we plan to incorporate additional features 
to refine the models' accuracy further. One promising candidate 
is Heart Rate Variability (HRV), which has potential 
implications for assessing physiological responses to thermal 
environments. Moreover, I am keen to explore the capabilities 
of neural networks and deep learning techniques, inspired by 
their success in related fields. My intention is to experiment 
with various advanced algorithms such as Convolutional 
Neural Networks (CNNs), Recurrent Neural Networks 
(RNNs), Long Short-Term Memory (LSTM) networks, 
Autoencoders, and Deep Belief Networks (DBNs). These 
methodologies, referenced in papers [18] and [10], will form 
the basis of future research efforts aimed at enhancing the 
predictive accuracy of thermal comfort models. 

While the reduction of the thermal comfort scale from six 
levels to three markedly improved the models' discriminative 
capabilities, some researchers argue that this simplification 
might obscure subtle nuances in human comfort perception 
[24]. Critics suggest that while a simpler output space indeed 
facilitates more accurate classifications by reducing the 
complexity the model must manage, it potentially 
oversimplifies human experiences, which could be better 
captured with a more granular scale [25]. 

The introduction of the IQR method led to an approximate 
3-4% improvement in model accuracy. However, it is essential 
to note that while IQR can effectively reduce outlier influence, 
it may bring limitations to valid extreme cases that are crucial 
for understanding the full spectrum of environmental impacts 
on thermal comfort [26]. The more substantial impact came 
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from reducing label values, which boosted accuracy by 20-
23%. This dramatic increase underscores the pivotal role of 
thoughtful statistical techniques in predictive model 
development. Yet, there remains a debate over whether such 
methods compromise the depth of data insights for the sake of 
model performance [27]. 

The system's architecture, employing a master-slave device 
setup, has shown efficient data management and transmission 
capabilities. Slave devices, powered by rechargeable batteries 
and strategically placed not more than 100 meters from a 
Raspberry Pi master device, efficiently transmit sensor data. 
However, some experts raise concerns about the scalability and 
maintenance of such setups in larger or more complex building 
environments [28]. Critics also question the reliance on 
Raspberry Pi for critical real-time data processing, citing 
potential limitations in processing power and storage compared 
to more robust computing solutions [29]. 

The capability for direct user interaction with the building 
management system through an application is hailed for its 
user-centered design, merging comfort with energy efficiency. 
Nevertheless, this approach raises questions about the trade-
offs between user control and automated system efficiency, 
with some arguing that excessive user interaction might lead to 
less optimal energy use [30]. 

This study's significant contributions to environmental 
control and smart building management highlight the 
intersection of advanced computational techniques with 
practical IoT implementations. Yet, the ongoing exploration of 
new features and modeling techniques also points to a field that 
is constantly evolving, with ongoing debates about the best 
balance between accuracy, user experience, and system 
reliability [31]. We hope, these discussions are crucial as they 
push the boundaries of what smart building systems can 
achieve, ensuring they meet both current and future demands 
effectively. 

VI. CONCLUSION 

This study has explored the application of Random Forest 
and SVM algorithms to predict thermal comfort and 
preference, utilizing a refined feature set that integrates both 
newly introduced variables and established ones from prior 
research. The performance differential between predicting 
thermal comfort and thermal preference was relatively 
minimal, typically within 1-3%, with Random Forest 
demonstrating superior stability and robustness across varied 
feature sets. A pivotal enhancement in model performance was 
observed when the complexity of the thermal comfort scale 
was reduced from six to three levels, which notably improved 
the model's ability to discriminate between different comfort 
states more effectively. 

To address the shortcomings in existing research, our paper 
showcases the advantages of the proposed techniques over 
traditional methods. For instance, the paper introduces clever 
adjustments to the thermal comfort prediction models, such as 
the reduction of the thermal comfort scale from six to three 
levels, which has shown to improve the accuracy of SVM and 
Random Forest models. This simplification not only enhances 
model precision but also makes these models more adaptable to 

various data types, which is essential for integrating 
environmental sensors in building management systems. 
Additionally, the novel use of the 'Thermal preference' column 
as a predictive variable instead of the standard 'Thermal 
comfort' scale offers a more streamlined and effective approach 
to predicting thermal comfort. By providing a thorough 
comparative analysis of these modifications against 
conventional methods, the paper highlights the practical 
implications in improving thermal comfort assessments. 

While the simplification of the thermal comfort scale has 
yielded significant improvements, it also raises questions about 
the potential limitations of oversimplifying the nuances of 
human thermal perception. The use of the IQR method has also 
shown to improve model accuracy modestly; however, its 
tendency to remove valid extreme data points could limit 
understanding the broader impacts of environmental variables 
on thermal comfort. Moreover, the substantial increase in 
accuracy from reducing label values underscores the critical 
role of sophisticated statistical techniques in developing 
effective predictive models, though this approach has sparked 
debate regarding the depth and granularity of data 
interpretation. 

The architectural design of our IoT-based system, featuring 
a master-slave configuration, has proven effective in data 
management and transmission, albeit with some concerns 
about scalability and dependency on limited-capability devices 
like the Raspberry Pi for critical processing tasks. Additionally, 
the system's design allowing direct user interaction via an 
application exemplifies a user-centered approach that 
harmoniously blends comfort with energy efficiency, though it 
also invites scrutiny over the potential for suboptimal energy 
usage due to excessive manual interventions. 

Future enhancements are planned through the integration of 
additional predictive variables such as HRV, which holds 
promise for assessing physiological responses to varying 
thermal conditions. The potential of neural networks and deep 
learning will also be explored to leverage their proven 
capabilities in similar domains. Techniques such as CNNs, 
LSTM networks, and DBNs will be investigated to further 
refine the accuracy and efficiency of our models. 

The contributions of this research to the fields of 
environmental control and smart building management are 
significant, illustrating the powerful synergy between advanced 
computational methods and practical IoT implementations. The 
ongoing development and refinement of these models push the 
boundaries of what smart building systems can achieve, 
ensuring they not only meet current demands but are also well-
prepared for future challenges. 
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