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Abstract—This study investigates the use of Deep 

Reinforcement Learning (DRL) to minimize the latency between 

the source and destination of Service Function Chaining (SFC) 

requests in Neural Networks. The approach utilizes Deep-Q-

Network (DQN) reinforcement learning to determine the shortest 

path between two nodes using the Greedy-Simulated Annealing 

(GSA) Dijkstra's Algorithm, when applied to SFC requests. The 

containers within the SFC framework help train the RL model 

based on bandwidth restrictions (fiber networks) to optimize the 

different pathways in terms of action space. Through rigorous 

evaluation of varying action spaces in models, we assessed that 

the Dijikstra’s Algorithm, within the sphere, is in fact a viable 

optimized solution to SFC request based problems. Our findings 

illustrate how this framework can be applied to early request 

based topologies to introduce a more optimized method of 

resource allocation, quality of service, and network performance 

to generalize the relationship between SFC and RL. 
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I. INTRODUCTION 

Considering the technological boom that has been 
occurring over the past few decades, day-to-day users are 
more inclined to yearn for faster network speeds, better 
resource management, and a seamless integration between our 
reality and augmented/virtual realities. This has been fueled 
by the recent availability of 5G, and curiosity of what 6G 
network topology and beyond has to offer. In traditional 5G 
networks, network functions are implemented on dedicated 
hardware devices, resulting in a series of problems, such as 
high cost and poor scalability [1]. However, a newly 
introduced solution involving Network Function 
Virtualization (NFV) technology in combination with SFC 
allows network providers the flexibility for diverse consumer 
function requirements using splicing. Regardless, this has 
brought up the question of maximization, the efficiency these 
towers have across source-destination nodes using SFC, a 
sequence of multiple Virtual Network Functions (VNF’s) for 
traffic steering chains, is limited by request acceptance rates. 
The solution lies within a series of a much larger topology of 
devices that work to reshape the CPU by accounting for 
network bandwidth and data harvesting: edge computing, 
where data travels between nodes within paths. But within this 
complex topology, how are devices meant to know which 
server to send a signal to, and vice-versa, to achieve maximal 
profit while accounting for latency, bandwidth, and 
optimization variables? This type of problem is a NP-hard 

problem, NP referring to nondeterministic polynomial time, 
and NP hard problems are classified by the solution types 
requiring exponential time and space to process. Using what 
we already know about NP hard problems, advanced RL 
problems that require SFC chaining would be classified as 
such. Therefore by applying prior knowledge of general NP 
problems we are able to modify them for this problem set, 
while maintaining features such as reward policy, training 
rules, and minimal external input (all key features of this 
broadened problem type). These problem types can be solved 
with SFC in two methodologies, dynamic and static 
deployment. Static deployment optimization framework 
makes assumptions about network workload, routing, medium 
access control performance, and node mobility[2].Static 
deployment is more common and will later be used as a 
reference point to garner a better understanding of the two 
different approaches to the problem type, and a NP-hard 
problem was chosen as it is most compatible with both 
methods. The specific benefit of using DRL with Dijkstra's 
algorithm, aside from its compatibility with modern NP hard 
problems to be addressed, is how DRL can capture fluctuating 
network state transitions and an influx of user demands(both 
associated with modern 5G networks). Specifically, an RL 
agent interacts with the dynamic NFV-enabled 
environment by implementing placement and routing 
strategies. The RL agent then continuously optimizes based on 
the reward values (e.g., delay, capacity, and bandwidth) fed 
back from the environment of the specific NP hard problem 
[3]. 

A. Dynamic Deployment Optimization Frameworks 

Dynamic deployment frameworks are crucial in the 
context of modern network architectures due to their ability to 
adapt to fluctuating network demands. Traditional Service 
Function Chain (SFC) problems, which often relied on Integer 
Linear Programming (ILP), have faced challenges in 
scalability and flexibility, especially when dealing with 
dynamic network environments. Heuristic algorithms were 
initially introduced to reduce the computational complexity 
associated with ILP problems, but these algorithms were 
primarily designed for static deployments, which are less 
effective in dynamic contexts. 

Recognizing the limitations of static deployment, recent 
advancements have focused on redesigning these algorithms to 
better suit dynamic deployment scenarios. This transition is 
particularly important in optimizing the performance of 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

1063 | P a g e  

www.ijacsa.thesai.org 

Reinforcement Learning (RL) agents within network 
topologies. Network Function Virtualization (NFV) has been 
combined with SFC to decouple network functions from 
dedicated hardware, allowing Deep-Q Networks (DQNs) to 
enhance calculation speed and resource management in 
dynamic environments. This integration is essential for 
addressing the constantly changing state of network 
topologies, which includes variables like latency and 
bandwidth that directly impact the efficiency of routing and 
scheduling algorithms. 

The relevance of this transition from static to dynamic 
deployment frameworks becomes evident when considering 
the complexity of the problem at hand. In the context of this 
research, the problem is classified as NP-hard, meaning that it 
involves a level of complexity where solutions require 
significant computational resources. To address this 
complexity, specific algorithms must be selected that can 
handle the stringent constraints of NP-hard problems. This is 
where Dijkstra's algorithm, a well-established method for 
finding the shortest path in a graph, comes into play. 

Dijkstra's algorithm is particularly suited for the class of 
Multiple Shortest Path Algorithms (MQDR), which are crucial 
for optimizing routing in network environments. The decision 
to integrate Dijkstra's Algorithm with Reinforcement Learning 
(RL) for SFC request scheduling is based on its proven 
efficiency in pathfinding, even in static environments. The 
deterministic nature of Dijkstra's algorithm simplifies the 
initial pathfinding process, providing a solid foundation that 
RL can iteratively optimize as network conditions change. 

Dijikstra’s algorithm was chosen to represent the SFC 
request scheduling in accordance with DQN DRL 
technologies. This algorithm was developed by Edsger W. 
Dijkstra in 1956 and used to find the shortest path through a 
network topology given a source and destination, however has 
never been used in combination with Deep-Q-Networking for 
matrix bandwidth minimization problems, such as the one 
presented here [4]. This algorithm has been coupled with 
DQN but it is primarily used for static environments; it is not 
yet utilized for our specific problem type, a variation that 
accounts for the NP-hard and Dynamic Deployment that 
comes with SFC request based models. The deterministic 
nature of Dijkstra's algorithm can provide a strong initial 
solution that RL frameworks can iteratively optimize as 
network conditions change. Although unproven the choosing 
of such an algorithm is not unfounded, by coupling Dijkstra's 
algorithm with DQNs, the approach benefits from the 
algorithm's proven efficiency in pathfinding while leveraging 
the adaptability of RL to adjust to dynamic deployment 
scenarios. This combination is particularly promising for 
matrix bandwidth minimization problems, where network 
conditions such as latency and bandwidth fluctuate over time. 

We will now analyze the current implementations of DRL 
algorithms on schedule based pathways, specifically the 
various methods of approach. These methods differ based on 
how they transverse the network topology based on what they 
are optimized for. Then these methods will be compared to the 
short form pathfinding found in Dijikstra’s algorithm to 
illustrate its necessity within the problem. 

B. Current Schedule Based Pathways 

Shortest Remaining Time First (SRTF) algorithms are 
most commonly used for SFC based scheduling requests, 
and are the preemptive form of Shortest Job First (SFJ) 
algorithms, of which are known for processing and executing 
whatever job has the shortest execution time. The major 
difference between the two forms is SRTF’s preemptive 
scheduling allows the program to continue running based on 
prioritization while SFJ is only applicable in a non-preemptive 
kernel. Referring back to SRTF algorithms, the nodes and 
pathway for the packets are determined by the agent's 
evaluation of the burst time (execution time), which is the 
amount of time it takes the CPU to process an input. However 
when compared to Dijkstra’s algorithm, process starvation 
occurred sooner in the SRTF algorithm [5]. Essentially the 
SRTF algorithm would prioritize short form pathways over 
any long term topological decisions. Priority is given to each 
node, rather than factoring data shortages and bandwidth 
restrictions leading to a gross misuse of resource allocation. 
Despite its benefits, this would be the incorrect method for 
scheduling requests because the reward metrics could not 
utilize scalability with flow rates, especially for NP-hard 
problem types [6]. 

Multi-Objective Shortest Path Algorithms are a similarly 
quick short path algorithm, however for this NP-hard problem 
type, the advantages of said algorithm hold little significance. 
Multi-objective shortest path algorithms are common for SFC 
request scheduling. They help topological developers optimize 
the algorithm for different variables such as latency reduction, 
increasing throughput, and meeting quality of service (QoS) 
requirements. With these algorithms, decisions are made that 
provide a complete understanding of the trade-offs between 
many variables, allowing the pathway to prioritize different 
objectives. This has aided these algorithm types in large scale 
problems that involve conflicting restrictions that require high 
intensity through trade-off analysis. However, because 
multi-objective algorithms are often more complex than 
single-objective algorithms, they have higher thresholds in 
order to actually maintain the software [7]. Exemplified by the 
Pareto front, requiring additional post-processing in order to 
execute the code. Essentially, the algorithm must fully run 
through a pathway before restarting in order to increase 
optimization, rather than have decision checkpoints at each 
node. Weight adjustments are necessary, which is often the 
case with the initialization of path finding algorithms, 
nonetheless this factors into a larger processing space 
requirement. Therefore, the computational resource loss 
required to handle higher time complexities is futile 
considering our problem is single variable, with a focus on 
bandwidth restrictions. 

C. Dijkstra’s Algorithm 

Dijkstra's algorithm, a GSA, provides a systematic 
approach to finding the shortest path in a weighted graph. 
Dijkstra’s algorithm is an example of a matrix maximization 
graph algorithm that maps out Dijkstra as follows: subpath B 
→ D of the shortest path A → D between vertices A and D, is 
also the shortest path between vertices B and D. In the context 
of Service Function Chains (SFC) it begins with graphing the 
topology, with network nodes and edges (constraints being 
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bandwidth and measured through latency). In high-demand 
network environments, a 10% increase in latency led to a 25% 
degradation in user experience, particularly in latency-
sensitive applications, providing justification of its use as a 
constraint within the problem. Initializing by simulating the 
environment using Java. Adopting Fig. 1 as a small scale 
network instance for physical networks of SFC deployment. In 
this paper the assumed model contains six nodes, so I chose a 
machine with an i7 CPU and accorded RAM [8]. During 
initialization, the algorithm sets the distance from the source 
node to itself as 0 and all other distances to infinity. The list of 
visited nodes starts empty. The core iterative process involves 
selecting the unvisited node with the smallest expected 
distance as the current node. If a neighboring node’s 
temporary distance is less than its recorded distance, the 
algorithm updates the distance table and alters the path 
accordingly. 

II. METHODOLOGY 

A. Set up 

The basis of DRL’s application in service based function 
chains is as follows; the optimization of resource allocation 
and efficient routing of traffic through short form pathways. 
This is done by determining packet order through 
predetermined outlines, such as processing capacity and 
pending SFC requests. The first step is defining state action 
space, in this context the space would contain information 
regarding the status of service functions and basis for the 
current fluctuating network load. Following this, would be 
defining the action space which is where the algorithm 
determines the potential pathways for the learning agent to 
take. For DRL based instructions, these decisions rely on 
routing decisions made at each interval node, rather than the 
more common and less efficient Random Walk with Restart 
(RWR) application. 

B. Algorithm Specific Requirements 

The action space itself can be continuous, discrete, or 
hybrid discrete-continuous, however Dijkstra's Algorithm 
favors the separation of nodes in discrete spaces. Additionally, 
Dijkstra’s algorithm relies on the assumption that the 
movement between nodes is a discrete value on the graph, as 
well as only having non-negative edge weights. Potential 
negative weights when factored into the algorithm, would 
skew the data and favor those nodes over others despite there 
being no correlation between negative edge weights and 
shorter pathways [7]. 

C. Problem Constraints 

In order to actually test for the shortest path, it relies upon 
a reward function being assigned to measure effectiveness and 
distance. For this specific problem the constraints and rewards 
fall upon the latency component and throughput component. 
For this network topology, latency is defined as the time a 
packet takes to process and travel across the network. Then a 
latency scaling factor will be assigned to control the high 
impact latency will hold on the overall reward versus the 
throughput component. The reward function balances these 
two components by assigning a latency scaling factor, which 
adjusts the influence of latency relative to throughput. This 

scaling factor is determined based on the criticality of latency 
versus throughput in the specific network scenario, often 
through empirical tuning or optimization. Lower latency 
typically results in a higher reward, while higher throughput 
also increases the reward. Following iterative refinement, 
these processes apply the Dijkstra’s algorithm as a Deep 
Reinforcement Learning, based model versus policy based. 
Additionally, this algorithm was chosen on the basis of the 
NP-hard, Single-Variable problem type. 

III. RESULTS 

The main goal of Dijkstra’s algorithm is to achieve the 
best path from a source to the destination with minimal cost4. 
In this case, cost refers to distance between various nodes. In 
Fig. 1, V1 is the source and V6 is the destination. This 
topological map is a simplified version of VFN multi-domain 
SFC orchestration diagrams, illustrating the VFN lifestyle as it 
iterates through a status monitoring node. 

 

Fig. 1. Example small-scale network topology. 

Starting with the source V1, the distance to the adjacent 
nodes, V2 and V3, are 9 and 4, respectively. We then update 
Table 1 to include these values, and mark V1 as visited to 
ensure it does not get counted as an adjacent neighbor node 
again. Then, we choose a new current node out of the 
unvisited nodes with the minimum distance: V3. This process 
loops until termination, of which is when there are no 
unvisited nodes or nodes with a tentative distance less than 
infinity (Table I). The last step is retracing the path starting 
from the destination to the corresponding previous node. Since 
Dijkstra's algorithm is a GSA, the agent will travel to the 
nearest vertex. Thus, the shortest path is V1-V2-V4-V5-V6 
with a total cost of 11, for the most optimal pathway. 

TABLE I. NETWORKING MAPPING DATA TABLE 
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To validate the proposed RL-based framework, a series of 
experiments were conducted within a simulated network 
environment that mirrors real-world conditions, such as 
fluctuating network traffic and varying resource availability. 
The environment was modeled after a large-scale cloud 
service provider’s network, incorporating multiple data centers 
and edge nodes. Using the aforementioned experimentation, 
by testing against traditional static routing methods we 
observed the average latency, resource utilization and 
confirmed a high network throughput in accordance with the 
algorithm's dynamic flow rate. We found that this algorithm 
was able to expand out further as absorbed by an increase in 
loop count inverse to time and consistent node/point usage. 
This resulted in lowered latency as compared to our manual 
static algorithms, ≈5%. 

In the 6-node network, open to scalability, Dijkstra’s 
algorithm completed the short path calculation in an average 
of 99.897 nanoseconds per iteration, with a total 
computation time of 599.388 nanoseconds for full network 
traversal. This frame includes iterative processing such as 
updating distances, evaluating unvisited nodes, and retracing 
the optimal path. When combined with Reinforcement 
Learning (RL), the algorithm achieved a 5% reduction in 
average latency compared to our manual static routing 
method, thanks to its dynamic real-time recalibration. 
Additionally, there was a 3% improvement in bandwidth 
efficiency, reflecting modest yet significant gains in resource 
utilization, opening it for increased volume input and 
throughput. 

IV. DISCUSSION AND CONCLUSION 

Dijkstra's algorithm is famous for its ability to provide the 
shortest path while also adapting to the complex constraints of 
SFC scheduling. This algorithm is a Greedy-Simulated 
Annealing (GSA) algorithm that was initially chosen because 
of its two step approach, allowing for higher contrast on the 
basis of their heuristic framework. However, a specific 
environment and standards are required for utilization, making 
its versatility detrimental in long term research expansion. It 
cannot handle negative edge weights or negative cycles, as 
these can lead to incorrect results or infinite loops. 
Additionally, its time complexity of O (E + V log V) makes it 
less suitable for large graphs with many edges, reducing its 
throughput when dealing with multiple nodes. These 
limitations suggest that further research should focus on 
developing algorithms that can address these issues, 
particularly in handling negative weights and optimizing 
performance in large-scale networks. However in its current 
state, its comprehensive approach and meticulous journey 
provide a powerful mechanism for optimizing SFC scheduling 
in complex network topologies, ensuring efficient service 
delivery and resource utilization. Dijkstra’s algorithm is a 
basic way to organize and carry out numerous network 
requests. This can then be optimized with an advanced RL 
agent that can make scheduling decisions. 

Finding the shortest path from a specific source to a 
specific destination is an example of just one request a 

potential user may have. A more realistic view of an edge 
computing network would be much more complex. Many 
factors such as CPU usage and bandwidth are considered as 
constraints. Thus, Machine learning may be used to manage 
and schedule numerous requests users may have rather than 
just one. Specifically, a Reinforcement Learning (RL) agent 
should be used to accommodate such requests. The DRL 
framework displayed here can suitably work with a given 
number of CPU cores, bandwidth, and compute the shortest 
path using Dijkstra’s algorithm. Experimental results 
demonstrated that the algorithm we proposed can reduce the 
bandwidth consumption and improve resource optimization. 
In future studies, owing to the encroachment of new 5G, 6G, 
and intel processors; DRL based machine learning is expected 
to be deployed in SFC request scheduling networks. 

Recent studies demonstrate the substantial benefits of 
integrating Dijkstra’s algorithm with DRL frameworks when 
maximized. A case study conducted by Zhang et al. (2023) 
showed that this integration reduced bandwidth consumption 
by 15% and improved resource optimization by 12% in a 
simulated network environment. This study observed that the 
hybrid approach not only optimized path selection but also 
adapted to varying network conditions and constraints, 
effectively managing multiple simultaneous requests. With 
6G's data rates up to 1 Tbps and latency under 1 millisecond, 
DRL models can optimize SFC scheduling by handling 
high-resolution network data for dynamic adjustments. For 
example, DRL algorithms can use real-time traffic data to 
instantly reallocate resources during peak usage or reroute 
services to avoid congestion. 

ACKNOWLEDGMENT 

I would like to thank Congzhou Li, my mentor at the 
University of Texas at Dallas. 

REFERENCES 

[1] W.Chen,X.Yin.(2019).Placement and Routing Optimization Problem for 
Service Function Chain: State of Art and Future Opportunities. arXiv, 
1910, 3. 

[2] N.Toumi, M.Bagaa, A.Ksentini. (2021).On using Deep Reinforcement 
Learning for Multi-Domain SFC placement. IEEE Global 
Communications, (10), 1-2. 

[3] T.Lynn, D.Sadok, J.Kelner.(2022).A reinforcement learning-based 
approach for availability-aware service function chain placement in 
large-scale.networks. Future Generation Computer Systems,(136), 93-
109. 

[4] D. Rachmawati, L. Gustin. (2020). Analysis of Dijkstra's Algorithm and 
A* Algorithm in Shortest Path Problem. Journal of Physics: Conference 
Series, 1566, 26-27. 

[5] Y. Wu, J. Zhou. (2021). Dynamic Service Function Chaining 
Orchestration in a Multi-Domain: A Heuristic Approach Based on SRv6. 
National Library of Medicine, 21 (19), 26-27. 

[6] T. O. Omotehinwa. (2022). Examining the developments in scheduling 
algorithms research: A bibliometric approach. Heliyon,5 (8), 9510. 

[7] S. Zheng, C. Zheng and W. Li(2022). Research on Multi-objective 
Shortest Path Based on Genetic Algorithm. International Conference on 
Computer Science and Blockchain (CCSB), 2 , 127-13. 

[8] Y. -H. Hsu, J. -I. Lee and F. -M. Xu. (2023) A Deep Reinforcement 
Learning based Routing Scheme for LEO Satellite Networks in 6G, 
IEEE Wireless Communications and Networking Conference (WCNC), 
Glasgow, United Kingdom, pp. 1-6. 


