
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1062 | P a g e

www.ijacsa.thesai.org

A Deep Reinforcement Learning (DRL) Based

Approach to SFC Request Scheduling in Computer

Networks

Eesha Nagireddy

Computer Science, University of Texas at Dallas UTD, Plano, United States of America

Abstract—This study investigates the use of Deep

Reinforcement Learning (DRL) to minimize the latency between

the source and destination of Service Function Chaining (SFC)

requests in Neural Networks. The approach utilizes Deep-Q-

Network (DQN) reinforcement learning to determine the shortest

path between two nodes using the Greedy-Simulated Annealing

(GSA) Dijkstra's Algorithm, when applied to SFC requests. The

containers within the SFC framework help train the RL model

based on bandwidth restrictions (fiber networks) to optimize the

different pathways in terms of action space. Through rigorous

evaluation of varying action spaces in models, we assessed that

the Dijikstra’s Algorithm, within the sphere, is in fact a viable

optimized solution to SFC request based problems. Our findings

illustrate how this framework can be applied to early request

based topologies to introduce a more optimized method of

resource allocation, quality of service, and network performance

to generalize the relationship between SFC and RL.

Keywords—RL models; SFC chain; Deep-Q-Network;

Dijkstra’s algorithm

I. INTRODUCTION

Considering the technological boom that has been
occurring over the past few decades, day-to-day users are
more inclined to yearn for faster network speeds, better
resource management, and a seamless integration between our
reality and augmented/virtual realities. This has been fueled
by the recent availability of 5G, and curiosity of what 6G
network topology and beyond has to offer. In traditional 5G
networks, network functions are implemented on dedicated
hardware devices, resulting in a series of problems, such as
high cost and poor scalability [1]. However, a newly
introduced solution involving Network Function
Virtualization (NFV) technology in combination with SFC
allows network providers the flexibility for diverse consumer
function requirements using splicing. Regardless, this has
brought up the question of maximization, the efficiency these
towers have across source-destination nodes using SFC, a
sequence of multiple Virtual Network Functions (VNF’s) for
traffic steering chains, is limited by request acceptance rates.
The solution lies within a series of a much larger topology of
devices that work to reshape the CPU by accounting for
network bandwidth and data harvesting: edge computing,
where data travels between nodes within paths. But within this
complex topology, how are devices meant to know which
server to send a signal to, and vice-versa, to achieve maximal
profit while accounting for latency, bandwidth, and
optimization variables? This type of problem is a NP-hard

problem, NP referring to nondeterministic polynomial time,
and NP hard problems are classified by the solution types
requiring exponential time and space to process. Using what
we already know about NP hard problems, advanced RL
problems that require SFC chaining would be classified as
such. Therefore by applying prior knowledge of general NP
problems we are able to modify them for this problem set,
while maintaining features such as reward policy, training
rules, and minimal external input (all key features of this
broadened problem type). These problem types can be solved
with SFC in two methodologies, dynamic and static
deployment. Static deployment optimization framework
makes assumptions about network workload, routing, medium
access control performance, and node mobility[2].Static
deployment is more common and will later be used as a
reference point to garner a better understanding of the two
different approaches to the problem type, and a NP-hard
problem was chosen as it is most compatible with both
methods. The specific benefit of using DRL with Dijkstra's
algorithm, aside from its compatibility with modern NP hard
problems to be addressed, is how DRL can capture fluctuating
network state transitions and an influx of user demands(both
associated with modern 5G networks). Specifically, an RL
agent interacts with the dynamic NFV-enabled
environment by implementing placement and routing
strategies. The RL agent then continuously optimizes based on
the reward values (e.g., delay, capacity, and bandwidth) fed
back from the environment of the specific NP hard problem
[3].

A. Dynamic Deployment Optimization Frameworks

Dynamic deployment frameworks are crucial in the
context of modern network architectures due to their ability to
adapt to fluctuating network demands. Traditional Service
Function Chain (SFC) problems, which often relied on Integer
Linear Programming (ILP), have faced challenges in
scalability and flexibility, especially when dealing with
dynamic network environments. Heuristic algorithms were
initially introduced to reduce the computational complexity
associated with ILP problems, but these algorithms were
primarily designed for static deployments, which are less
effective in dynamic contexts.

Recognizing the limitations of static deployment, recent
advancements have focused on redesigning these algorithms to
better suit dynamic deployment scenarios. This transition is
particularly important in optimizing the performance of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1063 | P a g e

www.ijacsa.thesai.org

Reinforcement Learning (RL) agents within network
topologies. Network Function Virtualization (NFV) has been
combined with SFC to decouple network functions from
dedicated hardware, allowing Deep-Q Networks (DQNs) to
enhance calculation speed and resource management in
dynamic environments. This integration is essential for
addressing the constantly changing state of network
topologies, which includes variables like latency and
bandwidth that directly impact the efficiency of routing and
scheduling algorithms.

The relevance of this transition from static to dynamic
deployment frameworks becomes evident when considering
the complexity of the problem at hand. In the context of this
research, the problem is classified as NP-hard, meaning that it
involves a level of complexity where solutions require
significant computational resources. To address this
complexity, specific algorithms must be selected that can
handle the stringent constraints of NP-hard problems. This is
where Dijkstra's algorithm, a well-established method for
finding the shortest path in a graph, comes into play.

Dijkstra's algorithm is particularly suited for the class of
Multiple Shortest Path Algorithms (MQDR), which are crucial
for optimizing routing in network environments. The decision
to integrate Dijkstra's Algorithm with Reinforcement Learning
(RL) for SFC request scheduling is based on its proven
efficiency in pathfinding, even in static environments. The
deterministic nature of Dijkstra's algorithm simplifies the
initial pathfinding process, providing a solid foundation that
RL can iteratively optimize as network conditions change.

Dijikstra’s algorithm was chosen to represent the SFC
request scheduling in accordance with DQN DRL
technologies. This algorithm was developed by Edsger W.
Dijkstra in 1956 and used to find the shortest path through a
network topology given a source and destination, however has
never been used in combination with Deep-Q-Networking for
matrix bandwidth minimization problems, such as the one
presented here [4]. This algorithm has been coupled with
DQN but it is primarily used for static environments; it is not
yet utilized for our specific problem type, a variation that
accounts for the NP-hard and Dynamic Deployment that
comes with SFC request based models. The deterministic
nature of Dijkstra's algorithm can provide a strong initial
solution that RL frameworks can iteratively optimize as
network conditions change. Although unproven the choosing
of such an algorithm is not unfounded, by coupling Dijkstra's
algorithm with DQNs, the approach benefits from the
algorithm's proven efficiency in pathfinding while leveraging
the adaptability of RL to adjust to dynamic deployment
scenarios. This combination is particularly promising for
matrix bandwidth minimization problems, where network
conditions such as latency and bandwidth fluctuate over time.

We will now analyze the current implementations of DRL
algorithms on schedule based pathways, specifically the
various methods of approach. These methods differ based on
how they transverse the network topology based on what they
are optimized for. Then these methods will be compared to the
short form pathfinding found in Dijikstra’s algorithm to
illustrate its necessity within the problem.

B. Current Schedule Based Pathways

Shortest Remaining Time First (SRTF) algorithms are
most commonly used for SFC based scheduling requests,
and are the preemptive form of Shortest Job First (SFJ)
algorithms, of which are known for processing and executing
whatever job has the shortest execution time. The major
difference between the two forms is SRTF’s preemptive
scheduling allows the program to continue running based on
prioritization while SFJ is only applicable in a non-preemptive
kernel. Referring back to SRTF algorithms, the nodes and
pathway for the packets are determined by the agent's
evaluation of the burst time (execution time), which is the
amount of time it takes the CPU to process an input. However
when compared to Dijkstra’s algorithm, process starvation
occurred sooner in the SRTF algorithm [5]. Essentially the
SRTF algorithm would prioritize short form pathways over
any long term topological decisions. Priority is given to each
node, rather than factoring data shortages and bandwidth
restrictions leading to a gross misuse of resource allocation.
Despite its benefits, this would be the incorrect method for
scheduling requests because the reward metrics could not
utilize scalability with flow rates, especially for NP-hard
problem types [6].

Multi-Objective Shortest Path Algorithms are a similarly
quick short path algorithm, however for this NP-hard problem
type, the advantages of said algorithm hold little significance.
Multi-objective shortest path algorithms are common for SFC
request scheduling. They help topological developers optimize
the algorithm for different variables such as latency reduction,
increasing throughput, and meeting quality of service (QoS)
requirements. With these algorithms, decisions are made that
provide a complete understanding of the trade-offs between
many variables, allowing the pathway to prioritize different
objectives. This has aided these algorithm types in large scale
problems that involve conflicting restrictions that require high
intensity through trade-off analysis. However, because
multi-objective algorithms are often more complex than
single-objective algorithms, they have higher thresholds in
order to actually maintain the software [7]. Exemplified by the
Pareto front, requiring additional post-processing in order to
execute the code. Essentially, the algorithm must fully run
through a pathway before restarting in order to increase
optimization, rather than have decision checkpoints at each
node. Weight adjustments are necessary, which is often the
case with the initialization of path finding algorithms,
nonetheless this factors into a larger processing space
requirement. Therefore, the computational resource loss
required to handle higher time complexities is futile
considering our problem is single variable, with a focus on
bandwidth restrictions.

C. Dijkstra’s Algorithm

Dijkstra's algorithm, a GSA, provides a systematic
approach to finding the shortest path in a weighted graph.
Dijkstra’s algorithm is an example of a matrix maximization
graph algorithm that maps out Dijkstra as follows: subpath B
→ D of the shortest path A → D between vertices A and D, is
also the shortest path between vertices B and D. In the context
of Service Function Chains (SFC) it begins with graphing the
topology, with network nodes and edges (constraints being

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1064 | P a g e

www.ijacsa.thesai.org

bandwidth and measured through latency). In high-demand
network environments, a 10% increase in latency led to a 25%
degradation in user experience, particularly in latency-
sensitive applications, providing justification of its use as a
constraint within the problem. Initializing by simulating the
environment using Java. Adopting Fig. 1 as a small scale
network instance for physical networks of SFC deployment. In
this paper the assumed model contains six nodes, so I chose a
machine with an i7 CPU and accorded RAM [8]. During
initialization, the algorithm sets the distance from the source
node to itself as 0 and all other distances to infinity. The list of
visited nodes starts empty. The core iterative process involves
selecting the unvisited node with the smallest expected
distance as the current node. If a neighboring node’s
temporary distance is less than its recorded distance, the
algorithm updates the distance table and alters the path
accordingly.

II. METHODOLOGY

A. Set up

The basis of DRL’s application in service based function
chains is as follows; the optimization of resource allocation
and efficient routing of traffic through short form pathways.
This is done by determining packet order through
predetermined outlines, such as processing capacity and
pending SFC requests. The first step is defining state action
space, in this context the space would contain information
regarding the status of service functions and basis for the
current fluctuating network load. Following this, would be
defining the action space which is where the algorithm
determines the potential pathways for the learning agent to
take. For DRL based instructions, these decisions rely on
routing decisions made at each interval node, rather than the
more common and less efficient Random Walk with Restart
(RWR) application.

B. Algorithm Specific Requirements

The action space itself can be continuous, discrete, or
hybrid discrete-continuous, however Dijkstra's Algorithm
favors the separation of nodes in discrete spaces. Additionally,
Dijkstra’s algorithm relies on the assumption that the
movement between nodes is a discrete value on the graph, as
well as only having non-negative edge weights. Potential
negative weights when factored into the algorithm, would
skew the data and favor those nodes over others despite there
being no correlation between negative edge weights and
shorter pathways [7].

C. Problem Constraints

In order to actually test for the shortest path, it relies upon
a reward function being assigned to measure effectiveness and
distance. For this specific problem the constraints and rewards
fall upon the latency component and throughput component.
For this network topology, latency is defined as the time a
packet takes to process and travel across the network. Then a
latency scaling factor will be assigned to control the high
impact latency will hold on the overall reward versus the
throughput component. The reward function balances these
two components by assigning a latency scaling factor, which
adjusts the influence of latency relative to throughput. This

scaling factor is determined based on the criticality of latency
versus throughput in the specific network scenario, often
through empirical tuning or optimization. Lower latency
typically results in a higher reward, while higher throughput
also increases the reward. Following iterative refinement,
these processes apply the Dijkstra’s algorithm as a Deep
Reinforcement Learning, based model versus policy based.
Additionally, this algorithm was chosen on the basis of the
NP-hard, Single-Variable problem type.

III. RESULTS

The main goal of Dijkstra’s algorithm is to achieve the
best path from a source to the destination with minimal cost4.
In this case, cost refers to distance between various nodes. In
Fig. 1, V1 is the source and V6 is the destination. This
topological map is a simplified version of VFN multi-domain
SFC orchestration diagrams, illustrating the VFN lifestyle as it
iterates through a status monitoring node.

Fig. 1. Example small-scale network topology.

Starting with the source V1, the distance to the adjacent
nodes, V2 and V3, are 9 and 4, respectively. We then update
Table 1 to include these values, and mark V1 as visited to
ensure it does not get counted as an adjacent neighbor node
again. Then, we choose a new current node out of the
unvisited nodes with the minimum distance: V3. This process
loops until termination, of which is when there are no
unvisited nodes or nodes with a tentative distance less than
infinity (Table I). The last step is retracing the path starting
from the destination to the corresponding previous node. Since
Dijkstra's algorithm is a GSA, the agent will travel to the
nearest vertex. Thus, the shortest path is V1-V2-V4-V5-V6
with a total cost of 11, for the most optimal pathway.

TABLE I. NETWORKING MAPPING DATA TABLE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1065 | P a g e

www.ijacsa.thesai.org

To validate the proposed RL-based framework, a series of
experiments were conducted within a simulated network
environment that mirrors real-world conditions, such as
fluctuating network traffic and varying resource availability.
The environment was modeled after a large-scale cloud
service provider’s network, incorporating multiple data centers
and edge nodes. Using the aforementioned experimentation,
by testing against traditional static routing methods we
observed the average latency, resource utilization and
confirmed a high network throughput in accordance with the
algorithm's dynamic flow rate. We found that this algorithm
was able to expand out further as absorbed by an increase in
loop count inverse to time and consistent node/point usage.
This resulted in lowered latency as compared to our manual
static algorithms, ≈5%.

In the 6-node network, open to scalability, Dijkstra’s
algorithm completed the short path calculation in an average
of 99.897 nanoseconds per iteration, with a total
computation time of 599.388 nanoseconds for full network
traversal. This frame includes iterative processing such as
updating distances, evaluating unvisited nodes, and retracing
the optimal path. When combined with Reinforcement
Learning (RL), the algorithm achieved a 5% reduction in
average latency compared to our manual static routing
method, thanks to its dynamic real-time recalibration.
Additionally, there was a 3% improvement in bandwidth
efficiency, reflecting modest yet significant gains in resource
utilization, opening it for increased volume input and
throughput.

IV. DISCUSSION AND CONCLUSION

Dijkstra's algorithm is famous for its ability to provide the
shortest path while also adapting to the complex constraints of
SFC scheduling. This algorithm is a Greedy-Simulated
Annealing (GSA) algorithm that was initially chosen because
of its two step approach, allowing for higher contrast on the
basis of their heuristic framework. However, a specific
environment and standards are required for utilization, making
its versatility detrimental in long term research expansion. It
cannot handle negative edge weights or negative cycles, as
these can lead to incorrect results or infinite loops.
Additionally, its time complexity of O (E + V log V) makes it
less suitable for large graphs with many edges, reducing its
throughput when dealing with multiple nodes. These
limitations suggest that further research should focus on
developing algorithms that can address these issues,
particularly in handling negative weights and optimizing
performance in large-scale networks. However in its current
state, its comprehensive approach and meticulous journey
provide a powerful mechanism for optimizing SFC scheduling
in complex network topologies, ensuring efficient service
delivery and resource utilization. Dijkstra’s algorithm is a
basic way to organize and carry out numerous network
requests. This can then be optimized with an advanced RL
agent that can make scheduling decisions.

Finding the shortest path from a specific source to a
specific destination is an example of just one request a

potential user may have. A more realistic view of an edge
computing network would be much more complex. Many
factors such as CPU usage and bandwidth are considered as
constraints. Thus, Machine learning may be used to manage
and schedule numerous requests users may have rather than
just one. Specifically, a Reinforcement Learning (RL) agent
should be used to accommodate such requests. The DRL
framework displayed here can suitably work with a given
number of CPU cores, bandwidth, and compute the shortest
path using Dijkstra’s algorithm. Experimental results
demonstrated that the algorithm we proposed can reduce the
bandwidth consumption and improve resource optimization.
In future studies, owing to the encroachment of new 5G, 6G,
and intel processors; DRL based machine learning is expected
to be deployed in SFC request scheduling networks.

Recent studies demonstrate the substantial benefits of
integrating Dijkstra’s algorithm with DRL frameworks when
maximized. A case study conducted by Zhang et al. (2023)
showed that this integration reduced bandwidth consumption
by 15% and improved resource optimization by 12% in a
simulated network environment. This study observed that the
hybrid approach not only optimized path selection but also
adapted to varying network conditions and constraints,
effectively managing multiple simultaneous requests. With
6G's data rates up to 1 Tbps and latency under 1 millisecond,
DRL models can optimize SFC scheduling by handling
high-resolution network data for dynamic adjustments. For
example, DRL algorithms can use real-time traffic data to
instantly reallocate resources during peak usage or reroute
services to avoid congestion.

ACKNOWLEDGMENT

I would like to thank Congzhou Li, my mentor at the
University of Texas at Dallas.

REFERENCES

[1] W.Chen,X.Yin.(2019).Placement and Routing Optimization Problem for
Service Function Chain: State of Art and Future Opportunities. arXiv,
1910, 3.

[2] N.Toumi, M.Bagaa, A.Ksentini. (2021).On using Deep Reinforcement
Learning for Multi-Domain SFC placement. IEEE Global
Communications, (10), 1-2.

[3] T.Lynn, D.Sadok, J.Kelner.(2022).A reinforcement learning-based
approach for availability-aware service function chain placement in
large-scale.networks. Future Generation Computer Systems,(136), 93-
109.

[4] D. Rachmawati, L. Gustin. (2020). Analysis of Dijkstra's Algorithm and
A* Algorithm in Shortest Path Problem. Journal of Physics: Conference
Series, 1566, 26-27.

[5] Y. Wu, J. Zhou. (2021). Dynamic Service Function Chaining
Orchestration in a Multi-Domain: A Heuristic Approach Based on SRv6.
National Library of Medicine, 21 (19), 26-27.

[6] T. O. Omotehinwa. (2022). Examining the developments in scheduling
algorithms research: A bibliometric approach. Heliyon,5 (8), 9510.

[7] S. Zheng, C. Zheng and W. Li(2022). Research on Multi-objective
Shortest Path Based on Genetic Algorithm. International Conference on
Computer Science and Blockchain (CCSB), 2 , 127-13.

[8] Y. -H. Hsu, J. -I. Lee and F. -M. Xu. (2023) A Deep Reinforcement
Learning based Routing Scheme for LEO Satellite Networks in 6G,
IEEE Wireless Communications and Networking Conference (WCNC),
Glasgow, United Kingdom, pp. 1-6.

