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Abstract—An automatic short-answer scoring system involves 

using computational techniques to automatically evaluate and 

score student answers based on a given question and desired 

answer. The increasing reliance on automated systems for 

assessing student responses has highlighted the need for accurate 

and reliable short-answer scoring mechanisms. This research aims 

to improve the understanding and evaluation of student answers 

by developing an advanced automatic scoring system. While 

previous studies have explored various methodologies, many fail 

to capture the full complexity of response text. To address this gap, 

our study combines the strengths of classical neural networks with 

the capabilities of large language models. Specifically, we fine-tune 

the Bidirectional Encoder Representations from Transformers 

(BERT) model and integrate it with a recurrent neural network to 

enhance the depth of text comprehension. We evaluate our 

approach on the widely-used Mohler dataset and benchmark its 

performance against several baseline models using RMSE (Root 

Mean Square Error) and Pearson correlation metrics. The 

experimental results demonstrate that our method outperforms 

most existing systems, providing a more robust solution for 

automatic short-answer scoring. 
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I. INTRODUCTION 

Assessment in an educational setting is an essential and 
fundamental aspect of measuring learners' knowledge and 
understanding of a subject. In a typical classroom, whether 
through tests, assignments, or quizzes, teachers provide grades 
and feedback on students' answers to questions. However, with 
the increasing number of students enrolling in online platforms 
and universities, manually evaluating all these answers has 
become a complicated and expensive procedure. This increase 
in the number of students highlights the critical requirement for 
more effective techniques for student assessment. Automated 
assessment systems can alleviate this burden by offering a 
scalable and consistent solution to evaluating student 
performance. 

Exams typically consist of a variety of question forms, which 
are broadly classified as objective and subjective. True/false, 
multiple-choice, and fill-in-the-blank questions are examples of 
objective questions that are intended to evaluate specific 
knowledge and may be evaluated quickly and accurately [1]. 
Conversely, subjective questions (short answer/essay) need a 
long or short response and are intended to assess a deeper 
understanding in addition to the ability to integrate concepts and 
present them in a more sophisticated way. Because the answers 
to objective questions are precise and unambiguous, developing 

an automated assessment system is rather straightforward. On 
the other hand, creating a system of that kind for subjective 
questions is more difficult because it needs to analyze text and 
comprehend the answers' semantic meaning. When a teacher 
asks his student in an exam setting the following question: 
“What is the definition of Artificial Intelligence?” For example, 
" computers that can carry out difficult jobs that humans have 
historically only been able to complete" might be the answer of 
one student. In contrast, another student could respond with “Is 
the technology that makes it possible for computers and other 
devices to mimic human intelligence and problem-solving 
skills.” Both answers are accurate, even though they are 
expressed in different ways using different words. This 
illustrates the complexity of treating subjective questions 
automatically, as the system must be capable of recognizing the 
correctness of varied but equivalent answers. Addressing this 
complexity requires a system that can comprehend and assess 
the various ways in which students may present their answers. 
This calls for the capacity to recognize synonyms, understand 
context, and evaluate the relevance and accuracy of the content 
provided in student responses. 

An automatic short answer scoring (ASAS) system aims to 
evaluate and assign scores to short textual responses based on 
one or more optimal answers. Since the responses of both 
student and reference are written in natural language, 
sophisticated Natural Language Processing (NLP) methods and 
machine learning models have been required to accurately 
understand and assess what is written. In various NLP tasks, 
including ASAS, language models (LMs) have demonstrated 
significant success. These models assess the probability of word 
sequences and can predict subsequent words based on the 
preceding words within a sequence [2]. Traditional language 
models, such as n-gram language models, employ count-based 
methods to evaluate and understand text. These models typically 
rely on the frequency of word sequences (n-grams) to predict the 
likelihood of subsequent words and to determine the overall 
structure and coherence of a text. In the context of automatic 
answer scoring, vector-space models that count n-grams have 
been widely applied due to their simplicity and effectiveness. 
For instance, [3] conducted a comparative study where they 
evaluated the efficacy of bag-of-n-gram representation against 
bags of semantic annotations for the ASAS task. Their findings 
highlighted the strengths and limitations of count-based models 
in capturing the nuances and subtleties of human language, 
emphasizing the need for more sophisticated approaches that 
can understand the deeper semantic meaning of text. In modern 
approaches, language models (LMs) are trained using neural 
networks, which address several limitations inherent in 
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traditional count-based methods. Firstly, they significantly 
expand the context taken into account, allowing for a more 
comprehensive understanding of text beyond the fixed-length 
context of n-grams. Secondly, these models exhibit a 
generalization capability across different contexts, which 
enhances their ability to handle diverse linguistic patterns and 
structures. The initial neural models were based on recurrent 
neural networks (RNNs), which are well-suited for sequential 
data. Among these, long short-term memory networks (LSTMs) 
became particularly popular due to their ability to capture long-
range dependencies in text. LSTMs address the vanishing 
gradient problem in standard RNNs, enabling the model to retain 
information over longer sequences. The most recent 
advancements in neural models for language modeling, such as 
BERT (Bidirectional Encoder Representations from 
Transformers) introduced by [4], are based on the transformer 
architecture. This architecture represents a significant shift from 
previous models like RNNs and LSTMs, leveraging self-
attention mechanisms to process and understand text. The 
transformer architecture enables these models to capture 
intricate dependencies and contextual relationships within text 
more effectively, making them highly suitable for a wide range 
of Natural Language Processing (NLP) tasks. 

In this work, we introduce a novel automatic answer-scoring 
framework that combines the strengths of a pre-trained BERT 
model through fine-tuning with the capabilities of an LSTM 
network. BERT is a multi-layer bidirectional Transformer 
encoder designed for Natural Language Processing (NLP). 
Developed by Google, the pre-trained BERT model leverages a 
vast amount of unlabeled data, including 800 million words 
from books and 2.5 billion words from Wikipedia. By fine-
tuning an additional classification layer along with all the pre-
trained parameters, BERT can be adapted for specific NLP 
tasks. LSTM (Long Short-Term Memory) is a type of recurrent 
neural network (RNN) designed to effectively capture long-
range dependencies and temporal patterns in sequential data. It 
deals with long-term dependencies, by incorporating memory 
cells and gating mechanisms to control the flow of information. 
These features enable LSTM networks to remember and utilize 
information from earlier time steps, making them well-suited for 
tasks involving sequential data. This hybrid approach leverages 
the advanced contextual understanding of BERT and the 
sequential processing power of LSTM to enhance the accuracy 
and efficiency of scoring short textual responses. 

The findings of our research have two significant 
implications for both science and society. From a scientific 
perspective, we demonstrate the effectiveness of combining 
large language models like BERT with recurrent neural 
networks to improve text representation and enhance the 
accuracy of automated short-answer scoring. On the other hand, 
our research could have a significant implicant on society by 
reducing the workload on educators, allowing them to focus 
more on interactive and personalized teaching. Furthermore, this 
system could be widely implemented in online educational 
platforms, ensuring consistent and fair assessment for a growing 
number of students worldwide. 

The remainder of this paper is structured as follows. Section 
II provides a brief review of related works. Section III introduces 
and elaborates on the proposed approach. Section IV outlines the 

experimental details, including the dataset, metrics, and 
implementation settings. Section V presents the results and the 
corresponding discussions. Finally, Section VI summarizes the 
study and suggests potential directions for future improvement. 

II. LITERATURE REVIEW 

Research in grading natural language responses with 
computational methods has a history dating back to the early 
work of [5], However, it is only in the current decade that these 
systems are achieving the level of accuracy necessary for 
practical use in educational settings. For end users to have 
confidence in these systems, the challenge lies in developing 
robust and accurate assessment mechanisms that closely mirror 
human evaluators. Several methods have been introduced in this 
area. 

Early methods for automatic grading relied heavily on 
pattern matching, which required significant expert intervention 
to extract relevant patterns and features from student responses. 
The study in [6] explored the use of concept mapping 
techniques, mapping the related concepts in student answers to 
those in desired answers [7], [8]. Further developed the concept 
of information extraction from student answers through pattern 
matching. These researchers utilized regular expressions and 
parse trees to identify and extract relevant patterns within the 
text [9]. Involved comparing eight knowledge-based text 
similarity measures alongside two prominent corpus-based 
measures: Latent Semantic Analysis (LSA) and Explicit 
Semantic Analysis (ESA). These measures were trained on both 
domain-specific and generic corpora. 

Later on, the use of machine learning techniques for 
automatic scoring has become popular [10]. Integrating machine 
learning into their work [9] to improve the performance involves 
graph alignment and lexical semantic similarity features using 
SVM and term frequency-inverse document frequency (TF-
IDF). In a similar work,  an approach was presented by[11], that 
suggested a short text similarity-based short answer grading 
method. They extracted multiple features such as text alignment, 
vector similarity, TF-IDF, and length ratios. In a similar context 
[12] combined sentence-level and token-level features for their 
approach. For sentence-level features, they employed InferSent, 
a pre-trained sentence embedding model that makes use of a Bi-
LSTM network, to get sentence embeddings for the question, the 
reference answer, and the learner's answer. Semantic 
representations of the text are also extracted using deep learning-
based word embeddings. [13] Employed standard NLP 
embeddings, such as Word2Vec, GloVe, and FastText, to 
extract the semantic and distributional properties. The study in 
[14] Propose a recurrent neural network to resolve the task, by 
staking three layers of Siamese Bi-LSTMs layer, a pooling layer 
using earth-mover distance (EMD), and an output layer with 
regression the predict the score [15]. Then enhanced the RNN-
based technique by leveraging LSTM along with sense vectors 
and Manhattan distance in place of the pooling layer. 

While the aforementioned deep learning techniques 
accomplish end-to-end grading and scoring, they are dependent 
on a substantial volume of labeled corpus for model training, 
which is not present in the majority of ASAG corpora. Several 
pre-trained transfer learning models are used to tackle this 
challenge [16]. Some works use these pre-trained models by 
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extracting embeddings directly from language models such as 
BERT, GPT, and ELMO[17], other works incorporate fine-
tuning paradigms, such as those by [18], [19]. 

III. PROPOSED METHOD 

The automatic short answer grading can be approached both 
as a regression and as a classification problem [20]; where in a 
regression task the model is trained to predict a continuous grade 
for a student's answer. The prediction is typically based on the 
similarity between the reference answer (the correct answer) and 
the student's answer. The goal is to minimize the difference 
between the predicted grade and the actual grade assigned by 
human graders. The problem can be also a classification task; 
the model classifies the student's answer into discrete categories 
such as "correct," "partially correct," or "incorrect." More fine-
grained classes can also be defined, depending on the specific 
requirements of the grading system. The present research 
implements the regression task to allow for the assignment of 
continuous scores and provide a finer granularity in grading. 

The core concept of our model is to harness the advantages 
of both the transformer architecture and classical neural 
networks to accurately interpret the given text. Specifically, we 
use BERT for its capabilities in understanding the context and 
semantics of the input text. To capture the sequential 
dependencies and long-range relationships in the text we also 
employ LSTM (Long Short-Term Memory). 

First, the stacked transformer encoders in BERT aid in 
conserving computational resources, by using a weighted sum 
of all other words' embeddings to encode the hidden state of a 
word [16]. Although this method makes good use of the 
connections between every word in a phrase, it falls short in 
terms of taking word order and spacing into account [21]. The 
LSTM network is ideally suited to produce more precise global 
context data because of its memory cells and gate architecture. 
By incorporating temporal information, LSTM can compensate 
for the shortcomings of BERT’s encoding. 

Second, compared to conventional static embeddings like 
Glove, BERT's dynamic word embeddings, which are produced 
via extensive unsupervised pretraining and refined on 
downstream tasks, offer substantial advantages over traditional 
static embeddings like Glove[4]. These dynamic embeddings 
provide more comprehensive and flexible general-purpose 
information by adapting to various settings. This feature 
enhances the training and convergence of upper-layer neural 
networks, enabling classical neural networks on BERT to attain 
impressive performance even with fewer datasets. 

Empirical studies support the effectiveness of combining 
recurrent neural networks with fine-tuned BERT models, 
particularly in specialized tasks with limited training data. For 
instance, [22] demonstrated improved aspect-category 
sentiment analysis by integrating RoBERTa with a specialized 
CNN, leveraging the strengths of both architectures. [23] 
Explored the potential of combining BERT with neural 
networks for sentiment analysis purposes to classify students' 

reviews on Moocs. They specifically add an LSTM on top of 
BERT and then a CNN as a local feature extractor. 

Given these insights, our proposal is a newly designed model 
that combines the strengths of the fine-tuning BERT model 
along with the LSTM network to properly understand as well as 
evaluate student's responses. For that, we incorporate an LSTM 
layer on the top of the fine-tuned BERT. The LSTM network 
extracts fine global context from BERT outputs, providing a 
richer understanding of temporal relationships. “Fig. 1” 
illustrates the framework of the proposed approach which is 
described below in detail. 

A. Fine-Tuning Bert Component 

BERT (Bidirectional Encoder Representations from 
Transformers) [4] is a groundbreaking pre-trained language 
representation model developed by Google AI Language[4]. 
The training is conducted on a massive corpus comprising the 
Book Corpus with 800 million words and English Wikipedia 
with 2.5 billion words. The masked language model and next-
sentence prediction are two unsupervised tasks that were used to 
train the initial BERT model. These tasks involved layers for 
language model decoding and classification. However, for fine-
tuning our model for the sentence pair classification task, we do 
not utilize these specific layers. 

A text pair containing the student's answer and reference one 
is what our model receives as input.  Every sequence starts with 
a unique classification token (CLS), as illustrated in "Fig. 2". To 
distinguish between the input pair, a special token (SEP) is 
inserted at the end of each input to help the model understand 
the end of an answer and the beginning of another. Wordpiece 
embeddings are used as the token input by BERT. For every 
token, BERT employs positional embeddings and segment 
embeddings in addition to token embeddings. Token positions 
in sequence are indicated by the information included in 
positional embeddings. When the model input contains sentence 
pairs, segment embeddings come in helpful. Tokens belonging 
to the first sentence will have a segment embedding of 0, 
whereas tokens belonging to the second sentence will have a 
segment embedding of 1. BERT incorporates embedding of the 
input by summing up the three embeddings, namely token, 
position, and segment embeddings, creating a rich 
representation for each token in the sequence. These 
representations are then fed to a multilayer bidirectional 
transformer encoder “Fig. 2” which is the core component of 
Bert’s architecture, leveraging a multi-head attention 
mechanism (Formula 1) to focus on data from many 
representation subspaces at different points in the input 
sequence simultaneously. After the multihead attention, each 
transformer layer additionally has a fully connected feed-
forward network. Twelve transformer layers are stacked in the 
model's basic version (BERT_base). The output contextualized 
embeddings of Bert are then fed to an Lstm Layer to capture 
more information from input answers. BERT incorporates an 
attention mechanism to focus on different parts of the input 
sequence. This mechanism uses Formula (1) to compute the 
attention weights: 
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Fig. 1. The general architecture of the proposed model. 

 

Fig. 2.  The overall structure of the finetuned bert layer. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉         (1) 

Where Q(query) is the matrix of queries, representing the 
current state or the part of the input we are focusing on, K(key) 
represents the matrix of keys, representing the entire input 
sequence, V(value) is the dimension of the key vectors, used for 
scaling the dot product, and 𝑑𝑘 the dimension of the key vectors, 
used for scaling the dot product. 

B. LSTM Component 

Aiming to augment an already outstanding model into an 
even more proficient automatic answer-scoring framework, we 
delved into the concept of incorporating an LSTM layer into the 
final fully connected layer of the transformers within BERT. 

Recurrent neural network (RNN) architectures with Long 
Short-Term Memory (LSTM) networks are intended to simulate 
sequences and their dependence upon them over time more 
accurately than RNNs with typical architectures. LSTMs were 
introduced by Hochreiter and Schmidhuber in 1997[24] and 
have since become a fundamental building block for many 
sequential data processing tasks. LSTMs are composed of units 
called LSTM cells, which replace the simple neurons in standard 
RNNs. Each LSTM cell maintains a cell state (𝐶𝑡) defined in 
Formula (6)  and three gates that control the flow of 
information: the input gate (𝐼𝑡 ), the forget gate (𝐹𝑡), and the 
output gate ( 𝑂𝑡 ) defined in Formulas (3), (2) and (4) 
respectively. Forget Gate eliminates data that is no longer 
helpful to the LSTM, which has a sigmoid layer for decision-
making. tanh and sigmoid layers are used by the input gate, 
which is in charge of adding pertinent data to the existing cell 
state. With the use of a sigmoid layer, the output gate displays 
the pertinent data from the current cell. "Fig. 3" displays the 
construction of the LSTM. 

𝐹𝑡 = 𝜎(𝑊𝑓  . [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑓)               (2) 

𝐼𝑡 = 𝜎(𝑊𝑖  . [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑖)                (3) 

𝑂𝑡 = 𝜎(𝑊𝑜  . [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑜)              (4) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐  . [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑐)        (5) 

𝐶𝑡 = 𝐹𝑡  . 𝐶𝑡−1 +  𝐼𝑡  . �̃�𝑡)                       (6) 

ℎ𝑡 = 𝑂𝑡  . tanh(𝐶𝑡)                          (7) 
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Fig. 3. A single unit of long short-term memory (LSTM) neural networks. 

IV. EXPERIMENTS 

A. Dataset 

This study leverages the computer science dataset created by 
[10], which is a comprehensive collection of student responses 
from the University of North Texas, specifically designed to 
evaluate the effectiveness of automatic scoring systems. The 
dataset contains 2273 student answers associated with 80 
questions, sourced from 10 different assignments and two tests 
within the field of computer science. Each answer provided by 
the students was independently scored by two teachers, utilizing 
an integer-based grading scale that ranges from 0 to 5, where 0 
represents an incorrect answer and 5 indicates a fully correct 
response. The true score of the student's answer was determined 
by taking the average of the two scores that were labeled, which 
resulted in 11 scoring grades ranging from 0 to 5 with 0.5 
intervals between each grade. The shape of the dataset is (2273, 
7). It has 2273 rows and seven columns. The columns have 
questions, desired answers, student answers, and scores. 

B. Evaluation Measures 

To evaluate our model, we adopt the standard metrics used 
by the previous automatic scoring systems. As explained above, 
we model the problem as a regression task, specifically using the 
Pearson correlation coefficient (Pearson’s r) and root mean 
square error (RMSE) as metrics to measure the performance of 
the proposed approach. Below, we report the different metrics 
with their mathematical expressions: 

Root-Mean-Squared Error (RMSE): The use of RMSE is 
very common, and it is considered an excellent general-purpose 
error metric for numerical predictions. RMSE is defined in 
Formula (8). 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦�̂� − 𝑦𝑖)2𝑛

𝑖=1                   (8) 

Where n is the number of samples, 𝑦�̂� is the predicted value 
and 𝑦𝑖 represent the actual value. 

1) Pearson’s r[25]: measures the strength and direction of 

the linear relationship between two continuous variables. In the 

context of evaluating model performance, Pearson’s r can be 

used to assess the correlation between predicted scores 

generated by a model and the actual scores assigned by human 

evaluators. Pearson’s r is defined in Formula (9) : 

𝑟 =  
∑ (𝑦𝑖 − �̅�)(𝑦�̂� − �̅̂�)𝑛

𝑖=1

√∑ (𝑦𝑖 − �̅�)2  ∑ (𝑦�̂� − �̅̂�)
2𝑛

𝑖=1
𝑛
𝑖=1

                     (9) 

Where 𝑦𝑖   the actual value, 𝑦�̂�  the predicted value, �̅�  the 

mean of actual values and �̅̂� is the mean of predicted values. 

C. Implementation Details 

Our experiments were conducted in the Google 
Collaboratory environment, which provides access to high-
performance GPUs, facilitating efficient and accelerated model 
training and evaluation. For the implementation of our models, 
we utilized Python as the primary programming language, 
leveraging powerful libraries such as NLTK (Natural Language 
Toolkit) for text preprocessing and PyTorch for building and 
training our neural network models. The dataset used in our 
study, consisting of student answers and corresponding 
questions, was divided into two distinct sets: 80% of the data 
was allocated for training the models, while the remaining 20% 
was reserved for testing their performance. 

The implementation of our method consists first of a 
preprocessing step to prepare data in the best format for training. 
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For that, we consider two functions based on their effect on 
training results. The first function removes stop words from the 
texts. The second function is removing words that appear in the 
question text from both the reference answer and the student 
response to prevent the model from unfairly rewarding a student 
response that simply repeats words from the question. The texts 
are then tokenized using Bert tokenizer, which converts them 
into tokens. These tokens are further processed into input IDs, 
attention masks, and token type IDs, forming the input features 
for the BERT model. We use the Bert_base_uncased version as 
the pre-trained model of our Bert layer with 12 transformer 
layers, 768 hidden units per layer, and total parameters of ¼ 
110M. The "uncased" nature of this model converts text to 
lowercase and removes accent markers, simplifying vocabulary 
handling. It employs WordPiece embeddings with a 30,000-
token vocabulary, supporting input sequences up to 512 tokens. 
This model provides dynamic, context-sensitive word 
embeddings, significantly improving our model's ability to 
accurately evaluate student answers through fine-tuning our 
specific dataset. The output of the fine-tuned BERT model, 
which consists of contextualized embeddings of the paired 
answers, is then fed into an LSTM layer followed by a linear 
output layer for regression. The specific parameter settings for 
the model are detailed in Table I. This configuration allows the 
model to capture both the intricate context provided by BERT 
and the sequential dependencies effectively modeled by the 
LSTM. 

TABLE I.  PARAMETER SETTINGS OF THE PROPOSED MODEL 

Parameter Value 

Batch size 

Epochs 
Bert's finetuned learning rate 

Lstm_hidden_size 

Number lstm layers 
Lstm learning rate 

Optimize 

Loss function 

16 

10 
5e-5 

256 

2 
1e-3 

ADAM 

Mean Square Error 

V. RESULTS AND DISCUSSION 

A. Ablation Study 

In our proposed model, we conducted an ablation study to 
evaluate the impact of specific components on performance. The 
study focused on two key variations: 

1) BERT fine-tuning with and without question demotion: 

We examined the effect of removing question-related words 

from the student's answer before feeding it into the model. This 

step aims to reduce noise and focus on the unique content of the 

student's response. By comparing the performance of the model 

with and without question demotion, we aimed to assess its 

contribution to the overall accuracy. 

2) BERT fine-tuning with and without adding an LSTM 

layer: To determine the added value of incorporating a Long 

Short-Term Memory (LSTM) layer, we compared the results of 

the fine-tuned BERT model both with and without the LSTM 

layer. The LSTM layer is designed to capture sequential 

dependencies and provide additional context to the BERT 

representations. This comparison helps to understand whether 

the LSTM layer enhances the model's ability to accurately score 

the answers. 

As illustrated in Table II, removing question demotion 
results in a higher RMSE (0.931 vs. 0.785) and a lower Pearson 
correlation (0.723 vs. 0.761). This indicates that question 
demotion significantly contributes to the model's ability to 
accurately score answers. Question demotion likely helps the 
model focus on the core content of student answers without 
being misled by repetitive or irrelevant information from the 
questions, leading to better alignment with the desired answers. 

TABLE II.  RESULTS OF THE ABLATION STUDIES 

Model Variant RMSE Pearson Correlation 

Without Question 

Demotion 
0.931 0.723 

Without LSTM Layer 0.819   0.741  

Full Model (with all 
components) 

0.785 0.761 

Adding the LSTM layer to the model improves performance, 
reducing the RMSE from 0.819 to 0.785 and increasing the 
Pearson correlation from 0.741 to 0.761. The LSTM layer likely 
helps capture sequential dependencies and fine-grained 
contextual information that the BERT layer might not fully 
encode, resulting in better performance. 

The full model, which includes both question demotion and 
the LSTM layer, performs the best with the lowest RMSE 
(0.785) and the highest Pearson correlation (0.761). This 
demonstrates that both components are essential for achieving 
optimal performance in automatic answer scoring. 

B. Comparison with Baseline Models 

We compare the performance of our model with various 
baseline models based on RME and Pearson correlation scores. 
The comparison results are illustrated in Table III. 

As can be seen from the experimental findings, systems that 
are based on handcrafted features are relatively yield low to 
moderate accuracy. Among these methods, the BOW (Bag of 
Words) approach combined with SVMRank [10] exhibited the 
best performance, yielding a Pearson’s correlation coefficient of 
0.480 and an RMSE of 1.042. This indicates that while feature 
engineering-based models can capture some relevant aspects of 
the answer-scoring task, their performance is limited compared 
to more advanced deep-learning models. The moderate 
correlation and relatively high RMSE suggest that these 
methods might struggle with capturing the deeper semantic 
relationships and nuances present in the text. Combining 
semantic network approaches using Glove and Word2Vec 
embeddings along with an SVM model slightly improves the 
performance metrics, achieving a Pearson’s correlation 
coefficient of 0.631 and an RMSE of 0.834 [26]. This 
enhancement suggests that integrating semantic information 
from pre-trained embeddings can better capture the underlying 
meaning and context of the text, leading to more accurate 
scoring. However, the improvement is still moderate, indicating 
that these traditional machine learning methods, even when 
augmented with semantic embeddings, may not fully exploit the 
complexities of the language as effectively as more advanced 
deep learning techniques. Using dynamic embeddings only, 
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without fine-tuning pre-trained models such as ELMo, GPT, and 
BERT, performs poorly in similarity regression tasks. For 
instance, the results show that traditional word embeddings 
(e.g., Word2Vec, GloVe) yield better performance metrics 
compared to contextual embeddings (e.g., ELMo, BERT) [17]. 
This observation highlights that merely leveraging the powerful 
pre-trained models without task-specific fine-tuning can lead to 
suboptimal results, as these models may not fully align with the 
specific requirements and nuances of the target task. 

The experiments show that the fine-tuned BERT model 
performs very well, achieving RMSE and Pearson correlation 
values of 0.819 and 0.741, respectively. This indicates that task-
specific fine-tuning significantly enhances the model's ability to 
capture the nuances and intricacies of the dataset, resulting in 

improved scoring accuracy and correlation with the target 
metrics. Finally, the results show that adding an LSTM layer on 
top of the fine-tuned BERT model improves the results, 
achieving a Pearson correlation of 0.761 and an RMSE of 0.785. 
This significantly surpasses the results of all baseline systems, 
demonstrating the effectiveness of combining BERT's powerful 
language representation with LSTM's ability to capture long-
term dependencies. The experiments highlight the limitations of 
feature engineering-based and dynamic embedding-only 
models. Fine-tuning pre-trained models, especially when 
combined with additional layers like LSTM, significantly 
improves performance. Our proposed model, BERT Fine-Tuned 
Based LSTM, achieves the best results, establishing a new 
benchmark for automatic answer scoring on the Mohler dataset.  

TABLE III.  COMPARISON RESULTS ON THE MOHLER DATASET 

System description RMSE Pearson correlation 

[10] 

BOW (Bag of Words) approach with SVMRank 1.042 0.480 

BOW (Bag of Words) approach with SVR 0.999 0.431 

Tf-idf with SVR 1.022 0.327 

[11] 
tf-idf with LR (Logistic Regression) and SIM 

(Semantic Information) 
0.887 0.592 

[12] HoPSTags + Sentence Embedding features 0.921 0.542 

[17] 

 

Dynamic embeddings (not fine-

tuned + cosine similarity feature 

ELMO 0.978  0.485 

GPT 1.082  0.248 

BERT 1.057  0.318 

GPT_2 1.065  0.311 

[26] Semantic network with SVM 0.834 0.631 

 

 

 
 

(In this work) 

Word2vec & mean_pooling with cosine similarity 

feature 
1.005 0.405 

Bert(embedding only) & mean_pooling with cosine 

similarity feature 
1.021 0.367 

Fine_tuned Bert_base 0.819   0.741  

 (Proposed model) BERT Fine-Tuned Based LSTM 0.785 0.761 

VI. CONCLUSION 

In this paper, we introduce a new method for automatic 
answer scoring by leveraging the strengths of both transformer-
based and classical neural network architectures. The proposed 
model contains a fine-tuned layer of the pre-trained BERTbase 
model for contextualized embedding extraction, followed by an 
LSTM layer to benefit from its sequence modeling capabilities 
for more improvement. The model was trained using the Mohler 
dataset, a benchmark corpus widely used for automatic scoring 
tasks. In the experiments, we compared our model with several 
state-of-the-art models to evaluate the performance. The results 
demonstrated that our approach shows significant improvement 
regarding both RMSE and Pearson correlation measures. These 
improvements underscore our model's enhanced capability to 
understand and evaluate the semantic content of both student 

and reference answers, leading to more accurate grading 
outcomes. In future work, we can improve such an automatic 
scoring system so it can face the problem of different 
distributions that can arise due for example to differences in 
question types between the current question answers (training 
set) and the new question answers (test set). Strategies based on 
domain adaptation and transfer learning can be employed to 
address this case. 
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