
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1066 | P a g e

www.ijacsa.thesai.org

Improving Automatic Short Answer Scoring Task

Through a Hybrid Deep Learning Framework

Soumia Ikiss1, Najima Daoudi2, Manar Abourezq3, Mostafa Bellafkih4

RAISS Laboratory, National Institute of Posts and Telecommunications (INPT), Rabat, Morocco1, 4

LyRica Laboratory, School of Information Sciences, Rabat, Morocco2, 3

Abstract—An automatic short-answer scoring system involves

using computational techniques to automatically evaluate and

score student answers based on a given question and desired

answer. The increasing reliance on automated systems for

assessing student responses has highlighted the need for accurate

and reliable short-answer scoring mechanisms. This research aims

to improve the understanding and evaluation of student answers

by developing an advanced automatic scoring system. While

previous studies have explored various methodologies, many fail

to capture the full complexity of response text. To address this gap,

our study combines the strengths of classical neural networks with

the capabilities of large language models. Specifically, we fine-tune

the Bidirectional Encoder Representations from Transformers

(BERT) model and integrate it with a recurrent neural network to

enhance the depth of text comprehension. We evaluate our

approach on the widely-used Mohler dataset and benchmark its

performance against several baseline models using RMSE (Root

Mean Square Error) and Pearson correlation metrics. The

experimental results demonstrate that our method outperforms

most existing systems, providing a more robust solution for

automatic short-answer scoring.

Keywords—Student answer; automatic scoring; BERT language

model; LSTM neural network; Natural Language Processing

I. INTRODUCTION

Assessment in an educational setting is an essential and
fundamental aspect of measuring learners' knowledge and
understanding of a subject. In a typical classroom, whether
through tests, assignments, or quizzes, teachers provide grades
and feedback on students' answers to questions. However, with
the increasing number of students enrolling in online platforms
and universities, manually evaluating all these answers has
become a complicated and expensive procedure. This increase
in the number of students highlights the critical requirement for
more effective techniques for student assessment. Automated
assessment systems can alleviate this burden by offering a
scalable and consistent solution to evaluating student
performance.

Exams typically consist of a variety of question forms, which
are broadly classified as objective and subjective. True/false,
multiple-choice, and fill-in-the-blank questions are examples of
objective questions that are intended to evaluate specific
knowledge and may be evaluated quickly and accurately [1].
Conversely, subjective questions (short answer/essay) need a
long or short response and are intended to assess a deeper
understanding in addition to the ability to integrate concepts and
present them in a more sophisticated way. Because the answers
to objective questions are precise and unambiguous, developing

an automated assessment system is rather straightforward. On
the other hand, creating a system of that kind for subjective
questions is more difficult because it needs to analyze text and
comprehend the answers' semantic meaning. When a teacher
asks his student in an exam setting the following question:
“What is the definition of Artificial Intelligence?” For example,
" computers that can carry out difficult jobs that humans have
historically only been able to complete" might be the answer of
one student. In contrast, another student could respond with “Is
the technology that makes it possible for computers and other
devices to mimic human intelligence and problem-solving
skills.” Both answers are accurate, even though they are
expressed in different ways using different words. This
illustrates the complexity of treating subjective questions
automatically, as the system must be capable of recognizing the
correctness of varied but equivalent answers. Addressing this
complexity requires a system that can comprehend and assess
the various ways in which students may present their answers.
This calls for the capacity to recognize synonyms, understand
context, and evaluate the relevance and accuracy of the content
provided in student responses.

An automatic short answer scoring (ASAS) system aims to
evaluate and assign scores to short textual responses based on
one or more optimal answers. Since the responses of both
student and reference are written in natural language,
sophisticated Natural Language Processing (NLP) methods and
machine learning models have been required to accurately
understand and assess what is written. In various NLP tasks,
including ASAS, language models (LMs) have demonstrated
significant success. These models assess the probability of word
sequences and can predict subsequent words based on the
preceding words within a sequence [2]. Traditional language
models, such as n-gram language models, employ count-based
methods to evaluate and understand text. These models typically
rely on the frequency of word sequences (n-grams) to predict the
likelihood of subsequent words and to determine the overall
structure and coherence of a text. In the context of automatic
answer scoring, vector-space models that count n-grams have
been widely applied due to their simplicity and effectiveness.
For instance, [3] conducted a comparative study where they
evaluated the efficacy of bag-of-n-gram representation against
bags of semantic annotations for the ASAS task. Their findings
highlighted the strengths and limitations of count-based models
in capturing the nuances and subtleties of human language,
emphasizing the need for more sophisticated approaches that
can understand the deeper semantic meaning of text. In modern
approaches, language models (LMs) are trained using neural
networks, which address several limitations inherent in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1067 | P a g e

www.ijacsa.thesai.org

traditional count-based methods. Firstly, they significantly
expand the context taken into account, allowing for a more
comprehensive understanding of text beyond the fixed-length
context of n-grams. Secondly, these models exhibit a
generalization capability across different contexts, which
enhances their ability to handle diverse linguistic patterns and
structures. The initial neural models were based on recurrent
neural networks (RNNs), which are well-suited for sequential
data. Among these, long short-term memory networks (LSTMs)
became particularly popular due to their ability to capture long-
range dependencies in text. LSTMs address the vanishing
gradient problem in standard RNNs, enabling the model to retain
information over longer sequences. The most recent
advancements in neural models for language modeling, such as
BERT (Bidirectional Encoder Representations from
Transformers) introduced by [4], are based on the transformer
architecture. This architecture represents a significant shift from
previous models like RNNs and LSTMs, leveraging self-
attention mechanisms to process and understand text. The
transformer architecture enables these models to capture
intricate dependencies and contextual relationships within text
more effectively, making them highly suitable for a wide range
of Natural Language Processing (NLP) tasks.

In this work, we introduce a novel automatic answer-scoring
framework that combines the strengths of a pre-trained BERT
model through fine-tuning with the capabilities of an LSTM
network. BERT is a multi-layer bidirectional Transformer
encoder designed for Natural Language Processing (NLP).
Developed by Google, the pre-trained BERT model leverages a
vast amount of unlabeled data, including 800 million words
from books and 2.5 billion words from Wikipedia. By fine-
tuning an additional classification layer along with all the pre-
trained parameters, BERT can be adapted for specific NLP
tasks. LSTM (Long Short-Term Memory) is a type of recurrent
neural network (RNN) designed to effectively capture long-
range dependencies and temporal patterns in sequential data. It
deals with long-term dependencies, by incorporating memory
cells and gating mechanisms to control the flow of information.
These features enable LSTM networks to remember and utilize
information from earlier time steps, making them well-suited for
tasks involving sequential data. This hybrid approach leverages
the advanced contextual understanding of BERT and the
sequential processing power of LSTM to enhance the accuracy
and efficiency of scoring short textual responses.

The findings of our research have two significant
implications for both science and society. From a scientific
perspective, we demonstrate the effectiveness of combining
large language models like BERT with recurrent neural
networks to improve text representation and enhance the
accuracy of automated short-answer scoring. On the other hand,
our research could have a significant implicant on society by
reducing the workload on educators, allowing them to focus
more on interactive and personalized teaching. Furthermore, this
system could be widely implemented in online educational
platforms, ensuring consistent and fair assessment for a growing
number of students worldwide.

The remainder of this paper is structured as follows. Section
II provides a brief review of related works. Section III introduces
and elaborates on the proposed approach. Section IV outlines the

experimental details, including the dataset, metrics, and
implementation settings. Section V presents the results and the
corresponding discussions. Finally, Section VI summarizes the
study and suggests potential directions for future improvement.

II. LITERATURE REVIEW

Research in grading natural language responses with
computational methods has a history dating back to the early
work of [5], However, it is only in the current decade that these
systems are achieving the level of accuracy necessary for
practical use in educational settings. For end users to have
confidence in these systems, the challenge lies in developing
robust and accurate assessment mechanisms that closely mirror
human evaluators. Several methods have been introduced in this
area.

Early methods for automatic grading relied heavily on
pattern matching, which required significant expert intervention
to extract relevant patterns and features from student responses.
The study in [6] explored the use of concept mapping
techniques, mapping the related concepts in student answers to
those in desired answers [7], [8]. Further developed the concept
of information extraction from student answers through pattern
matching. These researchers utilized regular expressions and
parse trees to identify and extract relevant patterns within the
text [9]. Involved comparing eight knowledge-based text
similarity measures alongside two prominent corpus-based
measures: Latent Semantic Analysis (LSA) and Explicit
Semantic Analysis (ESA). These measures were trained on both
domain-specific and generic corpora.

Later on, the use of machine learning techniques for
automatic scoring has become popular [10]. Integrating machine
learning into their work [9] to improve the performance involves
graph alignment and lexical semantic similarity features using
SVM and term frequency-inverse document frequency (TF-
IDF). In a similar work, an approach was presented by[11], that
suggested a short text similarity-based short answer grading
method. They extracted multiple features such as text alignment,
vector similarity, TF-IDF, and length ratios. In a similar context
[12] combined sentence-level and token-level features for their
approach. For sentence-level features, they employed InferSent,
a pre-trained sentence embedding model that makes use of a Bi-
LSTM network, to get sentence embeddings for the question, the
reference answer, and the learner's answer. Semantic
representations of the text are also extracted using deep learning-
based word embeddings. [13] Employed standard NLP
embeddings, such as Word2Vec, GloVe, and FastText, to
extract the semantic and distributional properties. The study in
[14] Propose a recurrent neural network to resolve the task, by
staking three layers of Siamese Bi-LSTMs layer, a pooling layer
using earth-mover distance (EMD), and an output layer with
regression the predict the score [15]. Then enhanced the RNN-
based technique by leveraging LSTM along with sense vectors
and Manhattan distance in place of the pooling layer.

While the aforementioned deep learning techniques
accomplish end-to-end grading and scoring, they are dependent
on a substantial volume of labeled corpus for model training,
which is not present in the majority of ASAG corpora. Several
pre-trained transfer learning models are used to tackle this
challenge [16]. Some works use these pre-trained models by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1068 | P a g e

www.ijacsa.thesai.org

extracting embeddings directly from language models such as
BERT, GPT, and ELMO[17], other works incorporate fine-
tuning paradigms, such as those by [18], [19].

III. PROPOSED METHOD

The automatic short answer grading can be approached both
as a regression and as a classification problem [20]; where in a
regression task the model is trained to predict a continuous grade
for a student's answer. The prediction is typically based on the
similarity between the reference answer (the correct answer) and
the student's answer. The goal is to minimize the difference
between the predicted grade and the actual grade assigned by
human graders. The problem can be also a classification task;
the model classifies the student's answer into discrete categories
such as "correct," "partially correct," or "incorrect." More fine-
grained classes can also be defined, depending on the specific
requirements of the grading system. The present research
implements the regression task to allow for the assignment of
continuous scores and provide a finer granularity in grading.

The core concept of our model is to harness the advantages
of both the transformer architecture and classical neural
networks to accurately interpret the given text. Specifically, we
use BERT for its capabilities in understanding the context and
semantics of the input text. To capture the sequential
dependencies and long-range relationships in the text we also
employ LSTM (Long Short-Term Memory).

First, the stacked transformer encoders in BERT aid in
conserving computational resources, by using a weighted sum
of all other words' embeddings to encode the hidden state of a
word [16]. Although this method makes good use of the
connections between every word in a phrase, it falls short in
terms of taking word order and spacing into account [21]. The
LSTM network is ideally suited to produce more precise global
context data because of its memory cells and gate architecture.
By incorporating temporal information, LSTM can compensate
for the shortcomings of BERT’s encoding.

Second, compared to conventional static embeddings like
Glove, BERT's dynamic word embeddings, which are produced
via extensive unsupervised pretraining and refined on
downstream tasks, offer substantial advantages over traditional
static embeddings like Glove[4]. These dynamic embeddings
provide more comprehensive and flexible general-purpose
information by adapting to various settings. This feature
enhances the training and convergence of upper-layer neural
networks, enabling classical neural networks on BERT to attain
impressive performance even with fewer datasets.

Empirical studies support the effectiveness of combining
recurrent neural networks with fine-tuned BERT models,
particularly in specialized tasks with limited training data. For
instance, [22] demonstrated improved aspect-category
sentiment analysis by integrating RoBERTa with a specialized
CNN, leveraging the strengths of both architectures. [23]
Explored the potential of combining BERT with neural
networks for sentiment analysis purposes to classify students'

reviews on Moocs. They specifically add an LSTM on top of
BERT and then a CNN as a local feature extractor.

Given these insights, our proposal is a newly designed model
that combines the strengths of the fine-tuning BERT model
along with the LSTM network to properly understand as well as
evaluate student's responses. For that, we incorporate an LSTM
layer on the top of the fine-tuned BERT. The LSTM network
extracts fine global context from BERT outputs, providing a
richer understanding of temporal relationships. “Fig. 1”
illustrates the framework of the proposed approach which is
described below in detail.

A. Fine-Tuning Bert Component

BERT (Bidirectional Encoder Representations from
Transformers) [4] is a groundbreaking pre-trained language
representation model developed by Google AI Language[4].
The training is conducted on a massive corpus comprising the
Book Corpus with 800 million words and English Wikipedia
with 2.5 billion words. The masked language model and next-
sentence prediction are two unsupervised tasks that were used to
train the initial BERT model. These tasks involved layers for
language model decoding and classification. However, for fine-
tuning our model for the sentence pair classification task, we do
not utilize these specific layers.

A text pair containing the student's answer and reference one
is what our model receives as input. Every sequence starts with
a unique classification token (CLS), as illustrated in "Fig. 2". To
distinguish between the input pair, a special token (SEP) is
inserted at the end of each input to help the model understand
the end of an answer and the beginning of another. Wordpiece
embeddings are used as the token input by BERT. For every
token, BERT employs positional embeddings and segment
embeddings in addition to token embeddings. Token positions
in sequence are indicated by the information included in
positional embeddings. When the model input contains sentence
pairs, segment embeddings come in helpful. Tokens belonging
to the first sentence will have a segment embedding of 0,
whereas tokens belonging to the second sentence will have a
segment embedding of 1. BERT incorporates embedding of the
input by summing up the three embeddings, namely token,
position, and segment embeddings, creating a rich
representation for each token in the sequence. These
representations are then fed to a multilayer bidirectional
transformer encoder “Fig. 2” which is the core component of
Bert’s architecture, leveraging a multi-head attention
mechanism (Formula 1) to focus on data from many
representation subspaces at different points in the input
sequence simultaneously. After the multihead attention, each
transformer layer additionally has a fully connected feed-
forward network. Twelve transformer layers are stacked in the
model's basic version (BERT_base). The output contextualized
embeddings of Bert are then fed to an Lstm Layer to capture
more information from input answers. BERT incorporates an
attention mechanism to focus on different parts of the input
sequence. This mechanism uses Formula (1) to compute the
attention weights:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1069 | P a g e

www.ijacsa.thesai.org

Fig. 1. The general architecture of the proposed model.

Fig. 2. The overall structure of the finetuned bert layer.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (1)

Where Q(query) is the matrix of queries, representing the
current state or the part of the input we are focusing on, K(key)
represents the matrix of keys, representing the entire input
sequence, V(value) is the dimension of the key vectors, used for
scaling the dot product, and 𝑑𝑘 the dimension of the key vectors,
used for scaling the dot product.

B. LSTM Component

Aiming to augment an already outstanding model into an
even more proficient automatic answer-scoring framework, we
delved into the concept of incorporating an LSTM layer into the
final fully connected layer of the transformers within BERT.

Recurrent neural network (RNN) architectures with Long
Short-Term Memory (LSTM) networks are intended to simulate
sequences and their dependence upon them over time more
accurately than RNNs with typical architectures. LSTMs were
introduced by Hochreiter and Schmidhuber in 1997[24] and
have since become a fundamental building block for many
sequential data processing tasks. LSTMs are composed of units
called LSTM cells, which replace the simple neurons in standard
RNNs. Each LSTM cell maintains a cell state (𝐶𝑡) defined in
Formula (6) and three gates that control the flow of
information: the input gate (𝐼𝑡), the forget gate (𝐹𝑡), and the
output gate (𝑂𝑡) defined in Formulas (3), (2) and (4)
respectively. Forget Gate eliminates data that is no longer
helpful to the LSTM, which has a sigmoid layer for decision-
making. tanh and sigmoid layers are used by the input gate,
which is in charge of adding pertinent data to the existing cell
state. With the use of a sigmoid layer, the output gate displays
the pertinent data from the current cell. "Fig. 3" displays the
construction of the LSTM.

𝐹𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2)

𝐼𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3)

𝑂𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4)

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5)

𝐶𝑡 = 𝐹𝑡 . 𝐶𝑡−1 + 𝐼𝑡 . �̃�𝑡) (6)

ℎ𝑡 = 𝑂𝑡 . tanh(𝐶𝑡) (7)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1070 | P a g e

www.ijacsa.thesai.org

Fig. 3. A single unit of long short-term memory (LSTM) neural networks.

IV. EXPERIMENTS

A. Dataset

This study leverages the computer science dataset created by
[10], which is a comprehensive collection of student responses
from the University of North Texas, specifically designed to
evaluate the effectiveness of automatic scoring systems. The
dataset contains 2273 student answers associated with 80
questions, sourced from 10 different assignments and two tests
within the field of computer science. Each answer provided by
the students was independently scored by two teachers, utilizing
an integer-based grading scale that ranges from 0 to 5, where 0
represents an incorrect answer and 5 indicates a fully correct
response. The true score of the student's answer was determined
by taking the average of the two scores that were labeled, which
resulted in 11 scoring grades ranging from 0 to 5 with 0.5
intervals between each grade. The shape of the dataset is (2273,
7). It has 2273 rows and seven columns. The columns have
questions, desired answers, student answers, and scores.

B. Evaluation Measures

To evaluate our model, we adopt the standard metrics used
by the previous automatic scoring systems. As explained above,
we model the problem as a regression task, specifically using the
Pearson correlation coefficient (Pearson’s r) and root mean
square error (RMSE) as metrics to measure the performance of
the proposed approach. Below, we report the different metrics
with their mathematical expressions:

Root-Mean-Squared Error (RMSE): The use of RMSE is
very common, and it is considered an excellent general-purpose
error metric for numerical predictions. RMSE is defined in
Formula (8).

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦�̂� − 𝑦𝑖)2𝑛

𝑖=1 (8)

Where n is the number of samples, 𝑦�̂� is the predicted value
and 𝑦𝑖 represent the actual value.

1) Pearson’s r[25]: measures the strength and direction of

the linear relationship between two continuous variables. In the

context of evaluating model performance, Pearson’s r can be

used to assess the correlation between predicted scores

generated by a model and the actual scores assigned by human

evaluators. Pearson’s r is defined in Formula (9) :

𝑟 =
∑ (𝑦𝑖 − �̅�)(𝑦�̂� − �̅̂�)𝑛

𝑖=1

√∑ (𝑦𝑖 − �̅�)2 ∑ (𝑦�̂� − �̅̂�)
2𝑛

𝑖=1
𝑛
𝑖=1

 (9)

Where 𝑦𝑖 the actual value, 𝑦�̂� the predicted value, �̅� the

mean of actual values and �̅̂� is the mean of predicted values.

C. Implementation Details

Our experiments were conducted in the Google
Collaboratory environment, which provides access to high-
performance GPUs, facilitating efficient and accelerated model
training and evaluation. For the implementation of our models,
we utilized Python as the primary programming language,
leveraging powerful libraries such as NLTK (Natural Language
Toolkit) for text preprocessing and PyTorch for building and
training our neural network models. The dataset used in our
study, consisting of student answers and corresponding
questions, was divided into two distinct sets: 80% of the data
was allocated for training the models, while the remaining 20%
was reserved for testing their performance.

The implementation of our method consists first of a
preprocessing step to prepare data in the best format for training.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1071 | P a g e

www.ijacsa.thesai.org

For that, we consider two functions based on their effect on
training results. The first function removes stop words from the
texts. The second function is removing words that appear in the
question text from both the reference answer and the student
response to prevent the model from unfairly rewarding a student
response that simply repeats words from the question. The texts
are then tokenized using Bert tokenizer, which converts them
into tokens. These tokens are further processed into input IDs,
attention masks, and token type IDs, forming the input features
for the BERT model. We use the Bert_base_uncased version as
the pre-trained model of our Bert layer with 12 transformer
layers, 768 hidden units per layer, and total parameters of ¼
110M. The "uncased" nature of this model converts text to
lowercase and removes accent markers, simplifying vocabulary
handling. It employs WordPiece embeddings with a 30,000-
token vocabulary, supporting input sequences up to 512 tokens.
This model provides dynamic, context-sensitive word
embeddings, significantly improving our model's ability to
accurately evaluate student answers through fine-tuning our
specific dataset. The output of the fine-tuned BERT model,
which consists of contextualized embeddings of the paired
answers, is then fed into an LSTM layer followed by a linear
output layer for regression. The specific parameter settings for
the model are detailed in Table I. This configuration allows the
model to capture both the intricate context provided by BERT
and the sequential dependencies effectively modeled by the
LSTM.

TABLE I. PARAMETER SETTINGS OF THE PROPOSED MODEL

Parameter Value

Batch size

Epochs
Bert's finetuned learning rate

Lstm_hidden_size

Number lstm layers
Lstm learning rate

Optimize

Loss function

16

10
5e-5

256

2
1e-3

ADAM

Mean Square Error

V. RESULTS AND DISCUSSION

A. Ablation Study

In our proposed model, we conducted an ablation study to
evaluate the impact of specific components on performance. The
study focused on two key variations:

1) BERT fine-tuning with and without question demotion:

We examined the effect of removing question-related words

from the student's answer before feeding it into the model. This

step aims to reduce noise and focus on the unique content of the

student's response. By comparing the performance of the model

with and without question demotion, we aimed to assess its

contribution to the overall accuracy.

2) BERT fine-tuning with and without adding an LSTM

layer: To determine the added value of incorporating a Long

Short-Term Memory (LSTM) layer, we compared the results of

the fine-tuned BERT model both with and without the LSTM

layer. The LSTM layer is designed to capture sequential

dependencies and provide additional context to the BERT

representations. This comparison helps to understand whether

the LSTM layer enhances the model's ability to accurately score

the answers.

As illustrated in Table II, removing question demotion
results in a higher RMSE (0.931 vs. 0.785) and a lower Pearson
correlation (0.723 vs. 0.761). This indicates that question
demotion significantly contributes to the model's ability to
accurately score answers. Question demotion likely helps the
model focus on the core content of student answers without
being misled by repetitive or irrelevant information from the
questions, leading to better alignment with the desired answers.

TABLE II. RESULTS OF THE ABLATION STUDIES

Model Variant RMSE Pearson Correlation

Without Question

Demotion
0.931 0.723

Without LSTM Layer 0.819 0.741

Full Model (with all
components)

0.785 0.761

Adding the LSTM layer to the model improves performance,
reducing the RMSE from 0.819 to 0.785 and increasing the
Pearson correlation from 0.741 to 0.761. The LSTM layer likely
helps capture sequential dependencies and fine-grained
contextual information that the BERT layer might not fully
encode, resulting in better performance.

The full model, which includes both question demotion and
the LSTM layer, performs the best with the lowest RMSE
(0.785) and the highest Pearson correlation (0.761). This
demonstrates that both components are essential for achieving
optimal performance in automatic answer scoring.

B. Comparison with Baseline Models

We compare the performance of our model with various
baseline models based on RME and Pearson correlation scores.
The comparison results are illustrated in Table III.

As can be seen from the experimental findings, systems that
are based on handcrafted features are relatively yield low to
moderate accuracy. Among these methods, the BOW (Bag of
Words) approach combined with SVMRank [10] exhibited the
best performance, yielding a Pearson’s correlation coefficient of
0.480 and an RMSE of 1.042. This indicates that while feature
engineering-based models can capture some relevant aspects of
the answer-scoring task, their performance is limited compared
to more advanced deep-learning models. The moderate
correlation and relatively high RMSE suggest that these
methods might struggle with capturing the deeper semantic
relationships and nuances present in the text. Combining
semantic network approaches using Glove and Word2Vec
embeddings along with an SVM model slightly improves the
performance metrics, achieving a Pearson’s correlation
coefficient of 0.631 and an RMSE of 0.834 [26]. This
enhancement suggests that integrating semantic information
from pre-trained embeddings can better capture the underlying
meaning and context of the text, leading to more accurate
scoring. However, the improvement is still moderate, indicating
that these traditional machine learning methods, even when
augmented with semantic embeddings, may not fully exploit the
complexities of the language as effectively as more advanced
deep learning techniques. Using dynamic embeddings only,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1072 | P a g e

www.ijacsa.thesai.org

without fine-tuning pre-trained models such as ELMo, GPT, and
BERT, performs poorly in similarity regression tasks. For
instance, the results show that traditional word embeddings
(e.g., Word2Vec, GloVe) yield better performance metrics
compared to contextual embeddings (e.g., ELMo, BERT) [17].
This observation highlights that merely leveraging the powerful
pre-trained models without task-specific fine-tuning can lead to
suboptimal results, as these models may not fully align with the
specific requirements and nuances of the target task.

The experiments show that the fine-tuned BERT model
performs very well, achieving RMSE and Pearson correlation
values of 0.819 and 0.741, respectively. This indicates that task-
specific fine-tuning significantly enhances the model's ability to
capture the nuances and intricacies of the dataset, resulting in

improved scoring accuracy and correlation with the target
metrics. Finally, the results show that adding an LSTM layer on
top of the fine-tuned BERT model improves the results,
achieving a Pearson correlation of 0.761 and an RMSE of 0.785.
This significantly surpasses the results of all baseline systems,
demonstrating the effectiveness of combining BERT's powerful
language representation with LSTM's ability to capture long-
term dependencies. The experiments highlight the limitations of
feature engineering-based and dynamic embedding-only
models. Fine-tuning pre-trained models, especially when
combined with additional layers like LSTM, significantly
improves performance. Our proposed model, BERT Fine-Tuned
Based LSTM, achieves the best results, establishing a new
benchmark for automatic answer scoring on the Mohler dataset.

TABLE III. COMPARISON RESULTS ON THE MOHLER DATASET

System description RMSE Pearson correlation

[10]

BOW (Bag of Words) approach with SVMRank 1.042 0.480

BOW (Bag of Words) approach with SVR 0.999 0.431

Tf-idf with SVR 1.022 0.327

[11]
tf-idf with LR (Logistic Regression) and SIM

(Semantic Information)
0.887 0.592

[12] HoPSTags + Sentence Embedding features 0.921 0.542

[17]

Dynamic embeddings (not fine-

tuned + cosine similarity feature

ELMO 0.978 0.485

GPT 1.082 0.248

BERT 1.057 0.318

GPT_2 1.065 0.311

[26] Semantic network with SVM 0.834 0.631

(In this work)

Word2vec & mean_pooling with cosine similarity

feature
1.005 0.405

Bert(embedding only) & mean_pooling with cosine

similarity feature
1.021 0.367

Fine_tuned Bert_base 0.819 0.741

 (Proposed model) BERT Fine-Tuned Based LSTM 0.785 0.761

VI. CONCLUSION

In this paper, we introduce a new method for automatic
answer scoring by leveraging the strengths of both transformer-
based and classical neural network architectures. The proposed
model contains a fine-tuned layer of the pre-trained BERTbase
model for contextualized embedding extraction, followed by an
LSTM layer to benefit from its sequence modeling capabilities
for more improvement. The model was trained using the Mohler
dataset, a benchmark corpus widely used for automatic scoring
tasks. In the experiments, we compared our model with several
state-of-the-art models to evaluate the performance. The results
demonstrated that our approach shows significant improvement
regarding both RMSE and Pearson correlation measures. These
improvements underscore our model's enhanced capability to
understand and evaluate the semantic content of both student

and reference answers, leading to more accurate grading
outcomes. In future work, we can improve such an automatic
scoring system so it can face the problem of different
distributions that can arise due for example to differences in
question types between the current question answers (training
set) and the new question answers (test set). Strategies based on
domain adaptation and transfer learning can be employed to
address this case.

REFERENCES

[1] V. Salvatore, N. Francesca, et A. Cucchiarelli, « An Overview of Current
Research on Automated Essay Grading », J. Inf. Technol. Educ., vol. 2,
janv. 2003, doi: 10.28945/331.

[2] Y. Goldberg, « Neural Network Methods for Natural Language
Processing », Synth. Lect. Hum. Lang. Technol., vol. 10, p. 1‑309, avr.
2017, doi: 10.2200/S00762ED1V01Y201703HLT037.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1073 | P a g e

www.ijacsa.thesai.org

[3] J. G. A. Mantecon, H. A. Ghavidel, A. Zouaq, J. Jovanovic, et J.
McDonald, « A Comparison of Features for the Automatic Labeling of
Student Answers to Open-Ended Questions », International Educational
Data Mining Society, juill. 2018. Consulté le: 11 juillet 2024. [En ligne].
Disponible sur: https://eric.ed.gov/?id=ED593101

[4] J. Devlin, M.-W. Chang, K. Lee, et K. Toutanova, « BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding », 24
mai 2019, arXiv: arXiv:1810.04805. doi: 10.48550/arXiv.1810.04805.

[5] E. B. Page, « Computer Grading of Student Prose, Using Modern
Concepts and Software », J. Exp. Educ., vol. 62, no 2, p. 127‑142, janv.
1994, doi: 10.1080/00220973.1994.9943835.

[6] L. James, « CAA of Short Non-MCQ Answers », 2001.

[7] L. F. Bachman et al., « A Reliable Approach to Automatic Assessment of
Short Answer Free Responses », in COLING 2002: The 17th International
Conference on Computational Linguistics: Project Notes, 2002. Consulté
le: 12 juillet 2024. [En ligne]. Disponible sur:
https://aclanthology.org/C02-2023

[8] P. Thomas, « The evaluation of electronic marking of examinations »,
sept. 2003, doi: 10.1145/961511.961528.

[9] M. Mohler et R. Mihalcea, « Text-to-Text Semantic Similarity for
Automatic Short Answer Grading », in Proceedings of the 12th
Conference of the European Chapter of the ACL (EACL 2009), A.
Lascarides, C. Gardent, et J. Nivre, Éd., Athens, Greece: Association for
Computational Linguistics, mars 2009, p. 567‑575. Consulté le: 12 juillet
2024. [En ligne]. Disponible sur: https://aclanthology.org/E09-1065

[10] M. Mohler, R. Bunescu, et R. Mihalcea, « Learning to Grade Short
Answer Questions using Semantic Similarity Measures and Dependency
Graph Alignments », in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language
Technologies, Portland, Oregon, USA: Association for Computational
Linguistics, juin 2011, p. 752‑762. [En ligne]. Disponible sur:
https://aclanthology.org/P11-1076

[11] M. A. Sultan, C. Salazar, et T. Sumner, « Fast and Easy Short Answer
Grading with High Accuracy », in Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, San Diego, California:
Association for Computational Linguistics, 2016, p. 1070‑1075. doi:
10.18653/v1/N16-1123.

[12] S. Saha, T. I. Dhamecha, S. Marvaniya, R. Sindhgatta, et B. Sengupta, «
Sentence Level or Token Level Features for Automatic Short Answer
Grading?: Use Both », in Artificial Intelligence in Education, vol. 10947,
C. Penstein Rosé, R. Martínez-Maldonado, H. U. Hoppe, R. Luckin, M.
Mavrikis, K. Porayska-Pomsta, B. McLaren, et B. du Boulay, Éd., in
Lecture Notes in Computer Science, vol. 10947. , Cham: Springer
International Publishing, 2018, p. 503‑517. doi: 10.1007/978-3-319-
93843-1_37.

[13] T. D. Metzler, P. G. Plöger, et G. Kraetzschmar, « Computer-assisted
grading of short answers using word embeddings and keyphrase
extraction », PhD Thesis, Master’s thesis, Hochschule Bonn-Rhein-Sieg,
Germany, 2019.

[14] S. Kumar, S. Chakrabarti, et S. Roy, « Earth Mover’s Distance Pooling
over Siamese LSTMs for Automatic Short Answer Grading », in
Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, Melbourne, Australia: International Joint
Conferences on Artificial Intelligence Organization, août 2017, p.
2046‑2052. doi: 10.24963/ijcai.2017/284.

[15] C. N. Tulu, O. Ozkaya, et U. Orhan, « Automatic Short Answer Grading
With SemSpace Sense Vectors and MaLSTM », IEEE Access, vol. 9, p.
19270‑19280, 2021, doi: 10.1109/ACCESS.2021.3054346.

[16] A. Vaswani et al., « Attention Is All You Need », 5 décembre 2017, arXiv:
arXiv:1706.03762. doi: 10.48550/arXiv.1706.03762.

[17] S. K. Gaddipati, D. Nair, et P. G. Plöger, « Comparative Evaluation of
Pretrained Transfer Learning Models on Automatic Short Answer
Grading », 2 septembre 2020, arXiv: arXiv:2009.01303. Consulté le: 13
mai 2024. [En ligne]. Disponible sur: http://arxiv.org/abs/2009.01303

[18] L. Camus et A. Filighera, « Investigating Transformers for Automatic
Short Answer Grading », in Artificial Intelligence in Education, I. I.
Bittencourt, M. Cukurova, K. Muldner, R. Luckin, et E. Millán, Éd., in
Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2020, p. 43‑48. doi: 10.1007/978-3-030-52240-7_8.

[19] C. Sung, T. I. Dhamecha, et N. Mukhi, « Improving Short Answer
Grading Using Transformer-Based Pre-training », in Artificial
Intelligence in Education, S. Isotani, E. Millán, A. Ogan, P. Hastings, B.
McLaren, et R. Luckin, Éd., Cham: Springer International Publishing,
2019, p. 469‑481. doi: 10.1007/978-3-030-23204-7_39.

[20] R. Dadi et S. Sanampudi, « An automated essay scoring systems: a
systematic literature review », Artif. Intell. Rev., vol. 55, p. 1‑33, mars
2022, doi: 10.1007/s10462-021-10068-2.

[21] A. Rogers, O. Kovaleva, et A. Rumshisky, « A Primer in BERTology:
What We Know About How BERT Works ».

[22] W. Liao, B. Zeng, X. Yin, et P. Wei, « An improved aspect-category
sentiment analysis model for text sentiment analysis based on RoBERTa
», Appl. Intell., vol. 51, no 6, p. 3522‑3533, juin 2021, doi:
10.1007/s10489-020-01964-1.

[23] A. Baqach et B. Amal, « A new sentiment analysis model to classify
students’ reviews on MOOCs », Educ. Inf. Technol., p. 1‑28, févr. 2024,
doi: 10.1007/s10639-024-12526-0.

[24] S. Hochreiter et J. Schmidhuber, « Long Short-Term Memory », Neural
Comput., vol. 9, no 8, p. 1735‑1780, nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[25] D. G. Bonett et T. A. Wright, « Sample size requirements for estimating
pearson, kendall and spearman correlations », Psychometrika, vol. 65, no
1, p. 23‑28, mars 2000, doi: 10.1007/BF02294183.

[26] N. H. Hameed et A. T. Sadiq, « Automatic Short Answer Grading System
Based on Semantic Networks and Support Vector Machine », Iraqi J. Sci.,
p. 6025‑6040, nov. 2023, doi: 10.24996/ijs.2023.64.11.44.

