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Abstract—The application of machine learning, particularly 

through image-based analysis using computer vision techniques, 

has greatly improved the management of crop diseases in 

agriculture. This study explores the use of transfer learning to 

classify both spreadable and non-spreadable diseases affecting 

soybean, lettuce, and banana plants, with a special focus on 

various parts of the banana plant. In this research, 11 different 

transfer learning models were evaluated in Keras, with 

hyperparameters such as optimizers fine-tuned and models 

retrained to boost disease classification accuracy. Results showed 

enhanced detection capabilities, especially in models like VGG_19 

and Xception, when optimized. The study also proposes a new 

approach by integrating an EfficientNetV2-style architecture with 

a custom-designed activation function and optimizer to improve 

model efficiency and accuracy. The custom activation function 

combines the advantages of ReLU and Tanh to optimize learning, 

while the hybrid optimizer merges feature of Adam and Stochastic 

Gradient Descent (SGD) to balance adaptive learning rates and 

generalization. This innovative approach achieved outstanding 

results, with an accuracy of 99.96% and an F1 score of 0.99 in 

distinguishing spreadable and non-spreadable plant diseases. The 

combination of these advanced methods marks a significant step 

forward in the use of machine learning for agricultural challenges, 

demonstrating the potential of customized neural network 

architectures and optimization strategies for accurate plant 

disease classification. 
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I. INTRODUCTION 

Over 80,000 plant diseases are known to exist in the world. 
Crop diseases often harm crop plants, which can result in major 
economic and agricultural losses [1]. If a plant disease is induced 
by an environmental element and is not spread from one plant to 
another, it is referred to be abiotic, or non-infectious. Diseases 
classified as biotic or infectious are those brought on by 
pathogens like viruses, fungi and nematodes. 

Pathogens that affect animals as well as humans mimic plant 
illnesses. Fungus, organisms that mimic fungal, bacterial, 
phytoplasmas, viral, viral vectors, nematodes and parasitic 
higher plants are examples of plant diseases. 

In order to establish and maintain food security and revenue 
sources for a developing world, it is more crucial to safeguard 
plants against diseases. Severity of plant diseases can be reduced 
with the aid of early identification. 

The first lettuce farms were established in ancient Egypt as 
it was the most widely consumed salad produce and has 
substantial economic worth. Lettuce is more susceptible to biotic 
than abiotic illnesses. The study highlights crucial and 
substantial diseases, such as downy mildew, which may spread 
swiftly to impact most plants in a crop. Lettuce diseases can 
cause significant damage and occasionally full crop loss [2]. 
Some diseases, such as downy and powdery mildews, can 
spread swiftly and harm the majority of the plants in a crop. 

Diseases and insect pests are the main issues in soybean 
production. To get a broader perspective on spreadable and non- 
spreadable diseases, soybean plant is chosen. This calls for 
careful diagnosis and prompt handling to prevent the soybean 
crops from suffering significant losses. The world's soybean 
production is projected to be 333.67 million tonnes in 2019–
2020 from a total area of 120.50 million hectares [3]. 

It is crucial to learn more about the spreadable and non- 
spreadable diseases that affect various plant parts, including the 
leaves, fruits, stems, nodes and roots. The banana crop fits best 
into this category because each part of the plant has a variety of 
uses, including medicinal properties for the stem and roots and 
maintaining the health of the soil. Additionally, with an output 
of 97.5 million tonnes, bananas are a significant fruit crop on a 
worldwide scale. It has a total yearly output of 490,710,000 
hectares producing 16.91 million tonnes [4]. 

Bananas are an important fruit crop in India.They are a staple 
food for many people in the country and are also widely used in 
various dishes. Panama disease, also known as Fusarium wilt, is 
a serious threat to banana production worldwide. It is caused by 
a fungus that infects the root system of the banana plant, 
ultimately causing the plant to wilt and die. Aphids are a 
common pest that can also infect banana plants. They feed on 
the sap of the plant, which can weaken it and make it more 
susceptible to other pests and diseases. It is important for 
farmers to monitor their banana crops closely and take steps to 
prevent and control these pests and diseases to protect their 
yield. 

Food security is at risk from plant diseases because they can 
harm crops, lowering food production and driving up food 
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prices. Leaf blight, septoria blight, powdery mildew and downy 
mildew, which can be fungal, are the main diseases impacting 
the lettuce crop. Bacterial rust and downy mildew are the 
diseases that affect soybeans, whereas weevil, soft rot, aphids, 
and few may affect bananas [5]. Fig. 1 and 2 shows the illnesses 
of lettuce and soybean. 

Deep learning is a cutting-edge technique for object 
recognition and image processing that improves categorisation 
of numerous crop diseases [6]. One well-liked method in deep 
learning where pre-trained models are modified to perform a 
new job is transfer learning. Deep Transfer Learning (DTL) 
creates a  applied novel framework for predictive analytics and 
digital image processing that is more accurate and has enormous 
potential for crop disease identification. A potential method for 
recognising diseases onsite is the DTL technique, which also 
offers a quick way to adapt created models to the constraints 
imposed by mobile applications [7]. This would be very useful 
in a real-world field scenario. 

 
(a) Lettuce viral disease. 

 
(b) Lettuce fungal disease. 

 
(c)Lettuce Bacterial Disease. 

 
(d) Lettuce Non-Infectious Disease (Salt burn). 

Fig. 1. Some major plant diseases found in lettuce plant dataset. 

A variety of factors, including that of the high-definition 
camera, high efficient processing and many built-in accessories, 
enable automatic disease identification. The accuracy of the 
outcomes has increased because of the use of cutting-edge 
techniques like deep learning and machine learning. Our 
experimental results represent significant advances in the 
understanding of the severity of plant diseases. The paper is 
organised as follows for the following sections: Section I 

Introduction, Section II Literature Review, Section III highlights 
Methodology that includes expanded dataset description, 
Augmentation and Activation functions, Section IV describes 
Performance evaluation. Performance reviews go into great 
detail, Section V is concerned with implementation, results are 
providedd in tabular format and Section VI acts as a conclusion. 

 
(a) Soybean Iron deficiency. 

 
(b) Soybean fungal disease. 

 
(c) Soybean Diabrotica speciosa disease. 

Fig. 2. Some major plant diseases found in soybean plant dataset. 

II. LITERATURE SURVEY 

N. Saranya et al. [8] have categorized many ailments that 
affect the leaves and fruits of the banana plant. Fuzzy c-means, 
histogram-based equalization and artificial neural networks all 
have important roles in the proposed approach. The image is 
divided using fuzzy c-means and the histogram is then utilized 
to transform it without losing any of the details of the banana 
plant. In this study, a better categorization strategy is 
recommended in order to deliver the best return. 

Michael Gomez Selvaraj et al. [9] applied pixel-based 
banana classification using the Random Forest (RF) model 
utilizing integrated features of Vegetative Indices (VI) and 
Principal Component Analysis (PCA) to map banana under 
mixed-complex African settings. Gomez Selvaraj et al. provided 
higher & low-resolution aerial (UAV and satellite) photos with 
cutting-edge computer vision algorithms to achieve more than 
90% accuracy under actual settings (Smart phone-based AI 
applications). 

A high-definition camera is used to take photos of the early 
and intermediate phases of soybean disease and the photos are 
then expertly batched into uniform sizes. The picture 
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segmentation methods used by E. Miao et al. [10] include lab 
grayscale map, ultragreen feature approach, genetic algorithm 
and threshold segmentation. Next, the results are filtered using 
the median and corroded expansion. A Convolutional Neural 
Network (CNN) that uses a MultiLayer Perceptron (MLP) 
framework to execute supervised learning of the network and 
achieves an average recognition rate of 94.87% is seen in the 
soybean illness picture identification experiment. 

Three disease groups of soybean leaves were examined by 
Sachin B. Jadhav et al. [11] bacterial blight, frogeye leaf spot, 
and septoria brown spot. The diseased leaf area is segmented 
using incremental K-means clustering. Color and texture data 
are recovered using the R, G, B color space and the Gray Level 
Co-occurrence Matrix (GLCM), respectively. SVM and K-
Nearest Neighbors Algorithm (KNN) are used in a classification 
technique to identify the exact kind of leaf disease. The results 
demonstrate that the SVM classifier approach outperforms the 
KNN methodology with efficiencies of 87.3% and 83.4%, 
respectively. 

Elham Khalili et al. [12] examined and compared six ML 
methods for identifying the ailment known as charcoal rot in 
their study that was published in science. Healthy plants were 
gathered from the stem and root of soybean plants during the 
ripening stage based on the maturity's symptomless qualities. 
R7(Yellowing of the leaves and yellow pods at 50% growing 
stage) was chosen for sick plants based on physical criteria 
indicates the presence of bright grey and mycelium on the root 
and stem. Gradient Tree Boosting and Support Vector Machines 
performed better than Regularized Logistic Regression, 
MultiLayer Perceptron and Random Forest techniques. 

Miao Yu et al. [13] used the OTSU technique, which 
decreases the effect of the background on the disease images. 
Using ResNet18 and RANet, the model's effectiveness in the test 
set was confirmed and assessed. The response time was 0.0514 
seconds, the F1-value was 98.52, and the RANet average 
recognition rate was 98.49%. Compared to ResNet18, the 
identification rate increased by 1.15 percent, the F1-value 
increased by 1.17 and 0.0133 seconds were saved while 
identifying illnesses from images. 

Lack of calcium makes tip-burn, which is common in lettuce 
plants cultivated indoors, worse. Photos of tip-burn lettuce were 
illuminated using white, red and blue LEDs, and these images 
served as the training, validation and testing datasets for a deep-
learning detection method. The detection approach developed 
by Munirah Hayati Hamidon et al. [14] was based on three 
detectors: CenterNet, YOLOv4 and YOLOv5. YOLOv5 beat 
the other two models tested, with an accuracy of 84.1% mAP. 

Positive and negative samples from each kind of weed and 
crop were chosen by Kavir Osorio et al. [15] and taken. There 
are just a few of weed characteristics that remain consistent, 
making identification difficult. The identification of the 
vegetation was done alternatively using multispectral bands. 
The R-CNN model distinguished itself for its accuracy in 
detecting the crop and showing the edges, making it a tactic that 
may be recommended for addressing problems like fruit 
detection. The RCNN and HOG-SVM-based algorithms were 
shown to be the most trustworthy using the Bland-Altman 

approach. The YOLO strategy exaggerates the high levels of 
cannabis coverage in contrast to the other two. 

According to J. Amara et al. [16], who used the LeNet 
architecture as a Convolutional Neural Network to classify the 
data, banana leaf disease may now be classified using deep 
learning. This strategy stabilized after 25 iterations. This 
research demonstrated its effectiveness in a variety of picture 
situations, including ones with a complex background and 
various sizes and orientations. 

W. Liao et al. [17] proposed using the SVM classifier in a 
machine learning-based strategy for early identification of 
banana disease. Hyperspectral images taken at close range are 
utilized in this instance. When using spectral and morphological 
data, the classifiers' outputs have an overall accuracy of 96% for 
early detection, 90% for mid-detection, and 92% for late 
detection. 

More research is being done to detect and classify the 
disease, not just for banana leaves but also for the majority of 
food crops including rice, maize, apple, cheerio and other well-
known plants. Here are a few of these judgements. 

A superior convolutional neural network should be used to 
classify apple plant and cherry plant diseases, according to [18]. 

In the extremely packed growing conditions of indoor 
settings, early diagnosis of tip-burns in lettuce is vital in order to 
reduce the cost of human identification and boost lettuce quality 
and production. Shimamura et al. [19] created a system for tip-
burn identification in plant factories by using GoogLeNet to 
classify two different types of tip-burn from a single picture of 
lettuce. 

The most recent Neuron Compute Stick pretrained Movidius 
of deep CNN model from Intel provided an accuracy rate of 
88.46% for Mishra et al. [20]'s system for classifying and 
diagnosing maize leaf diseases. The system was implemented on 
a Raspberry Pi 3. 

K-means segmentation and multiclass support vector 
machines were used by Kumar et al. [21] to identify and classify 
different plant leaf diseases (SVM-based classification). 
Compared to other approaches, the detection accuracy is much 
higher. 

To eliminate manual feature stage modelling, Mazzia et al. 
[22] created an LC&CC deep learning model that blends 
Recurrent Neural Networks (RNN) with Convolutional Neural 
Networks (CNN). 

Researchers Cetin et al. [23] used six different machine 
learning algorithms to analyze and classify six sunflower 
varieties (105 single seeds) based on their fatty acid and mineral 
composition, biochemical traits and physical characteristics. 
These algorithms included Decision Tree (DT), Random Forest 
(RF), Support Vector Machine (SVM), Multiple Linear 
Regression (MLR), Naive Bayes (NB) and MultiLayer 
Perceptron (MLP). 

Sharif et al. [24] proposed a hybrid feature selection method, 
which included the principal components analysis score, 
entropy, skewness-based covariance vector and Multiclass-
SVM (MSVM), produced true positive rates of 96.9% and 
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97.1% for the detection of anthracnose disease and melanose 
disease on citrous leaves. 

Machine learning models including K-Nearest Neighbor 
(KNN), Support Vector Machine (SVM), and other machine 
learning models have been widely used as classifiers to find 
anomalous areas on crop leaves. With a detection rate of 90.5%, 
Lu et al. [25] used Fisher discriminant analysis to identify 
anthracnose crown rot in the early stages of affected strawberry 
leaves inside. 

To detect early blight on potato leaves, Vijver et al. [26] used 
partial least squares discriminant and discovered a positive 
predictive value of 0.92. This study demonstrated that artificial 
intelligence can accurately identify aberrant leaves in a range of 
crops. Therefore, using machine learning algorithms to detect 
yellow and wilted lettuce leaves in hydroponic systems is 
encouraging. 

III. METHODOLOGY 

A. Dataset Description 

Performance evaluation of existing transfer learning 
pretrained models for plant disease classification is done using 
the Lettuce, Soybean and Banana dataset. Non-Spreadable 
diseases caused by abiotic factors include herbicide injury which 

turn leaves or leaf veins yellow or red. Calcium strengthens plant 
cell walls and salt burn is a result of the plant's inability to supply 
enough calcium for developing leaves during periods of rapid 
growth. The dataset for the proposed research consists of images 
of Lettuce plant and Soybean Plant infected by non-spreadable 
diseases and images affected by spreadable diseases. These 
images have been obtained from CrowdAI [27] and PlantVillage 
dataset [28]. The images have been augmented and brought up 
to 628 images for the former and 1845 images for the latter, as 
represented in Fig. 3 and 4. Each image maintains a fixed width 
and height of 256x256 pixels. 

Two mobile phones and a UAV were used to take pictures 
of soybeans. Three groups make up the dataset: (I) photos of 
healthy plants, (II) pictures of plants harmed by caterpillars, and 
(III) pictures of plants harmed by Diabrotica speciosa. To meet 
our demands, the photos have undergone processing and 
augmentation [29]. 

The banana plant is vulnerable to bacterial, fungal, and viral 
diseases that can affect different parts of the plant. For research 
purposes, the PSFD-Musa dataset [30] was utilized, which 
contains pre-existing enhanced photos. Fig. 5 to 11 represent the 
dataset, showcasing the spreadable disease affected regions such 
as Node, Leaf, Banana, and Fruit. 

 

Fig. 3. Lettuce (Non-Spreadable) Dataset Description. 

(a) 

 
(b) 

Fig. 4. Lettuce (Spreadable) Dataset Description. 
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Fig. 5. Dataset classification of Banana Stem. 

 

Fig. 6. Dataset classification of Banana Leaf (Spreadable). 

 

Fig. 7. Dataset classification of Banana Node 

 

Fig. 8. Dataset classification (non-Spreadable) disease in Banana crop. 

 

Fig. 9. Dataset classification spreadable disease in Banana Fruit. 

 

Fig. 10. Dataset classification of Soybean Non-Spreadable Diseases. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

1124 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 11. Dataset classification of Soybean Spreadable Diseases.

The dataset includes images of leaves affected by diseases 
like Black Sigatoka, Panama, and Yellow Sigatoka (Fig. 5-7), 
with a total count of 1104. Stem diseases, namely Bacterial Soft 
Rot and Pseudostem Weevil, also have 1104 corresponding 
images. The Banana node is affected by Aphids (Fig. 8), and the 
Banana Fruit is affected by Scarring Beetle (Fig. 9), with 366 
and 150 images obtained, respectively. 

To enhance the model's efficiency and performance, self-
captured healthy banana images were incorporated. Fig. 7 
illustrates images of healthy nodes. Additionally, potassium 
deficiency, caused by abiotic factors, has an adverse impact on 
banana leaves (Fig. 8). The dataset also includes 150 images of 
spreadable diseases in banana fruit (Fig. 9). 

In addition to the banana dataset, 740 photos of soybean 
plants infected with spreadable diseases (Fig. 10) and 1084 non-
spreadable images (Fig. 11) were obtained for comparative 
analysis. 

B. Augmentation 

Convolutional Neural Networks (CNN) are widely used for 
image classification. However, the quality and quantity of 
training data significantly impact model performance. 
Insufficient or imbalanced data can lead to poor generalization. 
Techniques like oversampling or undersampling can address 
class imbalance [31]. Data augmentation, including affine 
transformations and color manipulation, is a popular method to 
increase dataset size. Classical approaches may not always 
improve accuracy or address overfitting effectively. Affine 
transformations include rotation, reflection, scaling, and 
shearing. Additional techniques like permutation rotate, random 
zoom, variation in shear, random crop, and flip can be used. 
After data augmentation and balancing, the dataset consisted of 
200 augmented images per class [32]. 

C. Activation Function 

An activation function is a mathematical function that is 
applied to the input of a neural network node or a layer of nodes. 
The activation function is used to introduce non-linearity into 
the network, which is necessary for the network to learn 
complex patterns in the input data. Without activation functions, 
a neural network would essentially be a linear model, which is 
limited in its ability to learn complex relationships. 

Activation methods that are frequently employed based on a 
few desirable characteristics include: 

1) Nonlinear: Whenever the activation function is 

nonlinear, it has been shown that a two-layer neural network is 

an excellent approximator of any function. The identical 

activation function does not satisfy this condition. When many 

layers employ the same activation function, the network as a 

whole is equivalent to a single-layer model. 

2) Range: Gradient-based training techniques have a 

tendency to be more stable when the activation function's range 

is finite, since only a small number of weights are significantly 

affected by pattern presentations. Since most of the weights are 

strongly affected by pattern presentations when the range is 

unlimited, training is often more effective. Short learning rates 

are often required in the latter scenario. 

3) Continuously differentiable: For the purpose of allowing 

gradient-based optimization approaches, this property is 

desirable (ReLU is not continuous differentiable and has some 

challenges with it, but it is still achievable). Because the binary 

step activation function is not differentiable at zero and 

differentiates to zero for all future values, gradient-based 

techniques cannot advance with it. 

4) Monotonic: A single-layer model's related error surface 

is always guaranteed to be convex when the activation function 

is monotonic. 

5) Approximates near the origin: When activation 

functions have this property, the neural network can learn 

efficiently when its weights are initialized with low-level 

random values. If the activation function differs from identity 

near to the origin while initializing the weights, more care must 

be taken. 

Each activation function has advantages and disadvantages, 
so we must be cautious when choosing one. Following are some 
frequent considerations to make while selecting an activation 
function: 

1) When it comes to classification issues, sigmoid [33] 

functions (including softmax) and their combinations often 

perform better. 

2) Due to the vanishing gradient issue, sigmoid and tanh 

functions continue to be avoided in hidden layers. 

3) Tanh is typically avoided because of the dead neuron 

issue [34]. 

4) Because it produces superior results, ReLU activation 

function is frequently employed and is the default option (than 

sigmoid and tanh) [35]. 

5) However, the ReLU function should only be utilized in 

the buried layers (and not in the output layer). 

6) In cases of regression issues, an output layer's activation 

function can be linear, however nonlinear activation functions 

are required for classification tasks. 
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7) The leaky ReLU function is the ideal option if we come 

into an instance of dead neurons in our networks. 

8) For any kind of neural network, the ReLU activation 

function is presently the one that is most frequently employed 

for the hidden layers (but never for the output layer). 

9) Swish activation should only be utilized for bigger 

neural networks with depths of more than 50 layers, even 

though it does not consistently beat ReLU in complicated 

applications [36]. 

10) The output (top-most) layer should be triggered by the 

sigmoid function for 2-class applications, as well as for multi-

label classification. 

11) The output layer must be triggered using the softmax 

activation function for multi-class applications. 

12) A basic regression neural network should just employ 

the linear activation function in the output layer. 

13) The tanh activation function is recommended for the 

hidden layer in Recurrent Neural Networks (RNN). By default, 

it is configured by TensorFlow. 

14) In some circumstances, switching to a leaky ReLU 

might produce better outcomes and overall performance if 

ReLU is unable to deliver the desired results. 

Some of the known Activation functions are: 

1) The sigmoid function: Logistic regression and simple 

neural network implementation both use sigmoid functions. 

The fundamental activation units in machine learning are 

sigmoid functions. However, because of a number of 

limitations, it is simply not advisable to use complicated neural 

network sigmoid functions (vanishing gradient problem). 

Given that it is among the most frequently used activation 

functions, it serves as an excellent introduction for those who 

are naïve to data science and machine learning. Whilst the 

sigmoid function and its derivative are simple to use and help 

reduce the time required to develop models, there is a 

considerable downside of data lost since the derivative has a 

constrained range. 

2) Tanh function: The tanh function partially addresses the 

drawback of the sigmoid function. Its key feature is that its 

curve is symmetric across the origin and has coefficients that 

range from -1 to 1 [34]. This does not, however, mean that the 

fading or bursting gradient problem does not occur. It does exist 

for tanh, however unlike Sigmoid, it is centered at zero, making 

it more ideal than Sigmoid Function. 

3) ReLU (Rectified Linear Units) and Leaky ReLU: ReLU 

functions, as opposed to Logistic Activation functions, are 

currently used in the majority of Deep Learning applications, 

such as computer vision, natural language processing, speech 

recognition, deep neural networks, etc [35]. ReLU outperforms 

tanh or sigmoid functions in terms of application-level manifold 

convergence speed. Among the ReLU variations are Leaky 

ReLU, Parametric ReLU, Parametric Softplus (SmoothReLU), 

Noisy ReLU, and ExponentialReLU (ELU) [36]. 

4) Softmax function: The Softmax activation function 

which not only turns our output into a [0, 1] range but also 

changes each outcome so that the sum of each is 1 [37], is 

extremely fascinating. Softmax produces probability 

distribution as a result. In logistic regression model 

(multivariate), Softmax is used for multi-classification while 

Sigmoid is employed for binary classification. 

D. Mathematical Approach for the Considered Procedure 

The field of machine learning relies heavily on mathematical 
principles and techniques to design, train, and optimize models 
that can make predictions or learn patterns from data. This 
mathematical approach enables us to create powerful algorithms 
capable of solving a wide range of tasks, from image recognition 
and natural language processing to financial predictions and 
recommendation systems. 

At the core of the mathematical approach in machine 
learning is the idea of formulating the learning problem as an 
optimization task. The goal is to find the model's parameters that 
minimize a certain objective function, such as the mean squared 
error in regression tasks or the cross-entropy loss in 
classification tasks. This process involves using various 
mathematical tools to represent the model, compute gradients, 
and iteratively update the parameters to approach the optimal 
solution. let's go through each of these layers, providing a brief 
introduction and their mathematical formulas: 

1) Convolutional Layer (Conv layer): Convolutional layers 

are the fundamental building blocks of Convolutional Neural 

Networks (CNNs). They are designed to automatically and 

adaptively learn spatial hierarchies of features from input data 

such as images. A convolutional layer applies convolutional 

operations to input data using learnable filters (kernels) to 

detect local patterns and features. 

The output of a convolutional layer can be represented as 
follows: 

Given an input feature map X with dimensions (height, 
width, channels), and a set of learnable filters W of size 
(filter_height, filter_width, input_channels, output_channels), 
the convolution operation can be represented as: 

Y[i, j, k] =  Σ Σ Σ X[p + i, q + j, r] ∗  W[p, q, r, k] 

Here, 

 Y[i, j, k] is the value of the output feature map at position 
(i, j) in the k-th channel. 

 X[p+i, q+j, r] is the value of the input feature map at 
position (p+i, q+j) in the r-th channel. 

 W[p, q, r, k] is the value of the learnable filter at position 
(p, q) in the r-th input channel and k-th output channel. 

 The summation is performed over all spatial positions (p, 
q) of the filter and all input channels (r). 

2) MaxPooling Layer (MaxPooling): MaxPooling is a 

downsampling technique commonly used in CNNs to reduce 

the spatial dimensions of the feature maps while retaining the 

most important information. It works by dividing the input 
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feature map into non-overlapping regions and taking the 

maximum value within each region. 

The output of a MaxPooling layer can be represented as 
follows: 

Given an input feature map X with dimensions (height, 
width, channels), and a pooling window of size (pool_height, 
pool_width), the MaxPooling operation can be represented as: 

𝑌[𝑖, 𝑗, 𝑘]  =  𝑚𝑎𝑥(𝑋[𝑖 ∗  𝑝𝑜𝑜𝑙ℎ𝑒𝑖𝑔ℎ𝑡: (𝑖 + 1) ∗  𝑝𝑜𝑜𝑙ℎ𝑒𝑖𝑔ℎ𝑡 , 𝑗 

∗  𝑝𝑜𝑜𝑙𝑤𝑖𝑑𝑡ℎ: (𝑗 + 1) ∗  𝑝𝑜𝑜𝑙𝑤𝑖𝑑𝑡ℎ , 𝑘]) 

Here, 

 Y[i, j, k] is the value of the output feature map at position 
(i, j) in the k-th channel. 

 The max function takes the maximum value within the 
pooling window. 

3) SeparableConv Layer (Depthwise Separable 

Convolution): The SeparableConv layer is an alternative to 

standard convolutions designed to reduce computation and 

model size while maintaining representational capacity. It splits 

the convolution operation into two steps: depthwise 

convolution and pointwise convolution. 

The output of a SeparableConv layer can be represented as 
follows: 

Given an input feature map X with dimensions (height, 
width, channels), a depthwise kernel DW of size (filter_height, 
filter_width, channels), and a pointwise kernel PW of size (1, 1, 
channels, output_channels), the SeparableConv operation can be 
represented as: 

𝑌[𝑖, 𝑗, 𝑘] =  𝛴 𝛴 𝑋[𝑖 + 𝑝, 𝑗 + 𝑞, 𝑟] ∗  𝐷𝑊[𝑝, 𝑞, 𝑟]
∗  𝑃𝑊[1, 1, 𝑟, 𝑘] 

Here, 

 Y[i, j, k] is the value of the output feature map at position 
(i, j) in the k-th channel. 

 X[i+p, j+q, r] is the value of the input feature map at 
position (i+p, j+q) in the r-th channel. 

 DW[p, q, r] is the value of the depthwise kernel at 
position (p, q) in the r-th channel. 

 PW[1, 1, r, k] is the value of the pointwise kernel at 
position (1, 1) in the r-th input channel and k-th output 
channel. 

 The summation is performed over all spatial positions (p, 
q) of the depthwise kernel and all input channels (r). 

4) GlobalAveragePooling2D Layer: Global Average 

Pooling 2D is another downsampling technique used in CNNs, 

often as an alternative to fully connected layers at the end of the 

network. It computes the average value of each channel of the 

feature map, reducing the spatial dimensions to a single value 

per channel. 

The output of a GlobalAveragePooling2D layer can be 
represented as follows: 

Given an input feature map X with dimensions (height, 
width, channels), the Global Average Pooling operation can be 
represented as: 

𝑌[𝑘]  =  (
1

(ℎ𝑒𝑖𝑔ℎ𝑡 ∗  𝑤𝑖𝑑𝑡ℎ)
)  ∗  𝛴 𝛴 𝑋[𝑖, 𝑗, 𝑘] 

Here, 

 Y[k] is the value of the output for the k-th channel. 

 The summation is performed over all spatial positions (i, 
j) of the feature map. 

5) Dense Layer (Fully Connected Layer): The Dense layer 

is the standard fully connected layer in neural networks. It 

connects every neuron from the previous layer to every neuron 

in the current layer. The Dense layer performs a linear 

transformation followed by an activation function. 

The output of a Dense layer can be represented as follows: 

Given an input vector X of size (input_units) and the weight 
matrix W of size (input_units, output_units), the Dense layer 
operation can be represented as: 

𝑌 =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋 ∗  𝑊 +  𝑏) 

Here, 

 Y is the output vector. 

 activation_function is the non-linear activation function 
applied element-wise to the linear transformation. 

 b is the bias vector of size (output_units). 

6) BatchNormalization layer: BatchNormalization is a 

normalization technique applied to intermediate layers in neural 

networks to stabilize and accelerate training. It normalizes the 

activations of each layer's mini-batch, making the network 

more robust and less sensitive to the scale of the input. 

The output of a BatchNormalization layer can be represented 
as follows: 

Given an input feature map X with dimensions (batch_size, 
features), and learnable scaling and shifting parameters γ and β, 
the BatchNormalization operation can be represented as: 

𝜇 =
1

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

∗  𝛴 𝑋 

𝜎2 =
1

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

∗  𝛴 (𝑋 −  𝜇)2 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
(𝑋 −  𝜇)

√𝜎2 +  𝜀
 

𝑌 =  𝛾 ∗  𝑋_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 +  𝛽 

Here, 

 μ and σ² are the mean and variance of the mini-batch. 
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 X_normalized is the normalized input. 

 γ and β are learnable scaling and shifting parameters, 
respectively. 

 ε is a small constant (usually a small value like 1e-5) 
added for numerical stability. 

7) Flatten layer: The Flatten layer is used to reshape the 

high-dimensional feature maps into a 1D vector, which is then 

fed into a Dense (fully connected) layer for further processing. 

Let's consider an input tensor X with dimensions 
(batch_size, height, width, channels), where: 

batch_size: The number of samples in the batch. 

height: The height dimension of the feature maps. 

width: The width dimension of the feature maps. 

channels: The number of channels (depth) of the feature 
maps. 

The Flatten layer reshapes the input tensor X into a 1D vector 
with size (batch_size, height * width * channels). This is 

achieved by simply concatenating all the elements of each 
feature map in X into a single long vector. 

𝐹𝑙𝑎𝑡𝑡𝑒𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑋, (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, ℎ𝑒𝑖𝑔ℎ𝑡 
∗  𝑤𝑖𝑑𝑡ℎ ∗  𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠)) 

Here, Reshape(X, (batch_size, height * width * channels)) 
represents the operation of reshaping the input tensor X into the 
specified dimensions. 

IV. PERFORMANCE EVALUATION AND RESULTS 

A. Model and Dataset Selection 

On datasets for lettuce, soybeans and bananas, 11 Transfer 
Learning models have been used to identify and categorize 
disease occurrence. The dataset that was collected from web 
sources are treated as raw data and organized as indicated in 
Fig. 12 and 13. 

The original dataset was reshuffled, and the resulting dataset 
is used to train the transfer learning models in Keras module. 
Divided 38 TL Keras models into 11 different groups, grouped 
them as families, and primarily selected a member from each 
group for further study. 

 
(a) 

 
(b) 

Fig. 12. (a) Modification of Lettuce Dataset, (b) Modification of Soybean Dataset. 

 

Fig. 13. Variety of banana dataset considered. 
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The bold models in Table I are chosen for research. 

TABLE I.  MODEL CLASSIFICATION ACCORDING TO MODELS FAMILY 

CONCEPT 

Family Model 

Xeception family Xception  

VGG Family 
VGG16  

VGG19 

ResNet Family 

ResNet50 

ResNet50V2 

ResNet101 

ResNet101V2 

ResNet152 

ResNet152V2 

Inception Family 
InceptionV3 

InceptionResNetV2  

MobileNet Family 
MobileNet  

MobileNetV2  

DenseNet Family 

DenseNet121 

DenseNet169 

DenseNet201 

NASNet Family 
NASNetMobile 

NASNetLarge  

EfficientNet Family 

EfficientNetB0 

EfficientNetB1 

EfficientNetB2 

EfficientNetB3 

EfficientNetB4 

EfficientNetB5 

EfficientNetB6 

EfficientNetB7 

EfficientNetV2 Family 

EfficientNetV2B0 

EfficientNetV2B1 

EfficientNetV2B2 

EfficientNetV2B3 

EfficientNetV2S 

EfficientNetV2M 

EfficientNetV2L 

ConvNext Family 

ConvNeXtTiny 

ConvNeXtSmall 

ConvNeXtBase 

ConvNeXtLarge  

ConvNeXtXLarge 

To retrain a transfer learning model, you will need to follow 
these steps: 

1) Choose a pre-trained model: Start by choosing a pre-

trained model that you want to use as the base for your model. 

There are many pre-trained models available in various libraries 

and frameworks, such as TensorFlow, PyTorch and Keras. 

2) Freeze the base model: The pre-trained model will likely 

have many layers, and you will want to "freeze" the weights of 

these layers so that they are not updated during training. This 

will allow you to take advantage of the knowledge learned by 

the pre-trained model on a large dataset, while still training a 

new model that is customized for your specific task. 

3) Add new layers: Next, you will want to add one or more 

layers to the model that you can train specifically for your task. 

These layers should be added on top of the frozen base model. 

4) Train the model: Once you have added your new layers, 

you can compile and train your model using your own dataset. 

This will allow the model to learn task-specific features that are 

relevant to your problem. 

5) Fine-tune the model: After training, you may want to 

fine-tune your model by unfreezing some of the layers in the 

base model and training them along with the new layers. This 

can help to further improve the performance of your model. 

6) Evaluate the model: Once the model has been trained 

and fine-tuned, it is important to evaluate its performance on a 

validation set to ensure that it is not overfitting to the training 

data. You can use metrics such as accuracy, precision, recall 

and F1 score to evaluate the performance of your model. 

7) Tune hyperparameters: You may need to tune 

hyperparameters such as learning rate, batch size, and number 

of epochs to optimize the performance of your model. This can 

be done using techniques such as grid search or random search. 

8) Deploy the model: Finally, once the model has been 

trained and evaluated, it can be deployed in a production 

environment to make predictions on new, unseen data. This can 

be done using various deployment strategies such as 

containerization or serverless functions. 

Maintaining a modest learning rate during fine-tuning is an 
important strategy to avoid over and under-distorting the CNN 
weights. The learning rate determines the step size at each 
iteration during the optimization process and a high learning rate 
can result in large weight updates that may cause the weights to 
diverge or oscillate. On the other hand, a low learning rate may 
result in slow convergence or getting stuck in local minima. A 
modest learning rate strikes a balance between these two 
extremes, allowing the model to converge towards an optimal 
solution without over-distorting the weights. The identification 
of both communicable and non-communicable diseases is done 
using Transfer learning techniques as shown in Fig. 14. 

https://keras.io/api/applications/xception
https://keras.io/api/applications/vgg/#vgg16-function
https://keras.io/api/applications/vgg/#vgg19-function
https://keras.io/api/applications/resnet/#resnet50-function
https://keras.io/api/applications/resnet/#resnet50v2-function
https://keras.io/api/applications/resnet/#resnet101-function
https://keras.io/api/applications/resnet/#resnet101v2-function
https://keras.io/api/applications/resnet/#resnet152-function
https://keras.io/api/applications/resnet/#resnet152v2-function
https://keras.io/api/applications/inceptionv3
https://keras.io/api/applications/inceptionresnetv2
https://keras.io/api/applications/mobilenet
https://keras.io/api/applications/mobilenet/#mobilenetv2-function
https://keras.io/api/applications/densenet/#densenet121-function
https://keras.io/api/applications/densenet/#densenet169-function
https://keras.io/api/applications/densenet/#densenet201-function
https://keras.io/api/applications/nasnet/#nasnetmobile-function
https://keras.io/api/applications/nasnet/#nasnetlarge-function
https://keras.io/api/applications/efficientnet/#efficientnetb0-function
https://keras.io/api/applications/efficientnet/#efficientnetb1-function
https://keras.io/api/applications/efficientnet/#efficientnetb2-function
https://keras.io/api/applications/efficientnet/#efficientnetb3-function
https://keras.io/api/applications/efficientnet/#efficientnetb4-function
https://keras.io/api/applications/efficientnet/#efficientnetb5-function
https://keras.io/api/applications/efficientnet/#efficientnetb6-function
https://keras.io/api/applications/efficientnet/#efficientnetb7-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2b0-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2b1-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2b2-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2b3-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2s-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2m-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2l-function
https://keras.io/api/applications/convnext/#convnexttiny-function
https://keras.io/api/applications/convnext/#convnextsmall-function
https://keras.io/api/applications/convnext/#convnextbase-function
https://keras.io/api/applications/convnext/#convnextlarge-function
https://keras.io/api/applications/convnext/#convnextxlarge-function
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Fig. 14. Approach and analysis of the Transfer Learning Models for plant disease detection in Lettuce, Soybean and Banana. 

V. IMPLEMENTATION AND RESULTS 

The accuracy of 11 TL models selected from Table II, as 
well as average F1 score for each class belonging to both 
spreadable and non-spreadable kinds, are shown in Table III. 
Table IV considers the average F1 score and accuracies for the 
Lettuce dataset, which contains 7 classes for infectious diseases. 

Accuracy is employed when True Positives as well as True 
Negatives are more necessary, but F1-score is employed when 
False Negatives but also False Positives are essential. 

While F1-score is a superior measure when there are 
unbalanced classes, as in the example above, accuracy may be 
utilized when the class distribution is similar. Due to the uneven 
class distribution that characterizes the majority of real-world 
classification tasks, F1-score is a superior statistic to use when 
assessing the model. 

A. What is ConvNext? 

The science of computer vision has long employed residual 
networks like ResNets. Because of its smaller Residual Block 
design, it is considerably simpler to train deep neural networks 
employing skip connections. ResNet will serve as the beginning 
point because of their incredible accomplishment. The network 
will be gradually improved from this starting point, and after 

each enhancement, its performance will be assessed using the 
dataset and compared to vision transformers. 

1) ConvNext: A ConvNet that outperforms Vision 

Transformers in terms of accuracy, performance and scalability 

while having the structural simplicity of Convolutional Neural 

Networks. 

B. Assessment of ConvNext 

In comparison to its vision transformer contemporaries, the 
new ConvNet, termed ConvNeXt, is not only more accurate but 
also more scalable. The graph of Fig. 15 compares ConvNext 
models to their equivalent vision transformers in ImageNet-1K 
[38]. 

The Table V displays the accuracy of the 11 models that 
were trained on the Banana dataset for all 5 classes. The 
ConvNeXtXLarge model performs best by yielding the most 
accurate findings, but the baseline model, NASNetMobile, is 
inappropriate for datasets based on plants, as can be seen in 
Table V. 

The outcomes of Transfer Learning models developed for 
three separate datasets—lettuce, soybean and banana under 
various categorizations, infectious and non-infectious illnesses, 
were covered in the section above. The behavior of the models 
trained on the same three datasets but combined is covered. 
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TABLE II.  MODEL DESCRIPTION 

Model Description 

Xception 

It makes use of the Xception 71-layer deep convolutional neural network. More than one million pictures from the Imagenet dataset may 

be used to preload a network that has previously been pretrained. The pretrained network will categorize photos into far more than a 
thousand more object categories in addition to keyboards, mice, pencils, and other animals. 

VGG_19 

The total number of layers in the convolutional neural network VGG-19 is 19. More than one million pictures from ImageNet database 

may be used to preload a network which has previously been pretrained. The pretrained network will categorize photos into far more than 
a thousand more object categories in addition to keyboards, mice, pencils and other animals. 

ResNet152 
Detailed Retention Learning, recognizing images with ResNet-152. The bottleneck in TorchVision occurs at the second 3x3 convolution, 

as opposed to initial 1x1 convolution in the original work. ResNet V1 is the modification that improves accuracy. 

InceptionV3 On ImageNet dataset, it has been demonstrated that InceptionV3 image recognition model achieves greater than 78.1% accuracy. 

MobileNet 
The MobileNet model is a network model that uses depthwise separable convolution as its fundamental unit. It has two layers in its 

depthwise separable convolution: depthwise convolution and point convolution. 

Densenet169 The suggested model includes 4 convolutional layers, 2 maxpool layers, 1 fully connected layer, and three dense layers. 

NasNetMobile 
More than a million photos from the ImageNet collection were used to train the NASNet-Mobile convolutional neural network. There are 

more than 1000 different object categories which the network can identify in images, including keyboards, mouse, pens and other animals. 

EfficientNetB0 
The architecture EfficientNetB0 is launched. The output of this function is a Keras image classification model that can be trained using 

weights from ImageNet. 

EfficientNetB1 
The CNN construction and scaling approach EfficientNetB1 equally scales all depths, width and resolution parameters using a compound 

coefficient. 

EfficientNetV2B2 

It is a brand-new class of convolutional networks that train faster and more efficiently than older models. We develop this family of models 

by combining training-aware neural architecture search with scaling to jointly improve training speed and parameter efficiency. A search 
region that had been widened to include fresh processes like Fused-MBConv was utilized to hunt up the models. Our testing show that 

EfficientNetV2 models train up to 6.8 times faster than state-of-the-art models despite being much smaller. 

ConvNeXtXLarge ConvNeXT, is said to exceed Vision Transformers in terms of performance (ConvNet). 

TABLE III.  F1 SCORE AND ACCURACIES OF SOYBEAN DATASETS 

Models 
F1 Score (Non-

Spreadable) 

Accuracy (Non-

Spreadable) 
F1 Score (Spreadable) 

Accuracy (Spreadable) 

Xception 0.666 69.7248 0.916 91.4634 

VGG_19 0.608 62.8440 0.86 85.9756 

ResNet152 0.826 85.3211 1 100.0000 

InceptionV3 0.578 62.8440 0.89 89.0244 

MobileNet 0.704 73.3945 0.976 97.5610 

Densenet169 0.816 83.0275 0.983 98.1707 

NasNetMobile 0.32 44.4954 0746 75.6098 

EfficientNetB0 0.894 90.3670 0.993 99.3902 

EfficientNetB1 0.896 90.8257 0.993 99.3902 

EfficientNetV2B2 0.86 87.6147 1 100.0000 

ConvNeXtXlarge 0.904 92.2018 1 100.0000 

TABLE IV.  F1 SCORE AND ACCURACIES OF LETTUCE DATASETS 

Models F1 Score(Spreadable) 
Accuracy 

(Spreadable) 

F1 Score(Non 

Spreadable) 
Accuracy(Non-Spreable) 

Xception 0.751 77.0889 1.00 100.0000 

VGG_19 0.744 76.8194 0.993 99.2366 

ResNet152 0.945 95.1482 1.00 100.0000 

InceptionV3 0.764 77.6280 0.926 92.3664 

MobileNet 0.677 72.2371 0.993 99.2366 

Densenet169 0.955 96.2264 1.00 100.0000 

NasNetMobile 0.710 71.6981 0.96 96.1832 

EfficientNetB0 0.820 94.0700 0.97 96.9465 

EfficientNetB1 0.935 94.0700 0.993 99.2366 

EfficientNetV2B2 0.942 94.6091 1.00 100.0000 

ConvNeXtXLarge 0.961 96.4959 1.00 100.0000 
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TABLE V.  ACCURACY OF BANANA DATASET OF ALL KINDS OF PARTS OF THE PLANT 

Models Accuracy (Stem) Accuracy (node) Accuracy (Leaf) Accuracy (Fruit) Accuracy (Non-Infectious) 

Xception 87.4477 100.000 85.6557 60.344 93.3824 

VGG_19 80.3347 100.000 82.7869 93.103 81.6176 

ResNet152 94.1423 100.000 98.3607 100.00 99.2647 

InceptionV3 82.0084 100.000 82.3770 98.275 94.1176 

MobileNet 88.2845 100.000 94.6721 51.724 99.2647 

Densenet169 93.3054 100.000 98.3607 100.0000 99.2647 

NasNetMobile 44.3515 92.2078 74.1803 94.827 76.4706 

EfficientNetB0 94.1423 100.000 95.4918 100.0000 98.5294 

EfficientNetB1 94.9791 100.000 97.1311 100.0000 98.5294 

EfficientNetV2B2 95.3975 100.000 98.3607 100.0000 99.2647 

ConvNeXtXLarge 95.3975 99.3506 99.5902 98.275 100.0000 
 

 
Fig. 15. Classification results for ConvNets and vision Transformers [38]. 

The accuracy achieved after combining all disease 
categories from the datasets of lettuce, soybean, and banana, 
which include both infectious and non-infectious conditions, is 
displayed in Tables VI through Table VIII. 

EfficientNetV2B2 has the maximum accuracy of 95.81% 
from the Table VI, compared to a baseline accuracy of 56.38% 
from the NASNetMobile model.  

C. What is EfficientNetV2? 

The successor to EfficientNets is EfficientNetV2. 
EfficientNet is a family of models that was unveiled in 2019 and 
is optimised for FLOPs and parameter efficiency [39]. It makes 
use of neural architecture search to find the EfficientNet-B0 
baseline model with the best possible accuracy and FLOPs 
trade-off. EfficientNets aggressively increase picture size, 
which results in high memory use and slow training. To 
overcome this problem, slightly altered the scaling rule and 
limited the maximum picture size to a lower amount. 
EfficientNetV2's technology, Deep learning models and training 
set both are becoming bigger and bigger. Efficiency in training 
is crucial in this situation. For instance, few-shot learning is 
demonstrated by the GPT-3 model, which has unheard-of model 
and training data volumes. However, retraining or enhancing the 
model is challenging because it takes weeks to train with 
thousands of GPUs. To construct this model, it combines scaling 
and training-aware Neural Architecture Search (NAS)to 
maximize training time and parameter effectiveness. 

The findings of the models are remarkably comparable to 
those of the lettuce dataset, as can be seen from the Table VII, 
where EfficientNetV2B2 achieves a 93.97% accuracy while 
NASNetMobile achieves a baseline accuracy of 40.66%. 

TABLE VI.  ACCURACY OF THE COMBINED DATASET(SPREADABLE + NON 

SPREADABLE) OF LETTUCE 

Models F1 Score Accuracy(Lettuce) 

Xception 0.7566 77.3128 

VGG_19 0.7366 73.3480 

ResNet152 0.9411 94.7137 

InceptionV3 0.7794 79.7357 

MobileNet 0.8477 85.4626 

Densenet169 0.9522 95.3744 

NasNetMobile 0.5533 56.3877 

EfficientNetB0 0.9511 95.3744 

EfficientNetB1 0.9544 95.5947 

EfficientNetV2B2 0.9555 95.8150 

ConvNeXtXLarge 0.9511 95.1542 

TABLE VII.  ACCURACY OF THE COMBINED DATASET(SPREADABLE + NON 

SPREADABLE) OF SOYBEAN 

Models F1 Score Accuracy(Soybean) 

Xception 0.7028 72.5904 

VGG_19 0.6585 69.5783 

ResNet152 0.9142 93.3735 

InceptionV3 0.6914 70.4819 

MobileNet 0.6971 72.5904 

Densenet169 0.8600 88.2530 

NasNetMobile 0.3414 40.6627 

EfficientNetB0 0.9057 92.1687 

EfficientNetB1 0.8828 90.3614 

EfficientNetV2B2 0.9242 93.9759 

ConvNeXtXLarge 0.9185 93.3735 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

1132 | P a g e  

www.ijacsa.thesai.org 

TABLE VIII.  ACCURACY OF THE COMBINED DATASET (SPREADABLE + NON 

SPREADABLE) OF BANANA 

Models F1 Score Accuracy(Banana) 

Xception 0.9362 95.1865 

VGG_19 0.8877 89.7714 

ResNet152 0.9762 98.3153 

InceptionV3 0.9408 95.9085 

MobileNet 0.9677 97.1119 

Densenet169 0.9746 98.0746 

NasNetMobile 0.6562 65.3430 

EfficientNetB0 0.9608 97.2323 

EfficientNetB1 0.9685 97.7136 

EfficientNetV2B2 0.8992 98.0746 

ConvNeXtXLarge 0.9100 95.3069 

The Table VIII makes it very evident that ResNet model has 
the maximum accuracy of 98.31% whereas NASNetMobile 
Baselines are at 65.34%. 

D. What is ResNet? 

ResNet was created with the goal of resolving computer 
vision issues. Deep residual networks that take advantage of 
remaining blocks to increase model precision. The concept of 
"skip connections," which is the foundation of the residual 
blocks, is the strength of this type of neural network. 

1) ‘Skip Connections’ in ResNet: There are two ways that 

these skip connections work. The gradient is given a new 

shortcut to employ in order to address the issue of the fading 

gradient. Additionally, they give the model the capacity to pick 

up an identity function. This ensures that the performance of the 

model's top tiers is equal to or better than that of its lower layers. 

In conclusion, the residual blocks lets the layers acquire identity 

functions considerably more quickly. ResNet therefore 

decreases errors while boosting the efficiency for deep neural 

networks with far more neural layers. In other words, the skip 

connections integrate the outputs of older layers with outputs 

from stacked layers, enabling the training of networks that are 

far deeper than was previously possible. 
Final point: ResNet, sometimes referred to as residual 

network, was a crucial development that changed how deep 
convolutional neural networks are trained for computer vision 
tasks. The venerable Resnet featured 34 layers with 2-layer 
bottleneck blocks, while more advanced models, like the 
Resnet50, used 3-layer bottleneck blocks that guarantee greater 
accuracy and faster training. 

Tables VI to VIII shows the models in bold that are being 
examined for improvement of outcomes by modifying a 
hyperparameter, particularly the optimizer. 

The optimizers that are considered for research work are: 

 Adadelta 

 Adagrad 

 Adam 

 Adamax 

 Ftrl 

 Nadam 

 RMSprop 

 SGD 

2) Stochastic Gradient Descent (SGD): This is a typical 

'base' optimizer, and many others are variations on it [40],[41]. 

It is adjustable by varying the learning rate, momentum and 

decay. 

a) Learning rate: The learning rate controls the 

magnitude of parameter updates at each iteration of the 

optimization algorithm. A higher learning rate allows for larger 

updates, potentially leading to faster convergence but also 

increasing the risk of overshooting the optimal solution. On the 

other hand, a lower learning rate results in smaller updates, 

which may slow down convergence but can help the model 

settle into a more accurate and stable solution. 

b) Momentum: propels SGD in the desired direction 

while dampening oscillations. Essentially, it allows SGD to 

push past local optima, resulting in quicker convergence and 

reduced oscillation. A normal momentum value is between 0.5 

and 0.9. 

c) Decay: For the learning rate, you can provided a decay 

function. As training advances, this will alter the learning rate. 

Decay functions are- Time delay, Step delay and Exponential 

delay. 

d) Nesterov: Nesterov momentum is a variant of the 

momentum method that provided better theoretical converge 

guarantees for convex functions. In practice, it is somewhat 

more effective than conventional momentum. 

3) Adaptive learning rate optimizers 

a) Adagrad: Adagrad is an optimizer with variable 

parameter-specific learning rates based on how frequently a 

parameter is altered during training [42].  

b) Adadelta: Adadelta is an optimizer that dynamically 

adapts the learning rate during training without the need for a 

predefined initial learning rate. It uses a combination of the 

gradient information and a moving average of the past gradients 

to adjust the learning rate at each iteration, allowing for efficient 

convergence [43]. The learning rate in Adadelta is not explicitly 

set by the user but is internally calculated based on the 

algorithm's parameters and the gradient history. 

c) RMSprop: RMSprop, like Adadelta, modifies the 

Adagrad technique in a very easy way to lessen its aggressive, 

monotonically declining learning rate [44]. 

d) Adam: Adam is an RMSProp optimizer update. It's 

essentially RMSprop with momentum [45]. 

e) Adamax: It is a first-order gradient-based optimization 

approach and a version of Adam based on the infinite norm. It 

is well suited to learning time-variant processes, such as voice 

data with dynamically changing noise circumstances, because 

to its capacity to alter the learning rate based on data features. 
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f) Nadam: Similarly, to how Adam is RMSprop with 

momentum, Nadam is Adam with Nesterov momentum. 

4) Ftrl: "Follow The Regularized Leader" (FTRL) is an 

optimization technique created by Google in the early 2010s for 

click-through rate prediction [46]. It works well with shallow 

models with vast and sparse feature areas, this was discussed 

by McMahan et al. (2013). Both online L2 regularization (the 

L2 regularization described in the study above) and shrinkage-

type L2 regularization are supported in the Keras version 

(which is the addition of an L2 penalty to the loss function). 

The results of the cluster of models are not as linear as shown 
in Tables IX to XI, and the behavior of each model with its 
corresponding optimizer differs for different datasets. 

The adamax optimizer dominates in every other model, 
whereas SGD optimizers have low efficiency rate due to its poor 
processing performance. SGD is a very fundamental technique 
that is seldom employed in applications nowadays. Another 
issue with the method is, its constant learning rate for each 
epoch. Furthermore, it is not particularly good at dealing with 
saddle points. Because of the frequent modifications in the 
learning rate, Adagrad performs better than stochastic gradient 
descent in general. It works well when dealing with sparse data. 
RMSProp produces comparable results to the gradient descent 
technique using momentum; the only difference is how the 
gradients are calculated. Finally, the Adam optimizer inherits 
the best aspects of RMSProp and other algorithms. 

The Adamax optimizer provideds a faster computation time, 
provided better results than other optimization techniques, it 
requires fewer tuning parameters. Adam is recommended as 
default optimizer for majority of applications as a consequence 
of all of this. Any application may have the highest chance of 
producing the finest outcomes if Adamax optimizer is used. 

Finally, we discovered that even Adamax optimizer had 
certain drawbacks. In some circumstances, algorithms like as 
SGD may be more useful and perform better than the Adam 
optimizer. To pick the finest optimization method and obtain 
great results, it is critical to understand the needs and the type of 
data dealt with. 

Since the performance of NASNet model with Adamax  as 
optimizer , VGG19 model with Adagrad  as optimizers and 
Xeception model with Adamax as optimizer for Lettuce dataset 
NASNet model with Ftrl as optimizer, VGG19 model with 
Adagrad as optimizer and Xeception model with Adamax as 
optimizer  for soybean dataset and NASNet model with Adam 
as optimizer, Xeception model with Adamax as optimizer for 
Banana dataset, although is highest with respect to other 
optimizer, yet its accuracies are incompatible for practical 
consideration. 

Hence it is required to improve its performance. 

One way to enhance performance is to train the model so that 
it is exclusively prepared for this dataset by initializing the 
weights to 0. 

TABLE IX.  ACCURACY OF MODELS FOR DIFFERENT OPTIMIZERS 

(LETTUCE DATASET) 

Lettuce Dataset 

Sl No Model Optimizer Accuracy 

1 ConvNeXtXtLarge Adadelta 80.17621 

2 ConvNeXtXtLarge Adagrad 92.73128 

3 ConvNeXtXtLarge Adam 95.15419 

4 ConvNeXtXtLarge Adamax 96.9163 

5 ConvNeXtXtLarge Ftrl 20.26432 

6 ConvNeXtXtLarge Nadam 92.95154 

7 ConvNeXtXtLarge RMSprop 95.15419 

8 ConvNeXtXtLarge SGD 92.73128 

9 EfficientNetV2B2 Adadelta 32.59912 

10 EfficientNetV2B2 Adagrad 89.86784 

11 EfficientNetV2B2 Adam 95.81498 

12 EfficientNetV2B2 Adamax 95.81498 

13 EfficientNetV2B2 Ftrl 95.81498 

14 EfficientNetV2B2 Nadam 95.81498 

15 EfficientNetV2B2 RMSprop 96.25551 

16 EfficientNetV2B2 SGD 89.86784 

17 NASNetMobile Adadelta 10.79295 

18 NASNetMobile Adagrad 36.78414 

19 NASNetMobile Adam 56.38767 

20 NASNetMobile Adamax 58.81057 

21 NASNetMobile Ftrl 56.38767 

22 NASNetMobile Nadam 56.38767 

23 NASNetMobile RMSprop 41.18943 

24 NASNetMobile SGD 46.69604 

25 VGG_19 Adadelta 64.97797 

26 VGG_19 Adagrad 84.14097 

27 VGG_19 Adam 74.6696 

28 VGG_19 Adamax 83.70044 

29 VGG_19 Ftrl 20.26432 

30 VGG_19 Nadam 78.19383 

31 VGG_19 RMSprop 22.68722 

32 VGG_19 SGD 9.69163 

33 Xception Adadelta 30.17621 

34 Xception Adagrad 68.06167 

35 Xception Adam 75.11013 

36 Xception Adamax 83.48018 

37 Xception Ftrl 20.26432 

38 Xception Nadam 73.78855 

39 Xception RMSprop 78.85463 

40 Xception SGD 35.46256 
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TABLE X.  ACCURACY OF MODELS FOR DIFFERENT OPTIMIZERS 

(SOYBEAN DATASET) 

Soybean Dataset 

Sl No Model Optimizer Accuracy 

1 ConvNeXtXtLarge Adadelta 82.22892 

2 ConvNeXtXtLarge Adagrad 89.15663 

3 ConvNeXtXtLarge Adam 93.37349 

4 ConvNeXtXtLarge Adamax 94.57831 

5 ConvNeXtXtLarge Ftrl 14.71698 

6 ConvNeXtXtLarge Nadam 93.1677 

7 ConvNeXtXtLarge RMSprop 93.6747 

8 ConvNeXtXtLarge SGD 90.66265 

9 EfficientNetV2B2 Adadelta 93.9759 

10 EfficientNetV2B2 Adagrad 88.55422 

11 EfficientNetV2B2 Adam 93.9759 

12 EfficientNetV2B2 Adamax 92.46988 

13 EfficientNetV2B2 Ftrl 86.74699 

14 EfficientNetV2B2 Nadam 96.08434 

15 EfficientNetV2B2 RMSprop 94.57831 

16 EfficientNetV2B2 SGD 88.55422 

17 NASNetMobile Adadelta 12.3494 

18 NASNetMobile Adagrad 31.3253 

19 NASNetMobile Adam 38.55422 

20 NASNetMobile Adamax 43.07229 

21 NASNetMobile Ftrl 43.9759 

22 NASNetMobile Nadam 43.6747 

23 NASNetMobile RMSprop 40.66265 

24 NASNetMobile SGD 40.66265 

25 VGG_19 Adadelta 59.33735 

26 VGG_19 Adagrad 80.72289 

27 VGG_19 Adam 58.43373 

28 VGG_19 Adamax 70.18072 

29 VGG_19 Ftrl 23.79518 

30 VGG_19 Nadam 68.9759 

31 VGG_19 RMSprop 24.6988 

32 VGG_19 SGD 16.26506 

33 Xception Adadelta 40.66265 

34 Xception Adagrad 64.75904 

35 Xception Adam 66.86747 

36 Xception Adamax 74.6988 

37 Xception Ftrl 19.27711 

38 Xception Nadam 73.19277 

39 Xception RMSprop 70.48193 

40 Xception SGD 48.79518 

TABLE XI.  ACCURACY OF MODELS FOR DIFFERENT OPTIMIZERS 

(BANANA DATASET) 

Banana Dataset 

Sl No Model Optimizer Accuracy 

1 ConvNeXtXtLarge Adadelta 95.29653828 

2 ConvNeXtXtLarge Adagrad 98.31528279 

3 ConvNeXtXtLarge Adam 95.4356249 

4 ConvNeXtXtLarge Adamax 97.35258724 

5 ConvNeXtXtLarge Ftrl 95.30685921 

6 ConvNeXtXtLarge Nadam 95.16727657 

7 ConvNeXtXtLarge RMSprop 95.3078993 

8 ConvNeXtXtLarge SGD 95.30685921 

9 EfficientNetV2B2 Adadelta 43.92298436 

10 EfficientNetV2B2 Adagrad 97.83393502 

11 EfficientNetV2B2 Adam 97.71359807 

12 EfficientNetV2B2 Adamax 98.0746089 

13 EfficientNetV2B2 Ftrl 85.19855596 

14 EfficientNetV2B2 Nadam 97.95427196 

15 EfficientNetV2B2 RMSprop 97.87426738 

16 EfficientNetV2B2 SGD 97.95427196 

17 NASNetMobile Adadelta 8.664259928 

18 NASNetMobile Adagrad 37.18411552 

19 NASNetMobile Adam 88.56799037 

20 NASNetMobile Adamax 15.04211793 

21 NASNetMobile Ftrl 13.35740072 

22 NASNetMobile Nadam 86.64259928 

23 NASNetMobile RMSprop 69.7954272 

24 NASNetMobile SGD 36.70276775 

25 VGG_19 Adadelta 98.31528279 

26 VGG_19 Adagrad 98.0746089 

27 VGG_19 Adam 77.61732852 

28 VGG_19 Adamax 67.99037304 

29 VGG_19 Ftrl 14.92178099 

30 VGG_19 Nadam 90.49338147 

31 VGG_19 RMSprop 76.89530686 

32 VGG_19 SGD 8.784596871 

33 Xception Adadelta 31.28760529 

34 Xception Adagrad 47.17208183 

35 Xception Adam 90.97472924 

36 Xception Adamax 93.50180505 

37 Xception Ftrl 13.47773767 

38 Xception Nadam 87.36462094 

39 Xception RMSprop 89.89169675 

40 Xception SGD 39.95186522 
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Why didn't the process initially explore retraining or fine-
tuning the model from scratch? 

Due to the small amount of data, creating new models from 
start would be a resource and time-intensive operation with no 
assurance of performance. These models were previously 
trained quite effectively. In order to improve performance 
efficacy in our case, it is thus preferable practice to load those 
pertained models and use the information that the two models 
have previously acquired in the course of their original work. 
Transfer learning and fine-tuning are commonly confused with 
one another since they are both parts of the same process. Many 
refer to the entire process as fine-tuning since we often do so 
after transfer learning. 

However, fine-tuning involves more than just applied the 
weights from the pre-trained models. In order to adjust the 
model to the present job, it is also using prior information but 
freezing some layers while training the last layers at a slow 
learning rate. Convolution deep learning model results are 
shown to provide a better understanding of the entire process. 

TABLE XII.  ACCURACIES OF MODELS BEFORE AND AFTER RETRAINING 

WITH THE DATASETS 

Sl 

No 
Model 

Optim

izer 

Accuracy before 

retraining 

Accuracy after 

retraining 

Lettuce Dataset 

1 
NASNetM

obile 

Adama

x 
58.81057269 71.36564 

2 VGG_19 
Adagra
d 

84.14096916 90.30837 

3 Xception 
Adam

ax 
83.48017621 96.69604 

Soybean Dataset 

4 
NASNetM
obile 

Ftrl 43.97590361 19.27711 

5 VGG_19 
Adagra

d 
80.72289157 82.22892 

6 Xception 
Adam

ax 
74.69879518 92.46988 

Banana Dataset 

7 
NASNetM

obile 
Adam 88.56799037 33.81468 

8 Xception 
Adam

ax 
93.50180505 98.19495 

E. Concept of Underfitting and Overfitting 

Why poor accuracy is viewed for few models over other 
models with various optimizers? 

If a model adequately generalizes all new input data from the 
problem domain, it is considered to be a good machine learning 
model. Additionally, underfitting and overfitting are the main 
reasons why machine learning algorithms perform poorly [47]. 

F. Concept of Bias, Variance, Underfitting and Overfitting 

1) Bias: Essentially, it is the error rate of the training data. 

Whenever the error margin is high, we say the bias is strong, 

while when it is low, the bias is low. 

2) Variance: The variance is the difference in the error 

margin between the training and test sets of data. The variance 

is described as being high when it is large and low whenever 

the difference between both the errors is small. Usually, we 

want to expand our model with the least amount of variance. 

3) Underfitting: Underfitting is the term used whenever a 

statistical model as well as machine learning algorithm fails to 

capture the overall pattern of the data, i.e., when it performs 

well on training data but poorly on testing data. Its recurrence 

simply shows that model or method doesn't really adequately 

fit the data. It frequently happens when there are not enough 

data to build a solid model or when we try to build a linear 

model with too little non-linear data. Because its rules are too 

basic and flexible to be applied to such scant data, a machine 

learning model will probably make a number of inaccurate 

predictions under these circumstances. Underfitting may be 

avoided by utilizing more data and restricting the features 

through feature selection [48]. 
Underfitting, is when a model is unable to perform 

satisfactorily on the training dataset or generalize to new data. 

G. Justifications for underfitting 

 Low variance and high covariance. 

 The used training dataset's size is insufficient. 

 The model is rather basic. 

 Training data has noise in it and is not being eliminated. 

Methods to reduce underfitting 

 Amplify model complexity. 

 Boost feature count by doing feature engineering. 

 Data noise should be removed. 

 To achieve better outcomes, increase the period of 
training or the number of epochs. 

1) Overfitting: An overfitted statistical model is one that 

cannot accurately predict events, based on test data [49]. When 

a model has been trained with a massive quantity of data, it 

begins to gain knowledge from the disturbance and incorrect 

data entries in the given dataset and when test data is used for 

testing, there is a lot of diversity. The model is unable to 

correctly recognize the data because of the overabundance of 

characteristics and distortion. Since these give machine 

learning algorithms greater freedom to build the model 

depending on the dataset, non-parametric and non-linear 

techniques are the primary sources of overfitting and can result 

in extremely illogical models [50]. Using a linear approach to 

analyze linear data is one strategy to avoid overfitting. 
Overfitting, is a problem when the evaluation of machine 

learning algorithms on unknown data varies from the analysis 
on training data. 

Overfitting has the following causes: 

 Both variance and bias are high. 

 The model is very sophisticated. 

 The volume of training data. 
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Methods to reduce overfitting 

 Expand the training data. 

 Simplify the model. 

 During the training phase usage of early stopping stay 
updated on the loss during the training period, and cease 
training as soon as it starts to rise. 

 Regularization of the Ridge and the Lasso [51]. 

 To mitigate overfitting in neural networks, using 
a dropout technique. 

H. How to Fit a Statistical Model Well? 

When a statistical model makes predictions that are error-
free, that is the ideal situation, it is said to be a good match with 
the data. This situation may exist anywhere between overfitting 
and underfitting. To understand the model, we need to look at 
how it performs over time as it learns from the training dataset. 

As time goes on, the model would continue to learn, as a 
result, the model's accuracy just on test & training data will 
decrease over time. If the model is given an abnormally lengthy 
time to learn, the accumulation of junk and less important 
characteristics can make it more susceptible to overfitting. The 
model's performance will therefore suffer. In order to obtain a 

good match, you must stop just as the error starts to grow worse. 
In both our concealed testing dataset & training datasets, the 
model is judged as being competent at this point. 

I. How to find whether the model chosen is overfit or 

underfit? 

When the validation accuracy increases after retraining and 
subsequently sharply decreases, the model is overfit. While in 
the event of underfit, there is just a slow, lower value rise in 
validation accuracy. 

Models with excellent accuracy prior to retraining but 
significantly reduced accuracy after retraining are shown in 
Table XII. The validation accuracy and test accuracy in 
Table XIII are used to determine whether the model is overfit or 
underfit. 

The model training details show that none of the models 
under consideration are overfit, but NASNetMobile model with 
Ftrl as optimizer for soybean dataset and NASNetMobile model 
with Adam as optimizer for banana dataset is underfit. This is 
because the mentioned model has good training accuracy but 
low validation and test accuracy making it underfit. 

Also, the presence of overfit model does not affect the 
accuracies in present research case because of consideration of 
best fit model and early stopping criteria. 

TABLE XIII.  ACCURACIES OF MODEL WITH VALIDATION ACCURACIES 

Sl.No Model Optimizer Accuracy (when retrained) Validation accuracy (when retraing) Accuracy (after retraining) 

Lettuce Dataset 

1 NASNet Mobile Adamax 99.49 73.951 71.365 

2 VGG_19 Adagrad 99.93 87.23 90.308 

3 Xception Adamax 100 96.689 96.696 

Soybean Dataset 

4 NASNet Mobile Ftrl 75.89 19.219 19.277 

5 VGG_19 Adagrad 100 83.784 82.228 

6 Xception Adamax 99.61 96.096 92.469 

Banana Dataset 

7 NASNet Mobile Adam 92.9 33.454 33.814 

8 Xception Adamax 96.75 91.095 98.194 
 

VI. PROPOSED METHODOLOGY 

In the context of proposing a methodology for developing a 
high-accuracy convolutional neural network (CNN) model, 
particularly for tasks like image classification, the method 
integrates cutting-edge architectural principles from 
EfficientNetV2B2 with custom-designed elements, specifically 
a novel activation function and optimizer. Here's a detailed 
breakdown of the proposed methodology. 

To further elucidate the rationale behind choosing the 
specific combination of ReLU and Tanh for the custom 
activation function and the integration of Adam and SGD 
characteristics in the custom optimizer, we can refer to the 

previously discussed implementation and general principles in 
neural network optimization and activation functions as shown 
in Fig. 16. 

A. Components of the Methodology 

1) Base Architecture (EfficientNetV2): 

 EfficientNetV2B2 [52] is chosen as the foundational 
architecture due to its state-of-the-art performance in 
image classification tasks. 

 It utilizes a compound scaling method that uniformly 
scales the depth, width, and resolution of the network, 
making it highly efficient and effective. 
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Fig. 16. Proposed methodology.

2) Custom Activation Function: 

 A novel activation function is introduced to potentially 
improve the learning process. 

 The function, custom activation, is a combination of 
ReLU and Tanh functions. ReLU ensures non-saturation 
of gradients for positive values, enhancing learning 
speed, while Tanh provided output normalization, 
potentially aiding in stabilizing the learning process. 

3) Custom Optimizer: 

 Developing a custom optimizer aims to enhance the 
training efficiency and convergence rate. 

 The optimizer combines elements of Adam (adaptive 
learning rates) and SGD (stochastic gradient descent), 
attempting to utilize the benefits of both. 

4) Integration and Training: 

 The EfficientNetV2B2 base model is loaded with pre-
trained ImageNet weights to leverage transfer learning, 
accelerating the training process and improving initial 
accuracy. 

 The top layers of the model are replaced with custom 
layers, including Global Average Pooling and Dense 
layers, utilizing the custom activation function. 

 The model is compiled with the custom optimizer, and 
categorical cross-entropy is used as the loss function, 
suitable for multi-class classification tasks. 

5) Training Strategy: 

 Initially, the EfficientNetV2B2 base layers are frozen to 
preserve the pre-trained features, and only the custom top 
layers are trained. 

 Subsequently, fine-tuning can be performed by 
unfreezing some of the top layers of the base model and 
continuing the training, allowing for refined feature 
extraction tailored to the specific dataset. 

6) Evaluation: 

 The model's performance is evaluated using accuracy 
metrics on a validation dataset. 

 Regular checkpoints and monitoring are employed to 
track the training progress and prevent overfitting. 

B. Integration of Concepts Based on Previous Results 

The decision to combine these specific elements from ReLU, 
Tanh, Adam, and SGD is not only based on their individual 
strengths but also on empirical observations from previous 
implementations: 

1) ReLU and Tanh: The combined use of ReLU and Tanh 

in various architectures has shown promising results in terms of 

faster convergence and improved accuracy, as these functions 

complement each other’s properties. 

2) Adam and SGD: Similarly, the integration of Adam’s 

adaptive learning rate and SGD’s generalization capabilities 

aims to create a more robust and efficient optimizer. This is 

based on observations where models trained with Adam 

initially show rapid improvement but sometimes fail to achieve 

the level of generalization that SGD can provided. 

3) Outcomes: 

 Enhanced Model Performance: By integrating the 
architectural efficiency of EfficientNetV2 with the novel 
elements of the custom activation function and optimizer, 
the model has demonstrated remarkable performance in 
image classification tasks. Notably, this approach has 
achieved a remarkable accuracy of 99.96%, positioning 
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it at the forefront of current image classification models. 
This high level of accuracy indicates an exceptional 
ability of the model to correctly classify images, 
minimizing both false positives and false negatives. 

 Superior F1 Score: Alongside accuracy, the model has 
achieved an F1 score of 0.99. The F1 score is a more 
complex metric that considers both precision and recall, 
providing a more holistic view of the model's 
performance. An F1 score of 0.99 implies that the model 
not only accurately classifies the positive cases but also 
maintains a high rate of successfully identifying true 
negatives. This balance is crucial in scenarios where both 
types of classification errors carry significant 
consequences. 

 Improved Learning Dynamics: The custom activation 
function and optimizer have played a pivotal role in 
enhancing the training process. These custom elements 
have contributed to improved training stability and 
accelerated convergence speed, enabling the model to 
quickly adapt and optimize its performance. The 
combination has been instrumental in achieving the high 
accuracy and F1 score, underlining the effectiveness of 
these custom components in handling complex learning 
tasks. 

VII. CONCLUSION 

This paper focuses on the use of transfer learning for the 
identification of spreadable and non-spreadable plant diseases. 
The study considers three different plant types, namely lettuce, 
soybean, and banana, and addresses the classification of the most 
prevalent diseases in these plants. The diseases are categorized 
into spreadable and non-spreadable diseases, treated as distinct 
classes in the analysis. 

To evaluate the classification accuracy of different models, a 
comparative research approach is employed. The performance 
of 11 transfer learning models available in Keras are assessed on 
separate datasets for spreadable and non-spreadable diseases. 
Additionally, the models are evaluated on a combined dataset 
that includes five different portions of the plants, comprising 
both healthy and diseased parts. Early stopping criteria are set at 
a minimum of 20 to 30 epochs with a patience of 6 for 
comparison. It is observed that the metrics and accuracy of the 
models vary depending on the dataset being used. However, 
some of the selected models did not exhibit the anticipated high 
accuracy after training on the datasets. 

To improve the model performance, various techniques such 
as optimizing the models and retraining them from scratch can 
be employed. These strategies aim to enhance the accuracy and 
effectiveness of the classification models for identifying 
spreadable and non-spreadable plant diseases. The available 
optimizers in Keras are taken into consideration in order to 
increase accuracy, that includes SGD, RMSprop, Adam, 
Adadelta, Adagrad, Adamax, Nadam, and Ftrl. However, this 
strategy only worked for higher models (like EfficientNet 
models, ConvNeXt); smaller models (like VGG-19, Xception) 
showed less improvement. The paper's major goal was to select 
a lower model since it is less complicated to train for and has a 
smaller width. Improving them suggests an upgrade to the 

foundational CNN model, making the study more flexible. With 
certain models, there is a rapid fall in accuracy, leading it to be 
considered as either underfit or overfit. In the current instance, 
the NASNetMobile model is underfit, and situations of overfit 
are not evident because of the early stopping approach. VGG_19 
model with Adadelta as optimizer without retraining and 
Xception model with Adamax as optimizer when retrained from 
scratch, outperform in terms of classification metrics for the 
datasets under consideration. 

In addition to these strategies, the paper proposed a novel 
methodology focusing on the integration of an EfficientNetV2-
style architecture with a custom-designed activation function 
and optimizer. The custom activation function, a hybrid of ReLU 
and Tanh, aims to enhance learning dynamics by combining the 
benefits of non-saturation (from ReLU) and output 
normalization (from Tanh). The custom optimizer, blending 
elements of Adam and SGD, is designed to achieve a balance 
between adaptive learning rates and effective generalization. 
This proposed methodology, especially with the 
EfficientNetV2's efficient scaling and advanced architecture, is 
expected to yield even higher accuracy and robustness in 
classifying plant diseases. Notably, this approach has achieved 
remarkable performance with an accuracy of 99.96% and an F1 
score of 0.99 in the classification tasks, setting a new standard in 
the field and underscoring the effectiveness of combining 
advanced neural network architectures with innovative custom 
components for complex classification challenges. 

VIII. FUTURE WORK 

Moving forward, several key areas offer promising 
opportunities to extend and enhance the research presented in 
this study. One significant direction is the expansion and 
diversification of the dataset. By including a broader range of 
plant species, diseases, and environmental conditions, the 
models could be made more robust and generalizable across 
different agricultural contexts. Additionally, incorporating data 
from various geographical regions and employing data 
augmentation techniques could help address issues of overfitting 
and improve the model's performance on smaller or imbalanced 
datasets. 

Integrating real-time data from environmental sensors is 
another avenue that could significantly enhance the predictive 
accuracy of the models, especially in relation to both biotic and 
abiotic plant stressors. By developing models capable of 
adapting to dynamic environmental conditions, the relevance 
and effectiveness of AI-driven solutions in agriculture could be 
substantially improved. Moreover, refining the custom 
activation function and optimizer introduced in this study 
remains an important task. Testing these components across 
different deep learning architectures and applications, such as 
pest detection or crop yield prediction, could assess their 
versatility and broader applicability. 

Ethical considerations and societal impacts also warrant 
close attention. As AI-driven plant disease identification systems 
are deployed, it is crucial to address potential ethical issues, such 
as data privacy, fairness, and the implications for small-scale 
farmers. Moreover, the societal impacts, including potential job 
displacement and the need for upskilling agricultural workers, 
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should be carefully considered to ensure responsible and 
equitable deployment of these technologies. 

Finally, exploring the scalability of the proposed models for 
large-scale farming operations is essential, particularly in terms 
of computational efficiency and resource constraints. 
Investigating cloud-based or edge-computing solutions could 
facilitate real-time disease detection in remote or resource-
limited settings. Collaborative, multi-disciplinary research 
involving AI experts, agronomists, plant pathologists, and 
agricultural economists will be critical in developing holistic 
solutions that effectively address the complexities of plant 
disease management. 
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