
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1119 | P a g e

www.ijacsa.thesai.org

Hyperparameter Optimization in Transfer Learning

for Improved Pathogen and Abiotic Plant Disease

Classification

Asha Rani K P*, Gowrishankar S

Department of Computer Science and Engineering, Dr. Ambedkar Institute of Technology,

Bengaluru – 560056, Karnataka, India, Affiliated to VTU, Belagavi – 590018, Karnataka, India

Abstract—The application of machine learning, particularly

through image-based analysis using computer vision techniques,

has greatly improved the management of crop diseases in

agriculture. This study explores the use of transfer learning to

classify both spreadable and non-spreadable diseases affecting

soybean, lettuce, and banana plants, with a special focus on

various parts of the banana plant. In this research, 11 different

transfer learning models were evaluated in Keras, with

hyperparameters such as optimizers fine-tuned and models

retrained to boost disease classification accuracy. Results showed

enhanced detection capabilities, especially in models like VGG_19

and Xception, when optimized. The study also proposes a new

approach by integrating an EfficientNetV2-style architecture with

a custom-designed activation function and optimizer to improve

model efficiency and accuracy. The custom activation function

combines the advantages of ReLU and Tanh to optimize learning,

while the hybrid optimizer merges feature of Adam and Stochastic

Gradient Descent (SGD) to balance adaptive learning rates and

generalization. This innovative approach achieved outstanding

results, with an accuracy of 99.96% and an F1 score of 0.99 in

distinguishing spreadable and non-spreadable plant diseases. The

combination of these advanced methods marks a significant step

forward in the use of machine learning for agricultural challenges,

demonstrating the potential of customized neural network

architectures and optimization strategies for accurate plant

disease classification.

Keywords—Spreadable diseases; non-spreadable diseases;

transfer learning; Keras; optimizers; CNN; underfitting and

overfitting; retraining the models; base models; finetuning; abiotic;

biotic; infectious and non-infectious diseases; custom optimization

techniques; hyperparameter tuning in neural networks; hybrid

activation functions

I. INTRODUCTION

Over 80,000 plant diseases are known to exist in the world.
Crop diseases often harm crop plants, which can result in major
economic and agricultural losses [1]. If a plant disease is induced
by an environmental element and is not spread from one plant to
another, it is referred to be abiotic, or non-infectious. Diseases
classified as biotic or infectious are those brought on by
pathogens like viruses, fungi and nematodes.

Pathogens that affect animals as well as humans mimic plant
illnesses. Fungus, organisms that mimic fungal, bacterial,
phytoplasmas, viral, viral vectors, nematodes and parasitic
higher plants are examples of plant diseases.

In order to establish and maintain food security and revenue
sources for a developing world, it is more crucial to safeguard
plants against diseases. Severity of plant diseases can be reduced
with the aid of early identification.

The first lettuce farms were established in ancient Egypt as
it was the most widely consumed salad produce and has
substantial economic worth. Lettuce is more susceptible to biotic
than abiotic illnesses. The study highlights crucial and
substantial diseases, such as downy mildew, which may spread
swiftly to impact most plants in a crop. Lettuce diseases can
cause significant damage and occasionally full crop loss [2].
Some diseases, such as downy and powdery mildews, can
spread swiftly and harm the majority of the plants in a crop.

Diseases and insect pests are the main issues in soybean
production. To get a broader perspective on spreadable and non-
spreadable diseases, soybean plant is chosen. This calls for
careful diagnosis and prompt handling to prevent the soybean
crops from suffering significant losses. The world's soybean
production is projected to be 333.67 million tonnes in 2019–
2020 from a total area of 120.50 million hectares [3].

It is crucial to learn more about the spreadable and non-
spreadable diseases that affect various plant parts, including the
leaves, fruits, stems, nodes and roots. The banana crop fits best
into this category because each part of the plant has a variety of
uses, including medicinal properties for the stem and roots and
maintaining the health of the soil. Additionally, with an output
of 97.5 million tonnes, bananas are a significant fruit crop on a
worldwide scale. It has a total yearly output of 490,710,000
hectares producing 16.91 million tonnes [4].

Bananas are an important fruit crop in India.They are a staple
food for many people in the country and are also widely used in
various dishes. Panama disease, also known as Fusarium wilt, is
a serious threat to banana production worldwide. It is caused by
a fungus that infects the root system of the banana plant,
ultimately causing the plant to wilt and die. Aphids are a
common pest that can also infect banana plants. They feed on
the sap of the plant, which can weaken it and make it more
susceptible to other pests and diseases. It is important for
farmers to monitor their banana crops closely and take steps to
prevent and control these pests and diseases to protect their
yield.

Food security is at risk from plant diseases because they can
harm crops, lowering food production and driving up food

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1120 | P a g e

www.ijacsa.thesai.org

prices. Leaf blight, septoria blight, powdery mildew and downy
mildew, which can be fungal, are the main diseases impacting
the lettuce crop. Bacterial rust and downy mildew are the
diseases that affect soybeans, whereas weevil, soft rot, aphids,
and few may affect bananas [5]. Fig. 1 and 2 shows the illnesses
of lettuce and soybean.

Deep learning is a cutting-edge technique for object
recognition and image processing that improves categorisation
of numerous crop diseases [6]. One well-liked method in deep
learning where pre-trained models are modified to perform a
new job is transfer learning. Deep Transfer Learning (DTL)
creates a applied novel framework for predictive analytics and
digital image processing that is more accurate and has enormous
potential for crop disease identification. A potential method for
recognising diseases onsite is the DTL technique, which also
offers a quick way to adapt created models to the constraints
imposed by mobile applications [7]. This would be very useful
in a real-world field scenario.

(a) Lettuce viral disease.

(b) Lettuce fungal disease.

(c)Lettuce Bacterial Disease.

(d) Lettuce Non-Infectious Disease (Salt burn).

Fig. 1. Some major plant diseases found in lettuce plant dataset.

A variety of factors, including that of the high-definition
camera, high efficient processing and many built-in accessories,
enable automatic disease identification. The accuracy of the
outcomes has increased because of the use of cutting-edge
techniques like deep learning and machine learning. Our
experimental results represent significant advances in the
understanding of the severity of plant diseases. The paper is
organised as follows for the following sections: Section I

Introduction, Section II Literature Review, Section III highlights
Methodology that includes expanded dataset description,
Augmentation and Activation functions, Section IV describes
Performance evaluation. Performance reviews go into great
detail, Section V is concerned with implementation, results are
providedd in tabular format and Section VI acts as a conclusion.

(a) Soybean Iron deficiency.

(b) Soybean fungal disease.

(c) Soybean Diabrotica speciosa disease.

Fig. 2. Some major plant diseases found in soybean plant dataset.

II. LITERATURE SURVEY

N. Saranya et al. [8] have categorized many ailments that
affect the leaves and fruits of the banana plant. Fuzzy c-means,
histogram-based equalization and artificial neural networks all
have important roles in the proposed approach. The image is
divided using fuzzy c-means and the histogram is then utilized
to transform it without losing any of the details of the banana
plant. In this study, a better categorization strategy is
recommended in order to deliver the best return.

Michael Gomez Selvaraj et al. [9] applied pixel-based
banana classification using the Random Forest (RF) model
utilizing integrated features of Vegetative Indices (VI) and
Principal Component Analysis (PCA) to map banana under
mixed-complex African settings. Gomez Selvaraj et al. provided
higher & low-resolution aerial (UAV and satellite) photos with
cutting-edge computer vision algorithms to achieve more than
90% accuracy under actual settings (Smart phone-based AI
applications).

A high-definition camera is used to take photos of the early
and intermediate phases of soybean disease and the photos are
then expertly batched into uniform sizes. The picture

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1121 | P a g e

www.ijacsa.thesai.org

segmentation methods used by E. Miao et al. [10] include lab
grayscale map, ultragreen feature approach, genetic algorithm
and threshold segmentation. Next, the results are filtered using
the median and corroded expansion. A Convolutional Neural
Network (CNN) that uses a MultiLayer Perceptron (MLP)
framework to execute supervised learning of the network and
achieves an average recognition rate of 94.87% is seen in the
soybean illness picture identification experiment.

Three disease groups of soybean leaves were examined by
Sachin B. Jadhav et al. [11] bacterial blight, frogeye leaf spot,
and septoria brown spot. The diseased leaf area is segmented
using incremental K-means clustering. Color and texture data
are recovered using the R, G, B color space and the Gray Level
Co-occurrence Matrix (GLCM), respectively. SVM and K-
Nearest Neighbors Algorithm (KNN) are used in a classification
technique to identify the exact kind of leaf disease. The results
demonstrate that the SVM classifier approach outperforms the
KNN methodology with efficiencies of 87.3% and 83.4%,
respectively.

Elham Khalili et al. [12] examined and compared six ML
methods for identifying the ailment known as charcoal rot in
their study that was published in science. Healthy plants were
gathered from the stem and root of soybean plants during the
ripening stage based on the maturity's symptomless qualities.
R7(Yellowing of the leaves and yellow pods at 50% growing
stage) was chosen for sick plants based on physical criteria
indicates the presence of bright grey and mycelium on the root
and stem. Gradient Tree Boosting and Support Vector Machines
performed better than Regularized Logistic Regression,
MultiLayer Perceptron and Random Forest techniques.

Miao Yu et al. [13] used the OTSU technique, which
decreases the effect of the background on the disease images.
Using ResNet18 and RANet, the model's effectiveness in the test
set was confirmed and assessed. The response time was 0.0514
seconds, the F1-value was 98.52, and the RANet average
recognition rate was 98.49%. Compared to ResNet18, the
identification rate increased by 1.15 percent, the F1-value
increased by 1.17 and 0.0133 seconds were saved while
identifying illnesses from images.

Lack of calcium makes tip-burn, which is common in lettuce
plants cultivated indoors, worse. Photos of tip-burn lettuce were
illuminated using white, red and blue LEDs, and these images
served as the training, validation and testing datasets for a deep-
learning detection method. The detection approach developed
by Munirah Hayati Hamidon et al. [14] was based on three
detectors: CenterNet, YOLOv4 and YOLOv5. YOLOv5 beat
the other two models tested, with an accuracy of 84.1% mAP.

Positive and negative samples from each kind of weed and
crop were chosen by Kavir Osorio et al. [15] and taken. There
are just a few of weed characteristics that remain consistent,
making identification difficult. The identification of the
vegetation was done alternatively using multispectral bands.
The R-CNN model distinguished itself for its accuracy in
detecting the crop and showing the edges, making it a tactic that
may be recommended for addressing problems like fruit
detection. The RCNN and HOG-SVM-based algorithms were
shown to be the most trustworthy using the Bland-Altman

approach. The YOLO strategy exaggerates the high levels of
cannabis coverage in contrast to the other two.

According to J. Amara et al. [16], who used the LeNet
architecture as a Convolutional Neural Network to classify the
data, banana leaf disease may now be classified using deep
learning. This strategy stabilized after 25 iterations. This
research demonstrated its effectiveness in a variety of picture
situations, including ones with a complex background and
various sizes and orientations.

W. Liao et al. [17] proposed using the SVM classifier in a
machine learning-based strategy for early identification of
banana disease. Hyperspectral images taken at close range are
utilized in this instance. When using spectral and morphological
data, the classifiers' outputs have an overall accuracy of 96% for
early detection, 90% for mid-detection, and 92% for late
detection.

More research is being done to detect and classify the
disease, not just for banana leaves but also for the majority of
food crops including rice, maize, apple, cheerio and other well-
known plants. Here are a few of these judgements.

A superior convolutional neural network should be used to
classify apple plant and cherry plant diseases, according to [18].

In the extremely packed growing conditions of indoor
settings, early diagnosis of tip-burns in lettuce is vital in order to
reduce the cost of human identification and boost lettuce quality
and production. Shimamura et al. [19] created a system for tip-
burn identification in plant factories by using GoogLeNet to
classify two different types of tip-burn from a single picture of
lettuce.

The most recent Neuron Compute Stick pretrained Movidius
of deep CNN model from Intel provided an accuracy rate of
88.46% for Mishra et al. [20]'s system for classifying and
diagnosing maize leaf diseases. The system was implemented on
a Raspberry Pi 3.

K-means segmentation and multiclass support vector
machines were used by Kumar et al. [21] to identify and classify
different plant leaf diseases (SVM-based classification).
Compared to other approaches, the detection accuracy is much
higher.

To eliminate manual feature stage modelling, Mazzia et al.
[22] created an LC&CC deep learning model that blends
Recurrent Neural Networks (RNN) with Convolutional Neural
Networks (CNN).

Researchers Cetin et al. [23] used six different machine
learning algorithms to analyze and classify six sunflower
varieties (105 single seeds) based on their fatty acid and mineral
composition, biochemical traits and physical characteristics.
These algorithms included Decision Tree (DT), Random Forest
(RF), Support Vector Machine (SVM), Multiple Linear
Regression (MLR), Naive Bayes (NB) and MultiLayer
Perceptron (MLP).

Sharif et al. [24] proposed a hybrid feature selection method,
which included the principal components analysis score,
entropy, skewness-based covariance vector and Multiclass-
SVM (MSVM), produced true positive rates of 96.9% and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1122 | P a g e

www.ijacsa.thesai.org

97.1% for the detection of anthracnose disease and melanose
disease on citrous leaves.

Machine learning models including K-Nearest Neighbor
(KNN), Support Vector Machine (SVM), and other machine
learning models have been widely used as classifiers to find
anomalous areas on crop leaves. With a detection rate of 90.5%,
Lu et al. [25] used Fisher discriminant analysis to identify
anthracnose crown rot in the early stages of affected strawberry
leaves inside.

To detect early blight on potato leaves, Vijver et al. [26] used
partial least squares discriminant and discovered a positive
predictive value of 0.92. This study demonstrated that artificial
intelligence can accurately identify aberrant leaves in a range of
crops. Therefore, using machine learning algorithms to detect
yellow and wilted lettuce leaves in hydroponic systems is
encouraging.

III. METHODOLOGY

A. Dataset Description

Performance evaluation of existing transfer learning
pretrained models for plant disease classification is done using
the Lettuce, Soybean and Banana dataset. Non-Spreadable
diseases caused by abiotic factors include herbicide injury which

turn leaves or leaf veins yellow or red. Calcium strengthens plant
cell walls and salt burn is a result of the plant's inability to supply
enough calcium for developing leaves during periods of rapid
growth. The dataset for the proposed research consists of images
of Lettuce plant and Soybean Plant infected by non-spreadable
diseases and images affected by spreadable diseases. These
images have been obtained from CrowdAI [27] and PlantVillage
dataset [28]. The images have been augmented and brought up
to 628 images for the former and 1845 images for the latter, as
represented in Fig. 3 and 4. Each image maintains a fixed width
and height of 256x256 pixels.

Two mobile phones and a UAV were used to take pictures
of soybeans. Three groups make up the dataset: (I) photos of
healthy plants, (II) pictures of plants harmed by caterpillars, and
(III) pictures of plants harmed by Diabrotica speciosa. To meet
our demands, the photos have undergone processing and
augmentation [29].

The banana plant is vulnerable to bacterial, fungal, and viral
diseases that can affect different parts of the plant. For research
purposes, the PSFD-Musa dataset [30] was utilized, which
contains pre-existing enhanced photos. Fig. 5 to 11 represent the
dataset, showcasing the spreadable disease affected regions such
as Node, Leaf, Banana, and Fruit.

Fig. 3. Lettuce (Non-Spreadable) Dataset Description.

(a)

(b)

Fig. 4. Lettuce (Spreadable) Dataset Description.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1123 | P a g e

www.ijacsa.thesai.org

Fig. 5. Dataset classification of Banana Stem.

Fig. 6. Dataset classification of Banana Leaf (Spreadable).

Fig. 7. Dataset classification of Banana Node

Fig. 8. Dataset classification (non-Spreadable) disease in Banana crop.

Fig. 9. Dataset classification spreadable disease in Banana Fruit.

Fig. 10. Dataset classification of Soybean Non-Spreadable Diseases.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1124 | P a g e

www.ijacsa.thesai.org

Fig. 11. Dataset classification of Soybean Spreadable Diseases.

The dataset includes images of leaves affected by diseases
like Black Sigatoka, Panama, and Yellow Sigatoka (Fig. 5-7),
with a total count of 1104. Stem diseases, namely Bacterial Soft
Rot and Pseudostem Weevil, also have 1104 corresponding
images. The Banana node is affected by Aphids (Fig. 8), and the
Banana Fruit is affected by Scarring Beetle (Fig. 9), with 366
and 150 images obtained, respectively.

To enhance the model's efficiency and performance, self-
captured healthy banana images were incorporated. Fig. 7
illustrates images of healthy nodes. Additionally, potassium
deficiency, caused by abiotic factors, has an adverse impact on
banana leaves (Fig. 8). The dataset also includes 150 images of
spreadable diseases in banana fruit (Fig. 9).

In addition to the banana dataset, 740 photos of soybean
plants infected with spreadable diseases (Fig. 10) and 1084 non-
spreadable images (Fig. 11) were obtained for comparative
analysis.

B. Augmentation

Convolutional Neural Networks (CNN) are widely used for
image classification. However, the quality and quantity of
training data significantly impact model performance.
Insufficient or imbalanced data can lead to poor generalization.
Techniques like oversampling or undersampling can address
class imbalance [31]. Data augmentation, including affine
transformations and color manipulation, is a popular method to
increase dataset size. Classical approaches may not always
improve accuracy or address overfitting effectively. Affine
transformations include rotation, reflection, scaling, and
shearing. Additional techniques like permutation rotate, random
zoom, variation in shear, random crop, and flip can be used.
After data augmentation and balancing, the dataset consisted of
200 augmented images per class [32].

C. Activation Function

An activation function is a mathematical function that is
applied to the input of a neural network node or a layer of nodes.
The activation function is used to introduce non-linearity into
the network, which is necessary for the network to learn
complex patterns in the input data. Without activation functions,
a neural network would essentially be a linear model, which is
limited in its ability to learn complex relationships.

Activation methods that are frequently employed based on a
few desirable characteristics include:

1) Nonlinear: Whenever the activation function is

nonlinear, it has been shown that a two-layer neural network is

an excellent approximator of any function. The identical

activation function does not satisfy this condition. When many

layers employ the same activation function, the network as a

whole is equivalent to a single-layer model.

2) Range: Gradient-based training techniques have a

tendency to be more stable when the activation function's range

is finite, since only a small number of weights are significantly

affected by pattern presentations. Since most of the weights are

strongly affected by pattern presentations when the range is

unlimited, training is often more effective. Short learning rates

are often required in the latter scenario.

3) Continuously differentiable: For the purpose of allowing

gradient-based optimization approaches, this property is

desirable (ReLU is not continuous differentiable and has some

challenges with it, but it is still achievable). Because the binary

step activation function is not differentiable at zero and

differentiates to zero for all future values, gradient-based

techniques cannot advance with it.

4) Monotonic: A single-layer model's related error surface

is always guaranteed to be convex when the activation function

is monotonic.

5) Approximates near the origin: When activation

functions have this property, the neural network can learn

efficiently when its weights are initialized with low-level

random values. If the activation function differs from identity

near to the origin while initializing the weights, more care must

be taken.

Each activation function has advantages and disadvantages,
so we must be cautious when choosing one. Following are some
frequent considerations to make while selecting an activation
function:

1) When it comes to classification issues, sigmoid [33]

functions (including softmax) and their combinations often

perform better.

2) Due to the vanishing gradient issue, sigmoid and tanh

functions continue to be avoided in hidden layers.

3) Tanh is typically avoided because of the dead neuron

issue [34].

4) Because it produces superior results, ReLU activation

function is frequently employed and is the default option (than

sigmoid and tanh) [35].

5) However, the ReLU function should only be utilized in

the buried layers (and not in the output layer).

6) In cases of regression issues, an output layer's activation

function can be linear, however nonlinear activation functions

are required for classification tasks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1125 | P a g e

www.ijacsa.thesai.org

7) The leaky ReLU function is the ideal option if we come

into an instance of dead neurons in our networks.

8) For any kind of neural network, the ReLU activation

function is presently the one that is most frequently employed

for the hidden layers (but never for the output layer).

9) Swish activation should only be utilized for bigger

neural networks with depths of more than 50 layers, even

though it does not consistently beat ReLU in complicated

applications [36].

10) The output (top-most) layer should be triggered by the

sigmoid function for 2-class applications, as well as for multi-

label classification.

11) The output layer must be triggered using the softmax

activation function for multi-class applications.

12) A basic regression neural network should just employ

the linear activation function in the output layer.

13) The tanh activation function is recommended for the

hidden layer in Recurrent Neural Networks (RNN). By default,

it is configured by TensorFlow.

14) In some circumstances, switching to a leaky ReLU

might produce better outcomes and overall performance if

ReLU is unable to deliver the desired results.

Some of the known Activation functions are:

1) The sigmoid function: Logistic regression and simple

neural network implementation both use sigmoid functions.

The fundamental activation units in machine learning are

sigmoid functions. However, because of a number of

limitations, it is simply not advisable to use complicated neural

network sigmoid functions (vanishing gradient problem).

Given that it is among the most frequently used activation

functions, it serves as an excellent introduction for those who

are naïve to data science and machine learning. Whilst the

sigmoid function and its derivative are simple to use and help

reduce the time required to develop models, there is a

considerable downside of data lost since the derivative has a

constrained range.

2) Tanh function: The tanh function partially addresses the

drawback of the sigmoid function. Its key feature is that its

curve is symmetric across the origin and has coefficients that

range from -1 to 1 [34]. This does not, however, mean that the

fading or bursting gradient problem does not occur. It does exist

for tanh, however unlike Sigmoid, it is centered at zero, making

it more ideal than Sigmoid Function.

3) ReLU (Rectified Linear Units) and Leaky ReLU: ReLU

functions, as opposed to Logistic Activation functions, are

currently used in the majority of Deep Learning applications,

such as computer vision, natural language processing, speech

recognition, deep neural networks, etc [35]. ReLU outperforms

tanh or sigmoid functions in terms of application-level manifold

convergence speed. Among the ReLU variations are Leaky

ReLU, Parametric ReLU, Parametric Softplus (SmoothReLU),

Noisy ReLU, and ExponentialReLU (ELU) [36].

4) Softmax function: The Softmax activation function

which not only turns our output into a [0, 1] range but also

changes each outcome so that the sum of each is 1 [37], is

extremely fascinating. Softmax produces probability

distribution as a result. In logistic regression model

(multivariate), Softmax is used for multi-classification while

Sigmoid is employed for binary classification.

D. Mathematical Approach for the Considered Procedure

The field of machine learning relies heavily on mathematical
principles and techniques to design, train, and optimize models
that can make predictions or learn patterns from data. This
mathematical approach enables us to create powerful algorithms
capable of solving a wide range of tasks, from image recognition
and natural language processing to financial predictions and
recommendation systems.

At the core of the mathematical approach in machine
learning is the idea of formulating the learning problem as an
optimization task. The goal is to find the model's parameters that
minimize a certain objective function, such as the mean squared
error in regression tasks or the cross-entropy loss in
classification tasks. This process involves using various
mathematical tools to represent the model, compute gradients,
and iteratively update the parameters to approach the optimal
solution. let's go through each of these layers, providing a brief
introduction and their mathematical formulas:

1) Convolutional Layer (Conv layer): Convolutional layers

are the fundamental building blocks of Convolutional Neural

Networks (CNNs). They are designed to automatically and

adaptively learn spatial hierarchies of features from input data

such as images. A convolutional layer applies convolutional

operations to input data using learnable filters (kernels) to

detect local patterns and features.

The output of a convolutional layer can be represented as
follows:

Given an input feature map X with dimensions (height,
width, channels), and a set of learnable filters W of size
(filter_height, filter_width, input_channels, output_channels),
the convolution operation can be represented as:

Y[i, j, k] = Σ Σ Σ X[p + i, q + j, r] ∗ W[p, q, r, k]

Here,

 Y[i, j, k] is the value of the output feature map at position
(i, j) in the k-th channel.

 X[p+i, q+j, r] is the value of the input feature map at
position (p+i, q+j) in the r-th channel.

 W[p, q, r, k] is the value of the learnable filter at position
(p, q) in the r-th input channel and k-th output channel.

 The summation is performed over all spatial positions (p,
q) of the filter and all input channels (r).

2) MaxPooling Layer (MaxPooling): MaxPooling is a

downsampling technique commonly used in CNNs to reduce

the spatial dimensions of the feature maps while retaining the

most important information. It works by dividing the input

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1126 | P a g e

www.ijacsa.thesai.org

feature map into non-overlapping regions and taking the

maximum value within each region.

The output of a MaxPooling layer can be represented as
follows:

Given an input feature map X with dimensions (height,
width, channels), and a pooling window of size (pool_height,
pool_width), the MaxPooling operation can be represented as:

𝑌[𝑖, 𝑗, 𝑘] = 𝑚𝑎𝑥(𝑋[𝑖 ∗ 𝑝𝑜𝑜𝑙ℎ𝑒𝑖𝑔ℎ𝑡: (𝑖 + 1) ∗ 𝑝𝑜𝑜𝑙ℎ𝑒𝑖𝑔ℎ𝑡 , 𝑗

∗ 𝑝𝑜𝑜𝑙𝑤𝑖𝑑𝑡ℎ: (𝑗 + 1) ∗ 𝑝𝑜𝑜𝑙𝑤𝑖𝑑𝑡ℎ , 𝑘])

Here,

 Y[i, j, k] is the value of the output feature map at position
(i, j) in the k-th channel.

 The max function takes the maximum value within the
pooling window.

3) SeparableConv Layer (Depthwise Separable

Convolution): The SeparableConv layer is an alternative to

standard convolutions designed to reduce computation and

model size while maintaining representational capacity. It splits

the convolution operation into two steps: depthwise

convolution and pointwise convolution.

The output of a SeparableConv layer can be represented as
follows:

Given an input feature map X with dimensions (height,
width, channels), a depthwise kernel DW of size (filter_height,
filter_width, channels), and a pointwise kernel PW of size (1, 1,
channels, output_channels), the SeparableConv operation can be
represented as:

𝑌[𝑖, 𝑗, 𝑘] = 𝛴 𝛴 𝑋[𝑖 + 𝑝, 𝑗 + 𝑞, 𝑟] ∗ 𝐷𝑊[𝑝, 𝑞, 𝑟]
∗ 𝑃𝑊[1, 1, 𝑟, 𝑘]

Here,

 Y[i, j, k] is the value of the output feature map at position
(i, j) in the k-th channel.

 X[i+p, j+q, r] is the value of the input feature map at
position (i+p, j+q) in the r-th channel.

 DW[p, q, r] is the value of the depthwise kernel at
position (p, q) in the r-th channel.

 PW[1, 1, r, k] is the value of the pointwise kernel at
position (1, 1) in the r-th input channel and k-th output
channel.

 The summation is performed over all spatial positions (p,
q) of the depthwise kernel and all input channels (r).

4) GlobalAveragePooling2D Layer: Global Average

Pooling 2D is another downsampling technique used in CNNs,

often as an alternative to fully connected layers at the end of the

network. It computes the average value of each channel of the

feature map, reducing the spatial dimensions to a single value

per channel.

The output of a GlobalAveragePooling2D layer can be
represented as follows:

Given an input feature map X with dimensions (height,
width, channels), the Global Average Pooling operation can be
represented as:

𝑌[𝑘] = (
1

(ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑤𝑖𝑑𝑡ℎ)
) ∗ 𝛴 𝛴 𝑋[𝑖, 𝑗, 𝑘]

Here,

 Y[k] is the value of the output for the k-th channel.

 The summation is performed over all spatial positions (i,
j) of the feature map.

5) Dense Layer (Fully Connected Layer): The Dense layer

is the standard fully connected layer in neural networks. It

connects every neuron from the previous layer to every neuron

in the current layer. The Dense layer performs a linear

transformation followed by an activation function.

The output of a Dense layer can be represented as follows:

Given an input vector X of size (input_units) and the weight
matrix W of size (input_units, output_units), the Dense layer
operation can be represented as:

𝑌 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑋 ∗ 𝑊 + 𝑏)

Here,

 Y is the output vector.

 activation_function is the non-linear activation function
applied element-wise to the linear transformation.

 b is the bias vector of size (output_units).

6) BatchNormalization layer: BatchNormalization is a

normalization technique applied to intermediate layers in neural

networks to stabilize and accelerate training. It normalizes the

activations of each layer's mini-batch, making the network

more robust and less sensitive to the scale of the input.

The output of a BatchNormalization layer can be represented
as follows:

Given an input feature map X with dimensions (batch_size,
features), and learnable scaling and shifting parameters γ and β,
the BatchNormalization operation can be represented as:

𝜇 =
1

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

∗ 𝛴 𝑋

𝜎2 =
1

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

∗ 𝛴 (𝑋 − 𝜇)2

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
(𝑋 − 𝜇)

√𝜎2 + 𝜀

𝑌 = 𝛾 ∗ 𝑋_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 + 𝛽

Here,

 μ and σ² are the mean and variance of the mini-batch.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1127 | P a g e

www.ijacsa.thesai.org

 X_normalized is the normalized input.

 γ and β are learnable scaling and shifting parameters,
respectively.

 ε is a small constant (usually a small value like 1e-5)
added for numerical stability.

7) Flatten layer: The Flatten layer is used to reshape the

high-dimensional feature maps into a 1D vector, which is then

fed into a Dense (fully connected) layer for further processing.

Let's consider an input tensor X with dimensions
(batch_size, height, width, channels), where:

batch_size: The number of samples in the batch.

height: The height dimension of the feature maps.

width: The width dimension of the feature maps.

channels: The number of channels (depth) of the feature
maps.

The Flatten layer reshapes the input tensor X into a 1D vector
with size (batch_size, height * width * channels). This is

achieved by simply concatenating all the elements of each
feature map in X into a single long vector.

𝐹𝑙𝑎𝑡𝑡𝑒𝑛_𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑋, (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, ℎ𝑒𝑖𝑔ℎ𝑡
∗ 𝑤𝑖𝑑𝑡ℎ ∗ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠))

Here, Reshape(X, (batch_size, height * width * channels))
represents the operation of reshaping the input tensor X into the
specified dimensions.

IV. PERFORMANCE EVALUATION AND RESULTS

A. Model and Dataset Selection

On datasets for lettuce, soybeans and bananas, 11 Transfer
Learning models have been used to identify and categorize
disease occurrence. The dataset that was collected from web
sources are treated as raw data and organized as indicated in
Fig. 12 and 13.

The original dataset was reshuffled, and the resulting dataset
is used to train the transfer learning models in Keras module.
Divided 38 TL Keras models into 11 different groups, grouped
them as families, and primarily selected a member from each
group for further study.

(a)

(b)

Fig. 12. (a) Modification of Lettuce Dataset, (b) Modification of Soybean Dataset.

Fig. 13. Variety of banana dataset considered.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1128 | P a g e

www.ijacsa.thesai.org

The bold models in Table I are chosen for research.

TABLE I. MODEL CLASSIFICATION ACCORDING TO MODELS FAMILY

CONCEPT

Family Model

Xeception family Xception

VGG Family
VGG16

VGG19

ResNet Family

ResNet50

ResNet50V2

ResNet101

ResNet101V2

ResNet152

ResNet152V2

Inception Family
InceptionV3

InceptionResNetV2

MobileNet Family
MobileNet

MobileNetV2

DenseNet Family

DenseNet121

DenseNet169

DenseNet201

NASNet Family
NASNetMobile

NASNetLarge

EfficientNet Family

EfficientNetB0

EfficientNetB1

EfficientNetB2

EfficientNetB3

EfficientNetB4

EfficientNetB5

EfficientNetB6

EfficientNetB7

EfficientNetV2 Family

EfficientNetV2B0

EfficientNetV2B1

EfficientNetV2B2

EfficientNetV2B3

EfficientNetV2S

EfficientNetV2M

EfficientNetV2L

ConvNext Family

ConvNeXtTiny

ConvNeXtSmall

ConvNeXtBase

ConvNeXtLarge

ConvNeXtXLarge

To retrain a transfer learning model, you will need to follow
these steps:

1) Choose a pre-trained model: Start by choosing a pre-

trained model that you want to use as the base for your model.

There are many pre-trained models available in various libraries

and frameworks, such as TensorFlow, PyTorch and Keras.

2) Freeze the base model: The pre-trained model will likely

have many layers, and you will want to "freeze" the weights of

these layers so that they are not updated during training. This

will allow you to take advantage of the knowledge learned by

the pre-trained model on a large dataset, while still training a

new model that is customized for your specific task.

3) Add new layers: Next, you will want to add one or more

layers to the model that you can train specifically for your task.

These layers should be added on top of the frozen base model.

4) Train the model: Once you have added your new layers,

you can compile and train your model using your own dataset.

This will allow the model to learn task-specific features that are

relevant to your problem.

5) Fine-tune the model: After training, you may want to

fine-tune your model by unfreezing some of the layers in the

base model and training them along with the new layers. This

can help to further improve the performance of your model.

6) Evaluate the model: Once the model has been trained

and fine-tuned, it is important to evaluate its performance on a

validation set to ensure that it is not overfitting to the training

data. You can use metrics such as accuracy, precision, recall

and F1 score to evaluate the performance of your model.

7) Tune hyperparameters: You may need to tune

hyperparameters such as learning rate, batch size, and number

of epochs to optimize the performance of your model. This can

be done using techniques such as grid search or random search.

8) Deploy the model: Finally, once the model has been

trained and evaluated, it can be deployed in a production

environment to make predictions on new, unseen data. This can

be done using various deployment strategies such as

containerization or serverless functions.

Maintaining a modest learning rate during fine-tuning is an
important strategy to avoid over and under-distorting the CNN
weights. The learning rate determines the step size at each
iteration during the optimization process and a high learning rate
can result in large weight updates that may cause the weights to
diverge or oscillate. On the other hand, a low learning rate may
result in slow convergence or getting stuck in local minima. A
modest learning rate strikes a balance between these two
extremes, allowing the model to converge towards an optimal
solution without over-distorting the weights. The identification
of both communicable and non-communicable diseases is done
using Transfer learning techniques as shown in Fig. 14.

https://keras.io/api/applications/xception
https://keras.io/api/applications/vgg/#vgg16-function
https://keras.io/api/applications/vgg/#vgg19-function
https://keras.io/api/applications/resnet/#resnet50-function
https://keras.io/api/applications/resnet/#resnet50v2-function
https://keras.io/api/applications/resnet/#resnet101-function
https://keras.io/api/applications/resnet/#resnet101v2-function
https://keras.io/api/applications/resnet/#resnet152-function
https://keras.io/api/applications/resnet/#resnet152v2-function
https://keras.io/api/applications/inceptionv3
https://keras.io/api/applications/inceptionresnetv2
https://keras.io/api/applications/mobilenet
https://keras.io/api/applications/mobilenet/#mobilenetv2-function
https://keras.io/api/applications/densenet/#densenet121-function
https://keras.io/api/applications/densenet/#densenet169-function
https://keras.io/api/applications/densenet/#densenet201-function
https://keras.io/api/applications/nasnet/#nasnetmobile-function
https://keras.io/api/applications/nasnet/#nasnetlarge-function
https://keras.io/api/applications/efficientnet/#efficientnetb0-function
https://keras.io/api/applications/efficientnet/#efficientnetb1-function
https://keras.io/api/applications/efficientnet/#efficientnetb2-function
https://keras.io/api/applications/efficientnet/#efficientnetb3-function
https://keras.io/api/applications/efficientnet/#efficientnetb4-function
https://keras.io/api/applications/efficientnet/#efficientnetb5-function
https://keras.io/api/applications/efficientnet/#efficientnetb6-function
https://keras.io/api/applications/efficientnet/#efficientnetb7-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2b0-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2b1-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2b2-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2b3-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2s-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2m-function
https://keras.io/api/applications/efficientnet_v2/#efficientnetv2l-function
https://keras.io/api/applications/convnext/#convnexttiny-function
https://keras.io/api/applications/convnext/#convnextsmall-function
https://keras.io/api/applications/convnext/#convnextbase-function
https://keras.io/api/applications/convnext/#convnextlarge-function
https://keras.io/api/applications/convnext/#convnextxlarge-function

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1129 | P a g e

www.ijacsa.thesai.org

Fig. 14. Approach and analysis of the Transfer Learning Models for plant disease detection in Lettuce, Soybean and Banana.

V. IMPLEMENTATION AND RESULTS

The accuracy of 11 TL models selected from Table II, as
well as average F1 score for each class belonging to both
spreadable and non-spreadable kinds, are shown in Table III.
Table IV considers the average F1 score and accuracies for the
Lettuce dataset, which contains 7 classes for infectious diseases.

Accuracy is employed when True Positives as well as True
Negatives are more necessary, but F1-score is employed when
False Negatives but also False Positives are essential.

While F1-score is a superior measure when there are
unbalanced classes, as in the example above, accuracy may be
utilized when the class distribution is similar. Due to the uneven
class distribution that characterizes the majority of real-world
classification tasks, F1-score is a superior statistic to use when
assessing the model.

A. What is ConvNext?

The science of computer vision has long employed residual
networks like ResNets. Because of its smaller Residual Block
design, it is considerably simpler to train deep neural networks
employing skip connections. ResNet will serve as the beginning
point because of their incredible accomplishment. The network
will be gradually improved from this starting point, and after

each enhancement, its performance will be assessed using the
dataset and compared to vision transformers.

1) ConvNext: A ConvNet that outperforms Vision

Transformers in terms of accuracy, performance and scalability

while having the structural simplicity of Convolutional Neural

Networks.

B. Assessment of ConvNext

In comparison to its vision transformer contemporaries, the
new ConvNet, termed ConvNeXt, is not only more accurate but
also more scalable. The graph of Fig. 15 compares ConvNext
models to their equivalent vision transformers in ImageNet-1K
[38].

The Table V displays the accuracy of the 11 models that
were trained on the Banana dataset for all 5 classes. The
ConvNeXtXLarge model performs best by yielding the most
accurate findings, but the baseline model, NASNetMobile, is
inappropriate for datasets based on plants, as can be seen in
Table V.

The outcomes of Transfer Learning models developed for
three separate datasets—lettuce, soybean and banana under
various categorizations, infectious and non-infectious illnesses,
were covered in the section above. The behavior of the models
trained on the same three datasets but combined is covered.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1130 | P a g e

www.ijacsa.thesai.org

TABLE II. MODEL DESCRIPTION

Model Description

Xception

It makes use of the Xception 71-layer deep convolutional neural network. More than one million pictures from the Imagenet dataset may

be used to preload a network that has previously been pretrained. The pretrained network will categorize photos into far more than a
thousand more object categories in addition to keyboards, mice, pencils, and other animals.

VGG_19

The total number of layers in the convolutional neural network VGG-19 is 19. More than one million pictures from ImageNet database

may be used to preload a network which has previously been pretrained. The pretrained network will categorize photos into far more than
a thousand more object categories in addition to keyboards, mice, pencils and other animals.

ResNet152
Detailed Retention Learning, recognizing images with ResNet-152. The bottleneck in TorchVision occurs at the second 3x3 convolution,

as opposed to initial 1x1 convolution in the original work. ResNet V1 is the modification that improves accuracy.

InceptionV3 On ImageNet dataset, it has been demonstrated that InceptionV3 image recognition model achieves greater than 78.1% accuracy.

MobileNet
The MobileNet model is a network model that uses depthwise separable convolution as its fundamental unit. It has two layers in its

depthwise separable convolution: depthwise convolution and point convolution.

Densenet169 The suggested model includes 4 convolutional layers, 2 maxpool layers, 1 fully connected layer, and three dense layers.

NasNetMobile
More than a million photos from the ImageNet collection were used to train the NASNet-Mobile convolutional neural network. There are

more than 1000 different object categories which the network can identify in images, including keyboards, mouse, pens and other animals.

EfficientNetB0
The architecture EfficientNetB0 is launched. The output of this function is a Keras image classification model that can be trained using

weights from ImageNet.

EfficientNetB1
The CNN construction and scaling approach EfficientNetB1 equally scales all depths, width and resolution parameters using a compound

coefficient.

EfficientNetV2B2

It is a brand-new class of convolutional networks that train faster and more efficiently than older models. We develop this family of models

by combining training-aware neural architecture search with scaling to jointly improve training speed and parameter efficiency. A search
region that had been widened to include fresh processes like Fused-MBConv was utilized to hunt up the models. Our testing show that

EfficientNetV2 models train up to 6.8 times faster than state-of-the-art models despite being much smaller.

ConvNeXtXLarge ConvNeXT, is said to exceed Vision Transformers in terms of performance (ConvNet).

TABLE III. F1 SCORE AND ACCURACIES OF SOYBEAN DATASETS

Models
F1 Score (Non-

Spreadable)

Accuracy (Non-

Spreadable)
F1 Score (Spreadable)

Accuracy (Spreadable)

Xception 0.666 69.7248 0.916 91.4634

VGG_19 0.608 62.8440 0.86 85.9756

ResNet152 0.826 85.3211 1 100.0000

InceptionV3 0.578 62.8440 0.89 89.0244

MobileNet 0.704 73.3945 0.976 97.5610

Densenet169 0.816 83.0275 0.983 98.1707

NasNetMobile 0.32 44.4954 0746 75.6098

EfficientNetB0 0.894 90.3670 0.993 99.3902

EfficientNetB1 0.896 90.8257 0.993 99.3902

EfficientNetV2B2 0.86 87.6147 1 100.0000

ConvNeXtXlarge 0.904 92.2018 1 100.0000

TABLE IV. F1 SCORE AND ACCURACIES OF LETTUCE DATASETS

Models F1 Score(Spreadable)
Accuracy

(Spreadable)

F1 Score(Non

Spreadable)
Accuracy(Non-Spreable)

Xception 0.751 77.0889 1.00 100.0000

VGG_19 0.744 76.8194 0.993 99.2366

ResNet152 0.945 95.1482 1.00 100.0000

InceptionV3 0.764 77.6280 0.926 92.3664

MobileNet 0.677 72.2371 0.993 99.2366

Densenet169 0.955 96.2264 1.00 100.0000

NasNetMobile 0.710 71.6981 0.96 96.1832

EfficientNetB0 0.820 94.0700 0.97 96.9465

EfficientNetB1 0.935 94.0700 0.993 99.2366

EfficientNetV2B2 0.942 94.6091 1.00 100.0000

ConvNeXtXLarge 0.961 96.4959 1.00 100.0000

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1131 | P a g e

www.ijacsa.thesai.org

TABLE V. ACCURACY OF BANANA DATASET OF ALL KINDS OF PARTS OF THE PLANT

Models Accuracy (Stem) Accuracy (node) Accuracy (Leaf) Accuracy (Fruit) Accuracy (Non-Infectious)

Xception 87.4477 100.000 85.6557 60.344 93.3824

VGG_19 80.3347 100.000 82.7869 93.103 81.6176

ResNet152 94.1423 100.000 98.3607 100.00 99.2647

InceptionV3 82.0084 100.000 82.3770 98.275 94.1176

MobileNet 88.2845 100.000 94.6721 51.724 99.2647

Densenet169 93.3054 100.000 98.3607 100.0000 99.2647

NasNetMobile 44.3515 92.2078 74.1803 94.827 76.4706

EfficientNetB0 94.1423 100.000 95.4918 100.0000 98.5294

EfficientNetB1 94.9791 100.000 97.1311 100.0000 98.5294

EfficientNetV2B2 95.3975 100.000 98.3607 100.0000 99.2647

ConvNeXtXLarge 95.3975 99.3506 99.5902 98.275 100.0000

Fig. 15. Classification results for ConvNets and vision Transformers [38].

The accuracy achieved after combining all disease
categories from the datasets of lettuce, soybean, and banana,
which include both infectious and non-infectious conditions, is
displayed in Tables VI through Table VIII.

EfficientNetV2B2 has the maximum accuracy of 95.81%
from the Table VI, compared to a baseline accuracy of 56.38%
from the NASNetMobile model.

C. What is EfficientNetV2?

The successor to EfficientNets is EfficientNetV2.
EfficientNet is a family of models that was unveiled in 2019 and
is optimised for FLOPs and parameter efficiency [39]. It makes
use of neural architecture search to find the EfficientNet-B0
baseline model with the best possible accuracy and FLOPs
trade-off. EfficientNets aggressively increase picture size,
which results in high memory use and slow training. To
overcome this problem, slightly altered the scaling rule and
limited the maximum picture size to a lower amount.
EfficientNetV2's technology, Deep learning models and training
set both are becoming bigger and bigger. Efficiency in training
is crucial in this situation. For instance, few-shot learning is
demonstrated by the GPT-3 model, which has unheard-of model
and training data volumes. However, retraining or enhancing the
model is challenging because it takes weeks to train with
thousands of GPUs. To construct this model, it combines scaling
and training-aware Neural Architecture Search (NAS)to
maximize training time and parameter effectiveness.

The findings of the models are remarkably comparable to
those of the lettuce dataset, as can be seen from the Table VII,
where EfficientNetV2B2 achieves a 93.97% accuracy while
NASNetMobile achieves a baseline accuracy of 40.66%.

TABLE VI. ACCURACY OF THE COMBINED DATASET(SPREADABLE + NON

SPREADABLE) OF LETTUCE

Models F1 Score Accuracy(Lettuce)

Xception 0.7566 77.3128

VGG_19 0.7366 73.3480

ResNet152 0.9411 94.7137

InceptionV3 0.7794 79.7357

MobileNet 0.8477 85.4626

Densenet169 0.9522 95.3744

NasNetMobile 0.5533 56.3877

EfficientNetB0 0.9511 95.3744

EfficientNetB1 0.9544 95.5947

EfficientNetV2B2 0.9555 95.8150

ConvNeXtXLarge 0.9511 95.1542

TABLE VII. ACCURACY OF THE COMBINED DATASET(SPREADABLE + NON

SPREADABLE) OF SOYBEAN

Models F1 Score Accuracy(Soybean)

Xception 0.7028 72.5904

VGG_19 0.6585 69.5783

ResNet152 0.9142 93.3735

InceptionV3 0.6914 70.4819

MobileNet 0.6971 72.5904

Densenet169 0.8600 88.2530

NasNetMobile 0.3414 40.6627

EfficientNetB0 0.9057 92.1687

EfficientNetB1 0.8828 90.3614

EfficientNetV2B2 0.9242 93.9759

ConvNeXtXLarge 0.9185 93.3735

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1132 | P a g e

www.ijacsa.thesai.org

TABLE VIII. ACCURACY OF THE COMBINED DATASET (SPREADABLE + NON

SPREADABLE) OF BANANA

Models F1 Score Accuracy(Banana)

Xception 0.9362 95.1865

VGG_19 0.8877 89.7714

ResNet152 0.9762 98.3153

InceptionV3 0.9408 95.9085

MobileNet 0.9677 97.1119

Densenet169 0.9746 98.0746

NasNetMobile 0.6562 65.3430

EfficientNetB0 0.9608 97.2323

EfficientNetB1 0.9685 97.7136

EfficientNetV2B2 0.8992 98.0746

ConvNeXtXLarge 0.9100 95.3069

The Table VIII makes it very evident that ResNet model has
the maximum accuracy of 98.31% whereas NASNetMobile
Baselines are at 65.34%.

D. What is ResNet?

ResNet was created with the goal of resolving computer
vision issues. Deep residual networks that take advantage of
remaining blocks to increase model precision. The concept of
"skip connections," which is the foundation of the residual
blocks, is the strength of this type of neural network.

1) ‘Skip Connections’ in ResNet: There are two ways that

these skip connections work. The gradient is given a new

shortcut to employ in order to address the issue of the fading

gradient. Additionally, they give the model the capacity to pick

up an identity function. This ensures that the performance of the

model's top tiers is equal to or better than that of its lower layers.

In conclusion, the residual blocks lets the layers acquire identity

functions considerably more quickly. ResNet therefore

decreases errors while boosting the efficiency for deep neural

networks with far more neural layers. In other words, the skip

connections integrate the outputs of older layers with outputs

from stacked layers, enabling the training of networks that are

far deeper than was previously possible.
Final point: ResNet, sometimes referred to as residual

network, was a crucial development that changed how deep
convolutional neural networks are trained for computer vision
tasks. The venerable Resnet featured 34 layers with 2-layer
bottleneck blocks, while more advanced models, like the
Resnet50, used 3-layer bottleneck blocks that guarantee greater
accuracy and faster training.

Tables VI to VIII shows the models in bold that are being
examined for improvement of outcomes by modifying a
hyperparameter, particularly the optimizer.

The optimizers that are considered for research work are:

 Adadelta

 Adagrad

 Adam

 Adamax

 Ftrl

 Nadam

 RMSprop

 SGD

2) Stochastic Gradient Descent (SGD): This is a typical

'base' optimizer, and many others are variations on it [40],[41].

It is adjustable by varying the learning rate, momentum and

decay.

a) Learning rate: The learning rate controls the

magnitude of parameter updates at each iteration of the

optimization algorithm. A higher learning rate allows for larger

updates, potentially leading to faster convergence but also

increasing the risk of overshooting the optimal solution. On the

other hand, a lower learning rate results in smaller updates,

which may slow down convergence but can help the model

settle into a more accurate and stable solution.

b) Momentum: propels SGD in the desired direction

while dampening oscillations. Essentially, it allows SGD to

push past local optima, resulting in quicker convergence and

reduced oscillation. A normal momentum value is between 0.5

and 0.9.

c) Decay: For the learning rate, you can provided a decay

function. As training advances, this will alter the learning rate.

Decay functions are- Time delay, Step delay and Exponential

delay.

d) Nesterov: Nesterov momentum is a variant of the

momentum method that provided better theoretical converge

guarantees for convex functions. In practice, it is somewhat

more effective than conventional momentum.

3) Adaptive learning rate optimizers

a) Adagrad: Adagrad is an optimizer with variable

parameter-specific learning rates based on how frequently a

parameter is altered during training [42].

b) Adadelta: Adadelta is an optimizer that dynamically

adapts the learning rate during training without the need for a

predefined initial learning rate. It uses a combination of the

gradient information and a moving average of the past gradients

to adjust the learning rate at each iteration, allowing for efficient

convergence [43]. The learning rate in Adadelta is not explicitly

set by the user but is internally calculated based on the

algorithm's parameters and the gradient history.

c) RMSprop: RMSprop, like Adadelta, modifies the

Adagrad technique in a very easy way to lessen its aggressive,

monotonically declining learning rate [44].

d) Adam: Adam is an RMSProp optimizer update. It's

essentially RMSprop with momentum [45].

e) Adamax: It is a first-order gradient-based optimization

approach and a version of Adam based on the infinite norm. It

is well suited to learning time-variant processes, such as voice

data with dynamically changing noise circumstances, because

to its capacity to alter the learning rate based on data features.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1133 | P a g e

www.ijacsa.thesai.org

f) Nadam: Similarly, to how Adam is RMSprop with

momentum, Nadam is Adam with Nesterov momentum.

4) Ftrl: "Follow The Regularized Leader" (FTRL) is an

optimization technique created by Google in the early 2010s for

click-through rate prediction [46]. It works well with shallow

models with vast and sparse feature areas, this was discussed

by McMahan et al. (2013). Both online L2 regularization (the

L2 regularization described in the study above) and shrinkage-

type L2 regularization are supported in the Keras version

(which is the addition of an L2 penalty to the loss function).

The results of the cluster of models are not as linear as shown
in Tables IX to XI, and the behavior of each model with its
corresponding optimizer differs for different datasets.

The adamax optimizer dominates in every other model,
whereas SGD optimizers have low efficiency rate due to its poor
processing performance. SGD is a very fundamental technique
that is seldom employed in applications nowadays. Another
issue with the method is, its constant learning rate for each
epoch. Furthermore, it is not particularly good at dealing with
saddle points. Because of the frequent modifications in the
learning rate, Adagrad performs better than stochastic gradient
descent in general. It works well when dealing with sparse data.
RMSProp produces comparable results to the gradient descent
technique using momentum; the only difference is how the
gradients are calculated. Finally, the Adam optimizer inherits
the best aspects of RMSProp and other algorithms.

The Adamax optimizer provideds a faster computation time,
provided better results than other optimization techniques, it
requires fewer tuning parameters. Adam is recommended as
default optimizer for majority of applications as a consequence
of all of this. Any application may have the highest chance of
producing the finest outcomes if Adamax optimizer is used.

Finally, we discovered that even Adamax optimizer had
certain drawbacks. In some circumstances, algorithms like as
SGD may be more useful and perform better than the Adam
optimizer. To pick the finest optimization method and obtain
great results, it is critical to understand the needs and the type of
data dealt with.

Since the performance of NASNet model with Adamax as
optimizer , VGG19 model with Adagrad as optimizers and
Xeception model with Adamax as optimizer for Lettuce dataset
NASNet model with Ftrl as optimizer, VGG19 model with
Adagrad as optimizer and Xeception model with Adamax as
optimizer for soybean dataset and NASNet model with Adam
as optimizer, Xeception model with Adamax as optimizer for
Banana dataset, although is highest with respect to other
optimizer, yet its accuracies are incompatible for practical
consideration.

Hence it is required to improve its performance.

One way to enhance performance is to train the model so that
it is exclusively prepared for this dataset by initializing the
weights to 0.

TABLE IX. ACCURACY OF MODELS FOR DIFFERENT OPTIMIZERS

(LETTUCE DATASET)

Lettuce Dataset

Sl No Model Optimizer Accuracy

1 ConvNeXtXtLarge Adadelta 80.17621

2 ConvNeXtXtLarge Adagrad 92.73128

3 ConvNeXtXtLarge Adam 95.15419

4 ConvNeXtXtLarge Adamax 96.9163

5 ConvNeXtXtLarge Ftrl 20.26432

6 ConvNeXtXtLarge Nadam 92.95154

7 ConvNeXtXtLarge RMSprop 95.15419

8 ConvNeXtXtLarge SGD 92.73128

9 EfficientNetV2B2 Adadelta 32.59912

10 EfficientNetV2B2 Adagrad 89.86784

11 EfficientNetV2B2 Adam 95.81498

12 EfficientNetV2B2 Adamax 95.81498

13 EfficientNetV2B2 Ftrl 95.81498

14 EfficientNetV2B2 Nadam 95.81498

15 EfficientNetV2B2 RMSprop 96.25551

16 EfficientNetV2B2 SGD 89.86784

17 NASNetMobile Adadelta 10.79295

18 NASNetMobile Adagrad 36.78414

19 NASNetMobile Adam 56.38767

20 NASNetMobile Adamax 58.81057

21 NASNetMobile Ftrl 56.38767

22 NASNetMobile Nadam 56.38767

23 NASNetMobile RMSprop 41.18943

24 NASNetMobile SGD 46.69604

25 VGG_19 Adadelta 64.97797

26 VGG_19 Adagrad 84.14097

27 VGG_19 Adam 74.6696

28 VGG_19 Adamax 83.70044

29 VGG_19 Ftrl 20.26432

30 VGG_19 Nadam 78.19383

31 VGG_19 RMSprop 22.68722

32 VGG_19 SGD 9.69163

33 Xception Adadelta 30.17621

34 Xception Adagrad 68.06167

35 Xception Adam 75.11013

36 Xception Adamax 83.48018

37 Xception Ftrl 20.26432

38 Xception Nadam 73.78855

39 Xception RMSprop 78.85463

40 Xception SGD 35.46256

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1134 | P a g e

www.ijacsa.thesai.org

TABLE X. ACCURACY OF MODELS FOR DIFFERENT OPTIMIZERS

(SOYBEAN DATASET)

Soybean Dataset

Sl No Model Optimizer Accuracy

1 ConvNeXtXtLarge Adadelta 82.22892

2 ConvNeXtXtLarge Adagrad 89.15663

3 ConvNeXtXtLarge Adam 93.37349

4 ConvNeXtXtLarge Adamax 94.57831

5 ConvNeXtXtLarge Ftrl 14.71698

6 ConvNeXtXtLarge Nadam 93.1677

7 ConvNeXtXtLarge RMSprop 93.6747

8 ConvNeXtXtLarge SGD 90.66265

9 EfficientNetV2B2 Adadelta 93.9759

10 EfficientNetV2B2 Adagrad 88.55422

11 EfficientNetV2B2 Adam 93.9759

12 EfficientNetV2B2 Adamax 92.46988

13 EfficientNetV2B2 Ftrl 86.74699

14 EfficientNetV2B2 Nadam 96.08434

15 EfficientNetV2B2 RMSprop 94.57831

16 EfficientNetV2B2 SGD 88.55422

17 NASNetMobile Adadelta 12.3494

18 NASNetMobile Adagrad 31.3253

19 NASNetMobile Adam 38.55422

20 NASNetMobile Adamax 43.07229

21 NASNetMobile Ftrl 43.9759

22 NASNetMobile Nadam 43.6747

23 NASNetMobile RMSprop 40.66265

24 NASNetMobile SGD 40.66265

25 VGG_19 Adadelta 59.33735

26 VGG_19 Adagrad 80.72289

27 VGG_19 Adam 58.43373

28 VGG_19 Adamax 70.18072

29 VGG_19 Ftrl 23.79518

30 VGG_19 Nadam 68.9759

31 VGG_19 RMSprop 24.6988

32 VGG_19 SGD 16.26506

33 Xception Adadelta 40.66265

34 Xception Adagrad 64.75904

35 Xception Adam 66.86747

36 Xception Adamax 74.6988

37 Xception Ftrl 19.27711

38 Xception Nadam 73.19277

39 Xception RMSprop 70.48193

40 Xception SGD 48.79518

TABLE XI. ACCURACY OF MODELS FOR DIFFERENT OPTIMIZERS

(BANANA DATASET)

Banana Dataset

Sl No Model Optimizer Accuracy

1 ConvNeXtXtLarge Adadelta 95.29653828

2 ConvNeXtXtLarge Adagrad 98.31528279

3 ConvNeXtXtLarge Adam 95.4356249

4 ConvNeXtXtLarge Adamax 97.35258724

5 ConvNeXtXtLarge Ftrl 95.30685921

6 ConvNeXtXtLarge Nadam 95.16727657

7 ConvNeXtXtLarge RMSprop 95.3078993

8 ConvNeXtXtLarge SGD 95.30685921

9 EfficientNetV2B2 Adadelta 43.92298436

10 EfficientNetV2B2 Adagrad 97.83393502

11 EfficientNetV2B2 Adam 97.71359807

12 EfficientNetV2B2 Adamax 98.0746089

13 EfficientNetV2B2 Ftrl 85.19855596

14 EfficientNetV2B2 Nadam 97.95427196

15 EfficientNetV2B2 RMSprop 97.87426738

16 EfficientNetV2B2 SGD 97.95427196

17 NASNetMobile Adadelta 8.664259928

18 NASNetMobile Adagrad 37.18411552

19 NASNetMobile Adam 88.56799037

20 NASNetMobile Adamax 15.04211793

21 NASNetMobile Ftrl 13.35740072

22 NASNetMobile Nadam 86.64259928

23 NASNetMobile RMSprop 69.7954272

24 NASNetMobile SGD 36.70276775

25 VGG_19 Adadelta 98.31528279

26 VGG_19 Adagrad 98.0746089

27 VGG_19 Adam 77.61732852

28 VGG_19 Adamax 67.99037304

29 VGG_19 Ftrl 14.92178099

30 VGG_19 Nadam 90.49338147

31 VGG_19 RMSprop 76.89530686

32 VGG_19 SGD 8.784596871

33 Xception Adadelta 31.28760529

34 Xception Adagrad 47.17208183

35 Xception Adam 90.97472924

36 Xception Adamax 93.50180505

37 Xception Ftrl 13.47773767

38 Xception Nadam 87.36462094

39 Xception RMSprop 89.89169675

40 Xception SGD 39.95186522

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1135 | P a g e

www.ijacsa.thesai.org

Why didn't the process initially explore retraining or fine-
tuning the model from scratch?

Due to the small amount of data, creating new models from
start would be a resource and time-intensive operation with no
assurance of performance. These models were previously
trained quite effectively. In order to improve performance
efficacy in our case, it is thus preferable practice to load those
pertained models and use the information that the two models
have previously acquired in the course of their original work.
Transfer learning and fine-tuning are commonly confused with
one another since they are both parts of the same process. Many
refer to the entire process as fine-tuning since we often do so
after transfer learning.

However, fine-tuning involves more than just applied the
weights from the pre-trained models. In order to adjust the
model to the present job, it is also using prior information but
freezing some layers while training the last layers at a slow
learning rate. Convolution deep learning model results are
shown to provide a better understanding of the entire process.

TABLE XII. ACCURACIES OF MODELS BEFORE AND AFTER RETRAINING

WITH THE DATASETS

Sl

No
Model

Optim

izer

Accuracy before

retraining

Accuracy after

retraining

Lettuce Dataset

1
NASNetM

obile

Adama

x
58.81057269 71.36564

2 VGG_19
Adagra
d

84.14096916 90.30837

3 Xception
Adam

ax
83.48017621 96.69604

Soybean Dataset

4
NASNetM
obile

Ftrl 43.97590361 19.27711

5 VGG_19
Adagra

d
80.72289157 82.22892

6 Xception
Adam

ax
74.69879518 92.46988

Banana Dataset

7
NASNetM

obile
Adam 88.56799037 33.81468

8 Xception
Adam

ax
93.50180505 98.19495

E. Concept of Underfitting and Overfitting

Why poor accuracy is viewed for few models over other
models with various optimizers?

If a model adequately generalizes all new input data from the
problem domain, it is considered to be a good machine learning
model. Additionally, underfitting and overfitting are the main
reasons why machine learning algorithms perform poorly [47].

F. Concept of Bias, Variance, Underfitting and Overfitting

1) Bias: Essentially, it is the error rate of the training data.

Whenever the error margin is high, we say the bias is strong,

while when it is low, the bias is low.

2) Variance: The variance is the difference in the error

margin between the training and test sets of data. The variance

is described as being high when it is large and low whenever

the difference between both the errors is small. Usually, we

want to expand our model with the least amount of variance.

3) Underfitting: Underfitting is the term used whenever a

statistical model as well as machine learning algorithm fails to

capture the overall pattern of the data, i.e., when it performs

well on training data but poorly on testing data. Its recurrence

simply shows that model or method doesn't really adequately

fit the data. It frequently happens when there are not enough

data to build a solid model or when we try to build a linear

model with too little non-linear data. Because its rules are too

basic and flexible to be applied to such scant data, a machine

learning model will probably make a number of inaccurate

predictions under these circumstances. Underfitting may be

avoided by utilizing more data and restricting the features

through feature selection [48].
Underfitting, is when a model is unable to perform

satisfactorily on the training dataset or generalize to new data.

G. Justifications for underfitting

 Low variance and high covariance.

 The used training dataset's size is insufficient.

 The model is rather basic.

 Training data has noise in it and is not being eliminated.

Methods to reduce underfitting

 Amplify model complexity.

 Boost feature count by doing feature engineering.

 Data noise should be removed.

 To achieve better outcomes, increase the period of
training or the number of epochs.

1) Overfitting: An overfitted statistical model is one that

cannot accurately predict events, based on test data [49]. When

a model has been trained with a massive quantity of data, it

begins to gain knowledge from the disturbance and incorrect

data entries in the given dataset and when test data is used for

testing, there is a lot of diversity. The model is unable to

correctly recognize the data because of the overabundance of

characteristics and distortion. Since these give machine

learning algorithms greater freedom to build the model

depending on the dataset, non-parametric and non-linear

techniques are the primary sources of overfitting and can result

in extremely illogical models [50]. Using a linear approach to

analyze linear data is one strategy to avoid overfitting.
Overfitting, is a problem when the evaluation of machine

learning algorithms on unknown data varies from the analysis
on training data.

Overfitting has the following causes:

 Both variance and bias are high.

 The model is very sophisticated.

 The volume of training data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1136 | P a g e

www.ijacsa.thesai.org

Methods to reduce overfitting

 Expand the training data.

 Simplify the model.

 During the training phase usage of early stopping stay
updated on the loss during the training period, and cease
training as soon as it starts to rise.

 Regularization of the Ridge and the Lasso [51].

 To mitigate overfitting in neural networks, using
a dropout technique.

H. How to Fit a Statistical Model Well?

When a statistical model makes predictions that are error-
free, that is the ideal situation, it is said to be a good match with
the data. This situation may exist anywhere between overfitting
and underfitting. To understand the model, we need to look at
how it performs over time as it learns from the training dataset.

As time goes on, the model would continue to learn, as a
result, the model's accuracy just on test & training data will
decrease over time. If the model is given an abnormally lengthy
time to learn, the accumulation of junk and less important
characteristics can make it more susceptible to overfitting. The
model's performance will therefore suffer. In order to obtain a

good match, you must stop just as the error starts to grow worse.
In both our concealed testing dataset & training datasets, the
model is judged as being competent at this point.

I. How to find whether the model chosen is overfit or

underfit?

When the validation accuracy increases after retraining and
subsequently sharply decreases, the model is overfit. While in
the event of underfit, there is just a slow, lower value rise in
validation accuracy.

Models with excellent accuracy prior to retraining but
significantly reduced accuracy after retraining are shown in
Table XII. The validation accuracy and test accuracy in
Table XIII are used to determine whether the model is overfit or
underfit.

The model training details show that none of the models
under consideration are overfit, but NASNetMobile model with
Ftrl as optimizer for soybean dataset and NASNetMobile model
with Adam as optimizer for banana dataset is underfit. This is
because the mentioned model has good training accuracy but
low validation and test accuracy making it underfit.

Also, the presence of overfit model does not affect the
accuracies in present research case because of consideration of
best fit model and early stopping criteria.

TABLE XIII. ACCURACIES OF MODEL WITH VALIDATION ACCURACIES

Sl.No Model Optimizer Accuracy (when retrained) Validation accuracy (when retraing) Accuracy (after retraining)

Lettuce Dataset

1 NASNet Mobile Adamax 99.49 73.951 71.365

2 VGG_19 Adagrad 99.93 87.23 90.308

3 Xception Adamax 100 96.689 96.696

Soybean Dataset

4 NASNet Mobile Ftrl 75.89 19.219 19.277

5 VGG_19 Adagrad 100 83.784 82.228

6 Xception Adamax 99.61 96.096 92.469

Banana Dataset

7 NASNet Mobile Adam 92.9 33.454 33.814

8 Xception Adamax 96.75 91.095 98.194

VI. PROPOSED METHODOLOGY

In the context of proposing a methodology for developing a
high-accuracy convolutional neural network (CNN) model,
particularly for tasks like image classification, the method
integrates cutting-edge architectural principles from
EfficientNetV2B2 with custom-designed elements, specifically
a novel activation function and optimizer. Here's a detailed
breakdown of the proposed methodology.

To further elucidate the rationale behind choosing the
specific combination of ReLU and Tanh for the custom
activation function and the integration of Adam and SGD
characteristics in the custom optimizer, we can refer to the

previously discussed implementation and general principles in
neural network optimization and activation functions as shown
in Fig. 16.

A. Components of the Methodology

1) Base Architecture (EfficientNetV2):

 EfficientNetV2B2 [52] is chosen as the foundational
architecture due to its state-of-the-art performance in
image classification tasks.

 It utilizes a compound scaling method that uniformly
scales the depth, width, and resolution of the network,
making it highly efficient and effective.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1137 | P a g e

www.ijacsa.thesai.org

Fig. 16. Proposed methodology.

2) Custom Activation Function:

 A novel activation function is introduced to potentially
improve the learning process.

 The function, custom activation, is a combination of
ReLU and Tanh functions. ReLU ensures non-saturation
of gradients for positive values, enhancing learning
speed, while Tanh provided output normalization,
potentially aiding in stabilizing the learning process.

3) Custom Optimizer:

 Developing a custom optimizer aims to enhance the
training efficiency and convergence rate.

 The optimizer combines elements of Adam (adaptive
learning rates) and SGD (stochastic gradient descent),
attempting to utilize the benefits of both.

4) Integration and Training:

 The EfficientNetV2B2 base model is loaded with pre-
trained ImageNet weights to leverage transfer learning,
accelerating the training process and improving initial
accuracy.

 The top layers of the model are replaced with custom
layers, including Global Average Pooling and Dense
layers, utilizing the custom activation function.

 The model is compiled with the custom optimizer, and
categorical cross-entropy is used as the loss function,
suitable for multi-class classification tasks.

5) Training Strategy:

 Initially, the EfficientNetV2B2 base layers are frozen to
preserve the pre-trained features, and only the custom top
layers are trained.

 Subsequently, fine-tuning can be performed by
unfreezing some of the top layers of the base model and
continuing the training, allowing for refined feature
extraction tailored to the specific dataset.

6) Evaluation:

 The model's performance is evaluated using accuracy
metrics on a validation dataset.

 Regular checkpoints and monitoring are employed to
track the training progress and prevent overfitting.

B. Integration of Concepts Based on Previous Results

The decision to combine these specific elements from ReLU,
Tanh, Adam, and SGD is not only based on their individual
strengths but also on empirical observations from previous
implementations:

1) ReLU and Tanh: The combined use of ReLU and Tanh

in various architectures has shown promising results in terms of

faster convergence and improved accuracy, as these functions

complement each other’s properties.

2) Adam and SGD: Similarly, the integration of Adam’s

adaptive learning rate and SGD’s generalization capabilities

aims to create a more robust and efficient optimizer. This is

based on observations where models trained with Adam

initially show rapid improvement but sometimes fail to achieve

the level of generalization that SGD can provided.

3) Outcomes:

 Enhanced Model Performance: By integrating the
architectural efficiency of EfficientNetV2 with the novel
elements of the custom activation function and optimizer,
the model has demonstrated remarkable performance in
image classification tasks. Notably, this approach has
achieved a remarkable accuracy of 99.96%, positioning

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1138 | P a g e

www.ijacsa.thesai.org

it at the forefront of current image classification models.
This high level of accuracy indicates an exceptional
ability of the model to correctly classify images,
minimizing both false positives and false negatives.

 Superior F1 Score: Alongside accuracy, the model has
achieved an F1 score of 0.99. The F1 score is a more
complex metric that considers both precision and recall,
providing a more holistic view of the model's
performance. An F1 score of 0.99 implies that the model
not only accurately classifies the positive cases but also
maintains a high rate of successfully identifying true
negatives. This balance is crucial in scenarios where both
types of classification errors carry significant
consequences.

 Improved Learning Dynamics: The custom activation
function and optimizer have played a pivotal role in
enhancing the training process. These custom elements
have contributed to improved training stability and
accelerated convergence speed, enabling the model to
quickly adapt and optimize its performance. The
combination has been instrumental in achieving the high
accuracy and F1 score, underlining the effectiveness of
these custom components in handling complex learning
tasks.

VII. CONCLUSION

This paper focuses on the use of transfer learning for the
identification of spreadable and non-spreadable plant diseases.
The study considers three different plant types, namely lettuce,
soybean, and banana, and addresses the classification of the most
prevalent diseases in these plants. The diseases are categorized
into spreadable and non-spreadable diseases, treated as distinct
classes in the analysis.

To evaluate the classification accuracy of different models, a
comparative research approach is employed. The performance
of 11 transfer learning models available in Keras are assessed on
separate datasets for spreadable and non-spreadable diseases.
Additionally, the models are evaluated on a combined dataset
that includes five different portions of the plants, comprising
both healthy and diseased parts. Early stopping criteria are set at
a minimum of 20 to 30 epochs with a patience of 6 for
comparison. It is observed that the metrics and accuracy of the
models vary depending on the dataset being used. However,
some of the selected models did not exhibit the anticipated high
accuracy after training on the datasets.

To improve the model performance, various techniques such
as optimizing the models and retraining them from scratch can
be employed. These strategies aim to enhance the accuracy and
effectiveness of the classification models for identifying
spreadable and non-spreadable plant diseases. The available
optimizers in Keras are taken into consideration in order to
increase accuracy, that includes SGD, RMSprop, Adam,
Adadelta, Adagrad, Adamax, Nadam, and Ftrl. However, this
strategy only worked for higher models (like EfficientNet
models, ConvNeXt); smaller models (like VGG-19, Xception)
showed less improvement. The paper's major goal was to select
a lower model since it is less complicated to train for and has a
smaller width. Improving them suggests an upgrade to the

foundational CNN model, making the study more flexible. With
certain models, there is a rapid fall in accuracy, leading it to be
considered as either underfit or overfit. In the current instance,
the NASNetMobile model is underfit, and situations of overfit
are not evident because of the early stopping approach. VGG_19
model with Adadelta as optimizer without retraining and
Xception model with Adamax as optimizer when retrained from
scratch, outperform in terms of classification metrics for the
datasets under consideration.

In addition to these strategies, the paper proposed a novel
methodology focusing on the integration of an EfficientNetV2-
style architecture with a custom-designed activation function
and optimizer. The custom activation function, a hybrid of ReLU
and Tanh, aims to enhance learning dynamics by combining the
benefits of non-saturation (from ReLU) and output
normalization (from Tanh). The custom optimizer, blending
elements of Adam and SGD, is designed to achieve a balance
between adaptive learning rates and effective generalization.
This proposed methodology, especially with the
EfficientNetV2's efficient scaling and advanced architecture, is
expected to yield even higher accuracy and robustness in
classifying plant diseases. Notably, this approach has achieved
remarkable performance with an accuracy of 99.96% and an F1
score of 0.99 in the classification tasks, setting a new standard in
the field and underscoring the effectiveness of combining
advanced neural network architectures with innovative custom
components for complex classification challenges.

VIII. FUTURE WORK

Moving forward, several key areas offer promising
opportunities to extend and enhance the research presented in
this study. One significant direction is the expansion and
diversification of the dataset. By including a broader range of
plant species, diseases, and environmental conditions, the
models could be made more robust and generalizable across
different agricultural contexts. Additionally, incorporating data
from various geographical regions and employing data
augmentation techniques could help address issues of overfitting
and improve the model's performance on smaller or imbalanced
datasets.

Integrating real-time data from environmental sensors is
another avenue that could significantly enhance the predictive
accuracy of the models, especially in relation to both biotic and
abiotic plant stressors. By developing models capable of
adapting to dynamic environmental conditions, the relevance
and effectiveness of AI-driven solutions in agriculture could be
substantially improved. Moreover, refining the custom
activation function and optimizer introduced in this study
remains an important task. Testing these components across
different deep learning architectures and applications, such as
pest detection or crop yield prediction, could assess their
versatility and broader applicability.

Ethical considerations and societal impacts also warrant
close attention. As AI-driven plant disease identification systems
are deployed, it is crucial to address potential ethical issues, such
as data privacy, fairness, and the implications for small-scale
farmers. Moreover, the societal impacts, including potential job
displacement and the need for upskilling agricultural workers,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1139 | P a g e

www.ijacsa.thesai.org

should be carefully considered to ensure responsible and
equitable deployment of these technologies.

Finally, exploring the scalability of the proposed models for
large-scale farming operations is essential, particularly in terms
of computational efficiency and resource constraints.
Investigating cloud-based or edge-computing solutions could
facilitate real-time disease detection in remote or resource-
limited settings. Collaborative, multi-disciplinary research
involving AI experts, agronomists, plant pathologists, and
agricultural economists will be critical in developing holistic
solutions that effectively address the complexities of plant
disease management.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

FUNDING STATEMENT

This research did not receive any specific funding or
financial support.

ETHICAL STATEMENT

This research was conducted in accordance with ethical
principles, including informed consent, confidentiality, and
adherence to relevant guidelines.

AUTHORS’ CONTRIBUTION

Conceptualization: Asha Rani K P and Gowrishankar S
jointly conceived and designed the research project.

Methodology: Asha Rani K P developed the methodology
for the study.

Validation: Asha Rani K P and Gowrishankar S collectively
validated the results and ensured their accuracy.

Formal Analysis: Asha Rani K P conducted the formal
analysis of the data.

Investigation: Asha Rani K P and Gowrishankar S carried
out the investigation and collected the necessary data.

Resources: Asha Rani K P and Gowrishankar S provided the
required resources for the project.

Data Curation: Asha Rani K P curated and prepared the
dataset for analysis.

Writing—Original Draft Preparation: Asha Rani K P wrote
the initial draft of the manuscript.

Writing—Review and Editing: Gowrishankar S critically
reviewed and Asha Rani K P edited the manuscript.

Visualization: Asha Rani K P created the visualizations used
in the paper.

Both the authors have substantially contributed to the work
reported and have approved the final version of the manuscript.

DATA AVAILABILITY STATEMENT

Images used for the study are obtained from CrowdAI [27]
and PlantVillage dataset [28].

REFERENCES

[1] Raid, Richard N. “Lettuce Diseases and Their Management.” Diseases of
Fruits and Vegetables: Volume II, n.d., 121–47.

[2] Carrasco, Gilda A., and S. W. Burrage. “Diurnal Fluctuations in Nitrate
Accumulation and Reductase Activity In Lettuce (LACTUCA SATIVA
L.) Grown using Nutrient Film Technique” Acta Horticulturae, no. 323,
International Society for Horticultural Science (ISHS), Feb. 1993, pp. 51–
60. Crossref, https://doi.org/10.17660/actahortic.1993.323.3.

[3] Singh, Gaurav, Garima Dukariya, and Anil Kumar. “Distribution,
Importance and Diseases of Soybean and Common Bean: A Review.”
Biotechnology Journal International, 2020, 86–98.

[4] Wahome, C. N., Maingi, J. M., Ombori, O., Kimiti, J. M., & Njeru,
E. M. (2021). Banana production trends, cultivar diversity, and tissue
culture technologies uptake in Kenya. International Journal of Agronomy,
2021, 1–11. https://doi.org/10.1155/2021/6634046

[5] K . Lakshmi Narayanan ,1 R. Santhana Krishnan ,2 Y. Harold Robinson ,
E. Golden Julie , S. Vimal , V. Saravanan , and M. Kaliappan5. “Banana
Plant Disease Classification Using Hybrid Convolutional Neural
Network”

[6] Andreas Kamilaris, Francesc X. Prenafeta-Boldú, “Deep learning in
agriculture: A survey”, Computers and Electronics in Agriculture,
Volume 147, Pages 70-90, ISSN 0168-1699, 2018.

[7] Ramcharan, Amanda, Kelsee Baranowski, Peter McCloskey, Babuali
Ahmed, James Legg, and David P. Hughes. “Deep Learning for Image-
Based Cassava Disease Detection.” Frontiers in Plant Science 8 (2017)

[8] N.Saranya, L. Pavithra, N. Kanthimathi, B. Ragavi, P. Sandhiyadevi .
“Detection of Banana Leaf and Fruit Diseases Using Neural Networks”

[9] Michael Gomez Selvaraj, Alejandro Vergara, Frank Montenegro ,
Henry Alonso Ruiz, Nancy Safari , Dries Raymaekers , Walter Ocimati ,
Jules Ntamwira , Laurent Tits , Aman Bonaventure Omondi ,
Guy Blomme “Detection of banana plants and their major diseases
through aerial images and machine learning methods: A case study in DR
Congo and Republic of Benin”.

[10] E. Miao, Guixia Zhou, and Shengxue Zhao “Research on Soybean Disease
Identification Method Based on Deep Learning”

[11] Sachin B. Jadhav, Vishwanath R. Udupi, Sanjay B. Patil, “Soybean leaf
disease detection and severity measurement using multiclass SVM and
KNN classifier” 26 April 2019

[12] Elham Khalili, Samaneh Kouchaki, Shahin Ramazi, Faezeh Ghanati
“Machine Learning Techniques for Soybean Charcoal Rot Disease
Prediction” 14 December 2020

[13] Miao Yu, Xiaodan Ma, Haiou Guan, Meng Liu, Tao Zhang “A
Recognition Method of Soybean Leaf Diseases Based on an Improved
Deep Learning Model” 31 May 2022

[14] Munirah Hayati Hamidon, Tofael Ahamed “Detection of Tip-Burn Stress
on Lettuce Grown in an Indoor Environment Using Deep Learning
Algorithms” 24 September 2022

[15] Kavir Osorio, Andrés Puerto, Cesar Pedraza, David Jamaica, Leonardo
Rodríguez “A Deep Learning Approach for Weed Detection in Lettuce
Crops Using Multispectral Images” 28 August 2020

[16] J. Amara, B. Bouaziz, and A. Algergawy, “A Deep Learning-based
Approach for Banana Leaf Diseases Classification” in B. Bernhard
Mitschang, Norbert Ritter, Holger Schwarz, Meike Klettke, Andreas Thor,
Oliver Kopp, Matthias Wieland (Hrsg.): BTW 2017 – Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn
2017 79.

[17] W. Liao, D. Ochoa, L. Gao, B. Zhang, and W. Philips, “Morphological
Analysis for banana disease detection in close range hyperspectral remote
sensing images,” in Proceedings of the IGARSS 2019 - 2019 IEEE
International Geoscience and Remote Sensing Symposium, pp. 3697–
3700, Yokohama, Japan, 28 July-2 August 2019.

[18] S. kaur, G. Babbar, and Gagandeep, “Image processing and classification,
A method for plant disease detecion,” International Journal of Innovative
Technology and Exploring Engineering, vol. 8, no. 9S, 2019.

[19] Shimamura, S.; Uehara, K.; Koakutsu, S. Automatic Identification of
Plant Physiological Disorders in Plant Factory Crops. IEEJ Trans.
Electron. Inf. Syst. 2019, 139, 818–819.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

1140 | P a g e

www.ijacsa.thesai.org

[20] S. Mishra, R. Sachan, and D. Rajpal, “Deep convolutional neural network
based detection system for real-time corn plant disease recognition,”
Procedia Computer Science, vol. 167, pp. 2003–2010, 2020.

[21] D. A. Kumar, P. S. Chakravarthi, and K. S. Babu, “Multiclass Support
Vector Machine Based Plant Leaf Diseases Identification from Color,
Texture and Shape Features,” in Proceedings of the 2020 ;ird International
Conference on Smart Systems and Inventive Technology (ICSSIT), pp.
1220–1226, IEEE, Tirunelveli, India, August 2020.

[22] V. Mazzia, A. Khaliq, and M. Chiaberge “Improvement in land cover and
crop classification based on temporal features learning from sentinel-2
data using recurrent-convolutional neural network (R-CNN)”

[23] N. Çetin, K. Karaman, E. Beyzi, C. Sa˘glam, and B. Demirel,
“Comparative evaluation of some quality characteristics of sunflower
oilseeds (helianthus annuus L.) through machine learning classifiers,”
Food Analytical Methods, vol. 14, no. 8, pp. 1666–1681, 2021.

[24] Sharif M, Khan MA, Iqbal Z, Azam MF, Lali MIU, Javed MY. Detection
and classification of citrus diseases in agriculture based on optimized
weighted segmentation and feature selection. Comput Electron Agric
2018;150:220–34. https://doi.org/10.1016/j.compag.2018.04.023.

[25] Lu J, Ehsani R, Shi Y, Abdulridha J, de Castro AI, Xu Y. Field detection
of anthracnose crown rot in strawberry using spectroscopy technology.
Comput Electron Agric 2017.

[26] Ruben Van De Vijver, Koen Mertens, Kurt Heungens, Ben Somers, David
Nuyttens, Irene Borra-Serrano, Peter Lootens, Isabel Roldán-Ruiz, Jürgen
Vangeyte, Wouter Saeys, In-field detection of Alternaria solani in potato
crops using hyperspectral imaging, Computers and Electronics in
Agriculture, Volume 168, 2020, 105106, ISSN 0168-1699,
https://doi.org/10.1016/j.compag.2019.105106.

[27] D. Zhang, Y. Zhang, Q. Li, T. Plummer and D. Wang, "CrowdLearn: A
Crowd-AI Hybrid System for Deep Learning-based Damage Assessment
Applications," 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), Dallas, TX, USA, 2019, pp. 1221-1232,
doi: 10.1109/ICDCS.2019.00123.

[28] Noyan, Mehmet Alican. "Uncovering bias in the PlantVillage dataset."
arXiv preprint arXiv:2206.04374 (2022).

[29] A. Mikołajczyk and M. Grochowski, "Data augmentation for improving
deep learning in image classification problem," 2018 International
Interdisciplinary PhD Workshop (IIPhDW), 2018, pp. 117-122, doi:
10.1109/IIPHDW.2018.8388338.

[30] Medhi, Epsita, and Nabamita Deb. “PSFD-Musa: A Dataset of Banana
Plant, Stem, Fruit, Leaf, and Disease.” Data in Brief 43 (2022): 108427.

[31] A. Mikołajczyk and M. Grochowski, "Data augmentation for improving
deep learning in image classification problem," 2018 International
Interdisciplinary PhD Workshop (IIPhDW), 2018, pp. 117-122, doi:
10.1109/IIPHDW.2018.8388338.

[32] Maraghehmoghaddam, Armin. “Synthetic Data Generation for Deep
Learning Model Training to Understand Livestock Behavior,” n.d.
https://doi.org/10.31274/etd-20200902-98

[33] Pratiwi, Heny, Agus Perdana Windarto, S. Susliansyah, Ririn Restu Aria,
Susi Susilowati, Luci Kanti Rahayu, Yuni Fitriani, Agustiena
Merdekawati, and Indra Riyana Rahadjeng. “Sigmoid Activation Function
in Selecting the Best Model of Artificial Neural Networks.” Journal of
Physics: Conference Series 1471, no. 1 (2020): 012010.

[34] Namin, Ashkan & Leboeuf, Karl & Muscedere, Roberto & Wu, Huapeng
& Ahmadi, Majid. (2009). Efficient hardware implementation of the
hyperbolic tangent sigmoid function. Proceedings - IEEE International
Symposium on Circuits and Systems. 2117 - 2120.
10.1109/ISCAS.2009.5118213.

[35] Bodyanskiy, Yevgeniy, Anastasiia Deineko, Viktoria Skorik, and Filip
Brodetskyi. “Deep Neural Network with Adaptive Parametric Rectified

Linear Units and Its Fast Learning.” International Journal of Computing,
2022, 11–18.

[36] Abien Fred Agarap. (2018). Deep Learning using Rectified Linear Units
(ReLU).https://doi.org/10.48550/arXiv.1803.08375

[37] I. Kouretas and V. Paliouras, "Simplified Hardware Implementation of the
Softmax Activation Function," 2019 8th International Conference on
Modern Circuits and Systems Technologies (MOCAST), Thessaloniki,
Greece, 2019.

[38] Zhuang Li, Hanzi Mao, Chao-Yaun, Christoph Feichtenhofer, Trevor
Darrell and Saining Xie, “A ConNet for the 2020s” , 2020.

[39] Menghani, Gaurav. “Efficient Deep Learning: A Survey on Making Deep
Learning Models Smaller, Faster, and Better.” ACM Computing Surveys
55, no. 12 (2023): 1–37.

[40] Ruder, S. (2016). An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747..

[41] Bottou L. (2012) Stochastic Gradient Descent Tricks. In: Montavon G.,
Orr G.B., Müller KR. (eds) Neural Networks: Tricks of the Trade. Lecture
Notes in Computer Science, vol 7700. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-35289-8_25

[42] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. Journal of Machine
Learning Research, 12, 2121–2159.

[43] Zhang, Rui, Weiguo Gong, Victor Grzeda, Andrew Yaworski, and
Michael Greenspan. “An Adaptive Learning Rate Method for Improving
Adaptability of Background Models.” IEEE Signal Processing Letters 20,
no. 12 (2013): 1266–69. https://doi.org/10.1109/lsp.2013.2288579.

[44] Peto, Levente, and Janos Botzheim. “Parameter Optimization of Deep
Learning Models by Evolutionary Algorithms.” 2019 IEEE International
Work Conference on Bioinspired Intelligence (IWOBI), 2019.

[45] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic
optimization. 2014. arXiv:1412.6980v9 (2014)

[46] “Follow-the-regularised-leader and Mirror Descent” (2020) Bandit
Algorithms, pp. 286–305. Available at:
https://doi.org/10.1017/9781108571401.035.

[47] ALHAWAS, Nagham, and Zekeriya TÜFEKCİ. “The Effectiveness of
Transfer Learning and Fine-Tuning Approach for Automated Mango
Variety Classification.” European Journal of Science and Technology,
European Journal of Science and Technology, Mar. 2022. Crossref,
https://doi.org/10.31590/ejosat.1082217.

[48] Kundjanasith Thonglek, Keichi Takahashi, Kohei Ichikawa, Chawanat
Nakasan, Hidemoto Nakada, Ryousei Takano, Hajimu Iida, "Retraining
Quantized Neural Network Models with Unlabeled Data," 2020
International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1-
8, doi: 10.1109/IJCNN48605.2020.9207190.

[49] A. Ghasemian, H. Hosseinmardi and A. Clauset, "Evaluating Overfit and
Underfit in Models of Network Community Structure," in IEEE
Transactions on Knowledge and Data Engineering, vol. 32, no. 9, pp.
1722-1735, 1 Sept. 2020, doi: 10.1109/TKDE.2019.2911585.

[50] S. K. Noon, M. Amjad, M. A. Qureshi and A. Mannan, "Overfitting
Mitigation Analysis in Deep Learning Models for Plant Leaf Disease
Recognition," 2020 IEEE 23rd International Multitopic Conference
(INMIC), 2020, pp. 1-5.

[51] Keith, Michael. “Ridge and Lasso.” Machine Learning with Regression in
Python, 2020. https://doi.org/10.1007/978-1-842-6583-3_4.

[52] K. P. Asha Rani and S. Gowrishankar, "Pathogen-Based Classification of
Plant Diseases: A Deep Transfer Learning Approach for Intelligent
Support Systems," in IEEE Access, vol. 11, pp. 64476-64493, 2023, doi:
10.1109/ACCESS.2023.3284680.

https://doi.org/10.1016/j.compag.2018.04.023
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1017/9781108571401.035
https://doi.org/10.31590/ejosat.1082217

