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Abstract—In order to solve the problem of reliability assess-
ment and prediction of rolling bearings, a noise reduction method
(CEEMDAN-GRCMSE) based on complete ensemble empirical
mode decomposition with adaptive noise(CEEMDAN) combined
with generalized refined composite multi-scale sample entropy
(GRCMSE) is proposed from the vibration signals to remove the
noise from the bearing vibration signals, and then the feature set
of the noise-reduced signals is downscaled by using the Uniform
manifold approximation and projection(UMAP) algorithm, and
the reliability assessment model is established by using a logistic
regression algorithm to establish a reliability assessment model,
and use the red-tailed hawk algorithm for parameter optimization
of the mixed kernel relation vector machine, which is used
to predict the bearing state, and finally the predicted state
information is brought into the assessment model to obtain
the final results. In this paper, the whole life cycle data of
rolling bearings from Xi ’an Jiaotong University-Sun Science
and Technology Joint Laboratory (XJTU-SY) are used to verify
the effectiveness of the proposed method. The superiority of the
proposed method is highlighted by comparing the analysis results
with those of other AI methods.
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I. INTRODUCTION

With the evolution of mechanical equipment to intelligen-
tization, an in-depth understanding of the degradation law
of equipment components becomes the key to ensure its
stable operation [1]. As an indispensable core component of
mechanical systems, the performance state of rolling bear-
ings has a decisive influence on the stable operation of the
whole equipment [2]. Therefore, it is particularly important to
carry out effective reliability assessment and prediction [3].
However, in practical engineering applications, the operation
of mechanical equipment is inevitably accompanied by the
generation of various noise signals. The existence of these
noises seriously interferes with the accurate monitoring and
assessment of the bearing state, thus affecting the accurate
judgment of the bearing health state. Therefore, the removal
of rolling bearing noise and vibration signals has a very impor-
tant role in the extraction of effective information extraction
of bearings. Traditional signal processing methods such as
Fourier transform [4], wavelet packet transform (WPT) [5],
etc., are mostly centered around the wavelet basis of the signal,
and it is easy for the signal to be over-decomposed. Based on
these limitations, Adaptive Mode Decomposition (AMD) is
widely used due to its ability to analyze complex signals [6]
[7] [8].

Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) [12] is an adaptive signal pro-
cessing method based on Empirical Mode Decomposition
(EMD) and its deformations [9] [10] [11], which effectively
improves the stability and robustness of the decomposition by
the method of adding random noise to the original signal.
Cheng et al. [13] used CEEMDAN to analyze the bearing
signals, adding Gaussian noise adaptively at each stage of
the signal decomposition to completely decompose the signal,
which greatly improved the accuracy of rolling bearing fault
diagnosis. Kala A et al. [14] established a rainfall prediction
model based on CEEMDAN combined with a long and short
term memory network (LSTM), which greatly improved the
climate change rainfall prediction accuracy due to climate
change. Li H [15] proposed a CEEMDAN-SVD-TE based vi-
bration signal analysis method to solve the problem of complex
vibration sources in hydropower stations, which improves the
accuracy of vibration propagation path identification. Zhao et
al. [16] proposed a CEEMDAN based ECG signal elimination
method to filter out high frequency noise. D et al. [17] pro-
posed a CEEMDAN combined with health indicator screening
and Gray Wolf Optimized Extreme Learning Machine (GWO-
ELM) for the prediction of remaining useful life (RUL) of
lithium-ion batteries. Noise reduction of battery signals by
CEEMDAN effectively improves the signal quality.

Reliability refers to the ability to fulfill a predetermined
function within a certain period of time [18]. Rolling bearing
reliability assessment usually starts from the characteristics
of the vibration signals and collects effective information by
extracting multiple features from the signals to assess the
bearing reliability. Logistic Regression (LR) is a mathematical
modeling method that is often used to model the reliability
assessment of bearings. Gao et al. [19], in order to solve
the problem of assessment and prediction of the operational
reliability of rolling bearings, proposed a method based on
isometric mapping, logistic regression modeling, and Nonho-
mogeneous Cuckoo algorithm-Least Squares Support Vector
Machine (NoCuSa-LSSVM) for the prediction of the oper-
ational reliability of rolling bearings. Abbasi et al. [20] used
Logistic regression model to check and evaluate iot anomalies,
and achieved good results.

With the rapid development of artificial intelligence, pre-
diction methods based on machine learning have gradually
become an important means in the field of reliability predic-
tion. In the process of reliability prediction, the characteristics
of the bearings are first analyzed, and the degradation state
of the bearings is predicted by machine learning methods.
From then on, the degradation states obtained from these
predictions are used as inputs for reliability calculations using
reliability assessment models. Li et al. [21] proposed a hybrid
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prediction algorithm to predict the bearing degradation trend
by combining a Sparse Low-Rank Matrix (SLRM) with a
Chaos Cuckoo Search (CCS) optimized support vector ma-
chine model. Han et al. [22] used a stacked self-encoder
combined with a long short-term memory network model to
establish a bearing degradation state prediction model and
analyze the remaining service life of the bearings. Wang Y
et al. [23] proposed a method based on Pearson correlation
coefficient and kernel principal component analysis (KPCA)
for the prediction of the remaining service life of rolling
bearings. Xu et al. [24] established an (MSMHA-AED) model
to predict the degree of bearing degradation. Bo et al. [25]
proposed an adaptive temporal convolutional network (TCN)
based on improved SSD and correlation coefficient (ISSD-CC)
for bearing condition prediction.

Through the comprehensive analysis of the existing liter-
ature, it can be found that although various noise reduction
techniques are adopted, these methods still have the prob-
lems of low efficiency and poor noise reduction effect when
dealing with complex vibration signal noise. To overcome
these challenges, a noise reduction method based on adaptive
noise based complete ensemble empirical Mode decomposi-
tion (CEEMDAN) and generalized fine composite multi-scale
sample entropy (CEEMDAN-GRCMSE) is proposed in this
paper. Firstly, a series of intrinsic mode functions (IMFs)
are obtained by CEEMDAN decomposition of noisy vibration
signals. Then, by calculating the GRCMSE value of each
component, the most representative modal component is se-
lected from a large number of IMFs, which lays the foundation
for the subsequent signal processing. In addition, in order to
improve the accuracy of rolling bearing reliability prediction, a
hybrid kernel relational vector machine (MKRVM) parameter
optimization method combined with Red Tail Eagle optimiza-
tion algorithm (RHA) was proposed and applied to bearing
reliability evaluation and prediction. Using RHA algorithm
to optimize the parameters of MKRVM, the performance of
the prediction model can be significantly improved. The main
innovations are:

1. For the selection of IMFs after CEEMDAN decompo-
sition, combined with GRCMSE, the efficiency and accuracy
of over-signal noise reduction are improved.

2. In the reliability modeling process of rolling bearings,
the uniform manifold approximation and projection (UMAP)
algorithm is used to reduce the order of the multi-dimensional
features of the signal after noise reduction. Compared with
other order reduction algorithms, UMAP algorithm can retain
as much information in the data as possible, thus laying a solid
data foundation for the reliability modeling of rolling bearings.

3. Aiming at the problem of bearing reliability prediction,
MKRVM model optimized by RHA is proposed to predict the
reliability of bearing signals, which significantly improves the
prediction accuracy.

The structure of this paper is as follows: the first sec-
tion is the introduction, the second section introduces the
CEEMDAN-GRCMS signal noise reduction model, the third
section introduces the establishment of the logistic regression
bearing reliability model based on data characteristics, the
fourth section introduces the rham-mkrvm model, the fifth
section verifies the model experimentally, and the sixth section

summarizes the conclusions of this paper.

II. NOISE REDUCTION OF THE VIBRATION SIGNAL

A. CEEMDAN

Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) is a mode decomposition al-
gorithm. CEEMDAN introduces an adaptive Gaussian white
noise and effectively maintains the signal integrity. In addition,
the time complexity of the traditional algorithm is significantly
reduced and the efficiency is improved. The main steps as
follows:

Step 1: Add pairs of positive and negative Gaussian white
noise λi(t) to the original signal to obtain x i(t) = x(t) +
λ i(t), decompose x i(t) to obtain the 1st modal component
(IMF) and take its mean value as the 1st IMF obtained by
CEEMDAN decomposition,and a residual component r1(t).

IIMF1 = 1
n

∑n
i=1 I

i
IMF1(t) (1)

r1(t) = x(t)− IIMF1 (2)

where IMF1
i(t) represents the 1st modal component; n is

the number of signals.

Step 2: Add pairs of positive and negative Gaussian white
noise λi(t) to the first residual component r1(t) to obtain
a new component r i

1 (t) = r1 (t) + λi(t). Perform the
EMD decomposition of this component again, the process is
calculated as follows:

IIMF2 = 1
n

∑n
i=1 EMD(r1(t) + λi(t)) (3)

r2(t) = r1(t)− IIMF2(t) (4)

Step 3: Repeat the decomposition until the resulting resid-
ual signal can no longer be decomposed (the number of ex-
treme points is no more than 2). Finally, IIMF1 IIMF2 · · · IIMFn
can be obtained in turn for the corresponding residual compo-
nents. The original signal can be expressed as:

x(t) =
∑q

j=1 IIMFj + rz(t) (5)

where q is the total number of modes after decomposition
and rz(t) is the final residual result.

B. Generalized Refined Composite Multi-scale Sample En-
tropy

Generalized Refined Composite Multi-scale Sample En-
tropy (GRCMSE) is an improved algorithm developed on
the basis of Sample Entropy (SE) [26]. Sample entropy is a
quantitative measure of the degree of chaos in a time series,
and the magnitude of its value is proportional to the irregularity
and noise content of the time series. A high sample entropy
value usually indicates that the signal has a high level of
irregularity and noise.GRCMSE introduces a variance coarse-
graining method to enhance the extraction of data information
and improve the algorithm’s resistance to noise. This enables
GRCMSE to provide more accurate and reliable results when
dealing with signal and data analysis in complex environments.
In GRCMSE, a larger entropy value means that the signal
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contains more valid information.The calculation procedure of
GRCMSE is as follows:

Step1: For the time series x(i),i=1,2,3... ,n. Firstly, the
original time series x(i) is coarsely granulated, and for the
scale factor τ the corresponding coarsely granulated sequence
can be expressed as yg,h

τ

yg,k,j
τ = 1

τ

jτ+k−1∑
i=(j−1)τ+k

(xi − xi)
2 (6)

where 1 ≤ j ≤ N
τ , 2 ≤ k ≤ τ , xi =

1
τ

τ−1∑
k=0

xi+k

Step2: For the scale factor τ , compute the number of
vectors yg,h

τ in the t-dimensional as well as t+1-dimensional
space for each generalized coarse-grained sequence under this
scale factor, denoted respectively as ng,h,s

t and ng,h,s
t+1.

Step3: Calculate the average of ng,h,st and ng,h,s
t+1 in the

range 1 ≤ h ≤ τ ,the generalized fine composite multiscale
sample entropy of the initial time series x(i) under the scale
factor τ can be obtained as:

EGRCMSE = − ln(
ng,h,τ

t+1

ng,h,τ
t ) (7)

ng,h,τ
t = 1

τ

τ∑
h=1

ng,h,τ
t (8)

ng,h,τ
t+1 = 1

τ

τ∑
h=1

ng,h,τ
t+1 (9)

III. ROLLING BEARING RELIABILITY MODEL

A. UMAP Dimensionality Reduction

Uniform manifold approximation and projection (UMAP)
[27] is a powerful dimensionality reduction algorithm based
on Riemannian geometry and algebraic topology. The core
advantage of UMAP is that it can retain the global structure
and local features of data more effectively. Compared with
the traditional Principal Component Analysis (PCA) [28],
UMAP can retain more data information in the dimensionality
reduction process. UMAP shows faster computing speed and
better performance. The specific implementation process of
UMAP consists of two phases, namely, learning the flow
structure in the high-dimensional space and making a low-
dimensional representation of the flow structure.

Assuming that X = {x1, x2, ..., xN} is the original N-
dimensional dataset, in the first stage, the main task is to create
a weighted k-neighborhood graph G=(V,E,W). Where V is the
set of vertices consisting of the original N-dimensional data,
E denotes the set of edges, i.e., the set of directed edges that
can be formed according to the k neighboring points, and W
is the weight function, which is computed by the equation.

Wij = e
−

sij+εi
τi (10)

where sij denotes the distance between xi and xj; εi denotes
the distance between xi and its neighboring points; and τi
is the smoothing normalization factor set according to the
Riemannian metric. By calculating the weight values of all

data points, a weighted near proximity graph of the high-
dimensional dataset can be generated G. In order to ensure that
the weights between data points are consistent, the expression
is introduced:

T = A+AT −A ◦AT (11)

where T is the adjacency matrix of the weighted nearest
neighbor graph G, A is the weighted adjacency matrix con-
sisting of the weight values Wij, and ◦ denotes the Hadamard
product of the sought matrix.

After completing the construction of the high-dimensional
structure, the next step is to map it to the low-dimensional
space. Firstly, the weight function in low dimensions needs to
be constructed with the mathematical formula:

Vij =
1

1+ac2bij
(12)

where a and b denote hyperparameters and cij is the dis-
tance between yi and yj in the data point Y = {y1, y2, ..., yN}
in the low-dimensional space.

In order to make the dimensionality reduced dataset as
close as possible to the original dataset, it can be optimized by
minimizing the cross-entropy loss between Yij and Tij. The
cross-entropy function is:

Lc =
∑

ij [Tij log
Tij

Vij
+ (1− Tij) lg

1−Tij

1−Vij
] (13)

In the above equation, the first term is the attraction
component, which is used to constrain the clusters formed
by similar data points, and the second term is the repulsion
component, which is used to ensure that the clusters formed
have a sufficiently large interval between them. The stochastic
gradient descent algorithm can be used to optimize the cross-
entropy function, and after obtaining the weights of the low-
dimensional data points, the construction of the weighted
nearest-neighbor graph in low dimensions is completed, and
ultimately the low-dimensional representation of the high-
dimensional topology is completed, so as to achieve the effect
of data dimensionality reduction.

B. Logistic Regression Model

Logistic regression model [29] can give the probability of
an event occurring under a series of characteristic parameters,
is a linear regression model built on a large amount of data,
and is now widely used in statistics, medicine, and economics.
The logistic regression model is often used to deal with binary
classification problems. The model essentially consists of a
linear regression and a sigmoid function. The logistic regres-
sion model obtains the corresponding output value through the
sigmoid function, which is shown in Fig. 1:

Assuming that the i-th dimension feature parameter set
at moment t is Xi(t) = (x1(t), x2(t), . . . , xi(t)), the normal
operation of the bearing at the moment is denoted as y(t) = 1.
The set of characteristic parameters is entered into the sigmoid
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Fig. 1. Sigmoid function.

function and the bearing reliability R is calculated by the
following equation:

R = P (yi = 1 | Xi) =
exp(θ0+θ1x1(t)+θ2x2(t)+...+θixi(t))

1+exp(θ0+θ1x1(t)+θ2x2(t)+...+θixi(t))
(14)

where θ0, ......θi is the regression coefficient for the set of
eigenvectors. This coefficient is similar to the linear regression
coefficient, which represents the change of the dependent
variable due to the change of the independent variable. Lo-
gistic regression model regression coefficient is solved using
the maximum likelihood estimation method. First, the above
equation is transformed:

ln P (yi=1|Xi)
1−P (yi=1|Xi)

= θ0 + θ1x1(t) + θ2x2(t) + . . .+ θi(t)
(15)

Setting R = θ0, ......θi to be brought into the above equation
gives:

lnL(R) =
∑

i[yiRX(t)− ln(1 + exp(RX(t)))] (16)

Then the gradient descent method is used to solve the
above equation, the regression coefficients of the set of feature
vectors can be obtained, and the regression coefficients are
brought into the reliability solving formula to establish a
logistic regression reliability assessment model.

IV. RELIABILITY PREDICTION OF ROLLING BEARING

A. Red-tailed Hawk Algorithm

Red-tailed hawk algorithm (RTH) [30] is a meta-heuristic
algorithm proposed in 2023. The optimization process of this
algorithm simulates the hunting behavior of red-tailed hawk
and has the advantage of high search efficiency. The hunting
process of red-tailed hawk is divided into three phases,which
are: high soaring, low soaring and swooping phase. In the high-
altitude soaring stage, the red-tailed hawk spreads its wings and
flies, using its sharp vision to scan the vast field and determine
the exact location of the prey. Subsequently, the low-altitude
soaring phase allows for a more careful examination of the
ground and a gradual approach to the previously identified
prey area. After determining the optimal location of the prey,
the red-tailed hawk enters a phase of sharp turns and dives,
quickly swinging its wings, adjusting its flight position, and
getting ready to execute the hunting action to rapidly approach
the prey. The general steps of the red-tailed hawk optimization
algorithm are:

1) Initialize population: Map the solution space of the
problem to the hunting domain of the red-tailed hawk and
generate a group of possible solutions as the initial population.

2) High flying phase: The red-tailed hawk will take to
the skies in search of the best location for food supply. The
mathematical model for the high flight phase of the red-tailed
hawk is:

X(t) = Xbest + (Xmean −X(t− 1)) · Levy(dim) · TF (t)
(17)

where, t is the number of iterations, X (t) denotes the red-
tailed hawk position for t iterations, Xbest is the best position
obtained,Xmean is the average of the red-tailed hawk positions,
and Levy values can be calculated based on the distribution
function formula for Levy flights, which is given below:

Levy(dim) = s µ·σ
|v|β−1 (18)

σ = Γ(1+β)·sin(πβ/2)
Γ(1+β/2)·β·2(1−β/2) (19)

where, s is a constant (0.01), dim is the dimension of
the problem, β is a constant (1.5), and µ, ν are random
numbers between 0 and 1. TF (t) can be computed based on
the transition factor function with the following formula:

TF (t) = 1 + sin (2.5 + (t/Tmax)) (20)

where Tmax denotes the maximum number of iterations.

Low-flying phase: The red-tailed hawk gradually ap-
proaches its prey using spiral flight. Its model can be expressed
as follows:

X(t) = Xbest + (x(t) + y(t)) · StepS(t) (21)

StepS(t) = X(t)−Xmean (22)

where x and y represent the direction coordinates of the
red-tailed eagle at this moment, the spiral flight method is
calculated as follows:

x(t) = R(t) · sin (θ(t))
y(t) = R(t) · cos (θ(t)) (23)

R(t) = R0 ·
(
r − t

Tmax

)
· rand()

θ(t) = A ·
(
1− t

Tmax

)
· rand()

(24)

x(t) = x(t)
max|x(t)|

y(t) = y(t)
max|y(t)|

(25)

where R0 represents the initial value of the radius, A
represents the angular gain, taking values between 5 and 15,
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rand is a random number between 0 and 1, and r represents
the control gain, taking values between 1 and 2.

Sharp turn and dive phase: in this phase, the red-tailed
hawk occupies the best swooping position obtained from the
low altitude flight phase and prepares to attack the prey. The
mathematical model for this phase is as follows:

X(t) = α(t) ·Xbest + x(t) · StepS1(t) + y(t) · StepS2(t)
(26)

Each of these steps can be calculated as follows:

StepS1(t) = X(t)− TF (t) ·Xmean

StepS2(t) = G(t) ·X(t)− TF (t) ·Xbest
(27)

where α and P are the acceleration and gravity coefficients,
respectively, can be simplified as follows:

α(t) = sin2 (2.5−t/Tmax)
P (t) = 2 · (1− t/T max)

(28)

where α denotes that the acceleration of the hawk increases
with the number of iterations to improve the convergence rate,
and P is the gravitational effect that reduces the exploitation
diversity as the hawk gets closer to its prey.

The high-flying phase, based on Levy flight, successfully
avoids trying to fall into local minima, and the low-altitude
search phase focuses on localized search to improve the
accuracy of the solution. The sharp turn and dive phases adopt
a more focused search strategy that enhances the accuracy of
the RTH. The advantage lies in the fact that its combined global
and local search strategy is able to efficiently find the global
optimal solution in the solution space.

B. Relevance Vector Machine

Relevance Vector Machine (RVM), proposed by Tipping
[31], is a kernel sparse machine learning method based on
Bayesian framework. In the machine learning process, the
sample used for training consists of an input {xn}N and a
target value {tn}N . The correspondence between the input and
the target value in RVM can be expressed as:

t(x, δ) =
∑N

i=1 δiK(x, xi) + ε (29)

where δ is the weight vector of the model, K represents
the kernel function, ε is the offset, and N is the total number
of training samples.

Let {tn}N be an independent variable, then the conditional
probability of the target value can be expressed as:

P
(
t | δ, σ2

)
=

(
2πσ2

)−N
2 exp

(
−∥t−Φδ∥2

2σ2

)
(30)

where Φ is the matrix consisting of kernel functions and
σ2 is the noise variance.

In the process of calculation, due to a large number
of hyperparameters are quoted, the direct use of maximum
likelihood estimation method to find the value of δ, there may
be the generation of overfitting, in order to solve this problem,
the application of the knowledge of Bayesian theory, add a
constraint on δ, each weight vector δ is defined as a vector

of zero mean, then its Gaussian prior probability distribution
formula is as follows:

P (δ|α) =
∑N

i=0 N
(
δi|0, α−1

i

)
(31)

where the weight vectors are all independently distributed,
α = [α0, α1, . . . , αN ]

T denotes the hyperparameter vector,
and each hyperparameter corresponds to a weight vector. The
size of hyperparameters can affect the sparsity of the model.
Therefore, the key of RVM is to find the hyperparameters,
find the corresponding weights and kernel function, so that
the sparsity of the model is guaranteed, and combined with
the noise variance, the final regression model is obtained.

The posterior distribution weights of the weight vector δ
are derived from the Bayesian formula:

P (δ|α) =
∑N

i=0 N
(
δi|0, α−1

i

)
(32)

where is Σ =
(
σ−2ΦTΦ+ C

)
covariance matrix, µ =

σ−2
∑

ΦT t is the posterior matrix of the target value, and
C denotes the matrix whose main diagonal element is α =
[α0, α1, . . . , αN ]

T .

In the calculation process, in order to harmonize the
hyperparameters, the definition:

P
(
t | α, σ2

)
=

(
2πσ2

)−N
2 |E|− 1

2 exp
{
− 1

2 t
TE−1t

}
(33)

where E = σ2I + ΦC−1ΦT , the hyperparameters α and
σ2 of the RVM are solved by an iterative algorithm as follows:

αi
new = 1−αiMii

µ2
i

(34)(
σ2
i

)new
= ∥t−Φµ∥2

N−
∑

i(1−αiMii)
(35)

where Mii is the ith diagonal element of the covariance matrix.
The hyperparameters α and σ2 are calculated iteratively by the
above equation until the condition of convergence is satisfied.

In machine learning by correlation vector machines, the
kernel function is a crucial part of the algorithm. The kernel
function is capable of mapping nonlinear data into a high
dimensional space. However, different settings of kernel func-
tion and kernel parameters affect the performance of the RVM
model. Therefore, it is necessary to choose the appropriate ker-
nel function and also optimize the kernel function parameters.
Common kernel functions include Linear Kernel, Gaussian
Kernel, Laplace Kernel and so on.

(1) Linear kernel function is a global kernel function.

k (xi, xj) = xi • xj (36)

(2) Gaussian kernel function Gaussian kernel function has
strong localization, which can map the input vector to a space
of larger dimensions.

k (xi, xj) = exp
(
−∥xi−xj∥2

2δ2

)
(37)

(3) Laplace kernel function The Laplace kernel function
can be seen as a variant of the Gaussian kernel function, both
belong to the radial basis kernel function (RBF function).

k (xi, xj) = exp
(
−∥xi−xj∥

δ

)
(38)
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Different kernel functions have their own strengths and
weaknesses, in order to make the model have better per-
formance, hybrid kernel functions can be used so that the
combined kernel function has the characteristics of global and
local kernel to improve the ability of machine learning model.
The process of optimizing the hybrid kernel correlation vector
machine model using the red-tailed hawk algorithm is shown
in Fig. 2:

Fig. 2. RTH-MKRVM flowchart.

V. EXPERIMENTAL VERIFICATION

A. Experimental Data

The life cycle data of the bearings in this experiment were
provided by XJTU-SY-Bearing Datasets, a bearing experiment
set of Xi’an Jiaotong University. The test equipment includes
AC motors, motor speed controllers, support bearings, and
test bearings. A PCB352C33 transducer was placed in the
horizontal and vertical directions of the bearing to collect
vibration signals. A total of 32,768 data points were recorded
during the first 1.28 s in 1 min. The test rig is shown in
Fig. 3. Since the radial force was applied in the horizontal
direction, the vibration signals in this direction were chosen
for the experiment to better represent the bearing degradation.

Fig. 3. Bearing test stand.

B. Experimental Procedure

The flowchart of the experiments in this paper is shown in
Fig. 4 below:

Fig. 4. Flow chart of the experiment.

C. CEEMDAN-GRCMSE Model

In order to verify the effectiveness of the proposed
CEEMDAN-GRCMSE algorithm, the horizontal direction data
of bearing 3-2 in the rolling bearing full-life dataset of Xi’an
Jiaotong University is selected as the experimental data in
Fig. 5. The performance and effectiveness of CEEMDAN-
GRCMSE method will be verified by processing and analyzing
the experimental data.

Fig. 5. Original Signal

Firstly, CEEMDAN decomposition of the noise signal is
performed to obtain 16 IMF components as shown in Fig.
6, next, the GRCMSE value of each component is derived
as shown in Table I. From the table, it can be seen that the
front IMF components have larger values, indicating that the
IMF components contain more valid information. Therefore,
the IMF component with a value greater than 1 is selected
and it is reconstructed. The reconstructed signal is shown in
Fig. 7.

From the figure, it can be seen that the signal after
CEEMDAN-GRCMSE denoising has less burrs than the orig-
inal signal and the signal trend is smoother. Generally, signal-
to-noise ratio (SNR) is used to indicate the size of the noise.
Higher SNR values indicate better signal quality and vice
versa. By calculation, the SNR of the original signal is -4.98
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and the SNR of the denoised signal is -2.19. It shows that the
use of CEEMDAN-GRCMSE can effectively reduce the signal
noise.

Fig. 6. IMF component.

Fig. 7. Signal after noise reduction.

TABLE I. GRCMSE VALUE

Index IMF1 IMF2 IMF3 IMF4

GRCMSE 1.99 2.33 2.00 1.24

Index IMF5 IMF6 IMF7 IMF8

GRCMSE 1.27 1.16 1.20 1.03

Index IMF9 IMF10 IMF11 IMF12

GRCMSE 0.52 0.31 0.26 0.22

Index IMF13 IMF14 IMF15 IMF16

GRCMSE 0.14 0.07 0.04 0.01

D. Bearing Reliability Modeling

From the vibration signal of the noise-canceled bearing 3-
2, 15 features including mean, kurtosis, standard deviation,
waveform factor, spectral skewness, spectral kurtosis, and
mean square frequency were extracted, covering time domain,
frequency domain, and time-frequency domain aspects. Among
the time domain features include wavelet packet entropy and
singular value factor as shown in Fig. 8. These multi-domain
features are combined into a multi-dimensional feature param-
eter set.

However, directly substituting the multidimensional param-
eter set into the logistic regression model will bring great

Fig. 8. Multidimensional feature parameter.

challenges, so adopt the UMAP algorithm to reduce the dimen-
sionality of the data features. The core idea of UMAP is to find
the local neighborhoods between the data points in the high-
dimensional space and find the corresponding neighborhoods
in the low-dimensional space, and then try to maintain the
relationship between these neighborhoods as much as possible.
This approach effectively preserves the local structure of the
data and maps it into the low-dimensional space while reducing
the dimensionality. And the UMAP is compared with the
dimensionality reduction results of PCA and t-SNE to reduce
the high-dimensional features to three dimensions. The results
after dimensionality reduction are shown in Fig. 9.

Fig. 9. Dimensionality reduction comparison diagram.

In the figure, it can be observed that different degrees of
aliasing exist in the downscaling results of UMAP, PCA and
t-SNE algorithms. Especially in the late bearing failure stage,
the distribution of data points is more scattered, and there is
obvious crossover of data points in different stages. This leads
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to a poor differentiation of the bearing operation cycle and
fails to clearly reflect the operating condition of the bearing.

In contrast, the UMAP algorithm is able to more clearly
delineate the operating cycles of the bearings. The intervals
between cycles are more obvious, and the data points in dif-
ferent stages can be well distinguished. This indicates that the
dimensionality reduction results of the UMAP algorithm can
effectively describe the degradation condition of the bearing.

Through the above processing, the original high-
dimensional features are successfully transformed into a more
intuitive and easy to understand three-dimensional space which
provides a strong foundation for further analysis and modeling.

The set of feature vectors after UMAP dimensionality
reduction is selected as the degradation feature information
as the parameter of the logistic regression model, and the
reliability true curve of 400 points after bearing is obtained
as shown in Fig. 10.

Fig. 10. Bearing reliability real curve.

The next step is to predict the reliability of the bearings,
the kernel function of the MKRVM is with the linear kernel
function, after many experiments, the performance of the
hybrid kernel correlation vector machine reaches the best when
the coefficients of the Gaussian kernel are set to 0.6, and the
coefficients of the linear kernel are set to 0.4. After RTH opti-
mization, the optimal weight of MKRVM is obtained as 1.327.
In order to compare the effectiveness of different optimization
algorithms, compared the Red-tailed Hawk algorithm with
the Sparrow optimization algorithm and the Particle Swarm
optimization algorithm. As shown in Fig. 11 below, it can be
clearly observed that the convergence speed of the red-tailed
hawk algorithm is much faster than the other two optimization
algorithms.

Next, selected the first 2096 data as training data and
the last 400 points as test data for the prediction of the
RHA-MKRVM model. Subsequently, the final results of RHA-
MKRVM were fed into the logistic regression model to obtain
the operational reliability of the bearings. We compared the
predicted degradation states with the actual data, and the results
are shown in Fig. 12.

The final results predicted by the RHA-MKRVM model
were incorporated into the logistic regression model, and the
regression coefficients were calculated to obtain the operational
reliability of the bearings. The comparison between the de-

Fig. 11. Effects of different optimization algorithms.

Fig. 12. Bearing degradation state prediction.

graded state of the bearing predicted by the RHA-MKRVM
model and the degraded real data is shown in Fig. 13.

Fig. 13. Bearing reliability prediction.

As can be seen from the above figure, the results predicted
by the RHA-MKRVM model are closer to the real situation.
In order to verify the prediction accuracy of the hybrid
kernel correlation vector machine model, the reliability of the
bearings was predicted in this study using the ELMAN neural
network, the least squares support vector machine (LSSVM),
the correlation vector machine model (RVM), and the hy-
brid kernel correlation vector machine (MKRVM) model, and
the reliability of the bearings was compared with the RTH-
MKRVM method.

In LSSVM, Gaussian kernel function is used, and the
penalty factor, kernel function parameters are set to 9, 0.002; in
ELMAN neural network, the number of neural network layers
is set to 3, neuron excitation function is used as Sigmoid
function, and the number of neurons in each layer of input,
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hidden, and output layers is set to 10, 14, and 1, respectively;
in RVM, Gaussian kernel function is used, and the penalty
factor, and kernel function parameters are set to 9, 0.002; in
MKRVM, Gaussian kernel function and linear kernel are used,
and the penalty factor and kernel function parameters are set
to 9, 0.002.

The method was also validated using bearing 3-1, bearing
3-4, and bearing vibration data bearing 5 from the University
of Cincinnati. The reliability curves for the three bearings are
shown in Fig. 14. The errors produced by each prediction
model are shown in Table II. From the above figure, it can
be seen that the curves obtained by RTH-MKRVM are closer
to the actual reliability curves and have good prediction perfor-
mance compared to the existing bearing reliability prediction
methods.

As can be seen in Fig. 14, the early operation of bearing
3-1 was relatively stable, bearing reliability did not change
greatly, and there was a serious failure of the bearing at 250
points, and the reliability declined more rapidly. Bearings 3-
4 run more smoothly before 300 points, and their reliability
drops to 0 in the final stage. Bearing 5 has high reliability
before the first 350 points, and after 350 points, reliability
suddenly drops to 0.

Fig. 14. Three bearing reliability prediction results.

VI. CONCLUSION

Aiming at the problem of assessing and predicting the
reliability of rolling bearings based on noise conditions, a new
noise reduction method is proposed to remove the excess noise
in the bearing signals, and a logistic regression model is used
to assess the reliability of the bearings and obtain the reliability
results, and finally a hybrid kernel correlation vector machine
model of red-tailed eagle is used to predict the reliability of
the bearings, and good results are obtained, indicating that
the study can well characterize the rolling bearings’ state to
characterize and predict the reliability.

TABLE II. COMPARISON OF DIFFERENT MODELS ON BEARINGS

Model Bearing 3-1 Bearing 3-2
MAE MAPE MAE MAPE

ELMAN 0.073 0.082 0.032 0.045
LSSVM 0.069 0.074 0.061 0.074
RVM 0.079 0.094 0.135 0.207
MKRVM 0.057 0.041 0.096 0.037
RTH-MKRVM 0.045 0.028 0.058 0.044

Model Bearing 3-4 Bearing 5
MAE MAPE MAE MAPE

ELMAN 0.031 0.072 0.074 0.085
LSSVM 0.074 0.080 0.048 0.066
RVM 0.126 0.209 0.191 0.254
MKRVM 0.029 0.017 0.033 0.027
RTH-MKRVM 0.019 0.026 0.027 0.031

(1) The efficiency of signal noise reduction is greatly
improved by combining GRCMSE for the selection problem
of IMFs after CEEMDAN.

(2) Use UMAP algorithm to downscale the multidimen-
sional features of the signal after noise reduction, and lay a
solid data foundation for the reliability modeling of rolling
bearings.

(3) For the problem of bearing reliability prediction, the
MKRVM model optimized by the red-tailed eagle algorithm
is proposed to predict the reliability of bearing signals, which
significantly improves the prediction accuracy.

VII. DISCUSSION

In this paper, the effectiveness of the method is verified
by the bearing signal data in the laboratory. However, there
are still many problems to be solved in the research of rolling
bearings, and the future research direction can be started from
the following points:

(1) In terms of bearing signal feature extraction, this
paper constructs signal feature set by extracting signal time-
frequency domain features, but the selection of signal features
also relies on manual experience. In the future research, the
selection of signal features can be further studied to make the
selection process more automatic, and the selected features can
be more accurate representation of the signal.

(2) The verification data used in this paper comes from
the laboratory, the working conditions are stable, and the
experiment is carried out in an ideal environment. However, the
actual operating conditions are complicated, so the reliability
assessment and prediction under variable speed conditions
should be further studied.
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