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Abstract—The image style transfer operations are a kind
of high-level image processing techniques, in which a target
image is transformed to show a given style. These kind of
operations are typically acquired with modern neural network
models. In this paper, we aim to achieve the image style-transfer
operations in real time, with the underlying computer games.
We can apply the style-transfer operations to the all or part of
rendering textures in the existing games, to change the overall
feeling and appearance of those games. For a computer game or
its underlying game engine, the style-transfer neural network
models should be executed so fast to maintain the real-time
execution of the original game. Efficient data management is also
required to achieve deep learning operations while maintaining
overall performance of the game as much as possible. This paper
compares several aspects of style-transfer neural network models,
and its executions in the game engines. We propose a design and
implementation way for the real-time style-transfer operations.
The experimental result shows a set of technical points to be
considered, while applying neural network models to a game
engine. We finally shows that we achieved real-time style-transfer
operations, with the Barracuda module in the Unity game engine.
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rendering textures; real-time operations

I. INTRODUCTION

Game engines are now general development tools, which
help users develop games conveniently through providing the
functionalities needed to develop any kind of computer games.
A game engine typically includes a rendering module that
draws objects on the screen, a physics simulation module for
adding physically-simulating effects, such as collisions and/or
gravity effects, a sound module for background music and/or
sound effects, and an event processing system for user input
and system events [1].

It can also support network communication features, exter-
nal database connections, and on-line storage connections for
storing or retrieving information about users or data for the
game. A game engine is now typically a complex and heavy
program, since it provides various sets of functions, as show
here.

Recently, game engines are emerged to support machine
learning features, typically as add-on modules. Actually, in
artificial intelligence and machine learning fields, various re-
searches and developments have drawn much attentions from
general public persons. For example, AlphaGo[2] which is
artificial intelligence in the game of Go, AlphaStar[3] which
is artificial intelligence in the StarCraft 2, and Vizoom [4]

which is a study that trains neural networks to play the
first-person shooter game Doom through visual information.
These artificial intelligence works are implemented based on
the deep reinforcement learning [5]. Due to the remarkable
achievements of deep reinforcement learning, many studies of
artificial intelligence used in the computer games are mainly
focused on reinforcement learning.

In fact, the artificial intelligence methods can be used in a
variety of ways, even in game-specific applications. Recently,
artificial intelligence has also been used in the areas of cre-
ation, such as painting pictures as sophisticated as photographs
[6], writing [7], or music composing [8]. Several major gaming
companies carry out research on the generation of images,
animations, music, etc. to be used in games across various
neural networks. These game resources are usually created
outside of the game engine, and the generated resources are
provided in the general file formats. The game engines read
those resource files, and then use them in the games.

We expect that it would be innovative to generate resources
such as images, videos, and sounds through neural networks
inside the game engine and apply them to the game in real-
time. However, most generative neural networks are too slow
for real-time applications. Thus, applications of neural network
models to real-time games are limited to relatively simple
neural network models to quickly generate game resources.

In this work, we focused on the convergence development
of real-time games and artificial intelligence models, through
applying generative neural networks in real-time. More pre-
cisely, we focused on the image style transfers [9] to generate
the texture images in real-time, as game resources, as shown
in Fig. 1.

The texture images are used for various purposes in the
game, and thus, our work can also be extended to the various
applications. In contrast, the style transfer is not possible to be
implemented in other ways except machine learning methods.
Thus, it is a good case study for game engines, which support
machine learning features. The image style transfer is even
more practical, since it can be easily adopted for the special
effects in games.

Applying style transfer methods to the real-time games
shows some technical issues. Firstly, the resulting images of
the neural network models should be generated quickly so
that it can be applied in real-time. Thus, efficient architectural
models for running the game itself and also the neural network
models simultaneously are needed.
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Fig. 1. An example of the style-transfer operation.

Fig. 2. The overall structure of the feed-forward style-transfer neural
network model [11].

In this paper, we will solve those technical issues. From
the viewpoint of execution speeds, we aim to achieve real-time
performance even with applying neural networks that perform
style transfer. We will use a commercial game engine, as the
case study, which provides machine learning model drivers
to analyze and optimize the inter-working method to check
performance and limitations.

II. RELATED WORKS

The style transfer method can be achieved by neural net-
work models which create the resulting images by transferring
the image styles of the given style images to the content
images. The work performed by the neural network model
can be checked through the resulting image created with the
content image and style image, as shown in Fig. 1.

The key concept in the style transfer method is that it
is possible to separate content and style from an image, by
extracting features of the image through a set of trained
convolution layers [10]. The initial style transfer method [9]
operated by gradually transforming the input image through
gradient descent, and it took a long time to obtain the resulting
image, making it difficult to process video streams or real-time
applications.

Later, the Feed-Forward style transfer method [11] was
proposed, which solved the problem of slow conversion speed.
This method generates the transformed image at once through
the encoder-decoder networks. As shown in Fig. 2, this method
creates a transformed image by receiving the content image
from the Image Transform Net, which is actually an encoder-
decoder network. The input image is separated into the content
image and the style image. The trained VGG (Visual Geometry

Fig. 3. The overall structure of the AdaIN style-transfer neural network
model [13].

Group) neural network [12] calculates content loss (Lc) and
style loss (Ls), respectively, and then trains the Image Trans-
form Net through the back-propagation. Since the entire neural
network is trained on a single style image, it can be suitable
for a single style transfer.

Style transfer methods with Adaptive Instance Normaliza-
tion (AdaIN) [13] can be used for arbitrary number of style
images, even in real-time or at least in pseudo real-time. The
AdaIN layer calculates the mean and variance for each channel
of the features extracted from the content images and the style
images. Then, it normalizes the means and variances of the
content images, with respect to the means and variances of
the style images.

The AdaIN operations can be summarized as the follow
equation:

AdaIN(x, y) = σ(y)
x− µ(x)

σx
+ µ(y), (1)

where µ is the mean and σ is the variance function, from
statistics. The parameter x is the feature values extracted
from the content image through the VGG encoder, while the
parameter y is the feature values from the style image through
the VGG encoder.

As shown in Fig. 3, VGG encoder is trained by classifi-
cation tasks and network weights are fixed. Since AdaIN has
no parameters used for learning, training is performed only on
the VGG decoder part. There are two loss functions used for
training: content loss (Lc) and style loss (Ls) functions. The
differences between the results of applying VGG encoder to the
images that has been constructed through VGG decoder, and
the results obtained when the content images go through VGG
encoder and the AdaIN layer, are defined as the content losses.
Similarly, the differences between the results of applying VGG
encoder to the images that has been constructed through VGG
decoder and the style images are defined as the style losses.
The final objective function is the sum of content losses and
style losses, and the VGG encoder is trained to minimize it.

For a computer game or its underlying game engine, the
style-transfer neural network models should be executed so
fast to maintain the real-time execution of the original game.
Unfortunately, the previous works are insufficient to get real-
time results, and we aims to get the style-transfer operations
in real-time or even in pseudo real-time. In the next sections,
we will show our experimental details and the results.
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Fig. 4. A typical execution order of Unity event functions.

III. EXPERIMENTAL ENVIRONMENT

A. System Configurations

Our system configuration for the experiments are as fol-
lows:

• CPU : Intel Core i7, 2.30 GHz
• GPU : NVIDIA GeForce RTX 2060
• Main Memory : 16GB
• Operating System : Windows 10 Pro 64bit Edition

As shown here, we used typical commercial PCs with mid-
tire computing powers, rather than high-tire ones, for more
practical uses and more real-world experimental results.

B. Game Engine Integration

Our work is carried out on the Unity game engine. It
manages various functions necessary for game development in
module units. Each module must be operated efficiently at an
appropriate time, according to the characteristics of the game
to be made, to obtain a positive response from game service
users. Each module is controlled through event functions.
Event functions perform actions that need to be handled at
a specific point in time or situation in the game.

The Unity game engine provides many event functions to
control modules in various situations, so it is inadequate to
mention all of them in this paper. Taking it into consideration,
the execution orders of the event functions are iterated in
groups, according to their purpose, as shown in Fig. 4.

At the start of the event processing loop, event functions
for initializing the game are called, and then event functions
related to physical effects are called. Physical effects are
updated separately from the main thread at a specified time
through a reliable timer system. By applying this method, if
the physical effects are not updated within a fixed time interval,
it can be applied inaccurately unlike in reality, but it is possible
to prevent unexpected situations, in which screen rendering is
delayed until all the physical effects are applied.

TABLE I. COMPARISON OF Unity AND Self-Engine GAME ENGINES,
ACCORDING TO THE MACHINE LEARNING FEATURES

game engine Unity Self-Engine
machine learning ML-Agents Neuro

module
programming Python, C++

language C#
training Pytorch, cuDNN

Tensorflow
inferencing Barracuda cuDNN

additional features support reinforcement lightweight
learning

Then, the input event functions are called to handle user
inputs to interact with the game. Next, game logic event
functions that perform calculations for various decisions to be
performed in the game are called, and event functions that
draw the screen with the data updated so far are called. Next,
the event function that defines the action to be applied to the
end of the frame is called, and the event function specifies
the action to be performed when it is decided to make the
object be disabled or enabled in the game scenario is called.
Finally, when the game ends, event functions for resource
decommissioning are called.

C. Machine Learning Modules for Game Engines

Before starting our full-scale experiments, we investigated
several game engines, for their features which support machine
learning models, and also the overall environment for the
inference executions. At that time, the Unity engine is one
of the best-suitable commercial game engines, and it officially
supports machine learning features. We also compared those
features with the Self-Engine [14], which is an open-source,
lightweight game engine which supports machine learning
models, as shown in Table I.

Unity supports the Unity Machine Learning-Agents Toolkit
(or shortly, ML-Agents) [15], which is an add-on module to
apply machine learning features to the games. In ML-Agents,
the C# scripting language [16] is used to train neural networks
in the game engine environment. Python terminals [17] work
in conjunction with it, for neural network training.

For the general cases, the machine learning modules for
neural network training in the Python environment can be
selected from PyTorch [18] and TensorFlow [19], which are
already familiar to AI researchers. In contrast, since we use
ML-Agents for functional inferences, we had better to use
Barracuda [20], which is a specialized module that executes
pre-trained neural network models with C# scripts. Addition-
ally, ML-Agents support other various functions to efficiently
perform reinforcement learning.

Self-Engine uses Neuro [21] for its machine learning mod-
ule. Both the game engine itself and the machine learning mod-
ule are implemented in the same C++ programming language
and thus, the machine learning module is naturally integrated
into the game engine. With the integrated machine learning
module, neural network training and inferences are performed
in the similar manner. In the Self-Engine, the machine learning
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Fig. 5. The internal structure of the ML-Agent module.

module of Neuro internally uses cuDNN [22] as its underlying
deep neural network operation tools.

Actually, Self-Engine is a lightweight game engine imple-
mented as an open-source, and its internal structure is less
complex than that of commercial game engines. However, at
least at this time, most of artificial intelligence researchers pre-
fer PyTorch and TensorFlow, and Self-Engine has fewer con-
venient features compared to Unity, which officially supports
machine learning modules. Conclusively, in our experiments,
we use the Unity game engine, as our major target system.

IV. IMPLEMENTATION DETAILS

A. ML-Agents Features

The ML-Agents performs training between the Unity editor
and the Python terminal via Inter-Process Communication
(IPC), as shown in Fig. 5. The two processes conduct training
by exchanging data with each other in socket communication.
For this purpose, ML-Agents must be installed in both Unity
editor and Python terminal respectively. ML-Agents installed
on the Unity editor side is implemented in the C# programming
language, which is part of the Learning Environment. ML-
Agents installed on the Python side is the Python API part, as
shown in Fig. 5.

After each installation, the Unity editor needs to set up a
project to use ML-Agents. An object to be used as an agent
must be placed in the scene of the Unity editor, and Behavior
Parameters and Decision Requester script must be added to
the object as components. In the Behavior Parameters script,
the agent specifies the settings for the information the agent
wants to observe in the environment, and when not used in the
learning mode, the neural network model saved as an ONNX
file [23] to be used for inference.

After that, we implemented the actions to be performed
by the agent by inheriting the Agent Class, and also the
observation data to be sent to the Python module during
training and the processing to be performed when the data
is received from the Python module. After implementing the
internal functions by inheriting the Agent Class, write a Python
script using the ML-Agent Python Low-Level API to access
the Unity process from the Python terminal. Fig. 6 shows the

Fig. 6. The internal structure and function calling orders in the agent class.

overall structure of the agent class and its internal functions
with their calling orders.

The Initialize function inside the Agent Class performs
necessary works when the game starts. The OnEpisodeBegin
function implements the initialization work to be performed
when an episode starts at each time. After implementing
the inside of the CollectObservation function that obtains
observation information about the environment to be used for
the training or the inference, it is divided into the training mode
and the inference mode, and the next task to be performed is
determined. Mode selection can be set in Behavior Type of the
Behavior Parameters script.

The result from the neural network models being trained
in Python terminals or the pre-trained neural network models
used for the inference can be applied to the agent through
the OnActionReceived function. When the episode ends by
applying the action output from the neural network model,
a new episode is started and training proceeds again. In other
cases, the process of receiving observation data in the next step
is repeated. The heuristic function is used when a user controls
an agent directly, without using a neural network model or with
the user-provided artificial intelligence.

After implementing the internal functions for inheriting the
Agent Class, write a Python script using the ML-Agent Python
low-level API to access the Unity process from the Python
terminals. When a script is written using the Python low-level
API of ML-Agents, the approximate structure of the script
code is shown in Fig. 7.

The neural network training method in ML-Agents starts
with selecting Unity environments to control with Python
APIs. If the build completed executable is selected as an envi-
ronment to use, the path to the executable must be specified,
and if the path is left blank, it will automatically connect to the
Unity editor. The successful connection to the Python terminals
will result in the reset operation of the Unity environment at the
first start. Then Unity conducts simulation by its agents and the
Python terminal starts training either PyTorch or TensorFlow
neural network models with the received observation data, as
the get observations step in Fig. 7.
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Fig. 7. The ML-Agent python API script structure.

After that, the training proceeds with repeating the number
of steps set in the Python script. At each step during training,
information about the agent that needs a decision on the next
action to be performed and the agent whose episode has ended
collects the output of the neural network results, as the output
result values stage, and applies it to the next step for agents that
need a decision, as the go to next step stage. During training,
user input does not work in the Unity editors or the built
environment, since the Python terminal controls input events
in Unity.

Additional work is required to perform the style-transfer
operations with the ML-Agents. ML-Agents can transmit the
information observed through the camera sensors of agents in
the Unity environment to the Python terminal. This feature
is provided for training deep reinforcement learning networks
with environmental observation data obtained from the camera
sensors. Performing style transfer on this image is applying
style transfer to the screen that the agent sees. However, the
Python module of ML-Agents does not support sending images
to the Unity process. Currently, ML-Agents only considered
transmitting the behavior of the agent to be performed in the
next step. To solve this problem, we inherited the Side channel
class and used it for sending user-defined data.

The side channel is a supported function to transmit user-
defined data or inform the user about a specific state during the
neural network training process. To use this function, we need
to implement the internal functions directly from inheriting
the Side Channel class. The side channel implemented in this
way can be used in the import side channels step, as shown
in Fig. 7.

Similar to the structure of ML-Agents, Side Channel Class
must be implemented in Unity and Python, respectively. On
the Unity side, the Side Channel C# class is inherited, and on
the Python side, the Side Channel python class is inherited.
The process of data transmission through the side channel is
shown in Fig. 8. In Python terminals, after converting the style-
transferred image into a one-dimensional array of floating-
point values, it is transmitted to the Unity side through the side

Fig. 8. Our data transmission model, with the side channel.

channel. In the Unity game engine, the received floating-point
one-dimensional array is converted into a texture image, which
will be rendered on the screen. However, this method transfers
the image pixel-by-pixel through the send/receive queue and
copies the received float array pixels one-by-one to the texture,
which requires a large amount of CPU computing power.

Our style-transfer neural network model is based on the
AdaIN layer. The model was implemented in PyTorch and used
only for inference, when the training was completed. In the
case of VGG encoder, the number of filters in the convolutional
layer increased from 256 to 512 except for the end of the
VGG19 neural network model.

In the VGG encoder, the feature map is extracted from
the image by repeatedly stacking the Convolution (Conv2D)
layers and the Rectified Linear Unit (ReLU) [24] activation
function layers. The subsequent MaxPool2D operation reduces
the horizontal and vertical resolution of the image by half. The
ReflectionPad2D operation [25] adds spaces to the edges of
the output tensors of the current layers, as if reflected in a
mirror so that the inverted image appears repeatedly [26].

The VGG decoder also has a convolution layer and a
ReLU activation function layer like the VGG encoder [27].
The difference is that the number of filters in the convolution
layer is reduced by half, and the resolution of the output tensor
is doubled through the added Upsample layer. If the mode of
the Upsample layer is set to nearest, the extended part is filled
with the same value as the element value of the nearest feature
map.

B. Using the Barracuda Module

Barracuda is an inference-specific module built into the
Unity game engine. Barracuda executes neural network models
stored in ONNX file formats, through C# scripts. Barracuda in-
ternally uses the compute shaders [28] to handle the operations
required for the neural network inference. These operations are
quickly processed in parallel, using the multiple cores of the
Graphics Processing Unit (GPU). Since Barracuda can run
the neural network itself, there is no need to use PyTorch
or TensorFlow, there is no cost required for inter-working
between the two processes.
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Fig. 9. Overall operations in the barracuda module.

Fig. 10. Input data preprocessing process.

A neural network model executed with Barracuda can
use Texture2D data types, which works as an input tensor
in the Unity game engine, and vice versa. In the case of
ML-Agents, the CPU reads pixel values from the resulting
tensor, and injects them into the Texture2D object, actually
in a step-by-step manner. In contrast, Barracuda runs faster
by simultaneously processing multiple pixels at once, with the
GPU. Since Barracuda was developed specifically only for the
inference, it does not support any training of the neural network
models.

The operating sequences of the Barracuda module are as
shown in Fig. 9. A target neural network model will be stored
in the ONNX file format, and it will be loaded through the
C# script, at the load ONNX model files stage. The module
creates a worker object corresponding to the loaded neural
network model, at the create worker with models stage. A
Texture2D object is passed as the input tensor to the neural
network model, and also as an argument to the worker object,
at the execute workers with input stage. The resulting tensor
will be obtained with the PeekOutput function. The final result
will be returned as a Tensor type, and can be converted to other
types including Texture2D and floating-point number arrays.

To achieve the style-transfer operations with the Barracuda
module, we provide the trained style-transfer neural network
models as the ONNX files. Those files are imported into the
Unity game engine. In our experiments, we use the ONNX
files for the neural network models trained with a single style
image, in a feed-forward manner [11].

To clearly check the performance of the style-transfer
operations, we applied the style-transfer operation to the real-
time texture images, from a webcam-based video stream.
The video stream provides 60 frames per second, in the
1920×1080 resolution. Since the video resolution is too large

Fig. 11. Post-processing at the decoder.

Fig. 12. A brute-force implementation of the style-transfer operation, with
the python terminal in the unity engine.

to achieve real-time style-transfer, the video streams are scaled
down to the internal render-texture area, with lower resolution.
We achieved the highly efficient texture transfers, by using
Shader functions of Unity to modify texture images at high
speed through GPU’s parallel processing features, as shown in
Fig. 10.

In addition, appropriate post-processing is needed to the
resulting tensor, to be properly used in the games. For example,
the final pixel values from the Barracuda module may be
normalized floating-point numbers between 0.0 and 1.0, while
the rendering module needs 8bit unsigned integer values, as
the corresponding color values. We also integrated these kinds
of post-processing operations into the Shader programs, for
more efficient and faster operations, as shown in Fig. 11.

V. EXPERIMENT RESULT

A. Python-based Implementation

For comparison purposes, we implemented the style trans-
fer operations in a brute-force way, to directly link the Unity
editor to the Python terminals, as shown in Fig. 12. As the
starting point, the underlying game shows 170 frames per
second, without connecting to the Python terminals. Since it
was expected that this direct connection would be inefficient,
we use low-resolutions of 128 × 128, for the input video
streams. The style-transfer neural network model is executed
on the Python side, as an AdaIN network. The resulting style-
transferred image is in 256× 256 resolution, and read directly
from the Python terminal.

Even the style-transfer operations can be achieved effi-
ciently in Python environment, we found that the bottleneck
is the data transmission between the Python terminal and the
Unity game engine. To check the transmission speed, we once
used a dummy Python kernel, which just re-transmit the input
data as the result. Since they use network sockets for the data
transmission, it shows very slow result of even 3 frames per
second, as shown in Fig. 12.
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Fig. 13. An example of feed-forward style transfer.

Fig. 14. Applied style image.

Even worse, the received data need additional post-
processing on the CPU side. For example, the color values
should be converted from floating-point values to 8bit unsigned
integer values for the graphics rendering. Although using
shared memory seems more appropriate for the images, this
simple use of Python terminals for the style-transfer purpose
should consider the optimal connect of two different program-
ming languages: Python and the C# programming language
used in the Unity engine. Conclusively, we need another fully
efficient way of providing style-transfer operations to the Unity
engine.

B. Our Barracuda-based Implementation

In this work, we used a special device driver module,
named Barracuda, in the Unity game engine. The Barracuda
module is built into the Unity engine, and drives a trained
neural network for inference. We first extracted input data of
the real-time video streams, from our small size Web Cameras
(or webcams). The input data stream is actually texture images
extracted from the webcam video streams. It is then resized to
be processed by the neural networks.

The style transfer neural networks are used in two aspects:
a neural network trained on a single style image in a feed-
forward manner, and another neural network with AdaIN,
which can apply style images to the target texture, in real-
time. The input images extracted from the video camera are
converted into the 256×256 resolution render textures, which
are used as inputs to the neural networks. The final resulting
images are then used as surface textures for cube objects,
which are actually a physically-simulated moving object, in
our scenario, as shown in Fig. 13.

Fig. 15. Experimental results from a sample AdaIN style-transfer
implementation.

Fig. 16. Experimental results when applying the different style image.

Fig. 14 shows our sample style image used for this experi-
ment. Since there is little data transmission/reception cost, the
final frame rate of the game engine is affected by the resulting
texture image generation speed of the neural network models.
In our experiment, we confirmed that the game engine works
fast enough to be used in real-time.

VI. ANALYSIS OF EXPERIMENTAL RESULTS

In our experiments, we found that the Barracuda module
is specialized in inference, and suitable for the game engines
to use the neural network features. This module also shows
some limitations: it currently works well with limited sets of
neural network models. Actually, we used two style-transfer
models: the feed-forward model and the AdaIN model. The
feed-forward model shows fast conversion speeds, and also
limitations of being best suitable for a single style image
training. In contrast, the AdaIN model can be used for several
style images even in real-time, as shown in Fig. 15 and 16.

However, the AdaIN model was suitable for small-size
images, due to the real-time requirement. Fig. 17 shows the
speed of the style transfer neural networks for input data of
various sizes. In this case of the AdaIN models, we found that
the size of the image used as the style image was best suitable
with 256×256 resolutions. The style transfer performance was
greatly decreased with the image sizes larger than this.

For the game engine, it can achieve about 170 frames per
second, without any style-transfer operations. Applying the
style-transfer operations, the maximum texture image size was
300 × 300, with our experiment environment settings. Since
we used mid-powered PCs, rather than the best-performance
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Fig. 17. Real-time style transfer performance based on input image sizes.

computing environment, we expect that the performance and
also the size of the input texture would be improved with
enhanced computing power machines.

VII. CONCLUSIONS AND FUTURE WORKS

Through this simulation, we examined the real-time style
transfer performance in the game engine and efficient data
processing methods. When interlocking a neural network that
generates game resources in real-time with a game engine, the
data transmission and reception method between the neural
network and the game engine must be efficient. In addition,
input and output data from neural networks must be fast and
efficient when converted to game resources. In the paper, the
Shader function of the game engine was used to efficiently
convert and copy data through GPU parallel processing.

This paper shows a simulation of applying a deep neural
network to textures on the game in real-time. Since the texture
is used in various ways in the game, it will be possible to
conduct various studies through future applications. It will also
be necessary to study the performance optimization problems
that may arise during game development using deep neural
networks.

Additionally, research will be needed on performance op-
timization issues that may arise while developing games using
neural network models. Just as the optimization techniques
applied are different depending on the genre or characteristics
of the game itself, optimizations based on the characteristics
of the used neural network models should be investigated.
Considerations for the mobile environment are also needed.
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