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Abstract—Unbalanced data sets represent data sets that con-
tain an unequal number of examples for different classes. This
dataset represents a problem faced by machine learning tools; as
in datasets with high imbalance ratios, false negative rate per-
centages will be increased because most classifiers will be affected
by the major class. Choosing specific evaluation metrics that are
most informative and sampling techniques represent a common
way to handle this problem. In this paper, a comparative analysis
between four of the most common under-sampling techniques is
conducted over datasets with various imbalance rates (IR) range
from low to medium to high IR. Decision Tree classifier and twelve
imbalanced data sets with various IR are used for evaluating
the effects of each technique depending on Recall, F1-measure,
gmean, recall for minor class, and F1-measure for minor class
evaluation metrics. Results demonstrate that Clusters Centroid
outperformed Neighborhood Cleaning Rule (NCL) based on
recall for all low IR datasets. For both medium, and high IR
datasets NCL, and Random Under Sampling (RUS) outperformed
the rest techniques, while Tomek Link has the worst effect.

Keywords—Clusters centroid; decision tree; neighborhood
cleaning rule; random under sampling; Tomek Link under sam-
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I. INTRODUCTION

Machine learning and statistics have been used for clas-
sification in many fields such as security [1]–[8], medical
[9]–[15], text classification [16]–[18], and others [19], [20].
Classifications are defined as building a training model based
on previous experiences or examples. Recently, there has been
a rapid growth in data that has been collected from different
environments but, unfortunately, there is a lack of quality data.

The quality of the data means a balanced distribution for
all classes, the range of values is normalized, and no missing
values, and so on. The point is, that several traditional machine
learning techniques assumed that the target classes have a
balanced distribution in the data [21]–[23].

Multi-class classifiers such as Support Vector Machine
(SVM), Decision Tree (DT), Logistic Regression (LR), and
others are sensitive for imbalanced class distribution problems
[24] while one class classifiers such as Isolation forest, local
outlier factor (LOF), OC-SVM and other were not.

Due to the fact that, it is rare to find balanced datasets, that
contain equal or nearly equal numbers of instances for each
class in real-life classification problems; Building classifica-
tion models under highly imbalanced datasets is an issue in
machine learning algorithms.

In unbalanced datasets the most important class (class of
interest) has fewer examples than other classes like rare disease
datasets [25], therefore, the classification performance of the
classifier will be affected by skewing to the majority class
instances, which is usually not class of interest [26].

There are two main approaches for handling unbalanced
dataset problems: “algorithm-driven approach”, and “data-
driven approach”. The first approach concerns adjusting the
classifier to improve its learning from the minority class
samples [27].

On the other hand, the second approach concentrates on
changing the data distribution in two ways either by adding
new minor class examples (over-sampling) or removing some
major class instances (under-sampling). Each way has its
own advantages and disadvantages, where over-sampling is
considered more overhead than under-sampling and can lead
to overfitting problems while under-sampling causes the loss
of important information [27].

In the literature, most researchers either propose some
under-sampling techniques and commonly use these techniques
in research, or compare these techniques using a specific
dataset.

To our knowledge, there does not exist any research in
the literature comparing the effects of specific under sampling
techniques in the classification performance over datasets with
low, medium, and high IR. This notice represents the rationale
behind this paper where the main goal from this paper is
to compare the influence of four common under sampling
techniques called Tomek Link, NCL, Clusters Centroid, and
Random Under Sampling (RUS) in the classification results
for different datasets with various IR ranges from low to high
IR datasets.

To accomplish this goal twelve datasets from the Keel
collection with different IR variate between low, medium, and
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high IR have been used for comparing the performance of the
decision tree classifier using each one of the previous four
under-sampling techniques based on average recall, average
F1 measure, gmean, minor class recall, and minor class F1
measure.

The rest of this paper is organized as follows: Section
II displays the most recent studies about handling imbalance
datasets in the literature. Section III-A describes Tomek Link,
NCL, Clusters Centroid, and RUS under-sampling techniques
that are compared. methodology has been demonstrated in
Section III. In Section III-B the datasets are displayed. In
Section IV results are presented. Finally, Section V contains
the conclusion.

II. RELATED WORK

A large number of domains with significant environmental,
vital, or commercial importance encounter the class imbalance
problem. The class imbalance problem means that there is a
majority of one or more class spreads in the datasets [28],
[29]. Moreover, it has been shown in some instances to sig-
nificantly impede the performance achievable by conventional
learning techniques that assume a balanced distribution of the
classes and produce biased classifiers. Also, it degrades the
performance of machine learning classifiers [30].

Many proposals have been presented in the literature to
solve the imbalanced dataset. One of the most well-known
techniques is the cluster-based under-sampling approach. It has
been widely used to solve the imbalance of class distribution.
In [31]–[35] a cluster-based under-sampling approach has been
used to select the representative data as training data. Thus, the
classification accuracy for minority classes will be improved.
The experimental results show that the proposed approach
outperforms other under-sampling techniques in the previous
studies.

Random Under Sampling (RUS) is considered an under-
sampling technique that is used for class imbalance prob-
lems. Many proposals used RUS to maintain a balanced class
distribution [36]–[38]. In [39] a combination of T-Link and,
Synthetic Minority Technique (SMOTE) and another sampling
method such as RUS, and ROS in order to produce balance
data.

Additionally, RUS has been used with different ratios
to detect the performance of some of the machine learning
classifiers as [40] eight random undersampling (RUS) ratios
which are no sampling, 999:1, 99:1, 95:5, 9:1, 3:1, 65:35, and
1:1 have been used. Moreover, to show the performance of
these ratios seven different classifiers are employed which are
LightGBM (LGB), Decision Tree (DT), Random Forest (RF),
Naive Bayes (NB), Logistic Regression (LR) CatBoost (CB),
and XGBoost (XGB).

In [41] an ensemble feature selection has been proposed
to classify the attack using the BoT-IoT dataset. The proposed
approach is centered on the building of predictive models that
are based on different classifiers. RUS has been used to solve
the imbalance BoT-IoT dataset. The results show that the best
RUS ratio was 1:1 or 1:3.

In [42] a new hybrid under sampling-based ensemble ap-
proach (HUSBoost) has been proposed. The main objective of

HUSBoost is to handle imbalanced data using three main steps
which are data cleaning, data balancing, and classification. At
first, we remove the noisy data using Tomek-Links. RUS has
been applied to create several balanced subsets.

The neighborhood cleaning rule (NCL) method has been
used in many proposals in literature to deal with imbalance
data [43]–[45] while other studies used hybrid approaches
instead of NCL alone [46]. In [47] a combination of under-
sampling and oversampling methods have been used to solve
imbalance cases. Their proposal used is NCL under-sampling
method and Adaptive Semi unsupervised Weighted Oversam-
pling (A-SUWO) for the oversampling method.

Tomek link Tomek link technique is used in many studies
to overcome the challenges of data imbalances that affect
the performance of supervised learning-based [48]. In [49]
Synthetic minority oversampling technique (SMOTE) and T-
link have been used for imbalanced data. In addition, a
Naı̈ve Bayes classifier, support vector machine, and k-nearest
neighbors together have been used for performance evaluation.

In [50] Cluster Based, Tomek Link, and Condensed Nearest
neighbours have been used to handle the class imbalance
problem by equalizing the number of instances. This is done
by under-sampling the majority class based on some partic-
ular criteria [51]–[54]. The performance evaluation was done
based on applied different machine learning classifiers such
as K-Nearest Neighbor, Decision Tree, and Naive Bayes. The
results showed that Decision Tree outperformed other machine
learning techniques using the proposed technique.

Up to our best knowledge and based on an extensive
literature review search, we noticed that most of the previous
works exist in the literature compare the performance of
specific under sampling techniques versus a hybrid version
of these techniques over specific datasets with specific IR.
However, in this paper, four of the most common under
sampling techniques were applied over three categories of
datasets that were categorized based on IR into three categories
(low IR, medium IR, and high IR), and the effects of each
technique on the classifier performance were compared.

The main purpose of this paper is to conclude a standard
relationship between the compared under sampling techniques
and dataset IR value in order to guide researchers in choosing
the most suitable under sampling technique from the compared
ones based on the dataset IR. In this paper, twelve imbalanced
data sets with various IR have been used for evaluation in
addition to DT for classification.

III. METHODOLOGY

For each dataset Work starts by dividing the original
file into two parts: 70% for learning the classifier (training
data set) and 30% for evaluating the effectiveness of the
constructed model (testing set) based on average recall, average
F1 measure, gmean, minor class recall, and minor class F1
measure [55].

For the training dataset, four under sampling techniques
have been applied in order to make it balanced for learning
decision tree classifier then using the generated model for
classifying the test set and evaluating its performance, as
shown in Fig. 1.
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Fig. 1. Workflow for the used methodology

For each dataset, the best results that have been generated
by DT classifier with each under sampling technique after
adjusting its parameters are documented and compared.

In this paper, python is used for conducting all experiments
through the PyCharm integrated development environment
(IDE). Python libraries sci-kit-learn and imbalanced-learn are
deployed for generating the results [56].

A. Under Sampling Techniques

1) Tomek link Tomek link refers to a pair of near-
est neighbors where each one belongs to different
classes. Under-sampling is done by removing all
majority class samples from all Tomek Links [57].

2) Neighborhood Cleaning Rule (NCL) It was proposed
by Laurikkala in 2001, where in this method for each
sample in the training set three nearest neighbors for
it must be defined then if it belongs to the major
class while all of its selected neighbours belong to the
minor class then it will be removed as a noise sample
but if this sample belongs to the minor class and its
three nearest neighbours belongs to the major class
then these neighbours must be removed now. This
method needs numerous computations with large-size
datasets [58].

3) Clusters Centroid This method undersamples the ma-
jority class by replacing a cluster of majority samples
as it finds the clusters of the majority class with the
K-mean algorithm then it keeps the Cluster Centroids
of the N clusters as the new majority samples [5].

4) Random Under Sampling (RUS) RUS works by re-
moving some of the majority class samples randomly
to change the distribution of data in the imbalanced
dataset in order to convert it to a more balanced

one for improving the classifier learning process in
machine learning but this method sometimes means
losing important information which considered as one
drawback according to using this technique [59].

B. Datasets

Twelve datasets from Keel [8] collection with different
IR are used in this paper. Table I summarizes these datasets
properties.

Datasets are divided into three groups based on their IR,
where the first five datasets with IR smaller than 9 represent
a low IR group while the medium IR group contains datasets
with IR greater than 9 and smaller than 50. Finally, datasets
with IR greater than 50 are members of the high IR group in
this paper.

C. Evaluation Metrics

This section is devoted to displaying the evaluation metrics
that are used for evaluating the effects of TL, RUS, NCL, and
CC under sampling techniques in the classifier performance
for different datasets from various IR.

• Recall or TPR: It measures how often the classifier
correctly detects the positive instances from all posi-
tive instances [60], [61], as shown in Eq. (1)

Recall =
TP

(TP + FN)
(1)

• F1-Score: It combines the effects of precision and
recall together [62], as shown in Eq. (2).
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TABLE I. PROPERTIES OF TWELVE IMBALANCED DATASETS WITH DIFFERENT IR FROM KEEL REPOSITORY

Imbalance Category Dataset Num. Dataset Name features examples Minor class Major class imbalance rate

Low

D1 glass1 9 214 76 138 1.82
D2 ecoli 0 vs 1 7 220 77 139 1.86
D3 vehicle0 18 846 199 647 3.25
D4 ecoli3 7 336 35 301 8.6
D5 page-blocks0 10 5472 559 4913 8.79

Medium
D6 glass4 9 214 13 201 15.47
D7 car-good 6 1728 69 1659 24.04
D8 kr-vs-k-one vs fifteen 6 2244 78 2166 27.77

High

D9 kr-vs-k-zero vs eight 6 1460 27 1433 53.07
D10 Winquality 11 691 10 681 68.1
D11 kr-vs-k-one vs fifteen 6 2193 27 2166 80.22

D12 abalone19 8 4174 32 4142 129.44

F1− Score =
(2TP )

(2TP + FP + FN)
(2)

• gmean: It is a combination of TPR, and TNR metrics,
as shown in Eq. (3).

gmean =
√
(TPR ∗ TNR) (3)

All metrics depend on four main parameters explained
below:

• True Positive (TP): represents a number of actually
positive instances classified as “positive”.

• True Negative (TN): represents a number of actually
negative instances classified as “negative”.

• False Positive (FP): represents a number of actually
negative instances classified as “positive”.

• False Negative (FN): represents a number of actually
positive instances classified as “negative”.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section discusses the results that are generated from
comparing the effects of Tomek Link, NCL, Clusters Centroid,
and RUS in the performance of Decision Tree (DT) classifier
for all groups of low, medium, and high IR datasets based on
average Recall in subsection IV-A, then based on average F1
measure in subsection IV-B. Later the results of gmean, recall
of minor class, and F1 measure of minor class results were
discussed and analyzed in subsections IV-C, IV-D, and IV-E,
consequently.

A. Recall

From Table II, we can conclude the following results
by comparing the effects of the selected under sampling
techniques in decision tree classifier average recall value for
low, medium and high IR groups of datasets. From Fig. 2
we can concludes the following points for all low IR dataset
groups recall value

• NCL provides better performance based on recall than
Tomek link for all datasets.

• Also we concluded that NCL provides better recall
value than RUS for first three datasets.
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Fig. 2. Recall results for all low imbalance rate datasets.

• Cluster Centroid has better performance than Tomek
link and NCL for all datasets except the first one with
imbalance rate = 1.82

From Fig. 4 we can conclude the following points for all
medium IR dataset groups recall values.

• From Fig. 5 we show that Tomek link provides the
worst performance for all datasets.

• NCL provides better performance than Cluster Cen-
troid for all datasets

• RUS outperformed all other techniques for all datasets

From Fig. 5 we can concludes the following points for all
high IR dataset groups recall value

• NCL provides better performance based on recall than
Tomek link for all datasets.

• RUS outperformed all other techniques for all datasets
except the last one with imbalance rate = 129.44.

• Tomek link provides the worst performance for all
datasets
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TABLE II. RECALL RESULTS FOR ALL EXAMINED DATASETS USING THE SELECTED UNDERSAMPLING TECHNIQUES

Dataset Tomek Link NCL Cluster Centroids RUS
glass1 .74 .83 .67 .71
ecoli 0 vs 1 .64 .64 .87 .62
vehicle0 .83 .92 .94 .9
ecoli3 .65 .77 .83 .88
page-blocks0 .91 .92 .91 .95
glass4 .49 .98 .91 .99
car-good .92 .97 .95 .99
kr-vs-k-one vs fifteen 1 1 .98 1
kr-vs-k-zero vs eight .92 .96 .93 .99
Winquality .49 .5 .76 .81
kr-vs-k-zero vs fifteen 1 1 1 1
abalone19 .56 .68 .77 .71
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Fig. 3. F1 measure results for all low imbalance rate datasets.
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Fig. 4. Recall results for all medium imbalance rate datasets.

B. F1-Measure

From Table III, Fig. 3, 6 to 16 we can concluded the
following points
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Fig. 5. Recall results for all high imbalance rate datasets.

• RUS provides less performance than NCL for all low
imbalance rate datasets

• NCL provides better or equal performance than Tomek
link for all medium imbalance rate group datasets

• Clusters Centroid provides better or equal perfor-
mance than Tomek link for all medium imbalance rate
group datasets

• RUS provides better or equal performance than Clus-
ters Centroid for all medium imbalance rate group
datasets

• Clusters Centroid provides the worst performance for
all high imbalance rate group datasets except for last
one with imbalance rate = 129.44

C. Gmean

From Table IV we can concluded the following points:

• Tomek link provides the worst performance for all low,
medium, and high imbalance rate datasets

• NCL has better performance than Cluster Centroid for
all datasets in the low imbalance rate group except the
first one with imbalance rate = 1.82
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TABLE III. F1-MEASURE RESULTS FOR ALL EXAMINED DATASETS USING THE SELECTED UNDERSAMPLING TECHNIQUES

Dataset Tomek Link NCL Cluster Centroids RUS
glass1 .74 .81 .65 .71
ecoli-0 vs 1 .64 .64 .62 .42
vehicle0 .8 .89 .91 .81
ecoli3 .65 .72 .71 .69
page-blocks0 .9 .9 .77 .86
glass4 .49 .74 .52 .83
car-good .93 .96 .77 .92
kr-vs-k-one vs fifteen 1 1 .79 .95
kr-vs-k-zero vs eight .95 .96 .6 .88
Winquality .49 .5 .37 .4
kr-vs-k-zero vs fifteen 1 1 .89 .95
abalone19 .54 .44 .46 .41

D6 D7 D8
0

0.2

0.4

0.6

0.8

1

F1
m

ea
su

re

Tomek Link NCL Cluster Centroid RUS

Fig. 6. F1 Measure results for all medium imbalance rate datasets.
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Fig. 7. F1 Measure results for all high imbalance rate datasets.

• NCL and RUS provide the same gmean value =1
for all datasets in the medium imbalance rate group
and these sampling techniques outperformed Cluster

Centroid
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Fig. 8. Gmean results for all low imbalance rate datasets.
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Fig. 9. Gmean results for all medium imbalance rate datasets.
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TABLE IV. GMEAN RESULTS FOR ALL EXAMINED DATASETS USING THE SELECTED UNDERSAMPLING TECHNIQUES

Dataset Tomek Link NCL Cluster Centroids RUS
glass1 .73 .83 .67 .71
ecoli-0 vs 1 .2 .5 .86 0
vehicle0 .88 .92 .94 .9
ecoli3 .58 .76 .83 .88
page-blocks0 .91 .92 .91 .95
glass4 .2 .98 .9 .99
car-good .92 .97 .95 .99
kr-vs-k-one vs fifteen 1 1 .97 .996
kr-vs-k-zero vs eight .91 .96 .92 .99
Winquality 0 0 .73 .78
kr-vs-k-zero vs fifteen 1 1 .996 .998
abalone19 .35 .68 .77 .71

D9 D10 D11 D12
0

0.2

0.4

0.6

0.8

1

G
m

ea
n

Tomek Link NCL Cluster Centroid RUS

Fig. 10. Gmean results for all high imbalance rate datasets.

D. Recall for Minor Class

From Table V we can concluded the following points:

• NCL outperformed Cluster Centroid for all datasets
in the Low imbalance rate group except the first one
with an imbalance rate = 1.82.

• NCL provides better or equal performance than Tomek
link for all Low imbalance rate datasets.

• Clusters Centroid provides better performance than
Tomek link for all Low imbalance rate datasets.

• Clusters Centroid and RUS provide recall value = 1
for the minor class for all datasets in the medium
imbalance rate group.

• Tomek link provides the worst performance for all
medium and high imbalance rate datasets.

• Clusters Centroid and RUS provide the same recall
value for the minor class for all datasets in the high
imbalance rate group.

E. F1 Measure for Minor Class

From Table VI we can conclude the following points:
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Fig. 11. Recall for minor class results for all low imbalance rate datasets.
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Fig. 12. Recall for minor class results for all medium imbalance rate
datasets.

• NCL provides better or equal performance than Tomek
link and Cluster Centroid for all low imbalance rate
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TABLE V. RECALL FOR MINOR CLASS

Dataset Tomek Link NCL Cluster Centroids RUS
glass1 .67 .88 .71 .67
ecoli-0 vs 1 .92 .92 .96 .33
vehicle0 .88 .91 .95 .88
ecoli3 .36 .64 .82 1
page-blocks0 .84 .87 .95 .95
glass4 0 1 1 1
car-good .85 .9 1 1
kr-vs-k-one vs fifteen 1 1 1 1
kr-vs-k-zero vs eight .83 .92 1 1
Winquality 0 0 1 1
kr-vs-k-zero vs fifteen 1 1 1 1
abalone19 .12 .62 .75 .75
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Fig. 13. Recall for minor class results for all high imbalance rate datasets.

datasets except vehicle0 dataset with imbalance rate =
3.25

• RUS provides less performance than NCL for all
medium imbalance rate datasets except the first one
with imbalance rate = 15.47

• Cluster Centroid provides less performance than NCL
and RUS for all medium imbalance rate datasets

• RUS provides better performance than Clusters Cen-
troid for all high imbalance rate datasets except for
the abalone19 dataset with imbalance rate = 129.44

V. CONCLUSION AND FUTURE WORK

Sampling techniques are one of the most effective ways of
handling imbalanced data set problems in machine learning.

This paper is concerned on comparing the effects of four
common under-shambling techniques including Tomek Link,
NCL, RUS, and Clusters Centroid in handling imbalance
datasets problems for various Imbalance ratios ranges from
low, medium, and high IR. Twelve imbalanced data sets with
various IR have been used for comparison. DT has been used
for classification.
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Fig. 14. F1-measure for minor class results for all low imbalance rate
datasets.
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Fig. 15. F1-measure for minor class results for all medium imbalance rate
datasets.

Results from all low IR datasets clearly show that NCL
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TABLE VI. F1-MEASURE FOR MINOR CLASS

Dataset Tomek Link NCL Cluster Centroids RUS
glass1 .67 .78 .61 .64
ecoli-0 vs 1 .96 .96 .96 .74
vehicle0 .87 .83 .87 .87
ecoli3 .38 .52 .51 .51
page-blocks0 .82 .82 .6 .76
glass4 0 0.5 .14 .67
car-good .87 .92 .28 .77
kr-vs-k-one vs fifteen 1 1 .61 .91
kr-vs-k-zero vs eight .91 .92 .28 .77
Winquality 0 0 .04 .05
kr-vs-k-zero vs fifteen 1 1 .78 0.9
abalone19 .08 .03 .04 .03
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Fig. 16. F1-measure for minor class results for all high imbalance rate
datasets.

outperformed both Tomek Link and RUS, while Clusters
Centroid outperformed NCL based on recall. Based on minor
class recall and gmean, NCL outperformed Clusters Centroid.
RUS provides less performance than NCL for all low IR
datasets.

For all medium IR datasets, Tomek Link provides the worst
performance, while NCL and RUS outperformed other tech-
niques in terms of recall, minor class recall, and gmean values.
Based on the minor class F1 measure NCL outperformed RUS
which outperformed Clusters Centroid based on the average F1
measure.

For all high IR datasets, Tomek Link provides the worst
performance, while NCL and RUS outperformed other tech-
niques based on recall, minor class recall, and gmean values.
Based on the average F1 measure and minor class F1 measure,
RUS provides better performance than Clusters Centroid.

Finally, the results presented in this paper were derived
from the databases used here and according to the rates that
were set to classify these databases for only four common
under sampling techniques.

In the future, we need to compare the effect of these
techniques by applying them to more databases in each IR

category. Also, we can study more under-sampling techniques,
and comparing them with other oversampling techniques.
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