
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

1332 | P a g e
www.ijacsa.thesai.org

Detecting Malware on Windows OS Using AI

Classification of Extracted Behavioral Features

from Images

Nooraldeen Alhamedi, Kang Dongshik

University of the Ryukyus, Japan, Okinawa, Japan

Abstract—In this research, using dynamic analysis ten critical

features were extracted from malware samples operating in

isolated virtual machines. These features included process ID,

name, user, CPU usage, network connections, memory usage, and

other pertinent parameters. The dataset comprised 50 malware

samples and 11 benign programs, providing a data for training

and testing the models. Initially, text-based classification methods

were employed, utilizing feedforward neural networks (FNN) and

recurrent neural networks (RNN). The FNN model achieved an

accuracy rate of 56%, while the RNN model demonstrated better

performance with an accuracy rate of 68%. These results highlight

the potential of neural networks in analyzing and identifying

malware based on behavioral patterns. To further explore AI's

capabilities in malware detection, the extracted features were

transformed into grayscale images. This transformation enabled

the application of convolutional neural networks (CNN), which

excel at capturing spatial patterns. Two CNN models were

developed: a simple model and a more complex model. The simple

CNN model, applied to the grayscale images, achieved an accuracy

rate of 70.1%. The more complex CNN model, with multiple

convolutional and fully connected layers, significantly improved

performance, achieving an accuracy rate of 88%. The findings

from this research underscore the importance of dynamic

analysis. By leveraging both text and image-based classification

methods, this study contributes to the development of more robust

and accurate malware detection systems. It provides a

comprehensive framework for future advancements in

cybersecurity, emphasizing the critical role of dynamic analysis in

identifying and mitigating threats.

Keywords—Malware analysis; dynamic analysis; image

classification; malware behavior extraction; text

I. INTRODUCTION

Recently, the number, severity, sophistication of malware
attacks, and cost of malware inflicts on the world economy have
been increasing exponentially. Attacks with these kinds of
software have a disastrous effect and cause considerable
material damage to individuals, private companies, and
governments’ assets. Thus, malware should be detected before
damaging the important assets in the company [1].

The primary motivation for this research stems from the
need to enhance existing detection mechanisms to keep pace
with the constantly changing threat landscape with traditional
analysis methods, we aim to significantly improve the detection
and classification accuracy of malicious software.

One of the key advantages of our approach is the
combination of dynamic malware analysis with AI-driven
techniques. This allows for a more comprehensive
understanding of malware behavior. This hybrid approach not
only improves detection rates but also enhances the ability to
accurately classify and understand the nature of malware. There
are two main techniques for analyzing malware - static and
dynamic analysis. Static analysis examines the malware code
without actually executing it. This by integrating advanced
artificial intelligence (AI) techniques can provide information
about suspicious functions, network activity, impacted files,
etc. Dynamic analysis executes the malware code in an isolated
environment to observe its runtime behavior. This provides
insight into the full impact of the malware. A key benefit of
static analysis is the ability to thoroughly inspect malware code
using techniques like disassembly and decompilation to
identify suspicious functions related to replication,
propagation, payload activation, and more [2].Static techniques
help reveal overall structure, dependencies, triggers for
malicious events, and obfuscation attempts. However, lacking
runtime behavior, static analysis cannot confirm real impact of
suspected capabilities. Complex packing or encryption
techniques also limit code inspection. Other hand, dynamic
analysis provides direct observation of malware behavior in
action by executing it and monitoring resulting activity.

Dynamic analysis confirms suspected functions based on
static clues and captures full infection chains showing
progression and end objectives of malware according to case
studies by [3]. Dynamic monitoring of memory access,
networks calls, system API usage, and more creates a
comprehensive picture. Additionally, dynamic analysis is
particularly effective in identifying and analyzing newly
emerging malware strains. As it focuses on the runtime
behavior, it is better equipped to handle polymorphic and
metamorphic malware that may change its form to evade static
analysis techniques. Leveraging AI models for the analysis of
malware code or the study of malware behavior has
significantly contributed to the detection of malware in recent
years. Numerous AI models have been integrated into static or
dynamic approaches to augment both the malware detection
rate and feature extraction processes. Despite the notable
progress in the field of AI, these models still face various
challenges. This research will use many model of AI in order to
detect malware.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

1333 | P a g e
www.ijacsa.thesai.org

A. Difficulties in Detecting Malware

Robust malware analysis faces numerous obstacles. The
sheer volume of malware proliferating at a rapid pace presents
a formidable challenge in comprehensively examining this
ever-expanding threat landscape. Additionally, malware
authors employ sophisticated obfuscation tactics, such as code
interchange, amalgamation, register reassignment, null
insertion, and subroutine reordering [3], purposefully designed
to evade detection by anti-malware systems. Despite decades of
development, these security solutions still exhibit high false
positive rates, undermining their accuracy.

Moreover, certain malware strains possess the ability to
identify virtualized environments, resulting in altered or ceased
execution, hindering effective analysis. The evasion techniques
employed by malware necessitate lengthy detection times,
potentially ranging from minutes to hours depending on the
specific malware variant, during which systems remain
vulnerable to compromise. Furthermore, the ambiguity
surrounding API calls, as both malicious and benign software
may legitimately invoke common APIs, complicates the
process of distinguishing malware based on API usage patterns.

These factors, including the immense scale, obfuscation
methods, virtual environment detection capabilities, delayed
identification timelines, and the dual usage of APIs, collectively
contribute to the arduous nature of robust malware analysis,
necessitating the development of advanced techniques to
overcome these challenges effectively, juxtaposition of text
classification and image classification in the analysis of
extracted behavior. It underscores that a nuanced understanding
of program nature, distinguishing between benign and
malicious entities, can be achieved through thorough behavior
analysis. The model primarily relies on the extraction of
malware features. Within the developed script, two distinct
observers play a crucial role. The first observer extracts the
entirety of the process, encompassing its characteristics, as well
as details related to internet connections. The second observer
is tasked with monitoring any file creation specifically linked
to the malware. While previous research has explored the use
of AI in malware detection, there remains a need for a more
robust and adaptive framework capable of effectively handling
the diverse and rapidly evolving nature of modern malware
threats. Our study aims to fill this gap by developing a hybrid
model that can effectively detect and classify malicious
software, even in the face of obfuscation techniques and
emerging threats.

II. RELATED WORK

Artificial Intelligence (AI) has emerged as a powerfully tool
in this ongoing struggle to detect and classify malwares offering
advanced capabilities in identifying and mitigating malware
threats.

In study [4], the third paper analyzes different classical
machine learning algorithms for malware detection - Random
Forest, Support Vector Machine (SVM), grid search optimized
SVM, and K-Nearest Neighbors (KNN). The goal is to validate
the effectiveness of these models for detecting zero-day
malware attacks. The dataset from Kaggle contained 19,611 PE
files, with 14,599 malicious samples and 5,012 benign files

with 77 numeric features. Three training/test splits were used.
Various accuracy metrics were calculated: accuracy, F1-score,
confusion matrix, precision, recall and Type I/II errors.
Random Forest performed the best with 96% accuracy and 93%
F1score, with low errors and fastest training time. Optimized
SVM improved results significantly but slowed down
execution. KNN also performed decently with simpler
implementation. Analysis showed Random Forest has good
prospects for realtime zero-day malware detection. The model
can process 25,000 files per second. For deployment, more
diverse input data covering different malware families is
needed.

In study [5], the authors used convolutional neural networks
(CNNs) for malware classification by visualizing malware
programs as grayscale images. The images are generated from
the bytecode of malware programs and classified using CNN
architectures. They evaluate several well-known CNN models
like AlexNet, ResNet, and VGG16 using transfer learning on a
malware image dataset. They also propose a custom shallow
CNN architecture that achieves 96% accuracy, but is faster to
train than the other complex models. The customized CNN and
transfer learning models are also tested as feature extractors,
with the features fed into SVM and KNN classifiers. This
achieves even better performance up to 99.4% accuracy. They
set a new benchmark on the public BIG 2015 malware dataset.
The proposed system combining CNN feature extraction +
SVM classifier obtains state-of-the-art 99.4% accuracy in
distinguishing between nine malware classes. Visualization and
CNN-based classification is shown to be effective for malware
detection. The approach is computationally efficient compared
to static/dynamic analysis. Fusing different CNN model
predictions can further improve performance.

In study [6], the authors used Support Vector Machines
(SVMs) for malware analysis and classification. SVMs are
supervised learning models that can analyze high-dimensional,
sparse data and recognize patterns. The authors collect a
heterogeneous malware dataset from a real threat database. The
data has features like time, format, domain, IP address. They
visualize the dataset using techniques like scatter plots and
radius visualization to understand correlations and structure
before classification. A SVM model with polynomial kernel is
trained on the dataset to classify malware vs normal software.
The model is validated using cross-validation, leave-one-out
and random sampling. The SVM classifier achieves 93-95%
accuracy, 97-98% sensitivity and 86-90% specificity on the
malware dataset. Validation shows the model generalizes very
well. The high performance highlights that SVMs can
effectively classify heterogeneous malware data gathered from
computer networks and security systems.

In study [7], the paper proposes a deep learning framework
for malware visualization and classification using
convolutional neural networks (CNNs). The key aspects are:
Malware files are converted into three image types - grayscale,
RGB color, and Markov images. Markov images help retain
global statistics of malware bytes. A Gabor filter approach is
used to extract textures and discriminative features from the
malware images. Two CNN models are used for classification
– a custom 13-layer CNN and a pretrained 71-layer Xception
CNN fine-tuned for malware images. The framework is

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

1334 | P a g e
www.ijacsa.thesai.org

evaluated on two public Windows malware image datasets, a
custom Windows malware dataset, and a custom IoT malware
dataset. Markov images provide the best results, with the fine-
tuned Xception CNN achieving over 99% accuracy on multiple
datasets. The computational efficiency is also better compared
to prior works. The approach demonstrates effectiveness for
real-time malware recognition and classification. The
visualization and deep learning framework extracts features
automatically without extensive feature engineering. The
framework's resilience against adversarial attacks is also
analyzed by adding noise to test images. Some drop in accuracy
is noticed, indicating scope for improvement. The current
landscape underscores the significance of AI models as
powerful tools for the analysis, classification, and detection of
malware. These models can seamlessly integrate with both
static and dynamic analysis, yielding noteworthy results that
underscore their pivotal role in shaping the future of this field.

Arabo et al. [8] analyzed CPU and RAM usage patterns as
potential indicators for detecting ransomware processes. Their
findings suggested that while not the primary factors,
monitoring CPU and RAM could complement other behavioral
characteristics in identifying malicious processes. Regarding
CPU usage, they observed variations that showed potential for
distinguishing ransomware activities. Specifically, for the
ViraLock ransomware sample, the maximum CPU usage
peaked at 25% [1]. Such CPU spikes could potentially signify
the initiation of encryption or other malicious operations by the
ransomware. As for RAM consumption, the study found that
ransomware samples generally exhibited low and relatively
stable memory usage patterns. In the case of ViraLock, the
maximum RAM usage was only around 2% [1]. However, the
authors noted that while low RAM usage alone may not be a
definitive indicator, it could be considered in combination with
other behavioral factors. The researchers highlighted that while
CPU and RAM usage showed some differences between
ransomware and benign processes, the most significant
distinguishing factor was abnormally high disk read/write
activity [1]. Nonetheless, incorporating CPU and RAM
monitoring alongside disk usage analysis could potentially
enhance the accuracy and robustness of ransomware detection
systems based on process behavior analysis.

In study [9], the Integrated Malware Classification
Framework (IMCFN) converts malware binaries into grayscale
and color images for classification using CNNs. It outperforms
models like VGG16 and ResNet50, particularly with color
images, and proves effective on the IoT-Android dataset,
highlighting its potential for improving malware detection in
diverse environments.

In study [10], this research proposes a novel malware
classification method using CNNs. Malware programs are
converted into grayscale images and fed into various CNN
architectures. Experimental results show impressive accuracy
(up to 99.4%) using CNN-extracted features with SVM. The
approach demonstrates robustness across different malware
categories, offering a significant contribution to cybersecurity.

III. COMPARATIVE ANALYSIS WITH PREVIOUS WORKS

Our approach employs relatively simple models, which
positively impacts the time and resource efficiency of the

learning process. This streamlined design not only enhances the
speed of model training and inference but also optimizes
resource usage, making our method more suitable for
environments with limited computational power. This balance
between simplicity and effectiveness further contributes to the
practical applicability of our approach in real-world malware
detection scenarios. Particularly, our use of CNNs for image-
based classification demonstrates strong potential, achieving
competitive accuracy with less reliance on extensive feature
engineering. Additionally, our approach does not depend on
information provided by external monitoring frameworks like
Cuckoo. Instead, it leverages a native program developed using
Python libraries, which enhances the reliability and accuracy of
feature extraction. This self-contained method ensures more
consistent and precise data collection, further strengthening the
effectiveness of our malware detection process.

IV. METHODOLOGY

The current investigation is centered on the behavioral
analysis within an isolated Windows environment in virtual
machine for the purpose of detecting malware. To achieve this,
a combination of Recurrent Neural Network (RNN) for text
classification and Convolutional Neural Network (CNN) for
image classification is employed to analyze the extracted data.
Diverging from the methodologies outlined in previous studies
[3], [6], and [7], the classification approach adopted here
focuses on the inherent characteristics of the malware file itself.
This is achieved through a comprehensive analysis of the
malware binary file and, notably, by representing the malware
file as an image utilizing various visualization techniques. In
this research, the emphasis is on visualizing the malware's
behavior and subsequently conducting analyses based on these
extracted features. Visual representations and also analyze the
extracted features as a text. The presented model offers a
juxtaposition of text classification and image classification in
the analysis of extracted behavior. It underscores that a nuanced
understanding of program nature, distinguishing between
benign and malicious entities, can be achieved through
thorough behavior analysis. The model primarily relies on the
extraction of malware features. Within the developed script,
two distinct observers play a crucial role. The first observer
extracts the entirety of the process, encompassing its
characteristics, as well as details related to internet connections.
The second observer is tasked with monitoring any file creation
specifically linked to the malware. The experimental
framework involves the extraction of 10 distinct features
through the monitoring of behaviors within an isolated Virtual
Machine. Python libraries such as psutil, subprocess, wmi,
watchdog, time, json, and os were employed to develop
functions responsible for observing malware behavior and
subsequently extracting pertinent information to a JSON file.
The extracted features encompassed critical aspects such as
process ID, process name, username, CPU percentage. The
modules for this research were developed using TensorFlow
and Keras, leveraging the Sequential model architecture. These
tools enabled efficient tools enable construction and training of
neural networks for malware detection, facilitating both text-
based and image-based classification with enhanced accuracy
through deep learning techniques. Fig. 1 illustrates the flow
chart of the methodology of this research.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

1335 | P a g e
www.ijacsa.thesai.org

Fig. 1. Provides a visual representation of the proposed idea.

Fig. 2. Sample of JSON file content connections details, parent process, child process, execution path, and created files.

Following the extraction of these features, the gathered
information is stored in a JSON file for further next step. Fig. 2
shows a sample of JSON file.

A. Text Analysis

The analytical process for the extracted features unfolded
across two phases. Initially, the data underwent textual analysis,
leveraging a simple feedforward neural network (FNN) model
designed for binary classification using the Keras library to
create a fully connected dense layer with 128 nodes.

The output layer has 1 node and uses 'sigmoid' activation
for binary classification.

Subsequently, a recurrent neural network (RNN) model was
employed to classify the same textual data, creates an

embedding layer that transforms integer word indices to dense
word vector representations.

B. Image Analysis

By transforming data into images, researchers can leverage
the vast body of knowledge and advancements in image
processing techniques, readily applicable to the analysis of the
transformed data. This data-to-image transformation unlocks
the power of CNNs for a wider range of analysis tasks,
promoting deeper insights into complex datasets. So this
research implement the power of CNN alongside with the
behavior analysis Subsequent to the behavioral analysis, the
extracted features underwent further evaluation through an
image classification paradigm. A dedicated function was
developed to transform these feature data into grayscale

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

1336 | P a g e
www.ijacsa.thesai.org

images. This transformative process involved the removal of
associated labels, conversion of the data into binary numerical
representations, subsequent transformation of these binary
values into hexadecimal equivalents, and, finally, depiction of
these hexadecimal values onto a 30*30 grayscale canvas.

The 30x30 size was empirically determined to balance
information preservation and computational efficiency.
Representing features as images enabled the utilization of
convolutional neural networks (CNNs), which excel at
capturing spatial patterns. The extracted features underwent
further evaluation through an image classification paradigm.
This visual representation approach offered several key
advantages. Firstly, it enabled leveraging powerful deep
learning techniques like convolutional neural networks, adept
at capturing spatial patterns invaluable for malware
characterization. Secondly, transforming features into images
facilitated uncovering intrinsic relationships and patterns
obfuscated in the original data's raw representation. Thirdly, the
image domain allowed seamless integration of transfer learning
and pre-trained models, expediting the analysis process. Lastly,
the visually interpretable nature of images could provide
insights into the discriminative characteristics learned by the
models, aiding explain ability. By combining dynamic
monitoring with visual analytics, this multi-pronged approach
offered a potent framework for comprehensive malware
analysis and classification.

The dataset employed for experimentation comprised 50
instances of .EXE malware sourced from diverse families,
obtained from the Malware Bazaar database, a freely accessible
online repository. Additionally, 11 benign programs were
included for comparative analysis. The monitoring process
lasted three seconds for every malware instance, during which
the monitoring code ran in the background, observing the
processes and file creation activities of the malware. After the
monitoring period, the code produced a JSON file containing
the captured information. The dataset has been divided into 40
malware behavior and 6 benign program behavior for the
training and 10 malware behavior and 5 benign program
behavior for testing Fig. 3 provides visual representation of the
converting text to image. Fig. 4 is a sample of obtained image.

Fig. 3. Provides visual representation of the converting text to image.

Fig. 4. Provides a sample representation of the resultant images, offering a

glimpse into their visual characteristics.

V. THE EXPERIMENT

A. Text Analysis

The described FNN model exhibited an accuracy rate of
56% with a corresponding loss rate of 0.78.

For the RNN model: It takes the vocabulary size equal to 32
and output dimensionality as arguments. Also LSTM layer
models the sequential nature and long-range context of text.
The output dense layers act as classifiers on top of LSTM
representations. The model is compiled with binary cross
entropy loss, adam optimizer and accuracy metric.

With epoch 100, yielding an improved accuracy rate of 68%
with a reduced loss rate of 0.67.

B. Image Analysis

Convolutional Neural Networks (CNNs) have
revolutionized image analysis due to their ability to extract
intricate spatial features. However, their power can be extended
to non-image data by transforming it into a suitable image
representation. This approach offers several advantages:

CNNs excel at automatically learning relevant features from
images, circumventing the need for manual feature engineering,
a time-consuming and potentially error-prone step in traditional

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

1337 | P a g e
www.ijacsa.thesai.org

analysis. Data transformation allows for the visualization of
complex relationships between data points within the image
domain. This empowers CNNs to identify subtle patterns that
might be obscured in the raw data format.

The experiment has done using two suggested model. The
first model is simple and the second model is more complex
both models are based on CNN.

The simple model consists of:

 Conv2D layer: Performs 2D convolution with 32 filters
and 3x3 kernel. Extracts spatial features from input
image.

 MaxPool2D: Max pooling layer reduces dimensions to
summarize the features detected by convolution layer.

 Flatten: Flattens the pooled feature map into a 1D vector
to prepare for fully-connected layers.

 Dense layers: Fully-connected layers that act as classifier
on top of the extracted features. 64 nodes in first dense
layer.

Output layer contains single node with 'sigmoid' activation
for binary classification. This model takes input images of
shape (30, 30, 1) indicating 30x30 grayscale images. With
epoch 30

Fig. 5 represent the structure of the first CNN model.

Fig. 5. The structure of the first model.

Using this simple Model over these grayscale pictures gives
accuracy rate 70.1% with loss 0.67.

The second model also based on CNN with more complex
architecture shown in Fig. 6.

The model then uses several convolutional layers (Conv2D)
to extract features from the image. These layers apply filters
(also called kernels) that slide across the image, detecting
patterns and edges.

The first Conv2D layer has 256 filters, each of size 3x3. As
the filter slides across the image, it performs element-wise
multiplication between the filter weights and the corresponding
pixel values in the image. The results are then summed and
passed through an activation function (relu in this case) to
introduce non-linearity. This process helps identify low-level
features like edges, corners, and simple shapes.

The subsequent Conv2D layers follow the same principle
but with a different number of filters (128 and 64 in this
example). These layers extract progressively more complex
features based on the lower-level features detected earlier.

MaxPooling2D layers are inserted after some convolutional
layers. These layers downsample the feature maps by taking the
maximum value within a specific window (2x2 in this
example). This helps reduce the number of parameters and
computational cost while potentially capturing the most
important features.

The Dropout layer (commented out) randomly drops a
certain percentage (25% in this example) of activations during
training. This helps prevent the model from overfitting to the
training data by forcing it to learn more robust features.

After the convolutional and pooling layers, the model uses
a Flatten layer to convert the 3D feature maps into a 1D vector.
This allows the fully-connected layers to process the extracted
features. The model then uses several fully-connected layers
(Dense) to classify the image. These layers work similarly to
traditional neural networks, where each neuron receives input
from all neurons in the previous layer, performs weighted
sums, and applies an activation function.

The first three fully-connected layers (4096, 2048, and
1024 neurons) are responsible for learning complex, high-level
representations based on the extracted features. The relu
activation allows these layers to learn non-linear relationships
between the features. The final dense layer has only one neuron
with a sigmoid activation function. This neuron outputs a value
between 0 and 1, representing the probability of the image
belonging to a specific class.

As a summary for this model the convolutional layers act as
feature detectors, extracting progressively more complex
features from the input image. The pooling layers reduce the
dimensionality of the data while retaining important
information. The dropout layer helps prevent overfitting. The
fully-connected layers learn high-level representations and
produce the final classification probability.

Fig. 6. The structure of the second CNN model.

Using this complex Model over these grayscale pictures
gives accuracy rate 88% with loss 0.31.

VI. RESULTS AND DISCUSSION

Comprehensive performance evaluation through bar charts
illustrates accuracy and loss metrics for both text and image
classification. The findings suggest that combining behavioral
analysis with AI models, particularly in the image domain,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

1338 | P a g e
www.ijacsa.thesai.org

holds promise for effective malware detection. This multimodal
approach provides a holistic understanding of malware
behavior, potentially enhancing overall detection capabilities in
the evolving cybersecurity landscape. The study contributes to
advancing malware detection methodologies by leveraging the
synergy between static and dynamic analyses, bolstered by AI
integration, and offers insights into the promising potential of
image-based classification for improved accuracy in
identifying malicious behavior. The bar chart for accuracy and
loss is given in Fig. 7.

Fig. 7. Bar chart for accuracy and loss.

The Second Model with numerous convolutional and fully-
connected layers grants high capacity for learning intricate
features. While advantageous for complex datasets, it can lead
to overfitting, particularly with limited training data. The model
memorizes training data too well, hindering performance on
unseen examples. Furthermore, training and running this deep
model can be computationally expensive due to the high
number of parameters. This translates to significant processing
power and memory requirements, potentially limiting its use in
resource-constrained environments. The results from the text
classification and image classification shows that these
methods of analyzing malware might be a good way to detect
the malware using the extracted behavioral features.

Our primary objective was to enhance malware detection
capabilities by combining dynamic analysis with AI techniques.
The results of our image-based CNN model, achieving 88%
accuracy, demonstrate significant progress towards this goal.
Our image-based classification approach achieved 88%
accuracy, which is comparable to the 96% accuracy reported by
Sharma et al. [7] using a similar CNN-based method. However,
our approach differs in that we focus on behavioral features
rather than binary code visualization. The superior performance
of our image-based CNN model (88% accuracy) compared to
the RNN text classification model (68% accuracy) suggests that
the spatial relationships captured in the image representation of
behavioral features are particularly informative for malware
detection. The superior performance of our image-based CNN
model (88% accuracy) compared to the RNN text classification
model (68% accuracy) suggests that the spatial relationships
captured in the image representation of behavioral features are
particularly informative for malware detection.

VII. CONCLUSION

This study successfully employs dynamic analysis within a
virtual machine (VM) to extract crucial behavioral features
from Windows malware. Integrating these features with
advanced text and image classification models (RNN and CNN)
shows promise for malware detection. Image classification,
based on transformed feature data, achieves a superior accuracy
of 88% compared to 68% in text classification. This multi-
modal approach, combining behavioral analysis with AI
models, provides a nuanced understanding of malware
behavior.

One significant limitation of this study is the relatively
small dataset used, consisting of only 50 malware samples and
11 benign programs. This limited sample size may not fully
represent the vast diversity of malware in the wild, potentially
affecting the generalizability of our results. Future work should
involve a substantially larger dataset, encompassing a wider
range of malware families and benign software to validate and
potentially improve the model's performance. Another
limitation is the brief 3-second monitoring period used for each
malware instance. While this duration was chosen to balance
efficiency and data collection, it may not capture the full range
of behaviors exhibited by more sophisticated malware that
employs delayed execution or other evasion techniques.
Extended monitoring periods in future studies could provide
more comprehensive behavioral data, potentially improving
detection accuracy. To enhance the robustness and
generalizability of our model.

We recommend several areas for future exploration. First,
increasing the diversity and quantity of the training data by
including a wider range of malware families and benign
samples is crucial. Additionally, exploring additional features,
such as registry changes, could provide valuable insights into
malware behavior. Second, experimenting with different
visualization techniques for image generation and testing more
complex CNN architectures or pre-trained models with fine-
tuning could further improve accuracy and efficiency. Third,
addressing the threat of adversarial attacks is essential.
Incorporating noise resilience mechanisms into the model can
help mitigate the impact of such attacks and ensure the model's
reliability in real-world scenarios. By pursuing these
enhancements, we can contribute to advancing malware
detection methodologies and ensuring their adaptability in the
ever-evolving cybersecurity landscape.

REFERENCES

[1] Aslan, Ö., & Samet, R. (2019). A comprehensive review on malware

detection approaches. IEEE Access, Advance online publication.
https://doi.org/10.1109/ACCESS.2019.2963724.

[2] Roundy, K.A. and Miller, B.P., 2013, August. Binary-code obfuscations

in prevalent packer tools. In Proceedings of the 2013 ACM workshop on
Software PROtection (pp. 3-14).M. Young, The Techincal Writers

Handbook. Mill Valley, CA: University Science, 1989.

[3] Rossow, C., Dietrich, C. J., Grier, C., Kreibich, C., Paxson, V., Pohlmann,

N., ... & van Steen, M. (2012). Prudent practices for designing malware
experiments: Status quo and outlook. In 2012 IEEE Symposium on

Security and Privacy (pp. 65-79). IEEE..

[4] Nafiiev, A., Kholodulkin, H., & Rodionov, A. (2022). Comparative
analysis of machine learning methods for detecting malicious files.

Algorithms and Methods of Cyber Attacks Prevention and Counteraction

0 0.2 0.4 0.6 0.8 1

FNN text classification

RNN text classification

First CNN Model

Second CNN Model

Accuracy and Loss Results

loss accuracy

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 8, 2024

1339 | P a g e
www.ijacsa.thesai.org

[5] V. S. P. Davuluru, B. N. Narayanan and E. J. Balster, "Convolutional

Neural Networks as Classification Tools and Feature Extractors for
Distinguishing Malware Programs," 2019 IEEE National Aerospace and

Electronics Conference (NAECON), 2019, pp. 273-277,

[6] M. Kruczkowski and E. Niewiadomska-Szynkiewicz, "Support Vector
Machine for malware analysis and classification," 2014 IEEE/WIC/ACM

International Joint Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), 2014, pp. 415-420,

[7] Sharma, O., Sharma, A., & Kalia, A. (2022). Windows and IoT malware

visualization and classification with deep CNN and Xception CNN using
Markov images. Journal of Intelligent Information Systems. Advance

online publication.

[8] Arabo, A., Dijoux, R., Poulain, T., & Chevalier, G. (2020). Detecting

Ransomware Using Process Behavior Analysis. Procedia Computer
Science, 168, 289-296.

[9] Vasan, D., Alazab, M., Wassan, S., et al. (2020). "IMCFN: IMage-based

ClassiFication using Neural Networks for Malware Detection." Computer
Networks, 171, 107138

[10] V. S. P. Davuluru, B. N. Narayanan and E. J. Balster, "Convolutional

Neural Networks as Classification Tools and Feature Extractors for
Distinguishing Malware Programs," 2019 IEEE National Aerospace and

Electronics Conference (NAECON), 2019, pp. 273-277

