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Abstract—In this research, using dynamic analysis ten critical 

features were extracted from malware samples operating in 

isolated virtual machines. These features included process ID, 

name, user, CPU usage, network connections, memory usage, and 

other pertinent parameters. The dataset comprised 50 malware 

samples and 11 benign programs, providing a data for training 

and testing the models. Initially, text-based classification methods 

were employed, utilizing feedforward neural networks (FNN) and 

recurrent neural networks (RNN). The FNN model achieved an 

accuracy rate of 56%, while the RNN model demonstrated better 

performance with an accuracy rate of 68%. These results highlight 

the potential of neural networks in analyzing and identifying 

malware based on behavioral patterns. To further explore AI's 

capabilities in malware detection, the extracted features were 

transformed into grayscale images. This transformation enabled 

the application of convolutional neural networks (CNN), which 

excel at capturing spatial patterns. Two CNN models were 

developed: a simple model and a more complex model. The simple 

CNN model, applied to the grayscale images, achieved an accuracy 

rate of 70.1%. The more complex CNN model, with multiple 

convolutional and fully connected layers, significantly improved 

performance, achieving an accuracy rate of 88%. The findings 

from this research underscore the importance of dynamic 

analysis. By leveraging both text and image-based classification 

methods, this study contributes to the development of more robust 

and accurate malware detection systems. It provides a 

comprehensive framework for future advancements in 

cybersecurity, emphasizing the critical role of dynamic analysis in 

identifying and mitigating threats. 
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I. INTRODUCTION 

Recently, the number, severity, sophistication of malware 
attacks, and cost of malware inflicts on the world economy have 
been increasing exponentially. Attacks with these kinds of 
software have a disastrous effect and cause considerable 
material damage to individuals, private companies,   and 
governments’ assets. Thus, malware should be detected before 
damaging the important assets in the company [1]. 

The primary motivation for this research stems from the 
need to enhance existing detection mechanisms to keep pace 
with the constantly changing threat landscape with traditional 
analysis methods, we aim to significantly improve the detection 
and classification accuracy of malicious software. 

One of the key advantages of our approach is the 
combination of dynamic malware analysis with AI-driven 
techniques. This allows for a more comprehensive 
understanding of malware behavior. This hybrid approach not 
only improves detection rates but also enhances the ability to 
accurately classify and understand the nature of malware. There 
are two main techniques for analyzing malware - static and 
dynamic analysis. Static analysis examines the malware code 
without actually executing it. This by integrating advanced 
artificial intelligence (AI) techniques can provide information 
about suspicious functions, network activity, impacted files, 
etc. Dynamic analysis executes the malware code in an isolated 
environment to observe its runtime behavior. This provides 
insight into the full impact of the malware. A key benefit of 
static analysis is the ability to thoroughly inspect malware code 
using techniques like disassembly and decompilation to 
identify suspicious functions related to replication, 
propagation, payload activation, and more [2].Static techniques 
help reveal overall structure, dependencies, triggers for 
malicious events, and obfuscation attempts. However, lacking 
runtime behavior, static analysis cannot confirm real impact of 
suspected capabilities. Complex packing or encryption 
techniques also limit code inspection. Other hand, dynamic 
analysis provides direct observation of malware behavior in 
action by executing it and monitoring resulting activity. 

Dynamic analysis confirms suspected functions based on 
static clues and captures full infection chains showing 
progression and end objectives of malware according to case 
studies by [3]. Dynamic monitoring of memory access, 
networks calls, system API usage, and more creates a 
comprehensive picture. Additionally, dynamic analysis is 
particularly effective in identifying and analyzing newly 
emerging malware strains. As it focuses on the runtime 
behavior, it is better equipped to handle polymorphic and 
metamorphic malware that may change its form to evade static 
analysis techniques. Leveraging AI models for the analysis of 
malware code or the study of malware behavior has 
significantly contributed to the detection of malware in recent 
years. Numerous AI models have been integrated into static or 
dynamic approaches to augment both the malware detection 
rate and feature extraction processes. Despite the notable 
progress in the field of AI, these models still face various 
challenges. This research will use many model of AI in order to 
detect malware. 
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A. Difficulties in Detecting Malware 

Robust malware analysis faces numerous obstacles. The 
sheer volume of malware proliferating at a rapid pace presents 
a formidable challenge in comprehensively examining this 
ever-expanding threat landscape. Additionally, malware 
authors employ sophisticated obfuscation tactics, such as code 
interchange, amalgamation, register reassignment, null 
insertion, and subroutine reordering [3], purposefully designed 
to evade detection by anti-malware systems. Despite decades of 
development, these security solutions still exhibit high false 
positive rates, undermining their accuracy. 

Moreover, certain malware strains possess the ability to 
identify virtualized environments, resulting in altered or ceased 
execution, hindering effective analysis. The evasion techniques 
employed by malware necessitate lengthy detection times, 
potentially ranging from minutes to hours depending on the 
specific malware variant, during which systems remain 
vulnerable to compromise. Furthermore, the ambiguity 
surrounding API calls, as both malicious and benign software 
may legitimately invoke common APIs, complicates the 
process of distinguishing malware based on API usage patterns. 

These factors, including the immense scale, obfuscation 
methods, virtual environment detection capabilities, delayed 
identification timelines, and the dual usage of APIs, collectively 
contribute to the arduous nature of robust malware analysis, 
necessitating the development of advanced techniques to 
overcome these challenges effectively, juxtaposition of text 
classification and image classification in the analysis of 
extracted behavior. It underscores that a nuanced understanding 
of program nature, distinguishing between benign and 
malicious entities, can be achieved through thorough behavior 
analysis. The model primarily relies on the extraction of 
malware features. Within the developed script, two distinct 
observers play a crucial role. The first observer extracts the 
entirety of the process, encompassing its characteristics, as well 
as details related to internet connections. The second observer 
is tasked with monitoring any file creation specifically linked 
to the malware. While previous research has explored the use 
of AI in malware detection, there remains a need for a more 
robust and adaptive framework capable of effectively handling 
the diverse and rapidly evolving nature of modern malware 
threats. Our study aims to fill this gap by developing a hybrid 
model that can effectively detect and classify malicious 
software, even in the face of obfuscation techniques and 
emerging threats. 

II. RELATED WORK 

Artificial Intelligence (AI) has emerged as a powerfully tool 
in this ongoing struggle to detect and classify malwares offering 
advanced capabilities in identifying and mitigating malware 
threats.  

In study [4], the third paper analyzes different classical 
machine learning algorithms for malware detection - Random 
Forest, Support Vector Machine (SVM), grid search optimized 
SVM, and K-Nearest Neighbors (KNN). The goal is to validate 
the effectiveness of these models for detecting zero-day 
malware attacks. The dataset from Kaggle contained 19,611 PE 
files, with 14,599 malicious samples and 5,012 benign files 

with 77 numeric features. Three training/test splits were used. 
Various accuracy metrics were calculated: accuracy, F1-score, 
confusion matrix, precision, recall and Type I/II errors. 
Random Forest performed the best with 96% accuracy and 93% 
F1score, with low errors and fastest training time. Optimized 
SVM improved results significantly but slowed down 
execution. KNN also performed decently with simpler 
implementation. Analysis showed Random Forest has good 
prospects for realtime zero-day malware detection. The model 
can process 25,000 files per second. For deployment, more 
diverse input data covering different malware families is 
needed. 

In study [5], the authors used convolutional neural networks 
(CNNs) for malware classification by visualizing malware 
programs as grayscale images. The images are generated from 
the bytecode of malware programs and classified using CNN 
architectures. They evaluate several well-known CNN models 
like AlexNet, ResNet, and VGG16 using transfer learning on a 
malware image dataset. They also propose a custom shallow 
CNN architecture that achieves 96% accuracy, but is faster to 
train than the other complex models. The customized CNN and 
transfer learning models are also tested as feature extractors, 
with the features fed into SVM and KNN classifiers. This 
achieves even better performance up to 99.4% accuracy. They 
set a new benchmark on the public BIG 2015 malware dataset. 
The proposed system combining CNN feature extraction + 
SVM classifier obtains state-of-the-art 99.4% accuracy in 
distinguishing between nine malware classes. Visualization and 
CNN-based classification is shown to be effective for malware 
detection. The approach is computationally efficient compared 
to static/dynamic analysis. Fusing different CNN model 
predictions can further improve performance. 

In study [6], the authors used Support Vector Machines 
(SVMs) for malware analysis and classification. SVMs are 
supervised learning models that can analyze high-dimensional, 
sparse data and recognize patterns. The authors collect a 
heterogeneous malware dataset from a real threat database. The 
data has features like time, format, domain, IP address. They 
visualize the dataset using techniques like scatter plots and 
radius visualization to understand correlations and structure 
before classification. A SVM model with polynomial kernel is 
trained on the dataset to classify malware vs normal software. 
The model is validated using cross-validation, leave-one-out 
and random sampling. The SVM classifier achieves 93-95% 
accuracy, 97-98% sensitivity and 86-90% specificity on the 
malware dataset. Validation shows the model generalizes very 
well. The high performance highlights that SVMs can 
effectively classify heterogeneous malware data gathered from 
computer networks and security systems. 

In study [7], the paper proposes a deep learning framework 
for malware visualization and classification using 
convolutional neural networks (CNNs). The key aspects are: 
Malware files are converted into three image types - grayscale, 
RGB color, and Markov images. Markov images help retain 
global statistics of malware bytes. A Gabor filter approach is 
used to extract textures and discriminative features from the 
malware images. Two CNN models are used for classification 
– a custom 13-layer CNN and a pretrained 71-layer Xception 
CNN fine-tuned for malware images. The framework is 
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evaluated on two public Windows malware image datasets, a 
custom Windows malware dataset, and a custom IoT malware 
dataset. Markov images provide the best results, with the fine-
tuned Xception CNN achieving over 99% accuracy on multiple 
datasets. The computational efficiency is also better compared 
to prior works. The approach demonstrates effectiveness for 
real-time malware recognition and classification. The 
visualization and deep learning framework extracts features 
automatically without extensive feature engineering. The 
framework's resilience against adversarial attacks is also 
analyzed by adding noise to test images. Some drop in accuracy 
is noticed, indicating scope for improvement. The current 
landscape underscores the significance of AI models as 
powerful tools for the analysis, classification, and detection of 
malware. These models can seamlessly integrate with both 
static and dynamic analysis, yielding noteworthy results that 
underscore their pivotal role in shaping the future of this field. 

Arabo et al. [8] analyzed CPU and RAM usage patterns as 
potential indicators for detecting ransomware processes. Their 
findings suggested that while not the primary factors, 
monitoring CPU and RAM could complement other behavioral 
characteristics in identifying malicious processes. Regarding 
CPU usage, they observed variations that showed potential for 
distinguishing ransomware activities. Specifically, for the 
ViraLock ransomware sample, the maximum CPU usage 
peaked at 25% [1]. Such CPU spikes could potentially signify 
the initiation of encryption or other malicious operations by the 
ransomware. As for RAM consumption, the study found that 
ransomware samples generally exhibited low and relatively 
stable memory usage patterns. In the case of ViraLock, the 
maximum RAM usage was only around 2% [1]. However, the 
authors noted that while low RAM usage alone may not be a 
definitive indicator, it could be considered in combination with 
other behavioral factors. The researchers highlighted that while 
CPU and RAM usage showed some differences between 
ransomware and benign processes, the most significant 
distinguishing factor was abnormally high disk read/write 
activity [1]. Nonetheless, incorporating CPU and RAM 
monitoring alongside disk usage analysis could potentially 
enhance the accuracy and robustness of ransomware detection 
systems based on process behavior analysis. 

In study [9], the Integrated Malware Classification 
Framework (IMCFN) converts malware binaries into grayscale 
and color images for classification using CNNs. It outperforms 
models like VGG16 and ResNet50, particularly with color 
images, and proves effective on the IoT-Android dataset, 
highlighting its potential for improving malware detection in 
diverse environments. 

In study [10], this research proposes a novel malware 
classification method using CNNs. Malware programs are 
converted into grayscale images and fed into various CNN 
architectures. Experimental results show impressive accuracy 
(up to 99.4%) using CNN-extracted features with SVM. The 
approach demonstrates robustness across different malware 
categories, offering a significant contribution to cybersecurity. 

III. COMPARATIVE ANALYSIS WITH PREVIOUS WORKS 

Our approach employs relatively simple models, which 
positively impacts the time and resource efficiency of the 

learning process. This streamlined design not only enhances the 
speed of model training and inference but also optimizes 
resource usage, making our method more suitable for 
environments with limited computational power. This balance 
between simplicity and effectiveness further contributes to the 
practical applicability of our approach in real-world malware 
detection scenarios. Particularly, our use of CNNs for image-
based classification demonstrates strong potential, achieving 
competitive accuracy with less reliance on extensive feature 
engineering. Additionally, our approach does not depend on 
information provided by external monitoring frameworks like 
Cuckoo. Instead, it leverages a native program developed using 
Python libraries, which enhances the reliability and accuracy of 
feature extraction. This self-contained method ensures more 
consistent and precise data collection, further strengthening the 
effectiveness of our malware detection process. 

IV. METHODOLOGY 

The current investigation is centered on the behavioral 
analysis within an isolated Windows environment in virtual 
machine for the purpose of detecting malware. To achieve this, 
a combination of Recurrent Neural Network (RNN) for text 
classification and Convolutional Neural Network (CNN) for 
image classification is employed to analyze the extracted data. 
Diverging from the methodologies outlined in previous studies 
[3], [6], and [7], the classification approach adopted here 
focuses on the inherent characteristics of the malware file itself. 
This is achieved through a comprehensive analysis of the 
malware binary file and, notably, by representing the malware 
file as an image utilizing various visualization techniques. In 
this research, the emphasis is on visualizing the malware's 
behavior and subsequently conducting analyses based on these 
extracted features. Visual representations and also analyze the 
extracted features as a text. The presented model offers a 
juxtaposition of text classification and image classification in 
the analysis of extracted behavior. It underscores that a nuanced 
understanding of program nature, distinguishing between 
benign and malicious entities, can be achieved through 
thorough behavior analysis. The model primarily relies on the 
extraction of malware features. Within the developed script, 
two distinct observers play a crucial role. The first observer 
extracts the entirety of the process, encompassing its 
characteristics, as well as details related to internet connections. 
The second observer is tasked with monitoring any file creation 
specifically linked to the malware. The experimental 
framework involves the extraction of 10 distinct features 
through the monitoring of behaviors within an isolated Virtual 
Machine. Python libraries such as psutil, subprocess, wmi, 
watchdog, time, json, and os were employed to develop 
functions responsible for observing malware behavior and 
subsequently extracting pertinent information to a JSON file. 
The extracted features encompassed critical aspects such as 
process ID, process name, username, CPU percentage. The 
modules for this research were developed using TensorFlow 
and Keras, leveraging the Sequential model architecture. These 
tools enabled efficient tools enable construction and training of 
neural networks for malware detection, facilitating both text-
based and image-based classification with enhanced accuracy 
through deep learning techniques. Fig. 1 illustrates the flow 
chart of the methodology of this research. 
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Fig. 1. Provides a visual representation of the proposed idea. 

 
Fig. 2. Sample of JSON file content connections details, parent process, child process, execution path, and created files. 

Following the extraction of these features, the gathered 
information is stored in a JSON file for further next step. Fig. 2 
shows a sample of JSON file. 

A. Text Analysis 

The analytical process for the extracted features unfolded 
across two phases. Initially, the data underwent textual analysis, 
leveraging a simple feedforward neural network (FNN) model 
designed for binary classification using the Keras library to 
create a fully connected dense layer with 128 nodes. 

The output layer has 1 node and uses 'sigmoid' activation 
for binary classification. 

Subsequently, a recurrent neural network (RNN) model was 
employed to classify the same textual data, creates an 

embedding layer that transforms integer word indices to dense 
word vector representations. 

B. Image Analysis 

By transforming data into images, researchers can leverage 
the vast body of knowledge and advancements in image 
processing techniques, readily applicable to the analysis of the 
transformed data. This data-to-image transformation unlocks 
the power of CNNs for a wider range of analysis tasks, 
promoting deeper insights into complex datasets. So this 
research implement the power of CNN alongside with the 
behavior analysis Subsequent to the behavioral analysis, the 
extracted features underwent further evaluation through an 
image classification paradigm. A dedicated function was 
developed to transform these feature data into grayscale 
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images. This transformative process involved the removal of 
associated labels, conversion of the data into binary numerical 
representations, subsequent transformation of these binary 
values into hexadecimal equivalents, and, finally, depiction of 
these hexadecimal values onto a 30*30 grayscale canvas. 

The 30x30 size was empirically determined to balance 
information preservation and computational efficiency. 
Representing features as images enabled the utilization of 
convolutional neural networks (CNNs), which excel at 
capturing spatial patterns. The extracted features underwent 
further evaluation through an image classification paradigm. 
This visual representation approach offered several key 
advantages. Firstly, it enabled leveraging powerful deep 
learning techniques like convolutional neural networks, adept 
at capturing spatial patterns invaluable for malware 
characterization. Secondly, transforming features into images 
facilitated uncovering intrinsic relationships and patterns 
obfuscated in the original data's raw representation. Thirdly, the 
image domain allowed seamless integration of transfer learning 
and pre-trained models, expediting the analysis process. Lastly, 
the visually interpretable nature of images could provide 
insights into the discriminative characteristics learned by the 
models, aiding explain ability. By combining dynamic 
monitoring with visual analytics, this multi-pronged approach 
offered a potent framework for comprehensive malware 
analysis and classification. 

The dataset employed for experimentation comprised 50 
instances of .EXE malware sourced from diverse families, 
obtained from the Malware Bazaar database, a freely accessible 
online repository. Additionally, 11 benign programs were 
included for comparative analysis. The monitoring process 
lasted three seconds for every malware instance, during which 
the monitoring code ran in the background, observing the 
processes and file creation activities of the malware. After the 
monitoring period, the code produced a JSON file containing 
the captured information. The dataset has been divided into 40 
malware behavior and 6 benign program behavior for the 
training and 10 malware behavior and 5 benign program 
behavior for testing Fig. 3 provides visual representation of the 
converting text to image. Fig. 4 is a sample of obtained image. 

 
Fig. 3. Provides visual representation of the converting text to image. 

   

   

   

   

Fig. 4. Provides a sample representation of the resultant images, offering a 

glimpse into their visual characteristics. 

V. THE EXPERIMENT 

A. Text Analysis 

The described FNN model exhibited an accuracy rate of 
56% with a corresponding loss rate of 0.78. 

For the RNN model: It takes the vocabulary size equal to 32 
and output dimensionality as arguments. Also LSTM layer 
models the sequential nature and long-range context of text. 
The output dense layers act as classifiers on top of LSTM 
representations. The model is compiled with binary cross 
entropy loss, adam optimizer and accuracy metric. 

With epoch 100, yielding an improved accuracy rate of 68% 
with a reduced loss rate of 0.67. 

B. Image Analysis 

Convolutional Neural Networks (CNNs) have 
revolutionized image analysis due to their ability to extract 
intricate spatial features. However, their power can be extended 
to non-image data by transforming it into a suitable image 
representation. This approach offers several advantages: 

CNNs excel at automatically learning relevant features from 
images, circumventing the need for manual feature engineering, 
a time-consuming and potentially error-prone step in traditional 
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analysis. Data transformation allows for the visualization of 
complex relationships between data points within the image 
domain. This empowers CNNs to identify subtle patterns that 
might be obscured in the raw data format. 

The experiment has done using two suggested model. The 
first model is simple and the second model is more complex 
both models are based on CNN. 

The simple model consists of: 

 Conv2D layer: Performs 2D convolution with 32 filters 
and 3x3 kernel. Extracts spatial features from input 
image. 

 MaxPool2D: Max pooling layer reduces dimensions to 
summarize the features detected by convolution layer. 

 Flatten: Flattens the pooled feature map into a 1D vector 
to prepare for fully-connected layers. 

 Dense layers: Fully-connected layers that act as classifier 
on top of the extracted features. 64 nodes in first dense 
layer. 

Output layer contains single node with 'sigmoid' activation 
for binary classification. This model takes input images of 
shape (30, 30, 1) indicating 30x30 grayscale images. With 
epoch 30 

Fig. 5 represent the structure of the first CNN model. 

 
Fig. 5. The structure of the first model. 

Using this simple Model over these grayscale pictures gives 
accuracy rate 70.1% with loss 0.67. 

The second model also based on CNN with more complex 
architecture shown in Fig. 6. 

The model then uses several convolutional layers (Conv2D) 
to extract features from the image. These layers apply filters 
(also called kernels) that slide across the image, detecting 
patterns and edges. 

The first Conv2D layer has 256 filters, each of size 3x3. As 
the filter slides across the image, it performs element-wise 
multiplication between the filter weights and the corresponding 
pixel values in the image. The results are then summed and 
passed through an activation function (relu in this case) to 
introduce non-linearity. This process helps identify low-level 
features like edges, corners, and simple shapes. 

The subsequent Conv2D layers follow the same principle 
but with a different number of filters (128 and 64 in this 
example). These layers extract progressively more complex 
features based on the lower-level features detected earlier. 

MaxPooling2D layers are inserted after some convolutional 
layers. These layers downsample the feature maps by taking the 
maximum value within a specific window (2x2 in this 
example). This helps reduce the number of parameters and 
computational cost while potentially capturing the most 
important features. 

The Dropout layer (commented out) randomly drops a 
certain percentage (25% in this example) of activations during 
training. This helps prevent the model from overfitting to the 
training data by forcing it to learn more robust features. 

After the convolutional and pooling layers, the model uses 
a Flatten layer to convert the 3D feature maps into a 1D vector. 
This allows the fully-connected layers to process the extracted 
features. The model then uses several fully-connected layers 
(Dense) to classify the image. These layers work similarly to 
traditional neural networks, where each neuron receives input 
from all neurons in the previous layer, performs weighted 
sums, and applies an activation function. 

The first three fully-connected layers (4096, 2048, and 
1024 neurons) are responsible for learning complex, high-level 
representations based on the extracted features. The relu 
activation allows these layers to learn non-linear relationships 
between the features. The final dense layer has only one neuron 
with a sigmoid activation function. This neuron outputs a value 
between 0 and 1, representing the probability of the image 
belonging to a specific class. 

As a summary for this model the convolutional layers act as 
feature detectors, extracting progressively more complex 
features from the input image. The pooling layers reduce the 
dimensionality of the data while retaining important 
information. The dropout layer helps prevent overfitting. The 
fully-connected layers learn high-level representations and 
produce the final classification probability. 

 
Fig. 6. The structure of the second CNN model. 

Using this complex Model over these grayscale pictures 
gives accuracy rate 88% with loss 0.31. 

VI. RESULTS AND DISCUSSION 

Comprehensive performance evaluation through bar charts 
illustrates accuracy and loss metrics for both text and image 
classification. The findings suggest that combining behavioral 
analysis with AI models, particularly in the image domain, 
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holds promise for effective malware detection. This multimodal 
approach provides a holistic understanding of malware 
behavior, potentially enhancing overall detection capabilities in 
the evolving cybersecurity landscape. The study contributes to 
advancing malware detection methodologies by leveraging the 
synergy between static and dynamic analyses, bolstered by AI 
integration, and offers insights into the promising potential of 
image-based classification for improved accuracy in 
identifying malicious behavior. The bar chart for accuracy and 
loss is given in Fig. 7. 

 
Fig. 7. Bar chart for accuracy and loss. 

The Second Model with numerous convolutional and fully-
connected layers grants high capacity for learning intricate 
features. While advantageous for complex datasets, it can lead 
to overfitting, particularly with limited training data. The model 
memorizes training data too well, hindering performance on 
unseen examples. Furthermore, training and running this deep 
model can be computationally expensive due to the high 
number of parameters. This translates to significant processing 
power and memory requirements, potentially limiting its use in 
resource-constrained environments. The results from the text 
classification and image classification shows that these 
methods of analyzing malware might be a good way to detect 
the malware using the extracted behavioral features. 

Our primary objective was to enhance malware detection 
capabilities by combining dynamic analysis with AI techniques. 
The results of our image-based CNN model, achieving 88% 
accuracy, demonstrate significant progress towards this goal. 
Our image-based classification approach achieved 88% 
accuracy, which is comparable to the 96% accuracy reported by 
Sharma et al. [7] using a similar CNN-based method. However, 
our approach differs in that we focus on behavioral features 
rather than binary code visualization. The superior performance 
of our image-based CNN model (88% accuracy) compared to 
the RNN text classification model (68% accuracy) suggests that 
the spatial relationships captured in the image representation of 
behavioral features are particularly informative for malware 
detection. The superior performance of our image-based CNN 
model (88% accuracy) compared to the RNN text classification 
model (68% accuracy) suggests that the spatial relationships 
captured in the image representation of behavioral features are 
particularly informative for malware detection. 

VII. CONCLUSION 

This study successfully employs dynamic analysis within a 
virtual machine (VM) to extract crucial behavioral features 
from Windows malware. Integrating these features with 
advanced text and image classification models (RNN and CNN) 
shows promise for malware detection. Image classification, 
based on transformed feature data, achieves a superior accuracy 
of 88% compared to 68% in text classification. This multi- 
modal approach, combining behavioral analysis with AI 
models, provides a nuanced understanding of malware 
behavior. 

One significant limitation of this study is the relatively 
small dataset used, consisting of only 50 malware samples and 
11 benign programs. This limited sample size may not fully 
represent the vast diversity of malware in the wild, potentially 
affecting the generalizability of our results. Future work should 
involve a substantially larger dataset, encompassing a wider 
range of malware families and benign software to validate and 
potentially improve the model's performance. Another 
limitation is the brief 3-second monitoring period used for each 
malware instance. While this duration was chosen to balance 
efficiency and data collection, it may not capture the full range 
of behaviors exhibited by more sophisticated malware that 
employs delayed execution or other evasion techniques. 
Extended monitoring periods in future studies could provide 
more comprehensive behavioral data, potentially improving 
detection accuracy. To enhance the robustness and 
generalizability of our model. 

We recommend several areas for future exploration. First, 
increasing the diversity and quantity of the training data by 
including a wider range of malware families and benign 
samples is crucial. Additionally, exploring additional features, 
such as registry changes, could provide valuable insights into 
malware behavior. Second, experimenting with different 
visualization techniques for image generation and testing more 
complex CNN architectures or pre-trained models with fine-
tuning could further improve accuracy and efficiency. Third, 
addressing the threat of adversarial attacks is essential. 
Incorporating noise resilience mechanisms into the model can 
help mitigate the impact of such attacks and ensure the model's 
reliability in real-world scenarios. By pursuing these 
enhancements, we can contribute to advancing malware 
detection methodologies and ensuring their adaptability in the 
ever-evolving cybersecurity landscape. 
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