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Abstract—Sleep disorders pose notable health risks, impacting 

memory, cognitive performance, and overall well-being. 

Traditional polysomnography (PSG) used for sleep disorder 

diagnosis are complex and inconvenient due to complex multi-

class representation of signals. This study introduces an 

automated sleep-disorder-detection method using 

electrooculography (EOG) and electroencephalography (EEG) 

signals to address the gaps in automated, real-time, and 

noninvasive sleep-disorder diagnosis. Traditional methods rely on 

complex PSG analysis, whereas the proposed method simplifies 

the involved process, reducing reliance on cumbersome equipment 

and specialized settings. The preprocessed EEG and EOG signals 

are transformed into a two-dimensional time-frequency image 

using a complex-Morlet-wavelet (CMW) transform. This 

transform assists in capturing both the frequency and time 

characteristics of the signals. Afterwards, the features are 

extracted using a bidirectional gated recurrent unit (Bi-GRU) with 

a self-attention layer and an ensemble-bagged tree classifier 

(EBTC) to correctly classify sleep disorders and very efficiently 

identify them. The overall system combines EOG and EEG signal 

features to accurately classify people with insomnia, narcolepsy, 

nocturnal frontal lobe epilepsy (NFLE), periodic leg movement 

(PLM), rapid-eye-movement (RBD), sleep behavior disorder 

(SDB), and healthy, with success rates of 99.7%, 97.6%, 95.4%, 

94.5%, 96.5%, 98.3%, and 94.1%, respectively. Using the 10-fold 

cross-validation technique, the proposed method yields 96.59% 

accuracy and AUC of 0.966 with regard to classification of sleep 

disorders into multistage classes. The proposed system assists 

medical experts for automated sleep-disorder diagnosis. 
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I. INTRODUCTION 

Sleep is an essential concern for human health. It serves as a 
fundamental factor in physical and mental wellness. It is vital in 
memory consolidation, cognitive functions, cellular 
regeneration, and metabolic-brain-waste elimination [1]. 
Therefore, abnormalities in normal sleep patterns can cause 
many disorders, such as insomnia, narcolepsy, and sleep apnea 
disorder. Each sleep condition affects each individual's health 
differently, often inducing daytime weariness, cognitive 
impairment, cardiovascular disease, and mental health 
difficulties [2]. Therefore, accurate sleep-disruption assessment 
and therapy are crucial for overall health and quality of life. 
Polysomnography (PSG) is the most reliable sleep problem 

diagnosis method, but it involves overnight stays at medical 
institutions, which can be resource-intensive and uncomfortable 
for patients. The need for more accessible and user-friendly 
sleep problem diagnosis and analysis is evident, considering 
these restrictions and the discomfort it brings to patients. 

This paper presents a unique automated sleep-disorder-
detection approach employing EOG and EEG signals [4]. Sleep 
disruption monitoring using EOG and EEG is simple and less 
invasive. EOG records eye movements, which distinguish sleep 
phases, whereas EEG records muscle activity [5]. Instead of 
sophisticated PSG analysis, the suggested technique streamlines 
the operation, minimizing the need for expensive equipment and 
particular settings. A unique sleep disorder classification 
method uses sophisticated signal processing and machine 
learning. Complex signal processing approaches like Morlet-
wavelet transformations and machine learning models with 
bidirectional gated recurrent units and self-attention layers make 
sleep diagnosis easier and more accurate, instilling a sense of 
confidence. This approach is appropriate for home monitoring 
since it reduces equipment and simplifies diagnosis. EEG and 
EOG signals detect sleep problems well. By identifying and 
assessing the most important signal information, diagnostic 
accuracy techniques typically outperform traditional PSG. 
Finally, EOG and EEG signal analysis improves sleep issue 
detection and efficiency in this study, providing reassurance of 
its accuracy and efficiency. It improves efficiency, accessibility, 
and patient comfort while maintaining the diagnostic integrity of 
traditional PSG. 

Standard machine learning (ML)–based sleep-disorder 
detection involves the use of concepts such as support vector 
machines (SVMs), decision trees, and k-nearest neighbor (k-
NN) algorithms. The study of [6] demonstrated the efficacy of 
SVMs in accurately classifying sleep apnea (accuracy rate = 
85%) using EMG data. They highlighted the capability of 
machine learning in sleep disorder identification; however, 
handling data with a high number of dimensions was difficult. 
the research of [7] employed RF algorithms to differentiate 
various sleep disorders, such as insomnia and narcolepsy, by 
analyzing EOG signals. In this regard, they achieved an 
impressive accuracy rate of 89%, showcasing the efficacy of 
ensemble techniques. Despite exhibiting positive results, 
traditional machine learning–based approaches have several 
constraints. Feature selection is a primary issue in this regard, 
which often involves human participation and is, therefore, 
vulnerable to bias. To address this challenge, Aboalayon et al. 

*Corresponding Author. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

130 | P a g e  

www.ijacsa.thesai.org 

[8] effectively employed an automated feature selection 
technique, which substantially enhanced the involved model's 
performance (by 5%). However, such techniques faced 
challenges in terms of their comprehensibility and ability to be 
applied to new, unexpected data. 

The advent of deep learning has considerably transformed 
sleep disorder detection [9]. Convolutional neural networks 
(CNNs) and RNNs have gained popularity because they can 
automatically extract features and detect patterns in time-series 
data. A CNN was employed herein to examine EMG data for 
rapid-eye-movement (REM) sleep behavior disorder (RBD) 
identification, yielding a precision of 95%. This 
accomplishment indicates a substantial improvement compared 
with traditional sleep-disorder-identification models. Further, 
LSTM was used to determine the time-dependent patterns of 
EOG signals to identify sleep stages. Notably, LSTM yielded a 
remarkable classification rate accuracy rate of 92% in this regard 
in a previous study. Despite their impressive accuracies, deep 
learning algorithms require large amounts of data and 
considerable computational resources, among other challenges. 
Moreover, these algorithms exhibit an issue about 
interpretability owing to the lack of transparency. Therefore, 
studies (e.g., an experimental study by Meridian et al. [10]) have 
been exploring hybrid models that involve a combination of 
CNNs with LSTM networks. This combination enables the 
usage of both spatial and temporal properties to improve model 
transparency and efficiency. 

Conventional sleep problem diagnosis methods sometimes 
need resource-intensive polysomnography (PSG) and 
uncomfortable conditions. The study addresses these issues.  
While promising, current deep learning (DL) and machine 
learning (ML) methods are sometimes computationally 
intensive, require extensive hyperparameter tuning, and are 
often restricted to particular sleep phases or classes, resulting in 
solutions that are not very generalizable. Furthermore, the high 
level of data complexity and the widespread usage of 
hyperparameters in many existing algorithms cause overfitting, 
further restricting their application to various datasets. 

A unique automated method that combines EEG and EOG 
data to diagnose sleep difficulties is presented in the paper. 
Combining advanced signal processing with a complex-morlet-
wavelet (CMW) transform and a Bi-GRU with a self-attention 
layer simplifies the diagnostic process. This strategy is more 
accessible for home monitoring since it involves less 
sophisticated installations and heavy-duty equipment. The 
recommended technique also reduces overfitting and processing 
requirements while boosting sleep disorder classification 
accuracy, making it a more practical and complete solution for 
real-world applications. 

This research substantially contributes to the field of sleep 
disorder through the following: 

1) An innovative approach is introduced, involving 

complex-morlet-wavelet (CMW) transform–based feature 

extraction from preprocessed EOG and electroencephalography 

(EEG) signals. This method significantly enhances the accuracy 

of multistage sleep-disorder identification. 

2) A bidirectional gated recurrent unit (BiGRU) with a self-

attention layer is employed for feature extraction, followed 

using an ensemble-bagged tree classifier (EBTC) for precise 

multistage-sleep-disorder classification. This methodology 

ensures accurate delineation of complex sleep patterns by 

leveraging temporal insights and robust ensemble methods. 

3) The effectiveness of the proposed method is robustly 

demonstrated in a real-world setting, offering a practical and 

reliable solution for home-based, patient-friendly sleep-

disorder monitoring. 

The remainder of this paper is organized as follows: Section 
II presents the relevant past studies. Section III comprehensively 
explains the approaches used herein, encompassing a CMW 
transform, feature extraction, and sleep disorder classification. 
Section IV presents the outcomes achieved regarding the 
categorization of people into healthy individuals and individuals 
with sleep disorders and the classification of sleep disorders into 
seven categories. Section V concludes the work. 

II. LITERATURE REVIEW 

A previous study classified sleep disorders using a novel 
machine-learning model that combined EEG, chin EMG, and 
dual-channel EOG [11]. The authors used the best orthogonal 
filterbank and Tsallis entropies to obtain high classification 
accuracies when considering the Sleep Heart Health Study 
(SHHS) database (90.7% for SHHS-1 and 91.8% for SHHS-2), 
achieving excellent automated sleep-disorder classification. 
Jarchi et al. [12] aimed to diagnose breathing- and eye-
movement-related sleep disorders using electrocardiography 
(ECG) and EMG by developing a deep learning framework that 
yielded a mean accuracy of 72% in classifying people into four 
groups—healthy individuals and individuals with various sleep 
disorders (obstructive sleep apnea (OSA), restless leg syndrome 
(RLS), or both). This demonstrated the capacity of ECG and 
EMG in diagnosing sleep disorders. Meanwhile, Sharma et al. 
[13] introduced an automated technique for sleep disorder 
identification that involves analyzing EOG and EMG signals. A 
biorthogonal filter bank with Hjorth parameters was employed, 
which yielded a high overall accuracy of 94.3%. This technique 
was recognized for its effectiveness in at-home monitoring of 
different sleep disorders. Sekkal et al. [14] compared eight 
classic machine-learning techniques with a feed-forward neural 
network for sleep disorder identification and discussed the pros 
and cons of various sleep stage classifiers. 

Sharma et al. [15] exploited EEG data to diagnose sleep 
problems. Using Hjorth parameters and an ensemble-boosted 
tree classifier, they classified sleep disorders with 99.2% 
accuracy. This method helps clinicians detect sleep problems. 
Rahman et al. [16] examined automated sleep-stage evaluation 
using EOG data. They used discrete-wavelet-transform EOG 
data to improve S1-sleep-stage detection over previous EOG-
based approaches. Pei et al. [17] created a successful deep-
learning model for sleep phases utilizing biological cues. 
Combining CNNs with gated recurrent units (GRUs) yielded a 
more versatile model than previous cutting-edge models. 

An automated sleep-stage approach using EEG, EOG, and 
EMG was developed by Satapathy et al. [18]. The system found 
linear and nonlinear characteristics with good classification 
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accuracy and diagnosed sleep disorders. A novel sleep staging 
approach used EOG instead of EEG for practicality. This 
technique has 81.2% and 76.3% sleep-staging accuracy utilizing 
a two-scale CNN and RNN. Chambon et al. [20] used PSG data 
to characterize sleep phases using deep learning without 
explicitly designing characteristics. A fair use of channels and 
temporal data gave the model excellent classification 
performance. EEG-based sleep stage categorization using PSG 
analysis was advanced by several research [21–25]. This 
research showed that several machine learning methods and 
physiological signal combinations produced excellent accuracy 
and showed the benefits of multimodal signal processing. 

In another research [26], a restricted PSG montage classified 
the sleep phases of 106 people—53 with RBD and 53 healthy. 
This was done using an RF classifier with 156 EEG, EOG, and 
EMG characteristics. RBD was detected using muscle atonia 
measurement and sleep architecture characteristics. The model 
attained Cohen's Kappa score of 0.62 for sleep staging and 96% 
RBD detection accuracy, demonstrating the benefits of sleep 
architecture and transitions. Malafeev et al. [27] developed a 
three-dimensional (3D) CNN for sleep stage categorization 
using several channels and EEG, EMG, and EOG inputs. Time, 
frequency, and time-frequency characteristics were sent to the 
3D CNN. Three-dimensional convolutional layers created 
intrinsic relationships between biosignals and frequency bands, 
while two-dimensional layers obtained frequency correlations. 
The model identified significant channels and frequency bands 
throughout sleep phases using partial-dot-product attention 
layers and an LSTM unit. This model also achieved 
classification accuracies of 0.832 and 0.820 on the ISRUC-S3 
and S1 datasets. These findings showed the model detected sleep 
phases reliably and effectively. 

Cooray et al. [28] proposed "quasi-normalization" for 
feature normalization using the ISRUC-Sleep dataset. An RF 
algorithm sorted the data into five sleep states. Using leave-one-
out cross-validation, EOG and EMG data were integrated to 
achieve Cohen's kappa value of 0.749 and 80.8% accuracy. The 
results matched the American Academy of Sleep Medicine 
standards. Electrooculography and electromyography may be as 
effective as electroencephalography at identifying sleep phases. 
Another research [29] studied sleep phases in 123 suspected 
sleep disorder patients using a BiLSTM network. The model 
received multivariate time-series heart rate, breathing rate, and 
body movement frequency. With an accuracy of 71.2%, Cohen's 
κ coefficient of 0.425, and an F1 score of 0.650, the model 
effectively classifies sleep phases using minimal physiological 
cues. 

Morokuma et al. [30] focused on EEG and EOG signals and 
developed a deep CNN architecture for automated sleep-stage 
classification. Its performance was evaluated against human 
expert agreement, with CNN considerably outperforming recent 
single-EEG-channel approaches. The study highlighted the 
crucial role of network depth in achieving high classification 
accuracy. Another study [31] targeted sleep-wake detection in 
OSA patients using single-channel ECG signals. The heart rate 
variability signals were derived, and features were classified 
using decision trees, SVMs, and ensemble classifiers. The model 
achieved accuracies of 81.35% with three features and 87.12% 
with ten features, suggesting its utility in the OSA diagnosis. An 
automated deep nine-layer one-dimensional CNN (9L-1D-
CNN-SSC) for multiclass sleep staging was also developed [32]. 
The model was tested on ISRUC-Sleep subgroup datasets and 
achieved an accuracy of up to 99.50% in classifying sleep stages 
with different signal combinations, indicating its applicability 
for clinical use. Satapathy and Loganathan [33] developed a 
dual-modal, multiscale deep neural network for sleep staging 
that used EEG and ECG signals. When tested on the MIT-BIH 
PSG dataset, the model achieved high accuracy rates of 80.40%–
98.84% in classifying different sleep stages. This shows that 
combining EEG and ECG signals for sleep analysis yields 
accurate results. 

Zhao et al. [34] addressed the limitations of automated sleep-
staging systems using portable EEG headbands by developing a 
deep-learning model using convolutional and long-term 
memory layers. The model achieved validation accuracies of 
74% on headband data and 77% on PSG data, demonstrating its 
potential in ambulatory sleep assessments. SleepPrintNet [35] 
was also introduced to capture the SleepPrint in a physiological 
time series for sleep staging. It yielded higher accuracy on the 
MASS-SS3 dataset than baseline models because it used EEG, 
EOG, and EMG features along with temporal, spectral, and 
spatial features. This approach underscored the value of 
multimodal feature integration in sleep stage classification. 

Several studies [26–36] collectively represented a wide array 
of methodologies, ranging from RF classifiers to BiLSTM 
networks and CNNs. These methods were tested on various 
datasets such as the SHHS and ISRUC-Sleep datasets, achieving 
considerable advancements in sleep stage classification, 
disorder diagnosis, and automated sleep-staging systems. Many 
of these studies highlighted the effectiveness of combining EEG, 
EOG, EMG, and ECG signals, emphasizing on the efficiency of 
feature extraction and selection in improving accuracy and 
robustness. The comparative analysis of these systems is shown 
in Table I. 

TABLE I.  COMPARISON OF METHODOLOGIES, RESULTS, AND LIMITATIONS PROPOSED IN STUDIES 

Reference Methodology Results Limitations 

[11] 
A machine learning model using EEG, chin EMG, 

and dual-channel EOG 

90.7% accuracy on SHHS-1 and 

91.8% on SHHS-2 

three sleep classes in SHHS-1, and five 
classes in SHHS-2 datasets, none-

generalized. 

[12] 
Diagnosing sleep disorders using ECG and EMG and 
a deep learning framework 

Mean accuracy of 72% and weighted 
F1 score of 0.57 

Four-sleep classes, Computational expensive 
and huge hyper-parameters sitting. 

[13] 
An automatic detection system for sleep disorders 

using EOG and EMG signals 
Accuracy of 94.3% 

Limited five-sleep classes, and three sleep 

stages. 

[15] 
Identification of sleep disorders using EEG and 
EBTC 

Classification accuracies up to 99.2% 
Limited four-sleep classes and used only one 
CAP dataset so non-generalize solution. 
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[17] 
A deep learning method using CNNs and GRUs for 

sleep stage identification 

Accuracy of 83.15% and kappa of 

0.76 

Limited five-sleep stages and not classes, and 

computationally expensive 

[18] 
An automated sleep-staging system using EEG, EOG, 

and EMG signals and an RF classifier 

Accuracy of 98.99%, 98.75%, 

98.17%, and 99.14% with respect to 

sleep stage 

five-sleep states, non-sleep classes, and 

computationally expensive 

[19] 
A sleep staging approach using EOG and two-scale 
CNNs and RNNs 

Accuracy of 81.2% of two-scale 
CNNs and 76.3% of RNNs. 

Limited sleep classes, not generalized, and 
required huge hyper-parameters. 

[20] 

Convolutional deep learning approach and gradient 

boosting for sleep stage classification using PSG 
signals 

Accuracy of approx. 80%. Huge hyperparameters, Five-sleep stages 

[21] 
An efficient technique for sleep stage classification 
based on EEG signal analysis 

RF algorithm achieved a high 
accuracy of 97.8% 

Limited dataset, Overfitting due to RF and 

required stopping critria, three-stages of sleep 

disorder. 

[22] 
SleepEEGNet for automated sleep-stage annotation 

using single-channel EEG and BiRNN. 

Accuracy of 84.26%, F1-score of 

79.66% and κ = 0.79. 
Limited sleep stage, tested on limited dataset 

[23] 
A deep learning model for sleep staging in children 
using EEG, EOG, and chin EMG 

Cross-validated accuracy of 84.1% 
Limited sleep classes and computationally 
expensive 

[24] 

A deep learning model for sleep staging using 

multiple PSG signals and 2D CNNs and LSTM 

modules 

Sleep-EDF: Acc-0.86, K-0.81 Limited sleep classes, not generalized 

[25] Sleep staging using Relief, AdaBoost with RF accuracy of 97.96% 
Limited sleep classes, not generalized, and 

classifier overfitting 

[26] 
Sleep stages using EEG, EMG, and EOG signals and 

CNN-LSTM 

Accuracy of 0.832 on ISRUC-S3 and 

0.820 on ISRUC-S1 

Classifier overfitting, and Computationally 

expensive 

[27] Sleep stage classification using 3D-CNN 
Accuracy of 0.832, F1-score of 0.814 
and kappa of 0.783 on ISRUC-S3 

Required huge hyper-parameters sitting and 

computationally expensive due to huge 

epochs. 

[28] 
EOG and EMG data are utilized to predict multistage 
sleep by using RF classification 

Accuracy of 92% 
Limited sleep classes and classifier overfittig, 
limiated dataeset so no generalize solution 

[29] A ”quasi-normalization” method with RF classifier Accuracy of 84.7% Not generalized, overfitting 

[30] 
Polysomnography (PSG) data with BiLSTM 

classifier for detection of sleep stages 

Accuracy of 71.2 ± 5.8%, and F1 

score of 0.650 ± 0.083 
Only sleep stages and no multiclass solution. 

[31] 
Detection of human sleep EEG and EOG signals with 
CNN architecture. 

F1-score of 77% Limited sleep classes, not generalized 

[32] 
An ensemble technique based on three classifiers: 

DT, kNN and SVMs. 

Sensitivity and specificity values of 

0.90 and 0.85, respectively. 
Limited two-sleep classes, not generalized 

[33] 
A 9L-1D-CNN-SSC model for sleep staging with 
different signal combinations 

Classification accuracies up to 
99.50% for various sleep stages 

Limited sleep classes, not generalized, 
overfitting, and computationally expensive 

[33] 
A dual-modal multiscale deep neural network using 

EEG and ECG signals 

Accuracies between 80.40% and 

98.84% for different sleep stages 
Overfitting and computationally expensive 

[34] 
A deep learning model with convolutional and LSTM 
layers for EEG headband data 

74% accuracy on headband data and 
77% on PSG data 

Limited sleep classes, not generalized, 
overfitting, and computationally expensive 

[35] 
SleepPrintNet integrating EEG, EOG, and EMG 

signal features 

Outperformed baseline models in 

accuracy on the MASS-SS3 dataset 
Limited dataset utilized. 

III. METHODOLOGY 

The multilayer sleep-disorder classification system's 
systematic flow diagram is shown in Fig. 1. The novel method 
categorized sleep disorders using preprocessed EOG and EEG 
information. Normalization was done to standardize these 
signals for analysis. Next, a bandpass filter reduces noise and 
frequencies to increase signal quality, which is important for 
detecting sleep disorder symptoms. Next, the complex morlet 
wavelet (CMW) transform was utilized to extract features from 
EOG and EEG data for reliable disease categorization. A 
BiGRU with a self-attention layer extracted characteristics, and 
an EBTC automatically found sleep problems. Due to its 
efficiency in processing time-series data, the GRU, a kind of 
RNN, was utilized to evaluate EOG and EEG temporal patterns. 
By aggregating estimates from several decision tree models, the 
EBTC improved its accuracy and applicability. Finally, the 
BiGRU and EBTC models were integrated to categorize the data 
using voting, average probability, or a more complex meta-
classifier. Using 10-fold cross-validation, the system's 

performance was rigorously assessed to ensure its efficacy and 
robustness in real-world circumstances. The suggested method 
improves sleep problem classification and shows the potential 
of signal processing and machine learning for medical diagnosis. 

A. Data Acquisition and Augmentation 

Define abbreviations and acronyms the first time they are 
The CAP Sleep database [37], provided by PhysioNet [38], 
containing PSG recordings from 108 people, was used as the 
primary data source. The EEG and EOG signals were collected 
and analyzed from this database. 

The EEG and EOG signals are collected from individuals 
while they are asleep to detect sleep stages and classify sleep 
disorders. The EEG and EOG signals were comprehensively 
distributed (Table II) to evaluate the effectiveness of the 
proposed system in diagnosing different sleep disorders such as 
insomnia, narcolepsy, nocturnal frontal lobe epilepsy (NFLE), 
periodic leg movement (PLM), RBD, and sleep-disordered 
breathing (SDB) as well as healthy individuals. Fig. 2 shows a 
visual representation of signals from each group. 
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Fig. 1. Systematic flow diagram of the proposed multilayer sleep-disorder classification system. 

 
Fig. 2. Input EEG and EOG signals for identifying sleep disorders. 

To standardize the sample, the dataset was subjected to data 
augmentation (Table II) using the synthetic minority over-
sampling technique (SMOTE). SMOTE is used to rectify 
imbalanced datasets, particularly medical data in sleep studies, 
where certain classes are inadequately represented. It generates 
artificial, yet believable, examples using the available data from 
the underrepresented class. During the procedure of SMOTE, 
the dataset was assumed to contain EEG and EOG signal 
features, referred to as "features, "along with their corresponding 
labels, referred to as "labels." These labels classify each group 
of features into distinct sleep disorders or stages. The dataset 
was initially divided into 70% training and 30% testing datasets. 
SMOTE was used only on the training set to prevent synthetic 
data from affecting the model evaluation. It generated additional 

samples for classes that were not well represented, thus 
equalizing the distribution of classes, as balanced datasets 
improve model performance, particularly in classification tasks. 

The training dataset (X-res and Y-res) contained the original 
and newly synthesized samples. This dataset was then used to 
train a machine-learning model. Notably, the model acquired 
knowledge from a dataset that provided a more equitable 
representation of all categories, thus mitigating its inclination 
toward the dominant category. The model's effectiveness was 
assessed using the initial, unmodified testing dataset. This 
approach ensures a complete evaluation of SMOTE's 
effectiveness as it accurately determines the effect of SMOTE 
on the model's ability to separate different sleep states. 
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TABLE II.  EEG AND EOG SIGNAL DISTRIBUTION USED TO TEST THE 

SYSTEM PERFORMANCE 

Sleep Stage EEG EOG 
Total EEG and 

EOG 

Data 

Augmentation 

Insomnia 3800 1200 5000 2500 

Narcolepsy 1300 1400 2700 2500 

NFLE 3200 2000 3400 2500 

PLM 1300 1000 2300 2500 

RBD 5000 2000 7000 2500 

SDB 200 100 300 2500 

Healthy 400 200 600 2500 

B. Signal Transformation 

This multiclass sleep disorder prediction research uses the 
complex morlet wavelet transform (CMWT) [39] because it 
provides amplitude and phase information, unlike spectrograms, 
which indicate magnitude, and scalograms, which reveal phase 
information. While scalograms are superior for non-stationary 
signals, they cannot match the CMW transform. Spectrograms 
provide a broader perspective of power distribution. Arranging 
these normalized features creates the 2D stack picture, which is 
then fed into machine learning systems like the bidirectional 
gated recurrent unit (BiGRU), which maintains signal 
characteristics' spatial and temporal correlations. 

PyWavelets were used to analyze a continuous wavelet 
transform (CWT). CWT is a robust time-frequency analysis 
method that can analyze signals at multiple scales or 
frequencies. This study employed the complex morlet wavelet 
(CMW), which analyzes nonstationary biological data via 
temporal and frequency localization. The CWT captured both 
high-frequency and low-frequency components of each 

simulated disorder signal by decomposing it into distinct scales. 
Each row and column of the coefficient matrix represented a 
frequency range and time point, respectively. The coefficients 
were subsequently represented using a heatmap, which 
displayed the frequency characteristics of the signal over time. 
The color intensity of the heatmap corresponded to the 
magnitude of the signal across different frequencies, providing 
valuable information about the distinctive patterns associated 
with each sleep problem. 

Thus, the CMW is ideal for feature extraction in biological 
signal processing. By explaining the complicated time 
frequency features of EEG and EOG signals, this study presents 
in-depth grouping sleep disorders into different categories of 
identifying unique brain patterns. The proposed approach 
conforms with current research practices in biomedical 
engineering and computational neuroscience, focusing on 
advanced signal processing techniques to understand 
complicated physiological events. Fig. 3 displays a visual 
representation of each sleep-disorder type. 

C. Feature Extraction Using BiGRU-Attention 

A sophisticated neural network structure, namely a BiGRU 
[40] with a self-attention mechanism, was used to mine the time-
series data, such as EEG and EOG signals. This study presents 
a promising method that takes the concatenated wavelet features 
of the EEG and EOG signals to create a unified 2D 
representation of these features. Owing to its bidirectional 
nature, BiGRU analyzed patterns in forward and reverse 
directions throughout time and revealed the intrinsic temporal 
dynamics in signal data. Fig. 4 shows the BiGRU architecture, 
wherein signal data are used to find and extract relevant features 
indicating the essential traits of different sleep stages or 
disorders. 

 
Fig. 3. Complex-morlet-wavelet transform using electroencephalogram signals of sleep disorders such as insomnia, narcolepsy, NFLE, PLM, RBD, and SDB. 
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Fig. 4. Architecture of BiGRU with a self-attention layer. 

EEG and EOG signals can be better analyzed by combining 
a self-attention mechanism with a BiGRU model, particularly 
when the signals change into a complex wavelet domain. The 
self-attention mechanism is a highly efficient neural network 
component, allows the model to prioritize different areas of the 
input data, making it more contextually aware. The sophisticated 
morlet wave transform further refines this by dividing EEG and 
EOG data into high- and low-frequency patterns, providing a 
deeper understanding of sleep stages and difficulties. The 
BiGRU model, in turn, uses these modified signals with rich 
time-frequency information for forward and backward analysis, 
capturing temporal correlations and patterns. This self-attention 
mechanism, with its efficiency, helps the model focus on 
essential signal alterations. It prioritizes segments that provide 
task-relevant information, such as sleep issues or phases, with 
high performance and accuracy. 

Complex wavelet transformations, BiGRU, and self-
attention mechanisms create a robust signal-processing 
paradigm. Precision frequency information was added to signals 
using the wavelet transform. The BiGRU neural network caught 
temporal patterns, and the self-attention mechanism focused on 
the most critical parts. When utilized together, they can extract 
crucial and relevant information from EEG and EOG data, 
making sleep studies and associated research more reliable and 
valuable. This strategy increases sleep study categorization and 
predictions by deepening physiological signal understanding. 

EEG and EOG signals are converted to CMW for sleep 
disorder research and fed into the BiGRU model. Time-
frequency analysis often uses the morlet wavelet because it splits 
initial signals into signals with various frequencies to optimize 
temporal and spectral localization. Thus, the BiGRU model 
learns from scale patterns. This model may detect small brain 
activity and eye movement changes that signal sleep phases and 
issues. This system employs a CMW transform and BiGRU 
model to use the BiGRU model's comprehensive time-frequency 
signal representation and powerful sequence modeling. By 
highlighting essential frequency components, the wavelet 
transform improves signals. The BiGRU then extracts key 
characteristics from this modified data, providing a robust 
collection of features for analysis or classification. This method 
handles EEG and EOG signal complexity and volatility well, 
making it suitable for advanced sleep investigations and 
diagnostics. 

A BiGRU is a better version of the regular GRU developed 
for the model to obtain information from states preceding and 
succeeding the unit in a sequence. This is particularly 
advantageous in situations where the overall context of the entire 
sequence is crucial for making accurate predictions. A standard 
GRU operates on data sequentially and has a hidden state that 
serves as a memory to retain previous information. 
Nevertheless, it has only acquired data from earlier occurrences. 
A BiGRU comprises two GRUs operating in opposing 
directions: one GRU processes the sequence from the beginning 
to the end, whereas the other GRU processes it from the end to 
the beginning. These outputs are combined at each time step to 
obtain the entire sequence by incorporating details from the 
previous and subsequent contexts. 

A GRU cell at time step t computes the following: 

Update gate 𝑧𝑡 = 𝜎(𝑊𝑧 × [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑧),               (1) 

Reset gate 𝑟𝑡 = 𝜎(𝑊𝑟 × [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑟),                (2) 

Candidate hidden state ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ⋅ [𝑟𝑡 × ℎ𝑡 − 1, 𝑥𝑡] +
𝑏ℎ,        (3) 

Final hidden state ℎ𝑡′ = 𝑧𝑡 × ℎ𝑡 − 1 + (1 − 𝑧𝑡) × ℎ𝑡,     (4) 

where σ denotes the sigmoid activation function, tanh is the 
hyperbolic tangent function, W and b are the weights and biases, 
respectively, xt is the input at time t, and ht is the hidden state at 
time t. The BiGRU contains two hidden states at each time step, 
namely ht(fwd) and ht(bwd), calculated by the forward and 
backward GRUs, respectively. The forward GRU processes the 
sequence in the conventional manner, whereas the backward 
GRU processes it in the opposite direction. The combined 
hidden state at each time step t is acquired by either 
concatenating or summing the forward and backward hidden 
states: 

ℎ𝑡(𝑏𝑖) = ℎ𝑡(𝑓𝑤𝑑) + ℎ𝑡(𝑏𝑤𝑑).                        (5) 

The BiGRU can capture dependencies and patterns that may 
be overlooked by a normal GRU, particularly in sequences 
wherein the future and past contexts are equally notable. This 
approach is frequently used in applications such as sequence 
labeling, time-series prediction, and natural language 
processing. BiGRUs have a higher computational cost and more 
parameters than regular GRUs, which may result in overfitting 
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when working with smaller datasets. Thus, the BiGRU enhances 
the functionality of the regular GRU by including inputs from 
the forward and backward directions of a sequence, resulting in 
a more holistic comprehension of the context. 

The self-attention mechanism primarily focuses on the 
internal dependence of an input (Fig. 5). The output of the neural 
unit in the current moment may probably be affected by the EEG 
and EOG signals representation in the form of CMW transform. 
Based on the degree of influence, different weight parameters 
were assigned to signals such that the model can pay attention to 
the pivotal signals of stress information. The scaled dot-product 
attention model was used herein to optimize the data: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉.                   (6) 

 

Fig. 5. A self-attention layer integrated into the BiGRU model. 

The matrices Q, K, and V comprise query vectors, key 
vectors, and value vectors, respectively, and dk is the dimension 
of the input vector. In self-attention mechanism, Q, K, and V 
were derived from the same input and similarity among all 
words in the sentence was calculated. The greater the similarity 
among the signals, the stronger the correlation among them; 
thus, the dependency within the sentence can be captured. In 
question classification, the impact of each clause and individual 
word in the question varies. Certain words or sentences are 
crucial in question classification, whereas others have less 
impact. To effectively capture the relevant information in a 
question, an attention mechanism was added to the BiGRU 
model. This approach aims to highlight key semantic features, 
extract useful information, and accurately assess the 
contribution of each word for the classification of the entire 
question. By doing so, it ensures that the most crucial 
information is retained while filtering out redundant 
information, enhancing the efficiency and performance of 
question classification. The layer network uses the output of the 
upper layer network model as the input for the layer model, 
resulting in the vector representation of each sentence in the 
BiGRU model with the self-attention mechanism. 

The basic form of self-attention mechanism can be expressed 

as follows: 

𝑆 = tanh(𝑀) 

𝛼 = softmax(W𝑛 × S)                             (6) 

𝑟 = 𝑀 × 𝛼𝑛   
𝑞 = tanh (𝑟) 

D. Feature Classification 

Algorithm 1 summarizes stress classification using the 
BiGRU model with self-attention mechanism (BiGRU) and 
ensemble-bagged tree classifier. The machine learning method 
EBTC [41] blends bagging (bootstrap aggregating) with 
decision trees. It is especially helpful in minimizing variance, 
preventing overfitting, and boosting model resilience. The 
EBTC minimizes prediction variance by averaging many trees, 
which is useful when individual trees overfit. Bootstrapping 
randomly creates variation among ensemble trees, essential to 
the approach's efficacy. The ensemble's averaging effect makes 
the EBTC resilient to data outliers and noise. Bagged ensemble 
learning improves machine learning algorithm stability and 
accuracy. Multiple predictors are utilized to create an aggregated 
predictor. Classification and regression employ decision trees. 
They made a decision tree by subdividing the data by feature 
value testing. From the original dataset, multiple bootstrap 
samples are randomly chosen subsets of data (with replacement) 
of the same size. Independent decision trees are trained for each 
bootstrap sample. Training data is different for each tree owing 
to random sampling with replacement. 

Algorithm 1: Sleep disorder classification using EEG and 

EOG signals and BiGRU with a self-attention layer and 

EBTC. 
Input • EOG_data: Array of EOG signal data 

• EEG_data: Array of EEG signal data 

• sampling_rate: Sampling rate of the EOG 

and EEG data 

• wavelet_parameters: Parameters for the 

complex wavelet transform 

Output • Final-classification. 

Step 1: Feature Extraction: 

Filtered_EOG = bandpass_filter(EOG_data, lowcut, 

highcut, sampling_rate) 

Filtered_EEG = bandpass_filter(EEG_data, lowcut, 

highcut, sampling_rate) 

• Wavelet_Features_EOG←Morlet-

WaveletTransform 

(Filtered_EOG,wavelet_parameters) 

• Wavelet_Features_EEG←Morlet-

waveletTransform(Filtered_EEG,wavelet_

parameters) 

• Combined_Features = 

concatenate((Wavelet_Features_EEG, 

Wavelet_Features_EOG), axis=1) 

• Combined_Image ← 

stacking(Combined_Features) 

Step 2: Gated Recurrent Unit (GRU) Classifier: 

GRU_Model←InitializeGRU(layer_parameters). 

Hidden_States ← GRU_Model(Combined_Image) 

Step 3: Attention Mechanism:  

• The BiGRU produces a sequence of hidden 

states ht. 

• Attention scores α t are computed for each 

hidden state as stated in Eq. (8). 
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Step 4: Weighted Sum: Attention_Scores = 

compute_attention_scores(Hidden_States) 

Weighted_Hidden_States ← Attention_Scores @ 

Hidden_States 

Step 5:  Ensemble-bagged Tree Classifier (EBTC):  

• EBTC_Model ← 

TrainEBTC(Weighted_Hidden_States, labels) 

• EBTC_Predictions ← 

EBTC_Model.predict(Weighted_Hidden_States) 

Step 6: Combination and Final Classification: 

Final_classification ← classify(EBTC_Predictions) 

Step 7: Evaluation: metrics ← evaluate(Final_classification, 

true_labels) 

After all decision trees are trained, the ensemble model 
makes predictions by aggregating the predictions from all 
individual trees. This approach is followed for classification 
tasks via majority voting, wherein each tree votes for a class, and 
the class with the most votes is considered the ensemble's 
prediction. 

A dataset D with N instances is considered for the EBTC 
with M trees. For each tree m = 1,2, ..., M), a bootstrap sample 
Dm is created by randomly selecting N instances from D with 
replacement. A decision tree Tm is then trained on Dm. For a 
new instance x, the prediction y is given by Eq. (7). 

𝑦 = 𝑚𝑜𝑑𝑒𝑙{𝑇1(𝑥), 𝑇2(𝑥), . . . , 𝑇𝑀(𝑥)}.              (7) 

The EBTC minimizes prediction variance by averaging 
many trees, which is useful if some trees overfit. The attention 
mechanism calculates weights using a straightforward scoring 
function such as a dot product and a Softmax. For a hidden state 
ht, the attention score αt is calculated as follows: 

𝑦𝛼𝑡 = ∑ 𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(ℎ𝑖))𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡))𝑖
𝑇            (8) 

where score(ht) is a dot product of the hidden state ht and 
some learnable parameter and T is the length of the sequence. 
The model then computes a weighted sum of the hidden states 
using attention weights, thereby generating a context vector that 
encapsulates the most relevant information from the entire 
sequence. 

𝑌𝑐
𝑐𝑜𝑛𝑡𝑒𝑥𝑡−𝑉𝑒𝑐𝑡𝑜𝑟 = ∑ 𝛼𝑡 ⋅ ℎ𝑡𝑖

𝑇                          (9) 

A fully connected layer then uses this context vector for the 
final classification (such as determining the type of sleep 
disorder). When analyzing EOG and EEG signal analysis for 
sleep disorders, the attention mechanism assigns higher weights 
to hidden states corresponding to signal patterns characteristic 
of certain sleep disorders. In contrast, the signal's ordinary or 
less informative patterns are assigned lower weights. The 
BiGRU model prioritizes essential sections of the EOG and EEG 
signals with a higher predictive value for various sleep disorders, 
thereby improving the classification accuracy and efficiency. 

IV. EXPERIMENTAL RESULTS 

This section overviews the creation of distinct subsets of data 
and classification performed to identify various sleep disorders. 
The integrated deep learning and machine learning models, 
including the meta-learner, were trained and tested on a highly 
advanced computational infrastructure comprising a notebook 
with powerful specifications to manage the computing 

requirements of the models effectively. The processor was an 
Intel(R) Core (TM) i7, 10th Generation, with an essential clock 
speed of 3.34 GHz, outfitted with four cores and eight logical 
processors for efficient parallel computing. The machine was 
equipped with 32GB RAM to effectively cater to the demanding 
memory requirements of training and testing deep learning 
models. Windows 10 offers a reliable and compatible platform 
for various machine-learning operations. The deep learning 
models were constructed and trained using the TensorFlow 
framework in conjunction with the Keras framework. 

A. Performance Measures 

The categorization performances of deep learning and 
machine learning models were compared using traditional 
measurement metrics. These measures are crucial for fully 
grasping the effectiveness of the models in terms of different 
aspects of categorization performance. The metrics and their 
corresponding calculation algorithms are outlined below: 

1) Accuracy: This metric represents the proportion of true 

results (true positives and negatives) among the total number of 

cases examined. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                    (10) 

2) Sensitivity (SE) or Recall (RC): It assesses the model's 

false negative avoidance. 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝐶) = 𝑆𝑒𝑛𝑠𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (11) 

3) Specificity (SP): This metric assesses the proportion of 

actual negatives that are correctly identified.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                   (12) 

4) F1-score (FS): This metric is a harmonic mean of 

precision and recall and balances the two. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 (𝐹𝑆) = 2 ×
𝑃𝑅×𝑅𝐶

𝑃𝑅+𝑅𝐶
                     (13) 

In this Eq. (13), the RC and PR are precision and recall 
metrics calculated from Eq. (11) to Eq. (14), respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (14) 

In addition, a confusion matrix is used to assess the efficacy 
of the classification models. 

 TN: This refers to accurately predicted negative 
occurrences. 

 FP: This refers to incorrectly predicted positive 
observations. 

 FN: This refers to incorrectly predicted negative 
observations. 

 TP: This refers to accurately predicted positive 
observations. 

These indicators assessed the performance of classification 
models, emphasizing their strengths and identifying areas for 
enhancement. This provided valuable information regarding the 
model’s ability to accurately differentiate between several 
classes and maintain a balance between precision and recall. In 
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addition, the area under the receiver operating characteristic 
curve (AUC) is also utilized to measure the performance of 
various systems. 

B. Experimental Results 

The classification performance of models in differentiating 
healthy subjects from those with sleep disorders and identifying 
specific sleep disorders is discussed as follows. Tables IV–VI 
present the results obtained using the proposed system. Several 
experiments are performed to identify different classes of sleep 
disorders compared to normal stage. The required 
hyperparameters are described in Table III. These parameters 
are defined based on the several experiments. 

TABLE III.  HYPERPARAMETERS SETUP REQUIRED BY PROPOSED SYSTEM 

Models Hyperparameter Values 

BiGRU Units 128 

 Layers 2 

 Dropout Rate 0.3 

 Recurrent Dropout Rate 0.2 

 Activation Function tanh 

 Batch Size 64 

 Learning Rate 0.001 

Self-Attention 
Layer 

Attention Size 
Equal to Number of 
Units 

 Attention Activation Softmax scores 

EBTC Number of Estimators 200 

 
Maximum Depth of 

Trees 
30 

 Minimum Samples Split 5 

 Minimum Samples Leaf 2 

 Bootstrap Samples True 

 Max Features sqrt 

This research, as presented in Table IV, has yielded 
significant classification results. We have compared the 
performance of a proposed approach that utilizes complex-
morelet wavelet (CMW) decomposition with sleep stages, 
against a method that uses discrete wavelet transform (DWT) to 
convert 1D sleep signals into a combined 2D-CMW image. The 
choice between DWT and CMW is crucial and depends on the 
needs of the particular analysis. While DWT may be a better 
choice for computationally efficient broad feature extraction, the 
CMW generates a scalogram, a 2D array that provides a detailed 
view of the signal's frequency content over time. This detailed 
view is crucial for deep analysis that requires frequency and 
phase information. By converting 1D sleep problem signals into 
2D, CMW may provide more significant information for 
diagnosing and comprehending complicated sleep events. 

The advantage of the proposed approach is evident in 
significantly improved accuracy and area under the curve 
(AUC) across all sleep disorders. In this context, 'accuracy' 
refers to the percentage of correctly classified sleep stages or 
disorders, while 'AUC' is a measure of the model's ability to 
distinguish between different sleep stages or disorders. For 
instance, accuracy increased in the case of insomnia from 

81.45% with DWT to an impressive 99.70% with CMW, and 
AUC rose from 0.822 to 0.997. Similar enhancements are 
observed across other disorders, such as narcolepsy; accuracy 
improved from 80.10% to 97.60%, and AUC increased from 
0.834 to 0.976. In the case of NFLE, accuracy rose from 82.47% 
to 95.40%, with AUC increasing from 0.833 to 0.954. In the case 
of PLM, there was an increase in accuracy from 85.67% to 
94.50% and in AUC from 0.865 to 0.945. For RBD, accuracy 
increased from 84.32% to 96.50%, with AUC improving from 
0.854 to 0.965. For SDB, accuracy jumped from 85.20% to 
98.30%, and AUC from 0.876 to 0.983. For healthy individuals, 
accuracy went from 87.00% to 94.10%, with the AUC moving 
from 0.876 to 0.941. Accordingly, our research has 
demonstrated the remarkable improvements in accuracy and 
AUC that the proposed approach offers compared to the method 
using discrete wavelet decomposition. These improvements 
underscore the potential of our approach to enhance the 
diagnosis and treatment of sleep disorders. These findings 
unequivocally demonstrate the value of incorporating CMW 
into the classification procedure for a more precise and 
trustworthy diagnosis of sleep disorders. 

TABLE IV.  CLASSIFICATION RESULTS OBTAINED WITHOUT USING 

WAVELET DECOMPOSITION WITH THE SLEEP STAGES. RESULTS ARE 

OBTAINED USING 10-FOLD CROSS-VALIDATION 

Disorder 

Discrete Wavelet 
Transform (DWT) 

Complex-Morlet-wavelet 
(CMW) transform 

Acc (%) AUC 
Acc 

(%) 
AUC 

Insomnia 81.45 0.822 99.70 0.997 

Narcolepsy 80.10 0.834 97.60 0.976 

NFLE 82.47 0.833 95.40 0.954 

PLM 85.67 0.865 94.50 0.945 

RBD 84.32 0.854 96.50 0.965 

SDB 85.20 0.876 98.30 0.983 

Healthy 87.00 0.876 94.10 0.941 

Average 83.74 0.858 96.59 0.966 

Table V presents sleep disorder classification results 
obtained using various classifiers with the hold-out validation 
strategy. The proposed approach, CMW-BiGRU-Self-attention-
EBTC, demonstrates superior performance across all sleep 
disorders compared to alternative methods such as LSTM and 
GRU-SVM. The proposed CMW-BiGRU-Self-attention-EBTC 
method shows significant advantages over alternative 
approaches, highlighting its effectiveness in accurately 
classifying sleep disorders. 

An independent experiment was conducted to compare the 
CMW transform with spectrogram and scalogram techniques. In 
practice, the CMW transforms provide both amplitude and phase 
information, which are essential for detailed signal analysis, 
particularly in identifying phase coupling between different 
signal components. The CMWT is particularly advantageous 
due to its rich and detailed time-frequency representation. Table 
VI offers a comprehensive overview of such classification 
performance for a six-class sleep disorder classification task 
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with signal transformation using a 2D-spectogram image. Fig. 6 
demonstrates the various confusion matrices, illustrating the 
distribution of actual and predicted classes, and the number of 
instances correctly and incorrectly classified for each sleep 
disorder when a 2D-scalogram is used. The results in Table VI 
were obtained without using CMW transforms, but the 2D-
spectogram was used to analyze the performance. As shown in 
this table, the proposed system, which does not incorporate the 
complex morlet wavelet (CMW) transformation, the bi-
directional gated recurrent unit (BiGRU) with self-attention, and 
the ensemble bagged tree classifier (EBTC) is utilized. The 
result does not outperform by the system without using CMW 
transforms. Similar trends were observed using 2D-scalogram 
without using the CMW transform technique, as depicted in Fig. 
6. Hence, the proposed CMW-BiGRU-Self-attention-EBTC 
system using CMW transform ensures accurate sleep disorder 
classification. Despite these results, the CMW transform's 
adaptability and detailed time-frequency representation continue 
to outperform spectrograms and scalograms, particularly in 
capturing complex, non-stationary signal patterns essential for 
diagnosing sleep disorders. 

TABLE V.  SLEEP DISORDER CLASSIFICATION RESULTS FROM USING 

VARIOUS MACHINE-LEARNING CLASSIFIERS WITH THE HOLD-OUT 

VALIDATION STRATEGY 

Classifie

r 

Accuracy (%)  

Insomn

ia 

Narcolep

sy 

NFL

E 
PLM RBD SDB 

Health

y 

CMW-

BiGRU-
Self-

attention

-EBTC 

99.70 97.60 
95.4

0 

94.5

0 

96.5

0 

98.3

0 
94.10 

LSTM 80.9 75.3 74.5 77.1 79.8 81.0 80.9 

KNN+N

N 
78.6 73.5 71.9 74.8 77.4 79.2 78.6 

Random 

Forest 
(RF) 

92.5 87.0 85.1 88.2 90.3 91.2 92.5 

RF+SV

M 
90.8 85.5 83.3 87.7 89.4 90.1 90.8 

GRU-

SVM 
89.7 84.2 82.9 86.5 88.0 89.3 89.7 

Decision 

Tree 
85.4 80.6 79.2 81.9 83.7 85.1 85.4 

AdaBoo
st 

83.2 78.4 76.8 80.0 82.0 83.5 83.2 

 

 
Fig. 6. Confusion metrics obtained for six sleep disorder prediction versus healthy individuals without signal transformation (normalization, bandpass filter and 

used 2D-scalogram image, complex morlet wavelet, stacking) step by proposed CMW-BiGRU-Self-attention-EBTC system. 

TABLE VI.  PERFORMANCE METRICS OBTAINED FOR SIX-CLASS BASED 

SLEEP DISORDER CLASSIFICATION WITHOUT SIGNAL TRANSFORMATION 

(NORMALIZATION, BANDPASS FILTER AND USED 2D-SPECTOGRAM IMAGE, 
COMPLEX MORLET WAVELET, STACKING) STEP BY PROPOSED CMW-BIGRU-

SELF-ATTENTION-EBTC SYSTEM 

Classes ACC (%) PR(%) RC(%) FS(%) 

Insomnia 84.75 84.77 84.77 84.77 

Narcolepsy 82.96 82.93 82.93 82.93 

NFLE 81.09 81.11 81.11 81.11 

PLM 80.33 80.42 80.42 80.42 

RBD 82.03 82.03 82.03 82.03 

SDB 83.56 83.62 83.62 83.62 

Healthy 79.99 79.96 79.96 79.96 

This study distinguishes healthy people from individuals 
with sleep problems with great accuracy, as described in the 
above paragraphs. Several variables were found and studied 
throughout testing, which are potential sources of error or 
misclassification based on the experimental results from Tables 
IV and V, as described below. 

 Noise from EEG and EOG signal quality can decrease 
feature extraction precision. Signal fluctuation can be 
caused by electrode location, sleep movement, and 
physiological variations. When the signal-to-noise ratio 
is low, this fluctuation might cause the model to 
categorize epochs inconsistently. 

 Despite the Use of cross-validation and regularization to 
reduce overfitting, the model may have inadvertently 
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learned patterns specific to the training set that do not 
generalize well to unknown data. This is a common 
challenge in machine learning that could potentially 
increase model error rates when confronted with new 
data. 

 This dataset is extensive; however, class imbalance is 
evident in SDB and PLM data. Class imbalance can bias 
the model to recognize the dominant class but not the 
minority class, reducing accuracy and increasing 
misclassification rates. 

 Rare sleep disorders, including Narcolepsy and 
Nocturnal Frontal Lobe Epilepsy (NFLE), reduce 
training data. This constraint might hinder the model's 
understanding of these illnesses' complicated patterns, 
leading to reduced accuracy or increased 
misclassification rates. 

 The proposed model uses Morlet wavelet transform and 
advanced machine learning methods to analyze combine 
EEG and EOG signals, requiring numerous computing 
layers. Complexity allows excellent accuracy, but it also 
raises the possibility of misclassifying signal artifacts or 
non-standard signal patterns as disorders. 

To address these potential errors, we implemented a series 
of robust measures. We strengthened the signal processing 
capabilities with CMW transforms. Additionally, training 
dataset was expanded to encompass a wider range of patients 
and disorders. 

Fig. 7–8 present the results obtained using the proposed 
system by changing the hyperparameters to detect six multi-
class sleep stages. ReLU activation function is applied on GRU 
units as compared to Tanh as shown in Fig. 7. A similar 
performance has been achieved. This figure presents the receiver 
operating characteristic (ROC) curves for different sleep 
disorders, as well as for the 'Healthy' class, based on the crucial 
area under the curve (AUC) values provided. Each curve 
represents the trade-off between the actual positive rate 
(sensitivity) and the false positive rate (1-specificity) for a 
specific disorder classification. A higher AUC indicates better 
discrimination ability, with values closer to 1.0 representing 
superior classification performance. In this figure, the AUC 
values for each disorder are as follows: Insomnia (0.997), 

Narcolepsy (0.976), NFLE (0.954), PLM (0.945), RBD (0.965), 
SDB (0.983), and Healthy (0.941). These values are pivotal in 
reflecting the models' ability to distinguish between positive 
instances of each disorder and negative instances of other 
disorders or healthy individuals. AUC values near 1.0 suggest 
excellent classification performance, while lower values 
indicate room for improvement. 

The confusion matrix in Fig. 8 provides a comprehensive 
overview of a CNN classifier's performance in discerning 
between various sleep disorders and healthy individuals. Each 
row corresponds to the true class, while each column represents 
the predicted class, offering insights into both correct 
classifications and misclassifications when figure (a) proposed 
system and (b) original BiLSTM and EBTC boosting tree. For 
instance, the classifier demonstrated its effectiveness by 
accurately identifying a significant number of instances for each 
disorder, such as Insomnia (370 instances correctly classified) 
and Narcolepsy (362 instances correctly classified). However, 
misclassifications were observed across different categories, 
indicating the model's limitations in certain scenarios. Notably, 
while the classifier performed well in identifying instances of 
Insomnia and Narcolepsy, a few instances of Insomnia (1 
instance misclassified as Healthy) and Narcolepsy (2 instances 
misclassified as NFLE, one as PLM, one as RBD, two as SDB, 
and two as Healthy) were incorrectly classified. 

Moreover, the confusion matrix highlighted 
misclassifications of healthy individuals, with some instances 
erroneously classified as various sleep disorders. Despite 
accurately identifying the majority of healthy individuals (349 
instances correctly classified), a notable number of 
misclassifications occurred. For example, healthy individuals 
were mistakenly classified as Narcolepsy (4 instances 
misclassified), NFLE (5 instances misclassified), PLM (5 
instances misclassified), RBD (5 instances misclassified), and 
SDB (2 instances misclassified). These misclassifications 
underscore the need to refine the classification model to enhance 
its accuracy and robustness, particularly distinguishing between 
healthy individuals and those with sleep disorders. By 
addressing these misclassifications and improving the 
classifier's ability to identify different sleep patterns accurately, 
it can strengthen diagnostic tools for sleep disorders and enhance 
patient care through more precise and timely interventions. 

 
                                                                       (a)                                                                                                              (b)  

Fig. 7. Confusion matrices for sleep stage and sleep disorder detection using (a) proposed system and (b) original BiLSTM and EBTC boosting tree. 
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Fig. 8. A separate experiment for using 2400 samples of each sleep-disorder class to show AUC curves of accuracy with respect to each class of sleep disorder. 

The AUC curve for our proposed system using the 
architecture (CMW-BiGRU-Self-attention-EBTC) is shown in 
Fig. 8. This is an integral part of our research. This system, 
which uses a large dataset with 24,000 samples of each class 
instead of 26,000 samples, gives a full picture of how well the 
proposed classifier works at finding sleep disorders. More 
importantly, it paves the way for evaluating and refining the 
classification model, thereby enhancing the accuracy and 
reliability of our system. This, in turn, underscores the potential 
impact of our research on clinical applications, making it a 
significant contribution to the fields of sleep medicine and 
machine learning. 

C. State-of-the-Art Comparisons 

Sleep disorder diagnosis through automated systems has 
seen significant advancements, with various models employed 
in the past by combinations of convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), gated recurrent 
units (GRUs), and random forest (RF) algorithms. These 
models, such as Shao-CNN-GRU [17], Fan-CNN-RNN [19], 
Santaji-RF [21], Morokuma-CNN [30], and Satapathy-1DCNN 
[33], have leveraged electrooculography (EOG) and 
electroencephalography (EEG) signals to varying degrees of 
success. These systems were selected to perform State-of-the-art 
(SOTA) comparisons because they were quickly implemented. 
While they have shown promising results, challenges such as 
overfitting, limited sleep class detection, and computational 
inefficiency have persisted, as mentioned in Table I. Accuracies 
have varied widely, from as low as 76.3% to as high as 98.84%, 
with each model demonstrating its strengths in handling 

complex signal data for sleep stage classification or disorder 
diagnosis and revealing significant limitations hindering their 
broader application and effectiveness. 

In this context, the proposed CMW-BiGRUSelf-EBTC 
model emerges as a noteworthy evolution that adeptly addresses 
these challenges. By integrating a complex metro-wavelet 
transformation with a bidirectional gated recurrent unit that 
includes a self-attention layer and coupling it with an ensemble-
bagged tree classifier, this model simplifies the signal 
processing pipeline and enhances the accuracy and efficiency of 
sleep disorder diagnosis. With remarkable success rates across 
various sleep disorders and an overall classification accuracy of 
96% alongside an AUC of 0.96, this approach outshines its 
predecessors. It achieves this by effectively mitigating 
overfitting and reducing computational demands, thereby 
marking a significant leap forward in developing noninvasive, 
automated systems for accurate and efficient sleep disorder 
diagnosis. Specific hyperparameters are described in Table VII 
to expand the "Details" column to include examples of 
hyperparameters that might be tuned for RNNs (Recurrent 
Neural Networks) and the considerations for architectural 
configurations. 

Table VIII shows a comparative analysis of various state-of-
the-art (SOTA) systems for sleep disorder detection. The 
systems compared include Shao-CNN-GRU, Fan-CNN-RNN, 
Santaji-RF, Morokuma-CNN, Satapathy-1DCNN, and the 
proposed system, CMW-BiGRUSelf-EBTC. 

TABLE VII.  STATE-OF-THE-ART COMPARISONS (SOTA) HYPER-PARAMETERS SITTING 

Component Description Expected Impact 

Baseline (Full Model) 
CMW-BiGRUSelf-EBTC with all 

features 
Establish baseline performance 

Without Bidirectional RNN Cells Use unidirectional GRU cells 
Assess the importance of capturing temporal dependencies in both 
directions 

Without the Attention Layer Remove the self-attention layer Evaluate the impact of focusing on significant parts of the data 

Without Bagging Ensemble 
Use a single classifier instead of an 

ensemble 

Determine the contribution of ensemble methods to robustness and 

accuracy 

Without Data Augmentation Train without augmented data Examine the role of data diversity in model generalization 
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TABLE VIII.  SOTA WITH RESPECT TO PROPOSED SYSTEM 

SOTA Systems Acc (%) SE(%) SP(%) AUC FS (%) 

Shao-CNN-GRU [17] 88.25 86.40 88.15 0.87 88.32 

Fan-CNN-RNN [19] 78.44 77.12 78.42 0.77 78.46 

Santaji-RF [21] 75.47 73.70 74.10 0.75 76.10 

Morokuma-CNNc[30] 86.50 85.20 88.45 0.86 88.00 

Satapathy-1DCNN [33] 80.10 82.66 83.25 0.83 82.12 

CMW-BiGRUSelf-EBTC 96.59 97.30 95.20 0.966 96.0 

TABLE IX.  ABLATION STUDY PARAMETERS 

Step Description Details Example Hyperparameters 

Define the 

Parameter Space 

For each model, identify and list all 

hyperparameters and architectural configurations 
that will be explored. 

Includes learning rates, batch sizes, 

number of layers, types of RNN cells 
(e.g., LSTM, GRU), etc. 

Learning rate: [0.001], Batch size: 
[64], RNN type: [LSTM, GRU], 

Number of layers: [3], Dropout rate: 

[0.25] 

Apply Nested CV 

Implement nested cross-validation (CV) with an 

outer loop for performance assessment and an inner 

loop for hyperparameter tuning. 

Ensures unbiased evaluation and that 

hyperparameter tuning does not 

influence the test set. 

Outer loop: 5 folds, Inner loop: 3 

folds 

Optimize 

Hyperparameters 

Use grid search within the inner loop of the nested 
CV to find the optimal set of hyperparameters and 

architectural configurations for each model. 

Systematically explores multiple 
combinations of parameters to find the 

best setup for each model. 

Grid search across all combinations 
of the example hyperparameters 

listed. 

Evaluate and 

compare 

After tuning, evaluate each model's performance on 
the test set of the outer CV loop to ensure fairness 

in comparison. 

Performance metrics are based on unseen 
data, providing a reliable basis for 

comparison. 

Accuracy, F1 Score, AUC, 

Sensitivity, Specificity 

Statistical Testing 

Employ statistical tests to determine if the 

differences in performance between models are 

statistically significant. 

Strengthens the validity of the 

comparison by confirming whether 
observed performance differences are 

meaningful. 

Wilcoxon signed-rank tests 
comparing model performances. 

The recommended CMW-BiGRUSelf-EBTC system, with 
its superior performance metrics, outperforms previous models. 
Its accuracy of 96.59%, SE of 97.30%, SP of 95.20%, AUC of 
0.966, and F1-score of 96.0% are a testament to its effectiveness. 
The system's ability to effectively diagnose sleep problems is a 
significant advancement, demonstrating its profound impact on 
sleep problem detection. This comparison underscores the 
importance of advanced machine learning approaches like 
bidirectional RNNs, self-attention layers, and ensemble methods 
in the field of sleep disorder diagnosis. 

D. Ablation Study 

Ablation studies on the proposed Complex-Morlet-wavelet 
Representation using a bidirectional gated recurrent unit with a 
Self-attention Layer and an ensemble-bagged tree classifier 
(CMW-BiGRUSelf-EBTC) system involve systematically 
removing or replacing model components to understand their 
performance contributions. This study highlights the most 
critical elements of the suggested sleep problem detection and 
identification technique—ablation research structure. Tables 
VIII and IX provide an overview of the CMW-BiGRUSelf-
EBTC system ablation research and a full analysis of each 
ablation component. 

These tables summarize the ablation study's setup and 
findings. They also demonstrate how each CMW-BiGRUSelf-
EBTC component detected and diagnosed numerous sleep 
problems. The ablation research for the planned CMW-
BiGRUSelf-EBTC system employing EEG and EOG data to 
discover and diagnose sleep problems shows how the elements 
work together to make it operate successfully. Initial evaluation 

of the system yields remarkable metrics: accuracy of 96.59%, 
sensitivity of 97.30%, specificity of 95.20%, AUC and F-score 
of 0.966 and 96.0%, respectively. This complete performance 
shows the system's resilience and accuracy in diagnosing sleep 
problems. 

As the study progresses through its phases, removing critical 
system features one by one, a clear picture of their contributions 
emerges. All metrics go down a lot when there are no 
bidirectional RNN cells. This shows the importance of capturing 
temporal dependencies in the signal data for correct disorder 
recognition. In the same way, getting rid of the attention layer 
lowers performance metrics, showing how important it is for 
helping the model focus on essential parts of the complex signal 
data. The system's performance worsens when the bagging 
ensemble method and data augmentation are removed. This 
shows how important they were for making the model more 
robust and able to generalize across different data 
representations. Each component's removal delineates a 
stepwise decrease in the system's effectiveness, underlining the 
synergistic effect of these elements in achieving the CMW-
BiGRUSelf-EBTC system's state-of-the-art performance. 

V. CONCLUSION 

The EOG and EEG data were used for automated sleep-
disorder identification, making this study a notable advancement 
in sleep medicine. The proposed method for detecting sleep 
disorders yielded highly accurate and efficient results as it 
integrated advanced signal-processing techniques with powerful 
machine-learning models. This approach was also designed to 
be patient friendly. Thus, this study not only enhances the 
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scientific comprehension of sleep health but also holds the 
potential to considerably improve the quality of life of 
individuals with sleep disorders. The proposed method 
effectively classifies healthy individuals from those with 
different sleep disorders. It achieved a remarkably high accuracy 
of 99.7% for insomnia, 97.6% for narcolepsy, 95.4% for NFLE, 
94.5% for PLM, 96.5% for RBD, 98.3% for SDB, and 94.1% 
for healthy individuals. The model's relevance and precision can 
be enhanced across many scenarios by establishing a 
confidential database for subsequent experimentation. 

A key priority is ensuring the wide-ranging appropriateness 
and efficacy of a proposed technique for sleep health monitoring 
and diagnosis across diverse demographic groups. The dataset 
was expanded to include additional ages, genders, ethnicities, 
and geographical origins to achieve this. This expanded dataset 
will better capture population-specific sleep patterns and 
problems, enhancing the model's generalizability. To understand 
how cultural influences impact sleep, it will employ cross-
cultural validation and adaptive algorithms for tailored 
diagnosis. However, medical specialists from diverse 
demographics must refine the model to maintain its clinical 
relevance and responsiveness to the vast range of sleep 
problems. 

Ethical and inclusive research and design practices 
emphasize privacy, permission, and data protection. By making 
this technology inexpensive and accessible across 
demographics, it promotes healthcare equity. Patients and 
healthcare providers must monitor and offer feedback post-
deployment. The system will be modified and adjusted based on 
real-world use and feedback to keep it valuable and relevant for 
diagnosing and monitoring sleep problems in varied worldwide 
populations. 

Data Availability Statement: This study used the PhysioNet 
CAP Sleep database of the Sleep Disorders Center of the 
Ospedale Maggiore of Parma, Italy, as downloaded via 
physionet.org from 
https://physionet.org/content/capslpdb/1.0.0/ (accessed on 
March 5, 2022). 
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