
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

155 | P a g e

www.ijacsa.thesai.org

Software Systems Documentation: A Systematic

Review

Abdullah A H Alzahrani

Department of Computers-Engineering and Computing College at Alqunfuda,

Umm Al Qura University, Makkah, Saudi Arabia

Abstract—In the domain of software engineering, software

documentation encompasses the methodical creation and

management of artifacts describing software systems.

Traditionally linked to software maintenance, its significance

extends throughout the entire software development lifecycle.

While often regarded as a quintessential indicator of software

quality, the perception of documentation as a time-consuming

and arduous task frequently leads to its neglect or obsolescence.

This research presents a systematic review of the past decade's

literature on software documentation to identify trends and

challenges. Employing a rigorous systematic methodology, the

study yielded 29 primary studies and a collection of related

works. Analysis of these studies revealed two primary themes:

issues and best practices, and models and tools. Findings indicate

a notable research gap in the area of software documentation.

Furthermore, the study underscores several critical challenges,

including a dearth of automated tools, immature documentation

models, and an insufficient emphasis on forward-looking

documentation.

Keywords—Software engineering; software systems

documentation; software maintenance; software quality; software

development

I. INTRODUCTION

Software documentation can be defined as the journey of
producing different types of documentation. These types vary
in their purposes from describing the development processes to
describing the final product to the intended user. It is believed
that software engineers should have the responsibility of
software documentation, however, professionals in technical
writing are sometimes needed [1], [2], [3], [4].

In the past 10 years, software documentation has been an
interest in the industry of software engineering. However,
majority of documenters are whether technicians or peoples
trained in humanity. Therefore, the need for more professionals
in the software documentation had emerged [5].

Many benefits can be accrued from good software
documentation such as decreased costs of maintenance [6], [7],
[8], [9], [10]. However, achieving a well-formed software
documentation might be challenging. One challenge in
software documentation is that developers abhor being
involved in software documentation. In addition, some believe
that poor software documentation is worse than no
documentation. Furthermore, lack of professionals in the
software documentation is considered to be another challenge
[5], [11].

Software documentations principles are to be considered
during software documentation. These principles are the level
of details, document purpose and intended readers, use of
graphical aids, clarity and precision, language of document,
and documents versions. Therefore, in order to acquire a well-
written software documentation, it is important to pay attention
to, first, the purpose of the documents and the intended
audience. This will lead to choosing the appropriate language,
level of details, and graphical aids. However, in order to keep
the documentation alive, updating documents with use of
versions management are essential [6], [11], [12], [13], [14].

Several types of software documents are generated in the
process of software documentation. These types diverse based
of their purposes and intended readers. However, these types
fall in one of the following categories. The first category is the
documentation of the process of software development. This
includes documentation of requirements, planning,
implementation and other documents during the development
journey. The intended readers for this category of documents
are the developer, software, decision makers, and the
maintainers. The second category is the documentation of the
product after delivery. This category includes the documents
that describe the product for intended users. Examples of this
category are User manuals and system main structure
documents [1], [2], [3], [5], [6], [8], [11], [14].

Many techniques and tools are employed for software
documentation. In general Waterfall technique and Iterative
technique are the most dominant techniques for software
documentations. However, for the tools that are used for the
documentation, many have stated a variety of tools such as MS
Word XML and other Text Editors, Doxygen, Visio,
FrameMaker, Author-IT, Doc++, Rational Rose, JUnit and
other tools. Some of these tools aid in automation of
documentation to some extents [15], [16], [17], [18], [19].

The importance of this study derived from the need to
achieve solutions that overcome the unsolved problem of poor
or absent software documentation as this issue remains
unsolved. Software documentation improves the quality of
software systems and consequently improves maintainability
and cost efficiency. Furthermore, drawing more attention to the
topic of software documentation would enhance
documentations models as well as templates employed, which
relatively enhance automation of software documentation.

This paper has been structured as follows. Section I
introduced the topic software systems documentation. In
addition, it highlights the importance of systematic review on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

156 | P a g e

www.ijacsa.thesai.org

the considered topic. Section II illustrates the methodology
which has been employed in this paper and formulated the
research question. In addition, the main findings statistically
shown and discussed. Section III has been divided into two
subsections. The first subsection concludes the discussion on
the findings and demonstrates the trends in the software
documentation publications. The second subsection reviews
and discusses the primary studies found in this research and
categorizes them into two categories. Finally, Section IV draws
conclusions on this research.

II. METHODOLOGY

Budgen et al. and Kitchenham [20], [21] have described a
systematic review methodology which this study applies. The
methodology enables conducting the reviews objectively and
structurally. Furthermore, the methodology allows
demonstration of broader picture of the topic of software
documentation by categorizing the results into primary and
related to the topic under consideration.

1) Research question: What are the unveiled trends and

issues in relation to software documentation in the last 10

years?

The above research question can be responded to by first
exploring the software documentation topic, then, investigating
the existing techniques and tools which are employed.
Consequentially, issues and difficulties will be highlighted and
identified. Therefore, the keywords leading the search in the
well-known databases have been enumerated. These keywords
are software system documentation - software documentation -
system documentation - automated documentation - software
knowledge documentation - computer software documentation
- software engineering documentation.

2) Sources selection: Bearing in mind the aforementioned

keywords, a search query has been formulated as shown in

Table I. An OR logical operator has been used in order to

combine results that are related to the search. In addition, to

narrow the range of the results, double quotation marks (“”)

have been applied to surround the keywords.

TABLE I. SEARCH QUERY

Search query

“software system documentation” OR “software

documentation” OR “system documentation” OR
“automated documentation” OR “software knowledge

documentation” OR “computer software documentation”

OR “software engineering documentation"

After formulating the Search query, it has been entered to
The Saudi Digital Library (SDL) [22] search engine. SDL is an
online digital library resource that allows searching in many
well-known digital libraries such as Springer, IEEE Digital
Library, ACM Digital Library, SAGE, ScienceDirect, and
other publishers. Different types of research items can be
found; however, the results were grouped into four main
categories. The first category is Conference Paper. Second
category is Journal papers which include journal Article, Case
Study papers, and Review Papers. Third category is Books
which include books, handbooks, Thesis, and technical reports.
Fourth category is Others which include else results.

This paper’s goal is to investigate the topic of software
documentation in the past 10 years, so, an exclusion criterion
of year of publication has been applied and configured to
include work which has been done between the years 2014 and
2024. In addition, another exclusion criterion was the language
of publication as non-English publications have been
eliminated during the search process by configuring the search
engine to exclude them before displaying the results from the
digital libraries. Finally, inclusion criterion relies on the
analysis of several aspects in found results. These aspects are
title, keywords, abstract, and conclusion. So, the analysis is the
process of manually reading deciding for publications to be
considered relevant or not.

Table II illustrates the results of the searching process. It is
clear in the table that the first results after applying the query
string was total of 7482 publications found in different source.
However, this number includes the repeated items and the
flawed entries of the items. Therefore, it was necessary to
accurate the results by eliminating those items. Consequently,
the total number of publications declined to be 3453 items.

Inclusion criterion was then applied manually to determine
the relevance of remaining items by scanning the keywords,
abstracts, and conclusions. The process resulted in eliminating
more items. A total of 1654 items are the relevant items to be
investigated and studied in order determine the results of
primary studies to the topic of software documentation.

TABLE II. NUMBER OF PUBLICATIONS FOUND FROM DIFFERENT

SOURCES

Sources
Publication

Search

date

Foun

d

Not

repeated

Relevan

t

Primar

y
%

Springer

Link

3 Jan

2024
612 411 378 0 0%

IEEE

Digital

Library

3 Jan
2024

125 82 65 5 17%

ACM
Digital

Library

3 Jan

2024
41 34 12 6 21%

SAGE
3 Jan
2024 248 188 90 0 0%

ScienceDir

ect

3 Jan

2024 41 39 21 0 0%

Other
Publishers

3 Jan
2024 6415 2699 1088 18 62%

Total 7,48

2
3453 1654 29

100

%

It can be seen in Fig. 1 that relevant found publications to
the topic of software documentation are divided into six
categories. The categories are based on the reputation of the
publisher. Therefore, five categories are designated to leading
and well-known publishers which are Springer, IEEE, ACM,
SAGE, and ScienceDirect. All other publishers have been
considered in one category as “other publishers”.

Fig. 1 illustrates 66% of the relevant found publications to
the topic of software documentation are from other publishers
which have less reputation than the leading publishers.
However, 23% of relevant found publications are from
Springer. Having this in mind, 378 relevant publications to the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

157 | P a g e

www.ijacsa.thesai.org

topic of software documentation for the last 10 years in a well-
known publisher such as Springer are not a considerable
number of publications. This might raise a question on the
reasons behind the low number of publications in the topic of
software documentation in such leading and well-known
publishers.

Fig. 1. Relevant studies from different publishers.

With regards to the primary studies shown in Table II, they
are the studies that are major in the topic of software
documentation. A complete list is included in Appendix A.
These studies are identified to be primary after a manual
excessive analysis and in depth reading of the relevant studies.
The main criterion to identify the primary studies is the goal of
the research. In particular, if the relevant study is offering a
new model, approach, solution, explanation, case study,
comparison, or/and review, then that relevant study is
considered to be a primary study to the topic of software
documentation.

III. RESULTS AND DISCUSSION

A. Trends in Software Documentation Publications

This section is to discuss the findings on the collected data
and the analysis of results of the conducted reviews. The main
finding is that the topic of software documentation has not
been considered sufficiently for research in the past 10 years,
especially by well-known and leading publishers. This can be
seen clear form the results shown in the previous section.

Fig. 2 illustrates the publications of relevant studies to the
topic of software documentation over the last 10 years. From
Fig. 2, a growing interest can be noticed from the year of 2020
in the publication is a well-known publisher which is Springer.
However, this interest in the topic of software documentation
has remained unnoticed in publications of other well-known
publishers.

Table III demonstrates the types of relevant publications
found. Three main categories of publications which are
conference papers, journal papers, and book. Regarding journal
papers, this includes regular article papers, Case Study papers,
Review Paper. On the other hand, Books category includes
books, handbook, Technical Report, and Thesis. Finally, all
other publication types were classified into “Others” category.

Fig. 2. Relevant studies from different publishers. Publications in the past 10

years on software documentations.

TABLE III. TYPES OF PUBLICATIONS OF RELEVANT STUDIES

Sources
Conference

Paper

Journal

Paper
Books others Total

Springer Link 3 348 1 26 378

IEEE Digital

Library
25 10 0 30 65

ACM Digital
Library

0 8 0 4 12

SAGE 0 38 51 1 90

ScienceDirect 0 12 0 9 21

Other

Publishers
14 633 122 319 1088

Table III shows that the majority of relevant publications
on software documentation are journals papers. Fig. 3
illustrates that around 63% of all relevant publications on the
topic of software documentation over the past 10 years are
journal papers. It is worth noting that from the leading and
well-known publishers, SAGE has an outstanding interest on
relevant books on the topic of software documentation.

Fig. 3. Types of relevant studies.

B. State of Arts Studies

This section discusses the primary studies found in the
systematic review on software documentations. The studies
have been classified into three main divisions shown in the
following subsections which are: 1) software documentations
reviews, issues, and best practices; 2) software documentation
models and tools.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

158 | P a g e

www.ijacsa.thesai.org

1) Software documentations reviews, issues, and best

practices: Many have introduced best practices and required

attributes of software documentation [15], [23], [24], [25],

[26]. Other researchers [17], [18], [27], [28] have considered

software documentation issues which might be addressed

earlier, throughout, and/or afterwards the process of the

software documentations.

Uddin et al. [15] have conducted two surveys based on
their previous work [23] on Application Programming
Interface (API) documentation. First, the authors designed a
three-questions survey circulated among IBM Canada labs.
The number of participants was 69 with the following job
titles: developer, architect, tester, and consultant. Second, the
authors designed a seven-questions survey circulated among
developers and architects at IBM Canada and UK. This time,
the number of participants was 254. The authors concluded that
the API documentation suffers contents issues which are
related to the fact that the engagement of experts is needed in
the documentation of API.

Rai et al. [29] have conducted a review on the topic of
source code documentation over last 10 years. The authors
formed six research questions that were to be answered. These
questions focused on the methodologies, tools, and evaluation
means for source code documentation. In addition, the authors
found that source code documentation has grown interest from
researchers and automatic generation of source code
documentation begins to use Deep Learning approaches instead
of Information Retrieval approaches.

Lethbridge et al. [6] have published a study in order to
gather best practices in software documentation. The authors
conducted a study that includes surveying, interviewing, and
observing software engineers. in addition, the authors
investigate the tools used by these software engineers. The
findings of the study can be summarized in the followings: 1)
focus on requirements documentation and high-level
documentation of the systems rather than complete and
UpToDate documentation; 2) focus on simple and customized
documentation rather than forcing the use of particular
documentations methods or tools. This is to avoid time
overhead and complexity.

Forward et al. [18] have investigated the tools and
technologies used in software documentations. The authors
divided software documentation into six types of documents
namely requirements, specifications, detailed design, and low
level design, architecture, and QA documents. The main
findings can be summarized as follows: 1) software documents
are important and useful even if they are obsolete; 2) tools for
software documentations are needed to automate the process
and should be chosen based on the nature of the software
project.

Santos et al. [7] have conducted a review on software
documentation in order to check the essential quality attributes
in software documents. In addition, the authors reviewed the
best practices for software documentation from 14 different
publications in order to establish relations between the quality
attributes and the best practices offered in those publications.

De Souza et al. [16] have studied the impact of Agile on
software documentations. The authors highlighted the software
development using Agile relies on informal communication
which might lead to lack of software documentation or
obsolescence. The authors addressed the issue that might face
documentation teams as they immensely require
documentation to accomplish their tasks.

Aghajani et al [9], [19] have conducted an empirical study
to investigate the issues in software documentation. The
outcome of the study has shown 162 types of software
documentation issues linked to tools, process, and
presentations of information. In addition, the authors believe
that the attitude and experience of people involved in the
software documentation process are important factors in the
success or failure of software documentation.

Meng et al. [30] have conducted a study to investigate the
learning strategy that developers use when they encounter API
documentation. The study was carried out using interviews and
questionnaire methodologies on 17 developers who have been
asked 45 questions in the interview and to answer online
survey of 39 questions. Main findings showed that
documentation of API lack of clarity and completeness.
Moreover, un-updated documentation is another recurring issue
in API documentation.

In 2015, Zhi et al. [31] reviewed 69 research articles
published between the years 1971-2011 on software
documentation in order to study the impact of documentation
on cost and quality. The authors concluded their review with
several findings which can be summarized as: 1) main quality
attributes that should be in the documentation are
completeness, accessibility, and consistency; 2) most of the
evaluation on the documentation models are on a single case
study or academic prototypes.

2) Software documentation models and tools: Falessi et al.

[13] have conducted an empirical study on 50 postgraduate

students in order to evaluate the effect effects using different

techniques of Design Decision Rationale Documentation

(DDRD). The focus on the experiment is to check how

different groups react in requirements change.

Kajko-Mattsson [17] has introduced a model for software
documentations that serves corrective maintenance. The model
includes 19 requirements with each has a set of goals. The
model has been examined by surveying 18 different Swedish
organisations with the use of interview mean. The author
reported that the results show that collaboration with
maintenance teams is to the minimum and the maintenance
teams are absent from the documentation process. This has led
to inadequate support for decision making for any change as
well as quality assurance costs time and effort.

Bachmann et al. [32] have introduced their model for
documenting software architecture. The model aims to
document layered view of the architecture of the software
system. The main purpose is to provide documentation that
helps in sharing understanding of the system, tracing the
changes, and discussing trade-offs. In addition, the model
clearly identifies different views of the software architecture
based on the audience of the documentation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

159 | P a g e

www.ijacsa.thesai.org

Falessi et al. [12] have introduced value-based (VD)
method for software documentation in particular
documentation of design decision. The proposed method aims
to enhance the use of DDRD approach and is called VD
DDRD. The authors conducted an experiment in order to
validate their approach and the results show that VD DDRD
can moderate inhibitions which might be shown using DDRD.

Aguiar et al. [8] have introduced a methodology for
software documentation in particular documenting object-
oriented frameworks. The authors have addressed several
issues that need to be considered when documenting
frameworks. These issues are related to quality, processes, and
tools. The approach is tailored to help naïve software engineers
in documenting software frameworks. The approach addresses
three roles namely writers, developers, and documentation
managers. In addition, it emphasizes on the collaborations and
involvement throughout the development process.

Véras et al. [33] have introduced an approach which helps
assessing the software requirement specifications. The
approach aims to provide a benchmark for the assessment
process. Three checklists are offered by the approach which is
based on the standardizations of Packet Utilization Standard
(PUS) by European Cooperation for Space Standardization
(ECSS) standards.

Farwick et al. [34] have proposed a semi-automatic
approach that document Enterprise Architecture (EA). The
approach is composed of 4 models each of which needs manual
interventions. The authors aim to overcome academic
approaches offered by Hauder et al. [35]. Although the
approach is promising, evolution and more case studies are
needed to mature it.

Mathrani et al. [36] have proposed a new approach for
software documentation that relies on the use of a quality
management standards model (ISO 9001). The approach has
been case studied on healthcare software with teams applying
Scrum methodology for software development. The authors
reported that issues such as incompleteness and ambiguity
might rise due to the constraints in ISO 9001.

Aversano et al. [37] have proposed a quality model that
evaluates the documentation of Enterprise Resource Planning
(ERP) software. The model aims to investigate different quality
attributes of the documentations. These attributes are linked
either to content or to structures. Main purpose is to ensure
readability and completeness of the documentation. The model
has been experimented with in the open-source ERP systems,
however, more case studies are required in order to generalize
the results.

Carvalho et al. [38] proposed a tool named Documentation
Mining Open-Source Software (DMOSS) for evaluating the
quality of software documentation of non-source code
information. The tool has been tested on 4 open-source codes.
The tool aims to help maintainers in understanding the
software.

Theunissen et al. [39] have introduced a model composed
of three approaches for software documentation. The model
focuses on categorizing software knowledge into 3 types
namely acquiring, building, and transferring knowledge. These

types highlight the information to be documented based on the
stage of the software life cycle. However, the model has not
been evaluated.

Rong et al. [40] introduced a new approach named
DevDocOps which can be integrated to DevOps in order to
automate the process of software documentation. The approach
has been implemented and evaluated in telecommunication
enterprise and the results were promising.

Krunic [41] have studied the benefits and difficulties of
Documentation as Code (DaC) in vehicle software. The author
conducted a case study with 150 participants as software
engineers. The author concluded the research by providing a
model as a guideline for applying DaC and assessing the
quality of documentation.

Kazman et al. [42] have introduced a method to
architecturally document open-source software. The authors
designed a case study to experiment their method on Hadoop
Distributed File System (HDFS). However, the results showed
that the proosed method had an effect on the project of HDFS.

Righolt et al. [43] have introduced a tool named Code
Diary for automatically documenting decisions from SAS
source code. Unlike similar tools, the authors claimed that the
proposed tool Code Diary aims to produce code documentation
for researchers and other audiences. However, no graphical
user interface is available for the tool.

AlOmar et al. [44], [45] have proposed a model that acts as
a data set for the documentation of refactoring process of the
software. The authors conducted an experiment of 5 stages that
has the documentation as the last stage. The experiment carried
out over 800 open-source java code found in GitHub.

Geist et al. [46] have introduced their approach which
employs Machine Learning, in specific, Deep learning in order
to re-document legacy software system from their source code
the exploitation of the comments found in the source code. The
authors developed the tool based on the approach in one of the
well-known automotive companies. However, the
generalization aspect of the approach remains in maturing
process.

Bhatia et al. [47] proposed an automated tool for code
documentation that is based on the ontology-driven
development. The authors examine the tool with comparison to
a manual tool named WCopyfind. The authors reported that the
tool can generate documentation in two types which are
targeting human and machine audiences.

Bastos et al. [48] have proposed an approach that aims to
help orgnisations in documenting the software project
development. The approach employs the ontology
methodology. The authors evaluated the approach using a
questionnaire circulated to 8 postgraduate students as
participants. In addition, the authors reported that the results
cannot be generalized due to the low number of participants.

IV. CONCLUSION

In this paper, a systematic review of the topic of software
documentation has been conducted. Budgen et al. and
Kitchenham [20], [21] methodology of carrying out systematic

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

160 | P a g e

www.ijacsa.thesai.org

review was employed in this research. The main purpose of
this research was to investigate the trends and issues related to
software documentation in the last 10 years. An important
remark is that Software documentation plays a significant role
in quality assurance of software [49]. Therefore, it was
essential to investigate the research trends in the topic and the
related issues. The main conclusions can be summarized in the
following points:

1) Software documentation has not been sufficiently

considered as a research interest in the last 10 years.

2) There is a collective recognition that documentation is a

difficult process and has many problems. In addition,

maintenance teams are the effected party with poor

documentation.

3) Three types of documentation can be deemed. First is

the initial documentation, for example SRS documents.

Second are the ongoing documentations, for example TODO

lists. Third is the final documentation which includes user

manuals.

4) Despite the model being followed in the documentation

process, the majority of found primary studies considered the

quality of software documentations.

5) Most tools for software documentations are focused on

reverse documentations from the source code. This might lead

to the loss of the lessons learned and decisions made as they

were not previously documented.

6) Automated tools for documentation are in high demand.

7) Despite the importance of software documentation in

the quality of software, developers tend not to pay attention to

it.

Future research endeavors will focus on developing a
comprehensive, standardized model for software
documentation that exhibits broad applicability across diverse
software systems. Furthermore, this investigation will delve
into the identification of ambiguities within existing software
documentation typologies and establish interconnections
between these categories to facilitate seamless transitions based
on the specific developmental phase.

ACKNOWLEDGMENT

The author wishes to express profound appreciation to his
family and friends for their unwavering support during the
course of this project. Their encouragement and steadfast faith
in the author's abilities served as a wellspring of motivation.

The author is also indebted to Umm Al Qura University for
providing indispensable resources and cultivating an
intellectually stimulating academic environment. These factors
significantly contributed to the successful culmination of this
research endeavor.

REFERENCES

[1] I. Sommerville, “Software documentation,” Softw. Eng., vol. 2, pp. 143–
154, 2001.

[2] I. Sommerville, Software Engineering, 6th edition. Harlow, England ;
New York: Addison Wesley, 2000.

[3] I. Sommerville, “Systems engineering for software engineers,” Ann.
Softw. Eng., vol. 6, no. 1/4, pp. 111–129, 1998, doi:
10.1023/A:1018901230131.

[4] R. Ries, “IEEE standard for software user documentation,” in
International conference on professional communication,
communication across the sea: North American and European practices,
IEEE, 1990, pp. 66–68. Accessed: Apr. 25, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/111154/

[5] T. T. Barker, Perspectives on Software Documentation: Inquiries and
Innovations. Routledge, 2020.

[6] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE Softw., vol. 20, no.
6, pp. 35–39, 2003.

[7] J. Santos and F. F. Correia, “A Review of Pattern Languages for
Software Documentation,” in Proceedings of the European Conference
on Pattern Languages of Programs 2020, Virtual Event Germany: ACM,
Jul. 2020, pp. 1–14. doi: 10.1145/3424771.3424786.

[8] A. Aguiar and G. David, “Patterns for Effectively Documenting
Frameworks,” Trans. Pattern Lang. Program. II, vol. 6510, pp. 79–124,
2011, doi: 10.1007/978-3-642-19432-0_5.

[9] E. Aghajani et al., “Software documentation issues unveiled,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), IEEE, 2019, pp. 1199–1210. Accessed: Apr. 24, 2024. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8811931/

[10] P. Naur and B. Randell, Software Engineering: Report of a conference
sponsored by the NATO Science Committee, Garmisch, Germany, 7-11
Oct. 1968, Brussels, Scientific Affairs Division, NATO. 1969.
Accessed: Apr. 24, 2024. [Online]. Available:
https://dl.acm.org/doi/abs/10.5555/1102020

[11] A. Rüping, Agile Documentation: A Pattern Guide to Producing
Lightweight Documents for Software Projects. John Wiley & Sons,
2005.

[12] D. Falessi, G. Cantone, and P. Kruchten, “Value-based design decision
rationale documentation: Principles and empirical feasibility study,” in
Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA 2008), IEEE, 2008, pp. 189–198. Accessed: Apr. 25, 2024.
[Online]. Available:
https://ieeexplore.ieee.org/abstract/document/4459157/

[13] D. Falessi, G. Cantone, and M. Becker, “Documenting design decision
rationale to improve individual and team design decision making: an
experimental evaluation,” in Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering, Rio de
Janeiro Brazil: ACM, Sep. 2006, pp. 134–143. doi:
10.1145/1159733.1159755.

[14] I. Sommerville, Software Engineering, 10th edition. Boston: Pearson,
2015.

[15] G. Uddin and M. P. Robillard, “How API documentation fails,” Ieee
Softw., vol. 32, no. 4, pp. 68–75, 2015.

[16] S. C. B. De Souza, N. Anquetil, and K. M. De Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of the
23rd annual international conference on Design of communication:
documenting & designing for pervasive information, Coventry United
Kingdom: ACM, Sep. 2005, pp. 68–75. doi: 10.1145/1085313.1085331.

[17] M. Kajko-Mattsson, “A Survey of Documentation Practice within
Corrective Maintenance,” Empir. Softw. Eng., vol. 10, no. 1, pp. 31–55,
Jan. 2005, doi: 10.1023/B:LIDA.0000048322.42751.ca.

[18] A. Forward and T. C. Lethbridge, “The relevance of software
documentation, tools and technologies: a survey,” in Proceedings of the
2002 ACM symposium on Document engineering, McLean Virginia
USA: ACM, Nov. 2002, pp. 26–33. doi: 10.1145/585058.585065.

[19] E. Aghajani et al., “Software documentation: the practitioners’
perspective,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, Seoul South Korea: ACM, Jun.
2020, pp. 590–601. doi: 10.1145/3377811.3380405.

[20] D. Budgen and P. Brereton, “Performing systematic literature reviews in
software engineering,” in Proceedings of the 28th international
conference on Software engineering, 2006, pp. 1051–1052.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

161 | P a g e

www.ijacsa.thesai.org

[21] B. Kitchenham, “Procedure for undertaking systematic reviews,”
Comput. Sci. Depart-Ment Keele Univ. TRISE-0401 Natl. ICT Aust. Ltd
0400011T 1 Jt. Tech. Rep., 2004.

[22] “Saudi Digital Library (SDL).” Accessed: Apr. 26, 2024. [Online].
Available: https://sdl.edu.sa/SDLPortal/Publishers.aspx

[23] M. P. Robillard and R. DeLine, “A field study of API learning
obstacles,” Empir. Softw. Eng., vol. 16, no. 6, pp. 703–732, Dec. 2011,
doi: 10.1007/s10664-010-9150-8.

[24] G. Garousi, V. Garousi-Yusifoğlu, G. Ruhe, J. Zhi, M. Moussavi, and B.
Smith, “Usage and usefulness of technical software documentation: An
industrial case study,” Inf. Softw. Technol., vol. 57, pp. 664–682, 2015.

[25] J. D. Arthur and K. T. Stevens, “Document quality indicators: A
framework for assessing documentation adequacy,” J. Softw. Maint.
Res. Pract., vol. 4, no. 3, pp. 129–142, Sep. 1992, doi:
10.1002/smr.4360040303.

[26] A. Dautovic, “Automatic assessment of software documentation
quality,” in 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), IEEE, 2011, pp. 665–
669. Accessed: May 10, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6100151/

[27] J.-C. Chen and S.-J. Huang, “An empirical analysis of the impact of
software development problem factors on software maintainability,” J.
Syst. Softw., vol. 82, no. 6, pp. 981–992, 2009.

[28] B. Dagenais and M. P. Robillard, “Creating and evolving developer
documentation: understanding the decisions of open source
contributors,” in Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering, Santa
Fe New Mexico USA: ACM, Nov. 2010, pp. 127–136. doi:
10.1145/1882291.1882312.

[29] S. Rai, R. C. Belwal, and A. Gupta, “A Review on Source Code
Documentation,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 5, pp.
1–44, Oct. 2022, doi: 10.1145/3519312.

[30] M. Meng, S. Steinhardt, and A. Schubert, “Application Programming
Interface Documentation: What Do Software Developers Want?,” J.
Tech. Writ. Commun., vol. 48, no. 3, pp. 295–330, Jul. 2018, doi:
10.1177/0047281617721853.

[31] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and G.
Ruhe, “Cost, benefits and quality of software development
documentation: A systematic mapping,” J. Syst. Softw., vol. 99, pp.
175–198, 2015.

[32] F. Bachmann et al., “Software architecture documentation in practice:
Documenting architectural layers,” 2000, Accessed: Apr. 24, 2024.
[Online]. Available: https://www.getforms.org/forms/forms-
pdf/5022.pdf

[33] P. C. Véras, E. Villani, A. M. Ambrosio, M. Vieira, and H. Madeira, “A
benchmarking process to assess software requirements documentation
for space applications,” J. Syst. Softw., vol. 100, pp. 103–116, Feb.
2015, doi: 10.1016/j.jss.2014.10.054.

[34] M. Farwick, C. M. Schweda, R. Breu, and I. Hanschke, “A situational
method for semi-automated Enterprise Architecture Documentation,”
Softw. Syst. Model., vol. 15, no. 2, pp. 397–426, May 2016, doi:
10.1007/s10270-014-0407-3.

[35] M. Hauder, F. Matthes, and S. Roth, “Challenges for Automated
Enterprise Architecture Documentation,” in Trends in Enterprise
Architecture Research and Practice-Driven Research on Enterprise
Transformation, vol. 131, S. Aier, M. Ekstedt, F. Matthes, E. Proper, and

J. L. Sanz, Eds., in Lecture Notes in Business Information Processing,
vol. 131. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 21–
39. doi: 10.1007/978-3-642-34163-2_2.

[36] A. Mathrani, S. Wickramasinghe, and N. P. Jayamaha, “An evaluation
of documentation requirements for ISO 9001 compliance in scrum
projects,” TQM J., vol. 34, no. 5, pp. 901–921, 2022.

[37] L. Aversano, D. Guardabascio, and M. Tortorella, “Analysis of the
documentation of ERP software projects,” Procedia Comput. Sci., vol.
121, pp. 423–430, 2017.

[38] N. R. Carvalho, A. Simoes, and J. J. Almeida, “DMOSS: Open source
software documentation assessment,” Comput. Sci. Inf. Syst., vol. 11,
no. 4, pp. 1197–1207, 2014.

[39] T. Theunissen, S. Hoppenbrouwers, and S. Overbeek, “Approaches for
documentation in continuous software development,” Complex Syst.
Inform. Model. Q., no. 32, pp. 1–27, 2022.

[40] G. Rong, Z. Jin, H. Zhang, Y. Zhang, W. Ye, and D. Shao,
“DevDocOps: Enabling continuous documentation in alignment with
DevOps,” Softw. Pract. Exp., vol. 50, no. 3, pp. 210–226, 2020, doi:
10.1002/spe.2770.

[41] M. V. Krunic, “Documentation as code in automotive system/software
engineering,” Elektron. Ir Elektrotechnika, vol. 29, no. 4, pp. 61–75,
2023.

[42] R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and G. Valetto,
“Evaluating the effects of architectural documentation: A case study of a
large scale open source project,” IEEE Trans. Softw. Eng., vol. 42, no. 3,
pp. 220–260, 2015.

[43] C. H. Righolt, B. A. Monchka, and S. M. Mahmud, “From source code
to publication: Code Diary, an automatic documentation parser for
SAS,” SoftwareX, vol. 7, pp. 222–225, Jan. 2018, doi:
10.1016/j.softx.2018.07.002.

[44] E. Abdullah AlOmar, A. Peruma, M. Wiem Mkaouer, C. Newman, A.
Ouni, and M. Kessentini, “How We Refactor and How We Document it?
On the Use of Supervised Machine Learning Algorithms to Classify
Refactoring Documentation,” ArXiv E-Prints, p. arXiv-2010, 2020.

[45] E. Abdullah AlOmar et al., “On the Documentation of Refactoring
Types,” ArXiv E-Prints, p. arXiv-2112, 2021.

[46] V. Geist, M. Moser, J. Pichler, S. Beyer, and M. Pinzger, “Leveraging
machine learning for software redocumentation,” in 2020 IEEE 27th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2020, pp. 622–626. Accessed: May 12,
2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9054838/

[47] M. P. S. Bhatia, A. Kumar, and R. Beniwal, “Ontology Driven Software
Development for Automated Documentation.,” Webology, vol. 15, no.
2, 2018, Accessed: May 12, 2024. [Online]. Available:
https://www.researchgate.net/profile/Rohit-Beniwal-
5/publication/331489088_Ontology_Driven_Software_Development_fo
r_Automated_Documentation/links/5c7d1c90458515831f81987c/Ontolo
gy-Driven-Software-Development-for-Automated-Documentation.pdf

[48] E. C. Bastos, M. P. Barcellos, and R. De Almeida Falbo, “Using
Semantic Documentation to Support Software Project Management,” J.
Data Semant., vol. 7, no. 2, pp. 107–132, Jun. 2018, doi:
10.1007/s13740-018-0089-z.

[49] J. E. Tyler, “Asset management the track towards quality
documentation,” Rec. Manag. J., vol. 27, no. 3, pp. 302–317, Jan. 2017,
doi: 10.1108/RMJ-11-2015-0039.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 8, 2024

162 | P a g e

www.ijacsa.thesai.org

APPENDIX A

PRIMARY STUDIES

Item Bibliography Sources

1.
T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers use documentation: The state of the practice,” IEEE Softw., vol. 20, no. 6,

pp. 35–39, 2003.
IEEE

2.
J. Santos and F. F. Correia, “A Review of Pattern Languages for Software Documentation,” in Proceedings of the European Conference on Pattern

Languages of Programs 2020, Virtual Event Germany: ACM, Jul. 2020, pp. 1–14. doi: 10.1145/3424771.3424786.
ACM

3.
A. Aguiar and G. David, “Patterns for Effectively Documenting Frameworks,” Trans. Pattern Lang. Program. II, vol. 6510, pp. 79–124, 2011, doi:

10.1007/978-3-642-19432-0_5.
Other Publishers

4.
E. Aghajani et al., “Software documentation issues unveiled,” in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),

IEEE, 2019, pp. 1199–1210. Accessed: Apr. 24, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8811931/
IEEE

5.

D. Falessi, G. Cantone, and P. Kruchten, “Value-based design decision rationale documentation: Principles and empirical feasibility study,” in

Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA 2008), IEEE, 2008, pp. 189–198. Accessed: Apr. 25, 2024. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/4459157/

IEEE

6.

D. Falessi, G. Cantone, and M. Becker, “Documenting design decision rationale to improve individual and team design decision making: an

experimental evaluation,” in Proceedings of the 2006 ACM/IEEE international symposium on Empirical software engineering, Rio de Janeiro

Brazil: ACM, Sep. 2006, pp. 134–143. doi: 10.1145/1159733.1159755.

ACM

7. G. Uddin and M. P. Robillard, “How API documentation fails,” Ieee Softw., vol. 32, no. 4, pp. 68–75, 2015. Other Publishers

8.

S. C. B. De Souza, N. Anquetil, and K. M. De Oliveira, “A study of the documentation essential to software maintenance,” in Proceedings of the

23rd annual international conference on Design of communication: documenting & designing for pervasive information, Coventry United

Kingdom: ACM, Sep. 2005, pp. 68–75. doi: 10.1145/1085313.1085331.

ACM

9.
M. Kajko-Mattsson, “A Survey of Documentation Practice within Corrective Maintenance,” Empir. Softw. Eng., vol. 10, no. 1, pp. 31–55, Jan.

2005, doi: 10.1023/B:LIDA.0000048322.42751.ca.
Other Publishers

10.
A. Forward and T. C. Lethbridge, “The relevance of software documentation, tools and technologies: a survey,” in Proceedings of the 2002 ACM

symposium on Document engineering, McLean Virginia USA: ACM, Nov. 2002, pp. 26–33. doi: 10.1145/585058.585065.
ACM

11.
E. Aghajani et al., “Software documentation: the practitioners’ perspective,” in Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering, Seoul South Korea: ACM, Jun. 2020, pp. 590–601. doi: 10.1145/3377811.3380405.
ACM

12.
S. Rai, R. C. Belwal, and A. Gupta, “A Review on Source Code Documentation,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 5, pp. 1–44, Oct.

2022, doi: 10.1145/3519312.
ACM

13.
M. Meng, S. Steinhardt, and A. Schubert, “Application Programming Interface Documentation: What Do Software Developers Want?,” J. Tech.

Writ. Commun., vol. 48, no. 3, pp. 295–330, Jul. 2018, doi: 10.1177/0047281617721853.
Other Publishers

14.
J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe, “Cost, benefits and quality of software development documentation:

A systematic mapping,” J. Syst. Softw., vol. 99, pp. 175–198, 2015.
Other Publishers

15.
F. Bachmann et al., “Software architecture documentation in practice: Documenting architectural layers,” 2000, Accessed: Apr. 24, 2024. [Online].

Available: https://www.getforms.org/forms/forms-pdf/5022.pdf
Other Publishers

16.
P. C. Véras, E. Villani, A. M. Ambrosio, M. Vieira, and H. Madeira, “A benchmarking process to assess software requirements documentation for

space applications,” J. Syst. Softw., vol. 100, pp. 103–116, Feb. 2015, doi: 10.1016/j.jss.2014.10.054.
Other Publishers

17.
M. Farwick, C. M. Schweda, R. Breu, and I. Hanschke, “A situational method for semi-automated Enterprise Architecture Documentation,” Softw.

Syst. Model., vol. 15, no. 2, pp. 397–426, May 2016, doi: 10.1007/s10270-014-0407-3.
Other Publishers

18.
A. Mathrani, S. Wickramasinghe, and N. P. Jayamaha, “An evaluation of documentation requirements for ISO 9001 compliance in scrum projects,”

TQM J., vol. 34, no. 5, pp. 901–921, 2022.
Other Publishers

19.
L. Aversano, D. Guardabascio, and M. Tortorella, “Analysis of the documentation of ERP software projects,” Procedia Comput. Sci., vol. 121, pp.

423–430, 2017.
Other Publishers

20.
N. R. Carvalho, A. Simoes, and J. J. Almeida, “DMOSS: Open source software documentation assessment,” Comput. Sci. Inf. Syst., vol. 11, no. 4,

pp. 1197–1207, 2014.
Other Publishers

21.
T. Theunissen, S. Hoppenbrouwers, and S. Overbeek, “Approaches for documentation in continuous software development,” Complex Syst.

Inform. Model. Q., no. 32, pp. 1–27, 2022.
Other Publishers

22.
G. Rong, Z. Jin, H. Zhang, Y. Zhang, W. Ye, and D. Shao, “DevDocOps: Enabling continuous documentation in alignment with DevOps,” Softw.

Pract. Exp., vol. 50, no. 3, pp. 210–226, 2020, doi: 10.1002/spe.2770.
Other Publishers

23. M. V. Krunic, “Documentation as code in automotive system/software engineering,” Elektron. Ir Elektrotechnika, vol. 29, no. 4, pp. 61–75, 2023. Other Publishers

24.
R. Kazman, D. Goldenson, I. Monarch, W. Nichols, and G. Valetto, “Evaluating the effects of architectural documentation: A case study of a large

scale open source project,” IEEE Trans. Softw. Eng., vol. 42, no. 3, pp. 220–260, 2015.
IEEE

25.
C. H. Righolt, B. A. Monchka, and S. M. Mahmud, “From source code to publication: Code Diary, an automatic documentation parser for SAS,”

SoftwareX, vol. 7, pp. 222–225, Jan. 2018, doi: 10.1016/j.softx.2018.07.002.
Other Publishers

26.
E. Abdullah AlOmar, A. Peruma, M. Wiem Mkaouer, C. Newman, A. Ouni, and M. Kessentini, “How We Refactor and How We Document it? On

the Use of Supervised Machine Learning Algorithms to Classify Refactoring Documentation,” ArXiv E-Prints, p. arXiv-2010, 2020.
Other Publishers

27. E. Abdullah AlOmar et al., “On the Documentation of Refactoring Types,” ArXiv E-Prints, p. arXiv-2112, 2021. IEEE

28.

V. Geist, M. Moser, J. Pichler, S. Beyer, and M. Pinzger, “Leveraging machine learning for software redocumentation,” in 2020 IEEE 27th

International Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, 2020, pp. 622–626. Accessed: May 12, 2024.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/9054838/

ACM

29.

M. P. S. Bhatia, A. Kumar, and R. Beniwal, “Ontology Driven Software Development for Automated Documentation.,” Webology, vol. 15, no. 2,

2018, Accessed: May 12, 2024. [Online]. Available: https://www.researchgate.net/profile/Rohit-Beniwal-

5/publication/331489088_Ontology_Driven_Software_Development_for_Automated_Documentation/links/5c7d1c90458515831f81987c/Ontology-

Driven-Software-Development-for-Automated-Documentation.pdf

Other Publishers

