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Abstract—Event Argument Classification (EAC) is an essential
subtask of event extraction. Most previous supervised models rely
on costly annotations, and reducing the demand for computa-
tional and data resources in resource-constrained environments
is a significant challenge within the field. We propose a Zero-
Shot EAC model, ALBERT-F, which leverages the efficiency of
the ALBERT architecture combined with the Flash-Attention
mechanism. This novel integration aims to address the limita-
tions of traditional EAC methods, which often require extensive
manual annotations and significant computational resources. The
ALBERT-F model simplifies the design by factorizing embedding
parameters, while Flash-Attention enhances computational speed
and reduces memory access overhead. With the addition of global
constraints and prompting, ALBERT-F improves the generaliz-
ability of the model to unseen events. Our experiments on the
ACE dataset show that ALBERT-F outperforms the Zero-shot
BERT baseline by achieving at least a 3.4% increase in F1 score.
Moreover, the model demonstrates a substantial reduction in GPU
memory consumption by 75.1% and processing time by 33.3%,
underscoring its suitability for environments with constrained
resources.
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I. INTRODUCTION

Event Argument Classification (EAC) is a crucial part of
event understanding and event argument extraction, embody-
ing the complexity and importance of this interdisciplinary
field [1, 2]. This domain, which integrates natural language
processing (NLP) and knowledge representation, is dedicated
to converting narrative event descriptions and their relational
dynamics into a structured form of knowledge. As shown in
Fig. 1, for a trigger word “paid” in a “Transfer-Money” event,
it has several argument spans (e.g., “O’neal”). By determining
the roles of these arguments (e.g., identifying “O’neal” as
the “Giver”), this structured knowledge enables us to better
understand events and use them for knowledge reasoning and
automated decision support, benefiting applications such as
biomedical research and question answering recommendation
systems.

In the domain of event argument classification, a prevalent
strategy has been the manual annotation of domains and pat-
terns. Although effective, this approach necessitates significant
labeling efforts for model training. This method also presents

Kobe also alleged that O'neal had paid 
upwards of one million dollars 
in this way as hush money over the years.

Event Type: Transaction:Transfer-Money 
giver trigger

money

Fig. 1. An example of EAC. The arrows indicate the trigger and argument
types respectively.

challenges in transferring knowledge across different applica-
tion domains and scaling to new datasets. The laborious nature
of annotation incurs significant costs. To mitigate this, some
EAC models have turned to few-shot learning [3–6], which,
despite its potential, is sensitive to the selection of examples
and requires costly, task-specific training, limiting its practical-
ity.In contrast, zero-shot EAC models have been introduced,
leveraging label semantic understanding or prompt learning
strategies [7–10]. Although existing methods perform well
when dealing with events similar to the training data, they may
not achieve the expected results when faced with significantly
different new events. Some studies have attempted to improve
performance in zero-shot and few-shot learning scenarios by
integrating Large Language Models (LLMs) [2, 11], but there
is still a considerable gap compared to models that have
been specifically fine-tuned. Moreover, the operation of LLMs
requires a significant amount of computational resources,
which may limit their potential for application in resource-
constrained environments. Therefore, tackling the efficiency
constraints inherent to Zero-Shot EAC tasks in resource-scarce
environments has become a formidable obstacle.

To address the challenges in the field of event argument
classification, we propose a Zero-Shot model tailored for
low-resource scenarios. This model integrates an ALBERT
architecture [12] optimized with Flash-Attention [13] and is
enhanced by global constraints with prompting, aiming to
improve the performance of zero-shot EAC tasks.

The ALBERT model mitigates the issues of excessive
parameters and inefficiency by simplifying its design in the
BERT [12, 14]. Furthermore, global constraints provide critical
supervisory guidance to our model, as a manifestation of
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domain knowledge [2]. This guidance is particularly crucial
in zero-shot learning environments with a scarcity of fully
annotated data, as it enables the model to better understand
and generalize the relations between event arguments. To
further accommodate the constrained resources in low-resource
scenarios, we propose ALBERT-F, a solution that optimizes
the ALBERT model using a Flash Attention module. Flash
Attention leverages efficient upper-level storage computational
units to reduce access to the slower lower-level storage, thereby
maintaining performance while significantly enhancing the
model’s resource utilization efficiency [13].

Through a series of experiments, we have validated the ef-
fectiveness of our proposed method. Specifically, our approach
achieved at least a 3.4% increase in F1 score on the ACE
dataset compared to the Zero-shot BERT baseline model, with
a 75.1% reduction in GPU memory consumption and a 33.3%
reduction in processing time. Furthermore, the introduction of
Flash Attention resulted in a further 5.1% reduction in GPU
memory consumption and an 11.1% decrease in processing
time compared to the original ALBERT model. These results
not only demonstrate the significant advantage of our method
in reducing resource consumption but also confirm its effec-
tiveness in enhancing performance.

Subsequent sections present our experimental setup, re-
sults, and a comparative analysis with existing models. We
conclude with a discussion on the implications of our findings,
limitations and avenues for future research.

II. RELATED WORKS

A. Event Extraction

Event Extraction (EE) is one of the most fundamental
tasks in information extraction, which can be further divided
into four subtasks: trigger identification, trigger classification,
argument identification, and argument classification [1, 15–18].

Traditional event extraction relies heavily on feature engi-
neering, which poses its central challenge [1, 18]. However,
these methods often encounter limitations when dealing with
deep or complex nonlinear patterns. In recent years, some
advanced works based on supervised learning have attracted
attention due to their two main advantages: first, the applicabil-
ity of their embedding representations to large-scale datasets;
second, the combination of automated feature extraction with
specific deep architectures, which effectively captures more
intricate nonlinear patterns [19–23].

In the task of information extraction, models can identify
the actions in sentences and their corresponding participants by
defining constraints [24]. One of the applications of constraint
modeling in NLP is in syntactic analysis, where it is used to
represent that an object must satisfy general or very specific
properties to exclude those that do not belong to the structure
of the languag [25]. Particularly in zero-shot scenarios, con-
straint modeling can provide useful indirect supervision to the
model, thereby further improving its performance [26].

Nevertheless, the inherent limitations of supervised learn-
ing may impact the model’s generalization capabilities across
different domains. Moreover, the demand for computational
resources and specialized skills (including constraint mod-
eling), along with the reliance on a substantial amount of

manually annotated data, become bottlenecks in their practical
application.

B. Few-Shot Learning for EE

Few-shot learning methods have garnered widespread at-
tention in the domain of event extraction, and the majority
of current research is concentrated on the task of event
identification within the context of Few-shot Event Detection
(FSED) [1]. These approaches are dedicated to achieving
accurate predictions for specific tasks with minimal training
samples, such as one-shot, five-shot, etc. By leveraging prior
knowledge, transfer learning, or meta-learning strategies, few-
shot learning endeavors to surmount the challenge of data
scarcity and enhance the model’s generalization capability on
novel tasks [3–6].

The DEGREE model [6] excels at synthesizing events from
a text segment into coherent, naturally constructed sentences
that conform to a pre-established template, aided by manually
curated prompts. By integrating the semantic essence of labels
with the collective intelligence across sub-tasks, DEGREE
discerns interdependencies among entities, thereby reducing
the volume of training data required. Many previous works
on event extraction (EE) necessitate extensive annotations for
model training [6, 8, 23], which incurs high costs due to the
labor-intensive nature of annotation and poses challenges in
scaling to new domains. While DEGREE refines a pre-existing
generative language model [27], the output it generates may
reflect the characteristics of the corpus from which it was
trained. Although infrequent, there is a possibility that the
model might produce sentences that are malevolent, menda-
cious, or prejudiced, thus raising ethical concerns [28, 29].

For classification tasks, LoLoss [4] is employed for training
few-shot learning models based on the matching information
of examples within the support set.

L(x, S) = Lquery(x, S) + λ · Laux(S) (1)

The components of this equation are as follows: L(x, S)
represents the total loss, which is contingent upon the model
parameters x and the training samples S. Lquery(x, S) refers
to the query loss, which assesses the discrepancy between the
model’s predictions for the query set and their corresponding
true labels. λ is a hyperparameter that modulates the trade-
off between the query loss and the auxiliary loss within the
total loss calculation. Laux(S) is the auxiliary loss, which
leverages the internal matching information of examples within
the support set to provide additional training signals. It not only
matches the query examples with those in the support set but
also further matches the examples among themselves within
the support set, thereby providing additional training signals
for the model.

The scarcity of samples in long-tail categories increases
the complexity of classification in few-shot learning tasks.
To overcome this challenge, the Multi-Level Matching and
Aggregation Network (MLMAN) [3] employs a hierarchical
matching and aggregation strategy. This strategy comprehen-
sively analyzes the support vectors and query vectors at differ-
ent levels, capturin local features integrating global contextual
information, thereby enhancing the classification accuracy of
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long-tail category samples. Adaptive Attentional Network for
Few-Shot Knowledge Graph Completion (FAAN) [5] employs
a minimal set of reference samples to adeptly predict and dis-
cern connections and relations. These reference relation triples
are adaptively encoded within a transformer network through
the application of embeddings and an attention mechanism,
ensuring precise alignment with the query. FAAN’s adaptive
encoding of entities and reference pairs significantly enhances
the performance of traditional knowledge graph embedding
methods, particularly for long-tail relations that are charac-
terized by a paucity of samples.

Nonetheless, constrained by a limited sample size, the
model is susceptible to overfitting, with an exacerbated risk
in scenarios characterized by class imbalance. This propensity
may compromise the model’s capacity for robust generaliza-
tion. Furthermore, the necessity for supplementary computa-
tional resources or the adoption of intricate model architectures
could potentially restrict the practical applicability of these
models.

C. Zero-shot Learning for EE

In the context of lacking prior knowledge and labeled
data, existing research tends to adopt preset event information
frameworks or experience-based strategies to achieve effective
classification of unknown event types [7–10]. Similarly, the
zero-shot contrastive learning strategy also emphasizes the
use of unlabeled data during the training phase to cultivate
features that can distinguish between different categories [2].
Although these methods still have a significant gap compared
to supervised methods, they offer an insightful perspective and
suggest possible directions for improvement in event extraction
under resource-constrained environments.

The event extraction task was conceptualized by Huang et
al. [7] as a “grounding” problem, wherein it is encapsulated
within a structured ontology that delineates event mentions
and their respective types. Semantic similarity measures are
harnessed for the purpose of prediction. A transferable neural
architecture was proposed by Huang et al., one that capitalizes
on manually annotated event patterns alongside a modest
subset of previously encountered types. This architecture was
adept at transferring knowledge from known types to the
extraction of novel types, thereby enhancing the scalability of
event extraction and conserving human resources. Further ex-
ploration into transfer learning methodologies for novel events
was undertaken by Lyu et al. [9] They reframed the event
extraction challenge within the contexts of textual entailment
(TE) and question answering (QA), advocating for the direct
application of pre-trained TE/QA models.

Although these models have demonstrated exceptional per-
formance on standard benchmark tests, they have not yet real-
ized the anticipated generalization effect when applied to the
event extraction dataset. Nonetheless, they offer an insightful
vision and suggest a possible direction for improvement in
event extraction within very low-resource environments.

Lin et al. [2] proposed a Global Constraint Regularization
Module that standardizes predictions through three types of
global constraints: cross-task constraints, cross-parameter con-
straints, and cross-event constraints. They utilized a method
that combines global constraints with prompting, employing

the large language model GPT-J [30], which makes it possible
to effectively perform event parameter classification without
any annotations or task-specific training. Chen et al. [11],
also employing large language models for research, utilized
a large language model as an expert annotator for event
extraction. Strategically incorporating sample data from the
training dataset into the prompts, the researchers ensure that
the generated samples from the language model align with
the data distribution of the benchmark dataset. This enables
the creation of an augmented dataset to supplement the ex-
isting benchmarks, alleviating challenges of data imbalance
and scarcity, thus enhancing the performance of fine-tuned
models. However, existing open-source large language models
often require expensive hardware configurations and substan-
tial computational resources [31]. Furthermore, the utility of
these models is limited by the fact that most current hardware
was developed prior to the emergence of large-scale mod-
els, potentially rendering it inadequate for the computational
demands of such models during inference. This limitation
is particularly pronounced in low-resource settings, where
specialized hardware is required to facilitate efficient inference
processes for large models [32].

To address low-resource scenarios, we propose a Zero-shot
EAC model that incorporates global constraints and prompt,
coupled with ALBERT-F. This approach aims to enhance the
performance of Zero-shot EAC tasks in resource-constrained
environments.

III. METHODOLOGY

Our model comprises two distinct modules. As shown in
Fig. 2, the first is the prompting module, which is tasked with
the generation of several new passages and the subsequent
evaluation of their quality. During this creation process, the
model integrates candidate role with prefix prompts that con-
tain information regarding the event type and trigger. These
candidates are connected to the target parameter range by
embedding them within the passages through a cloze prompt.
Subsequently, the model employs an ALBERT model opti-
mized with Flash-Attention (ALBERT-F) to score the newly
generated passages. Without the need for manual annotation,
the initial prediction is the role with the highest prompting
score. The second module is the global constraint regular-
ization module, wherein the model regularizes the predictions
through three types of global constraints. These are based on
domain knowledge related to inter-task, inter-parameter, and
inter-event relationships within the event-related context.

A. ALBERT-F

Before delving into the two primary modules, we pro-
vide a overview of ALBERT-F. By substituting the attention
mechanisms across all modules, the primary structure of our
ALBERT network is depicted in Fig. 3.

Flash-attention is designed to expedite the computation
of attention mechanisms and curtail memory usage [13]. It
leverages the knowledge of the memory hierarchy of under-
lying hardware, such as the memory architecture of GPUs,
to enhance computational speed and reduce the overhead of
memory access. By using statistical measures and altering
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Input passage:
[T]1 [target argument span][T]2

[Prefix Promot][T]1[target argument span] [cloze prompt]
[candidate role]1

[candidate role]k

...

ALBERT-F

[T]2

[Prompting Scores]1...k

[Temporary Prediction]

Global Constraints 
Regularization Module

Final Prediction

Prompting Module

Fig. 2. Model summary, illustrated with the prediction of a single argument span. [T ]1 represents the segment of the input text preceding the span, while [T ]2
denotes the segment that follows. The variable k signifies the total count of potential roles associated with the event type.

Flash-attention

Add & Norm

Feed Forward

Add & Norm

ALBERT-F Block

Fig. 3. The main structure of the ALBERT-F module. Enhancing model
efficiency by introducing flash-attention to reduce computational resource

consumption.

the computation sequence of the attention mechanism, Flash-
attention computes in chunks rather than approximates, effec-
tively reducing complexity. The outcomes of Flash-attention
are entirely equivalent to those of the native attention mecha-
nism [13, 33].

Increasing the size of a Pre-trained Language Model (PLM)
typically enhances its inferential capabilities; however, once
the model reaches a certain magnitude, it encounters limita-
tions imposed by the memory capacity of GPUs/TPUs [33].
Consequently, ALBERT implements factorized embedding
parameterization, which decomposes the embedding matrix.
Instead of directly projecting one-hot encoded vectors into
a hidden vector space of dimension H, the vectors are first
projected into a lower-dimensional embedding vector space
and then into the hidden vector space. This decomposition
significantly reduces the number of embedding parameters and
results in a more uniform distribution.

In ALBERT, the parameters of the fully connected layers
and the attention layers are shared, meaning that ALBERT
retains the deep multi-layer connections, but the parameters
between layers are identical [12]. Consequently, ALBERT-
F optimizes ALBERT using Flash-attention to reduce the
model’s computational resource consumption, yielding more
satisfactory results in low-resource scenarios where computa-
tion and memory are constrained.

B. Prompting Module

In this section, we primarily elucidate the prompting mod-
ule. Given a passage, we initially append a prefix prompt at the
onset, which encapsulates information pertaining to the event
type and the scope of the trigger. Such a prompt serves to guide
ALBERT-F in: (1) accurately capturing the correlation between
the input text and the event-related associations; (2) possessing
a clear trigger awareness capability. In accordance with the
definitions of events and triggers [17], we have formulated the
following prefix prompt:

• "This is a [P1] event whose occurrence is most clearly
expressed by [P2]."

Where the first and second pairs of square brackets are
placeholders for the event type(P1) and trigger span (P2),
respectively.

For each candidate role, the module inserts a cloze test
prompt subsequent to the target parameter range, with the role
filling the slot of the prompt. The cloze prompt employs a
hypernym extraction pattern “M and any other []”, wherein
“M” denotes the parameter range, and the square brackets serve
as placeholders for the candidate roles. Such prompts harness
the linguistic and common-sense knowledge stored within the
ALBERT-F to assist in identifying which candidate role is the
most plausible [2, 34].
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For each novel passage, we apply ALBERT-F to compute
the language modeling loss. The prompting score for the
corresponding paragraph is determined by the negative value
of the loss, where a more negative loss indicates a higher score,
reflecting greater plausibility as assessed by ALBERT-F. Since
the scoring process for each candidate role is independent of
other candidate roles, we implement the steps for different
candidate roles in parallel. This parallel implementation sig-
nificantly enhances the efficiency of our model.

C. Global Constraints Regularization Module

This module regularizes predictions through global con-
straints. We refer to and leverage the constraint strategy
proposed by Lin et al. [2], employing Event Argument Entity
Typing (EAET) as an auxiliary task, which aims to categorize
arguments into their contextually relevant entity types. These
constraints provide our model with a global understanding of
event arguments.

By utilizing the label dependencies between EAC and the
auxiliary task, our model can glean global information about
event arguments from the auxiliary task. Concurrently, to adapt
to applications in low-resource scenarios, our model limits the
number of specific arguments for certain or all events.

IV. EXPERIMENTS

We initially present the experimental setup, the baselines
for comparison, and certain implementation details. Subse-
quently, we demonstrate and analyze the results of the experi-
ments. We then conduct an analysis of computational resources
and processing duration. Finally, we perform an error analysis.

A. Settings

We utilize the ACE (2005-E +) dataset [23, 35] as the basis
for our experiments. The ACE dataset encompasses a total of
33 event types and 22 roles. We preprocess all events, as is
done in the work of Lin et al. [23], to retain only the event
subtypes when applicable. Since our approach is zero-shot,
for each dataset, we consolidate all splits into a single test set,
following the preprocessing in the study by Lyu et al. [9].

We evaluate using the F1 score, as proposed by Ji and
Grishman [36], employing the ALBERT-F model as the foun-
dational model for our module implementation. We run our
experiments on a single NVIDIA RTX 4000 Ada GPU.

B. Main Results

We report results that are compared with several existing
zero-shot methods, including those by Huang et al. (2018) [7],
Liu et al. (2020) [8], Zhang et al. (2021) [10], and the current
state-of-the-art zero-shot approach by Lin et al. (2023) [2]. In
our comparisons, we also evaluated the work of Lin et al.,
where we compared two PLM (Pre-trained Language Model)
bases: Bert-large-uncased [12] with a parameter count of 330
million, and GPT-6J [30] with a parameter count of 6 billion.

From Table I, we have the following observations: Com-
pared to all zero-shot baselines, our model has demonstrated
superior performance in the Settings category. Specifically,
our model has achieved an F1 score on the ACE dataset that

TABLE I. COMPARISON F1 SCORE OF DIFFERENT MODELS ON THE ACE
2005 E+ DATASET, THE BEST PERFORMANCE OF NON-LLM IS MARKED

IN BOLD FONT

Model Year ACE 2005 E+

Lin et al. [2] (GPT-6J) 2023 66.1

Liu et al. [8] 2020 46.1
Lyu et al. [9] 2021 47.8

Zhang et al. [10] 2021 53.6
Lin et al. [2] (BERT-Large) 2023 58.2

Ours 2024 61.6

surpasses the best non-large model zero-shot baseline by 3.4%
(Lin et al., 2023 [2]). This represents a significant gap. Such
substantial performance improvement can be attributed to sev-
eral factors: (1) the prefix and cloze prompts effectively guide
the PLM to capture the input’s event-related perspectives and
triggers; (2) the global constraint regularization incorporates
global information and domain knowledge into the inference
process; (3) our model has effectively enhanced the inferential
capabilities of the EAC (Event Argument Classification) task.

Compared to the state-of-the-art (SOTA) results based on
large models, there remains a significant performance gap for
our model. Specifically, Lin et al. achieved a 4.5% higher
score on the ACE dataset than our model. The advantage
of models with ample resources over our zero-shot method
is even more pronounced. This may be due to the fact
that our model’s parameter count (60M) is only 1% of the
SOTA model’s parameter count (6B). Based on the theoretical
knowledge presented in Section III-A, there is still a partial
performance gap between our EAC model and those utilizing
Large Language Models (LLMs).

C. Comparison Between Different Prefix Prompts

In this section, we conduct experiments on the ACE (2005
E+) dataset to compare the effectiveness of using different
prefix prompts within the model. We compare the following
prefix prompts with those mentioned in Section III-B:

1) ”[P1] most accurately represents the occurrence of
this [P2].”

2) ”The event type is [P1] and the trigger is [P2].”

TABLE II. PERFORMANCE OF DIFFERENT PREFIX PROMPTS

Prefix Prompt F1 Score

Prefix(0) 61.6
Prefix(1) 61.3
Prefix(2) 60.8

From Table II, it can be observed that the prompts de-
scribed in Section III-B are the most effective, which may be
attributed to the fact that the prefix prompts are not only based
on the definitions of events and triggers [17], but also possess
a naturally fluent expression [2].
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D. Computational Resource Analysis

The state-of-the-art (SOTA) model based on GPT-J, with
its substantial parameter count of 6 billion, excels in resource-
intensive tasks but also implies a significant demand for
computational resources, making it generally unsuitable for
low-resource scenarios. Therefore, in this section, we primarily
compare the version implemented within the framework of Lin
et al. [2] using BERT-Large with our model.

In contrast, the BERT-Large model used by Lin et al. has
a parameter count of 334 million, whereas our model has a
parameter count of only 60 million, significantly reducing the
model’s storage and computational requirements. Runtime and
GPU memory usage are key indicators for gauging the feasi-
bility of models in practical applications. We independently
ran each model five times to calculate their average resource
consumption.

TABLE III. THE RESOURCE CONSUMPTION OF EACH MODEL, WITH
NUMERICAL VALUES REPRESENTING THE AVERAGE DURATION AND

GPU MEMORY USAGE OVER FIVE INDEPENDENT RUNS

Model Paramaters Run Time GPU Memory

Lin et al. (BERT-Large) 334M 1.2h 2151MiB
Ours. (w/o Flash-att) 60M 0.9h 563MiB

Ours. (Flash-att) 60M 0.8h 534MiB

As shown in Table III, the model of Lin et al. requires
1.2 hours to complete training or inference, while our model
(without Flash-Attention) and (with Flash-Attention) only re-
quires 0.9 hours and 0.8 hours, respectively. Compared to
the BERT-Large-based model and the model without Flash-
Attention, the time consumption is reduced by 33.3% and
11.1%, respectively, indicating that our model can provide
faster processing speeds while maintaining a smaller parameter
size.

The model of Lin et al. (BERT-Lager) [2] requires 2151
MiB of GPU memory, whereas our model significantly reduces
this demand, with the version without Flash-Attention requir-
ing 563 MiB and the Flash-Attention version further reducing
to 534 MiB. This indicates that our model, while maintaining
a smaller parameter size, has reduced GPU memory usage
by 75.1% and 5.1%, respectively, making it more suitable for
operation in resource-constrained environments.

The results indicate a substantial improvement in F1 score
and a significant reduction in resource consumption. We at-
tribute these improvements to the synergistic effect of Flash-
Attention and global constraints within our model. However,
we also acknowledge potential limitations, such as the model’s
generalizability to other domains and the need for further
adaption to enhance its robustness.

E. Discussion

The ALBERT-F model, without the implementation of
Flash-Attention, exhibits an average runtime of 0.9 hours,
which is further reduced to 0.8 hours with the integration of
Flash-Attention. This is a significant reduction compared to
the 1.2 hours required by the BERT-Large model. Concur-
rently, the GPU memory consumption is markedly decreased

from 2151 MiB for the BERT-Large to 563 MiB for the
ALBERT-F model without Flash-Attention, and an additional
reduction to 534 MiB is achieved with the utilization of
Flash-Attention. These results indicate that the ALBERT-F
model substantially diminishes resource consumption while
maintaining performance, making it particularly suitable for
scenarios with limited computational resources.

The fusion of global constraints and prompting strategies
enhances the model’s generalizability to unknown events,
rendering it more competitive in zero-shot learning tasks. This
characteristic implies that in practice, the model can make rea-
sonable predictions for new event types even without specific
training data, which is invaluable in situations where data is
scarce or difficult to annotate. However, despite the ALBERT-F
model demonstrating advantages in multiple aspects, its limi-
tations in handling complex event structures and long-distance
dependencies remain a subject worthy of investigation. Com-
plex events often involve multi-layered nested semantic rela-
tionships, and long-distance dependencies require the model
to capture associations between words that are distant in the
text. The model’s performance may be compromised in such
cases, as traditional attention mechanisms may not effectively
span long sequences to capture crucial information. Therefore,
future research could focus on developing more advanced
attention mechanisms or model architectures to strengthen the
model’s comprehension of complex events.

V. CONCLUSION

In conclusion, we propose a ALBERT-F model for zero-
shot EAC that employs global constraints and prompting.
Compared to previous works, our model has a significantly
lower parameter count, which not only reduces storage re-
quirements but also potentially mitigates the risk of model
overfitting. Additionally, it offers advantages in terms of run
time, implying faster iterations and adaptation to new data.
In terms of GPU memory usage, our model is substantially
suitable for operation on devices with limited memory. These
advantages make our model particularly appealing in resource-
constrained environments.

VI. LIMITATIONS

In this section, we summarize the limitations of our work
as follows:

1) Expressiveness: Although the ALBERT-F model
demonstrates exceptional resource efficiency, it may not
match the robust expressiveness of large language models
in certain complex natural language understanding tasks.
Large language models typically excel in handling intricate
linguistic structures and long-distance dependencies due
to their substantial parameter count and deeper network
architectures.

2) Domain-specific performance: In certain domains or
tasks, large language models may exhibit superior performance
due to exposure to a more diverse range of texts during their
pre-training phase. While the ALBERT-F model possesses
strong zero-shot learning capabilities, it may require additional
domain adaptation to achieve optimal results with specialized
terminology and concepts in specific fields.
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3) Scalability: Although the ALBERT-F model shows sig-
nificant optimization in resource consumption, whether it can
maintain these advantages when dealing with larger datasets
or more complex tasks, or if further adjustments to the model
structure and parameters are needed, remains a subject that
necessitates further research and validation.
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